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Abstract. In the presence of large-scale vortical motions and/or magnetic-field strains, the
turbulent cross helicity (velocity–magnetic-field correlation in fluctuations) may contribute to
the turbulent electromotive force and the Reynolds stress. These effects of cross helicity are
considered to balance the primary effects of turbulence such as the turbulent magnetic diffusivity
in magnetic-field evolution and the eddy viscosity in the momentum transport. The cross-
helicity effects may suppress the enhanced transports due to turbulence. Physical interpretation
of the effects is presented with special emphasis on the difference between the cross-helicity effect
and the usual α or helicity effect in the dynamo action. The relative importance of the cross-
helicity effect in dynamo action is validated with the aid of a direct numerical simulation (DNS)
of the Kolmogorov flow with an imposed magnetic field. Several mechanisms that provide
turbulence with the cross helicity are also discussed.

1. Introduction

Cross helicity (velocity–magnetic-field correlation) is a quantity of fundamental importance at
high magnetic Reynolds number magnetohydrodynamic (MHD) flow. The total cross helicity,
as well as the MHD energy, is an inviscid invariant of the MHD system of equations, but a
pseudoscalar which represents breakage of mirror-symmetry. Cross helicity is expected to play
a certain role in the turbulent dynamo (see Yoshizawa et al., 2004, and works cited therein).

In the presence of a large-scale vortical motion, the turbulent cross helicity 〈u′ · b′〉 contributes
to the electromotive force aligned with the large-scale vorticity Ω(= ∇ × U) (u′: velocity
fluctuation, b′: magnetic-field fluctuation, U : mean velocity, 〈· · ·〉: ensemble average). A
fluid element in the large-scale vorticity is subject to the Coriolis-like force u′ × Ω . Provided
that there is a positive (or negative) cross correlation between the velocity and magnetic-field
fluctuations, a contribution to the electromotive force parallel (or antiparallel) to the mean
vorticity, 〈δu′ × b′〉 ∝ 〈u′ · b′〉Ω , arises (figure 1). This is in marked contrast with a positive (or
negative) turbulent helicity 〈u′ · ω′〉, correlation between the velocity and vorticity fluctuations
may contribute to the electromotive force antiparallel (or parallel) to the mean magnetic field
[ω′(= ∇× u′): vorticity fluctuation].
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If we take the cross-helicity effects into account, the turbulent electromotive force EM is
expressed as (Yoshizawa, 1990)

EM ≡ 〈u′ × b′〉 = αB − β∇×B + γΩ , (1)

where α, β, and γ are the transport coefficients expressed in terms of the residual helicity
〈−u′ · ω′ + b′ · j′〉(≡ H), the turbulent MHD energy 〈u′2 + b′2〉/2(≡ K), and the cross helicity
〈u′ · b′〉(≡ W ), respectively.

δu´

δu´×b´

Ω

u´

b´

〈u´· b´〉 > 0
u´×Ω

Figure 1. Physical interpretation of the cross-helicity effect. Redrawn from Yokoi (1999).

If we substitute (1) into the mean magnetic induction equation, we obtain

∂B

∂t
= ∇× (U ×B) +∇× (αB + γΩ)−∇× [(η + β)∇×B] (2)

(η: magnetic diffusivity). First, in the presence of turbulence, the effective magnetic diffusivity
or resistivity is enhanced by turbulence (η → η+β) with spatiotemporal variation of β. So, the
coefficient β is called the turbulent magnetic diffusivity or anomalous resistivity. Secondly, the α-
and γ-related terms express possible magnetic-field generation mechanisms due to pseudoscalars.
If turbulence has some asymmetric properties represented by these pseudoscalars, the enhanced
transport due to β can be suppressed by these pseudoscalar effects. This suppression of turbulent
transport is based on the dynamic balance between two turbulent effects: enhancement and
suppression of the transport. This state is entirely different from the one subject only to the
molecular transport. Turbulent itself is very strong, but due to the additional asymmetry
represented by pseudoscalars, effective turbulent transport is dynamically suppressed. Then
important point to see is how and how much such pseudoscalars can be present in turbulence.

In the long history of the dynamo study, special attention has been paid to the α or helicity
effect [the first term in (1)]. In contrast, the γ or cross-helicity effect [the third term in (1)]
has been almost missing except for some limited number of works (e.g., Yoshizawa et al., 2004,
and works cited therein). One of the reasons of this missing may be attributed to the current
treatment of turbulence; in most works, the large-scale velocity is neglected in the consideration
of turbulence because of the Galilean invariance of the momentum equation. However, such
treatment inevitably leads to the neglect of the large-scale shear effects. On the contrary, a large-
scale rotation is ubiquitous and sometimes essential ingredient in astro/geophysical phenomena.
In this sense, we should take effects of large-scale inhomogeneous flows into consideration of the
realistic turbulent dynamo studies.

The number of works that contain numerical simulations examining or validating the cross-
helicity effect is very limited (Hamba, 1992; Nishino & Yokoi, 1998; Yokoi & Hamba, 2007;
Yokoi et al., 2008; Sur & Brandenburg, 2009). In the present work, we examine the effect



of turbulent cross helicity, and see the validity of the notion of cross-helicity dynamo. This
must be a very interesting contribution to the astro/geophysical dynamo studies from the shear
turbulence study.

Organization of this paper is as follows. After an outlined presentation of the turbulent
cross-helicity generation mechanisms with the aid of the evolution equation of the turbulent
cross helicity in section 2, a brief description of the MHD Kolmogorov flow is given in section 3.
Some of the basic numerical results are presented in section 4, which include the analysis of
the turbulent electromotive force (section 4.1), the comparison of the induced fields with some
approximate dynamo solutions (section 4.2), the comparison of the spatial distributions of the
turbulent cross helicity and its production rate (section 4.3), and the turbulent cross helicity
scaled by the turbulent MHD energy (section 4.4). Concluding remarks with directions in the
future work are presented in section 5.

2. Cross-helicity generation mechanisms

From equations of the velocity and magnetic-field fluctuations, u′ and b′, we obtain the equation
for the turbulent cross helicity

W = 〈u′ · b′〉 (3)

as
DW

Dt
≡

(

∂

∂t
+U · ∇

)

W = PW − εW + TW . (4)

Here, PW , εW , and TW are the production, dissipation, and transport rates of W . They are
defined by

PW = −Rab ∂B
b

∂xa
−EM ·Ω , (5)

εW = (ν + η)

〈

∂u′b

∂xa
∂b′b

∂xa

〉

, (6)

TW = B · ∇K +∇ · T ′

W , (7)

where ∇ · T ′

W is the transport rate of W that can be written in the divergence form. It comes
from the higher order terms of u′ and b′, whose details are suppressed here. In (5), R and
EM are the Reynolds stress (combination of the Reynolds and turbulent Maxwell stresses in the
MHD case) and the turbulent electromotive force, respectively. They are defined by

Rαβ =
〈

u′αu′β − b′αb′β
〉

. (8)

and (1). The Reynolds stress is known to be expressed as

Rαβ =
2

3
KRδ

αβ − νKS
αβ + νMMαβ, (9)

where KR(≡ 〈u′2 − b′2〉/2) is the turbulent MHD residual energy, and νK[= (7/5)β] and
νM[= (7/5)γ] are the turbulent transport coefficients. The strain rates of the mean velocity
and magnetic field, S and M, are defined by

Sαβ =
∂Uα

∂xβ
+

∂Uβ

∂xα
, (10)

Mαβ =
∂Bα

∂xβ
+

∂Bβ

∂xα
. (11)



If we substitute the expressions for R and EM, (9) and (1), into the production rate of the
turbulent cross helicity, PW , (5), we obtain

PW =
1

2
νKS : M−

1

2
νMM

2 − αB ·Ω + βJ ·Ω − γΩ2 (12)

[S : M = SabMab, M2 = MabMab]. This shows that combinations of the mean-field shears
coupled with the turbulent transport coefficients give the generation mechanisms of the turbulent
cross helicity. For the detailed meaning of each term in the production, dissipation, and transport
rates, and for the possible situations where the cross helicity is supplied to turbulence, the reader
is referred to Yokoi (2011); Yokoi & Hoshino (2011).

3. Magnetohydrodynamic Kolmogorov flow

Kolmogorov flow is a three-dimensional periodic flow with external forcing. This flow is
homogeneous in the x and z directions, but due to the external forcing expressed as

f = (fx, f y, f z) = (f0 sin (2πy/L
y) , 0, 0) (13)

(Lx, Ly, Lz: box dimension), it is inhomogeneous in the y direction (figure 2). The Kolmogorov
flow provides a good test for investigating three-dimensional inhomogeneous turbulent flow
simultaneously with the mean-velocity shear and the anisotropy (Sarris et al., 2007, and
works cited therein, also see Hamba, 1992). In order to examine the basic properties of
magnetohydrodynamic (MHD) turbulence, in addition to the external forcing, we impose a
uniform large-scale magnetic field in the inhomogeneous (y) direction as

B = (Bx, By, Bz) = (0, B0, 0) . (14)

x

y

z

f
x
(y) = f0 sin (2πy/Ly)

Ly

Lz

Lx

B
y

Figure 2. Kolmogorov flow with a magnetic field imposed.

In this work, with the aid of a direct numerical simulation of the Kolmogorov flow, we address
the question of whether the cross-helicity effect is relevant to the turbulent electromotive force
EM or not.

It was reported that the statistics of turbulence depend on the several computational
conditions in the Kolmogorov (Sarris et al., 2007). In this sense, to obtain quantitative results,



we have to scrutinize these conditions, including the dependences on the Reynolds number,
aspect ratio of the box, strength of the imposed magnetic field, etc. We also have to take care
of the characteristic length scales in the three directions (in particular in the direction of the
imposed magnetic field) in comparison with the domain sizes. However, here our attention
is focused on the basic behaviours of the cross-helicity effect in EM. So, we only consider a
situation of a cubic box with the numerical discretization of 2563. In the following, the operator
〈· · · 〉 denotes averaging over the homogeneous (x and z) directions and ensemble averaging over
70 independent realizations in time. The primed quantities correspond to deviations from the
averages. Each realization shows large spatial variations. In order to get more smooth statistics,
we have to take larger statistical ensembles.

4. Basic results and discussions

The situation of Kolmogorov flow may be unrealistic in that it is difficult to experimentally
generate such a periodic forcing (13) in an unbounded flow. Nevertheless, this flow gives a
test for investigating three-dimensional turbulence with inhomogeneity, anisotropy, and velocity
shear. So, with an imposed magnetic field, it gives a suitable situation to validate the cross-
helicity effect in a magnetohydrodynamic turbulent flow. In this work, we examine mainly two
points: (i) how the cross-helicity-related term contribute to the turbulent electromotive force;
and (ii) how the cross helicity is supplied to turbulence.

4.1. Turbulent electromotive force

First we consider the turbulent electromotive force EM(≡ 〈u′ × b′〉). The spatial distribution of
the z component of EM is shown in figure 3. The profile of EM is sinusoidal as expected from
the external forcing.
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Figure 3. Spatial distribution of the turbulent electromotive force and each dynamo term in
the Kolmogorov flow versus y: —— 〈u′ × b′〉z; · · · · · · αBz; – – – −βJz; – · – γΩz.

In figure 3, we also showed the spatial distribution of each term of the right-hand side in (1).
We see from this figure that the α- or helicity-related term is much less than the β- or turbulent
magnetic diffusivity-related term and γ- or cross-helicity-related terms. The main contribution



to the turbulent electromotive force in this case is attained by the balance between the β- and
γ-related terms:

EM ≃ −βJ + γΩ . (15)

Namely, the turbulent magnetic-diffusivity effect is balanced by the turbulent cross-helicity effect
rather than by the turbulent helicity effect.

This result certainly shows the importance of the cross-helicity effect as compared to the α
or helicity effect in the dynamo action in a shear flow situation.

4.2. Dynamo solutions

If the α or helicity effect is negligibly small in the turbulent electromotive force, the mean
induction equation (2) is written as

∂B

∂t
= ∇× [U ×B − (β + η)J + γΩ ] . (16)

In the present geometry of the Kolmogorov flow, this reads

∂Bx

∂t
= B0

∂Ux

∂y
−

∂

∂y
[(β + η) Jz] +

∂

∂y
(γΩz) . (17)

The first term in (17) arises from the velocity inhomogeneity in the direction of the mean
magnetic field, which corresponds to the so-called Ω effect.

For a stationary state, we may consider an approximate dynamo solution for the induced
field (Yoshizawa & Yokoi, 1993; Yokoi & Hoshino, 2011) as

δB =
γ

β
U = C

W

K
U , (18)

where C is the model constant of O(10−1). Here we dropped the magnetic diffusivity η as
compared with the turbulent counterpart β. However, in case γ/β or W/K spatially varies, the
approximate dynamo solution (18) is not the case. In figure 4(a) we plot the induced magnetic
field Bx in comparison with the approximate dynamo solution (W/K)Ux.

If the turbulent magnetic diffusivity is fully balanced by the cross-helicity effect in the
turbulent electromotive force, the mean electric-current density is aligned with the mean vorticity
as

δJ =
γ

β
Ω = C

W

K
Ω . (19)

We plot the induced mean electric-current density Jz(= −∂Bx/∂y) in comparison with the
approximate dynamo solution (W/K)Ωz[= −(W/K)(∂Ux/∂y)] in figure 4(b). Unlike (18), the
general tendency of Jz is in agreement to some extent with the counterpart of (W/K)Ωz,
although a further analysis of each term of (17) is needed.

4.3. Cross helicity and its production rate

Next, we consider the cross-helicity generation mechanisms in the Kolmogorov flow. For this
purpose, we show in figure 5 that the spatial distribution of the turbulent cross helicity scaled by
the characteristic time of turbulence, W/τ . As for the time scale, we adopt the energy cascade
time defined by the turbulent MHD energy K divided by its dissipation rate ε as

τ = K/ε (20)

with
K =

〈

u′2 + b′2
〉

/2, (21)



(a) (b)

Figure 4. Spatial distribution of the induced field and approximate dynamo solutions versus
y. (a) Magnetic field Bx and velocity (W/K)Ux: —— (black) Bx; —— (gray) (W/K)Ux.
(b) Electric-current density Jz and vorticity (W/K)Ωz: —— (black) Jz; —— (gray) (W/K)Ωz

versus y. Constant factor (model constant) C is not included in the dynamo-solution expressions.

ε = ν

〈

(

∂u′b

∂xa

)2
〉

+ η

〈

(

∂b′b

∂xa

)2
〉

. (22)

We also plot each term in the production rate of the turbulent cross helicity, (5) and (7), in
figure 5.
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Figure 5. Spatial distribution of the turbulent cross helicity and its production-rate terms in
the Kolmogorov flow versus y: —— W/τ ; · · · · · · −Rab(∂Ba/∂xb); – – – −EM ·Ω ; – · – B ·∇K.

This figure shows that the spatial distribution of the turbulent cross helicity is in good
agreement with the counterparts of the cross-helicity generation mechanisms. Of course we



need to delve further into the detailed budget of the cross-helicity evolution (4) including the
dissipation and transport rates. With this reservation in mind, we see from this result that the
production rate provides a good measure for the turbulent cross helicity itself.

Estimate of the turbulent cross helicity with its spatial distribution from observation is a
challenging problem. All the three components of the velocity and magnetic-field fluctuations
should be measured simultaneously. In actual observations, we often encounter a situation where
the direct measurement of the cross helicity is impossible or hard to achieve. Even in such a
case, if we can measure the production rate of cross helicity, we may estimate the turbulent cross
helicity. In the detailed expression (12) for the production rate of W , the second and fifth terms,
−νMM

2/2 and −γΩ2, always work for the reduction of W . If we concentrate our attention on
the genuine generation mechanisms of W , which come from the primary effects of turbulence
such as the turbulent-energy- or β- and νK-related terms, then we have

PW ≃
1

2
νKS : M+ βJ ·Ω . (23)

In this case, without knowing any information on the turbulent cross helicity itself, we may be
able to estimate W by measuring the large-scale field configuration represented by the mean
velocity and magnetic-field strains, S and M, the mean electric current density J , and the
mean vorticy Ω , etc.

4.4. Scaled cross helicity

As we see in (19), the proportional coefficient γ/β or W/K (the turbulent cross helicity 〈u′ · b′〉
scaled by the turbulent MHD energy 〈u′2 + b′2〉/2) combines the large-scale vorticity Ω with
the large-scale electric-current density J induced by the dynamo action. If the turbulent cross
helicity is negligibly small compared to the turbulent MHD energy, we have substantially no
dynamo effects due to the cross helicity. In this sense, W/K is one of the most important
quantities in the arguments of the cross-helicity effects.

The spatial distribution of the scaled cross helicity W/K versus y is plotted in figure 6.
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Figure 6. Spatial distribution of the turbulent cross helicity W (= 〈u′ · b′〉) scaled by the
turbulent MHD energy K(= 〈u′2 + b′2〉/2) in the Kolmogorov flow versus y.

We see from this figure that the magnitude of the scaled cross helicity is O(10−3)−O(10−2)
in this case. It is worth noting here that the absolute value of W/K is mathematically bounded



as
|W |

K
=

|〈u′ · b′〉|

〈u′2 + b′2〉/2
≤ 1. (24)

One self-evident but important consequence of this boundedness is that the turbulent cross
helicity W can not be sustained in the absence of the turbulent MHD energy (K = 0).

As the W evolution equation (4) shows, the value of W/K must depend on the magnitude
of the velocity shear and especially on the magnitude of the imposed magnetic field, B0. To
obtain more quantitative understanding, we have to delve into the detailed budgets of both the
turbulent cross-helicity and MHD-energy evolutions. The highest value of |W |/K is realized
only when the velocity fluctuation u′ is totally aligned with the magnetic-field fluctuation b′

with equipartition of the turbulent kinetic and magnetic energies (Alfvénic state):

u′ = ±b′ (25)

This state is often observed in the solar-wind turbulence near the Sun because of the dominant
effect of the Alfvén waves. On the other hand, in the analysis of the galactic dynamos using the
cross-helicity effect, it was inferred that |W |/K of O(10−3)−O(10−2) is large enough to explain
the magnetic-field strength of several spiral galaxies (Yokoi, 1996).

5. Concluding remarks

On the contrary to the current understanding on the turbulent dynamo, where the α effect
combined with the differential-rotation effect (called the Ω effect) plays the main role in the
generation and evolution of the dynamo magnetic field, the relative importance of the cross-
helicity effect to the α effect is suggested in the present work. This may pave a new way for the
turbulent dynamo model for the astro/geophysical context. At least, the cross-helicity effect, in
other words, the effect of the large-scale shear flow, should be taken into account in the dynamo
study as a complementary effect to the well-known α or helicity effect.

A large-scale magnetic field alters statistical properties of turbulence compared to the
hydrodynamic turbulence. For the sake of further quantitative analysis, the dependences of
the simulation results on the magnitudes of the imposed magnetic field, velocity shear, and on
the grid size may be important. These points should be further included in the forthcoming
paper.

As a final remark, we refer to the cross-helicity effect in the momentum equation. In the
momentum equation, the turbulent transport is expressed by the Reynolds stress (8). Since
the cross-helicity or νM-related term appears in the Reynolds-stress expression (9) as a balancer
with the the eddy viscosity νK, the cross helicity is expected to play an important role also
in the suppression of turbulent linear- and angular-momentum transports. In addition, the
cross-helicity effect may play important role in the momentum transport through the mean
Lorentz force. The mean electric current J configuration induced by the cross-helicity effect is
in general not aligned with the large-scale magnetic field (J ∦ B). This is in marked contrast
with the counterpart by the α or helicity effect, where J is aligned with B (J × B = 0,
force-free field). This feature of the cross-helicity effect was fully utilized in the studies of
the inner oscillations in the Sun (Itoh et al., 2005) and flow-turbulence interaction in magnetic
reconnection (Yokoi & Hoshino, 2011).

In the context of solar physics, the differential rotation of the fluid inside the Sun has
been left as an unsolved big problem. Recent elaborated numerical simulations showed that
the Reynolds stress plays a key role in the angular-momentum transport inside the Sun
(Brun, Miesch & Toomre, 2004; Miesch & Toomre, 2009). In order to address this problem,
we should examine the Reynolds stress and its model expression (9). In addition to the analysis



of the turbulent electromotive force mentioned in section 4, we will discuss the Reynolds stress
expressions in the future work.
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