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Abstract

Superconductivity in the recently proposed ground-state structures of atomic metallic hydrogen

is investigated over the pressure range 500 GPa to 3.5 TPa. Near molecular dissociation, the

electron–phonon coupling λ and renormalized Coulomb repulsion are similar to the molecular

phase. A continuous increase in the critical temperature Tc with pressure is therefore expected, to

∼356K near 500 GPa. As the atomic phase stabilizes with increasing pressure, λ increases, causing

Tc to approach ∼481K near 700 GPa. At the first atomic–atomic structural phase transformation

(∼1 – 1.5 TPa), a discontinuous jump in λ occurs, causing a significant increase in Tc of up to

764K.

PACS numbers: 74.20.Pq, 74.10.+v, 74.62.Fj, 74.20.Fg
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I. INTRODUCTION

At relatively low pressure, hydrogen exists in an insulating molecular phase. In 1935,

Wigner and Huntington predicted that sufficient pressure would cause both a molecular-to-

atomic transition and metallization1. Recent ab initio calculations support these predictions,

and have revealed the precise details associated with both effects. Calculations based on ab

initio random structure searching by Pickard and Needs2 as well as McMahon and Ceperley3

suggest that the molecular-to-atomic transition occurs near 500 GPa, the latter study also

revealing a profusion of structures that atomic hydrogen adopts; and exact-exchange calcu-

lations based on density-functional theory (DFT) by Städele and Martin4 suggest a metal-

lization pressure of at least 400 GPa. In 1968, Ashcroft predicted an even further transition

in high-pressure hydrogen, a metallic-to-superconducting one5. Within the framework of

Bardeen–Cooper–Schrieffer (BCS) theory6, three key arguments support this prediction: (i)

the ions in the system are single protons, and their small masses cause the vibrational en-

ergy scale of the phonons to be remarkably high (e.g., kB〈ω〉 ≈ 2300K near 500 GPa – see

below), as is thus the prefactor in the expression for the critical temperature Tc; (ii) since

the electron–ion interaction is due to the bare Coulomb attraction, the electron–phonon

coupling should be strong; and (iii) at the high pressures at and above metallization, the

electronic density of states N(0) at the Fermi surface should be large and the Coulomb

repulsion between electrons should be low, typical features of high-density systems. These

arguments will be revisited, and demonstrated to indeed be the case, below.

Ever since the prediction of high-Tc superconductivity in hydrogen5, a large number of

efforts have focused on determining the precise value(s) of Tc
7–22. In the molecular phase,

the high-pressure metallic Cmca structure (which transitions to the atomic phase2,3) has

recently been studied in-depth20–22, and shown to have a Tc that increases up to 242K near

450 GPa. In the atomic phase, estimations of Tc have varied widely, but in general suggest

a large increase with pressure7–19. Early estimates suggested that Tc ≈ 135 – 170K near 400

GPa (although, it is now believed that this is inside the molecular phase2,3, as discussed

above)14; near 480 – 802 GPa, more recent estimations suggest that Tc ≈ 282 – 291K18; and

near 2 TPa, calculations suggest that Tc can reach ∼600 – 631K in the face-centered cubic

(fcc) lattice16,17. The latter two studies will be discussed further below.

However, previous studies of superconductivity in the atomic phase have simply assumed
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FIG. 1: (color online). Ground-state structures of atomic metallic hydrogen. (left) Conventional

unit-cell of I41/amd at 700 GPa. (right) 2×2×1 supercell of R-3m at 2 TPa. a and c parameters

are shown in the figure, as discussed in the text. Fictitious bonds have been drawn for clarity.

candidate ground-state structures, in a number of cases the fcc lattice8–10,12,16,17. Recently

though, McMahon and Ceperley demonstrated that such structures are incorrect, and pro-

vided a comprehensive picture of the (presumably correct) ground-state structures from 500

GPa to 5 TPa3. Molecular hydrogen was shown to dissociate near 500 GPa, consistent with

the predictions of Pickard and Needs2. With increasing pressure, atomic hydrogen passes

through two ground-state structural phases before transforming to a close-packed lattice,

such as fcc or possibly the hexagonal close-packed (hcp) lattice. The first is a body-centered

tetragonal structure with space-group I41/amd (Hermann–Mauguin space-group symbol,

international notation) with a c/a ratio greater than unity, as shown in Fig. 1. Including es-

timates of proton zero-point energies (ZPEs), I41/amd was demonstrated to transform into

a layered structure with space-group R-3m near 1 TPa, also shown in Fig. 1, which is similar

to a possible high-pressure phase of lithium23. R-3m remains stable to ∼3.5 TPa, compress-

ing to a close packed lattice. Given such novel crystal phases and that Tc can be very

sensitive to structural details11, and that modern methods of calculating values of Tc should

be more accurate than those used in earlier studies, it is of great interest to re-investigate

the long-outstanding predictions of superconductivity in atomic metallic hydrogen.

This Article is outlined as follows. In Section II, the theoretical background used for

estimating Tc (in this work) is presented. Computational details are given in Section III.

In Section IV, properties of the ground-state structures of atomic metallic hydrogen as a

function of pressure, such as lattice parameters and vibrational properties influencing the

I41/amd→ R-3m transition, are presented and discussed. Superconductivity is investigated
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in Section V. Section VI concludes.

II. THEORETICAL BACKGROUND

According to the BCS theory of superconductivity6, there is a simple relationship between

Tc, the average phonon frequency 〈ω〉, N(0), and the pairing potential V arising from the

electron–phonon interaction,

kBTc = 1.14〈ω〉 exp

[
− 1

N(0)V

]
(1)

where kB is Boltzmann’s constant. This relation is valid as long as kBTc � 〈ω〉, correspond-

ing to weak coupling – see below.

McMillan later solved the finite-temperature Eliashberg equations for Tc
24, which includ-

ing a correction by Dynes25 can be written as

kBTc =
〈ω〉
1.2

exp

[
− 1.04 (1 + λ)

λ− µ∗ (1 + 0.62λ)

]
, (2)

where λ is the attractive electron–phonon-induced interaction and µ∗ is the renormalized

Coulomb repulsion. In high-density atomic hydrogen, Ashcroft15 demonstrated via an ab

initio calculation that µ∗ = 0.089, which is remarkably close to µ∗ = 0.085 obtained from

the Bennemann–Garland formula17, both results similar to the somewhat standard value for

high density systems of µ∗ ≈ 0.1. In this work, we therefore take µ∗ = 0.089 for estimating

Tc. It should be noted that this approximation fails in molecular hydrogen15, as investigated

thoroughly in Refs. 20–22 using a specialized formulation of DFT for superconductivity

where µ∗ is calculated ab initio. Interestingly though, at high densities (e.g., near molecular

dissociation) µ∗ is found to nonetheless be 0.08 for pressures just above 460 GPa22.

For λ & 1.3 (which in fact corresponds to the situations considered herein), Eq. (2) often

provides a lower bound to Tc. In this case, both a strong-coupling correction as well as a

correction for the shape-dependence of Tc with 〈ω〉 must be made. These corrections will

be shown to be especially important in atomic metallic hydrogen, where both λ and 〈ω〉 are

large. These corrections are both included in the Allen–Dynes equation26,

kBTc = f1f2
ωln

1.2
exp

[
− 1.04 (1 + λ)

λ− µ∗ (1 + 0.62λ)

]
(3)

where ωln is the logarithmic average frequency [i.e., ln(ωln) = 〈lnω〉 ] and

f1 =
[
1 + (λ/Λ1)

3/2
]1/3

(4)
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f2 = 1 +
(ω̄2/ωln − 1)λ2

λ2 + Λ2
2

(5)

denote the strong-coupling and shape corrections, respectively, where ω̄2 = 〈ω2〉1/2 and Λ1

and Λ2 are fitting parameters (e.g., to full solutions of the Eliashberg equations).

In the original Allen–Dynes equation26,

Λ1 = 2.46 (1 + 3.8µ∗) (6)

Λ2 = 1.82 (1 + 6.3µ∗) (ω̄2/ωln) . (7)

However, a least-squares analysis between Tc as predicted by Eq. (3) and that calculated

numerically in the Eliashberg formalism for an fcc lattice of atomic metallic hydrogen at 2

TPa17 suggests the following reparametrization

Λ1 = 2.26 (1− 1.28µ∗) (8)

Λ2 = 2.76 (1 + 8.86µ∗) (ω̄2/ωln) , (9)

which interestingly provides more accurate values of Tc for a selection of low-temperature su-

perconductors as well17. In passing, we note that there is a very recent further reparametriza-

tion by the same authors19 that appears especially well-suited for calculating Tc for a range

of µ∗ values (which could be useful for studying both the molecular and atomic phases

concurrently, for example).

In this work, estimates of Tc are made using both Eqs. (2) and (3) as well as both

parametrization for Λ1 and Λ2 to give a range of values for Tc.

III. COMPUTATIONAL DETAILS

All calculations were performed using the Quantum ESPRESSO ab initio DFT code27.

A norm-conserving Troullier–Martins pseudopotential28 with a core radius of 0.65 a.u. was

used to replace the 1/r Coulomb potential of hydrogen, which is sufficiently small to ensure

no core-overlap up to the highest pressure considered in this work (3.5 TPa). The Perdew-

Burke-Ernzerhof exchange and correlation functional29 was also used for all calculations, as

was a basis set of plane-waves with a cutoff of 120 Ry, giving a convergence in energy to better

than ∼0.2 mRy/proton, and 243 k-points for Brillouin-zone (BZ) sampling. Phonons were

calculated using density functional perturbation theory as implemented within Quantum
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ESPRESSO. Additional computational details pertaining to calculations of the electron–

phonon interactions will be provided and discussed in Section V.

IV. GROUND-STATE STRUCTURES OF ATOMIC METALLIC HYDROGEN

In this section, we discuss the structural changes that occur in atomic metallic hydrogen

as a function of pressure. On the basis of our previous study3, we consider I41/amd at

pressures from 500 GPa to 1.5 TPa and R-3m from 1 to 3.5 TPa. We first consider the

lattice changes that occur (e.g., compression). We then consider the I41/amd → R-3m

transition and discuss the vibrational properties of each structure that contribute to it, in

anticipation of the results that are to follow in Section V. A further discussion of the ground-

state and metastable structures of atomic metallic hydrogen can be found in Ref. 3 and a

thorough discussion of tetragonal structures of atomic hydrogen (including the I41/amd

structure) can be found in Ref. 30.

A. Lattice Parameters

In terms of their primitive unit-cells, I41/amd is tetragonal with a = b 6= c with two

symmetry inequivalent atoms at Wyckoff positions (0, 0, 1/2) and (0, 1/2, 3/4), and R-3m

is hexagonal (also with a = b 6= c) and a single symmetry inequivalent atom at the origin.

The lattice parameters of both structures can therefore be specified completely by a and

the c/a ratio, as indicated in Fig. 1. For the pressure ranges under consideration, the

lattice parameters and corresponding Wigner–Seitz radii rs are shown in Tables I and II,

respectively.

Between 500 – 700 GPa, I41/amd resists compression along the c axis, as can be seen in

the c/a ratio which increases from 2.545 to 2.764. Above 700 GPa the resistance continues,

but the compression becomes much more uniform. For example, by 1.5 TPa the c/a ratio

increases to only 2.849. In R-3m, on the other hand, the c/a ratio remains relatively constant

near 3.05 – 3.06. However, near the predicted transition pressures of ∼1 and 3.5 TPa (see

below and Ref. 3) there is a preferred compression along the c axis. In fact, not including

the ZPE suggests that R-3m continues to compress along the c axis to fcc above 5 TPa3.
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TABLE I: Lattice parameters and corresponding Wigner–Seitz radii rs of I41/amd as a function

of pressure.

Pressure (TPa) a (a.u.) c/a rs (a.u.)

0.5 2.299 2.545 1.226

0.6 2.227 2.599 1.197

0.7 2.134 2.764 1.170

0.8 2.094 2.769 1.149

0.9 2.058 2.774 1.130

1.0 2.027 2.778 1.113

1.5 1.893 2.849 1.049

TABLE II: Lattice parameters and corresponding Wigner–Seitz radii rs of R-3m as a function of

pressure.

Pressure (TPa) a (a.u.) c/a rs (a.u.)

1.0 1.832 3.236 1.111

1.5 1.758 3.061 1.047

2.0 1.685 3.054 1.002

2.5 1.629 3.051 0.969

3.0 1.584 3.047 0.942

3.5 1.564 2.943 0.919

B. I41/amd → R-3m Transition

Static-lattice enthalpy calculations indicate that I41/amd transforms to R-3m near 2.5

TPa, but dynamic-lattice calculations (in the harmonic approximation) suggest that this

pressure is significantly reduced to ∼1 TPa3. In this section, we use the harmonic and

quasiharmonic approximations to further investigate the I41/amd → R-3m transition, in

anticipation of the results that are to follow in Section V.

Ground-state enthalpies for I41/amd and R-3m (defined by the parameters in Tables I

and II) were calculated at 1 and 1.5 TPa; Table III. ZPEs at each pressure were estimated
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TABLE III: Ground-state enthalpies and zero-point energies of I41/amd and R-3m at 1 and 1.5

TPa. Pressures P are in TPa and enthalpies and energies are in Ry/proton.

P = 1.0 1.5

H

I41/amd −0.49955 −0.32022

R-3m −0.49534 −0.31768

EZPE

I41/amd 0.02708 0.03120

R-3m 0.02395 0.02769

H + EZPE

I41/amd −0.47247 −0.28902

R-3m −0.47140 −0.28999

using the harmonic approximation: EZPE =
∫
dω F (ω)~ω/2, where F (ω) is the phonon

density of states (PHDOS), and are shown in Table III as well. Neglecting zero-point

pressures and making the simple approximation that the total enthalpies are given by H +

EZPE (as was done in Ref. 3) suggests that the I41/amd → R-3m transition occurs nearly

midway between 1 and 1.5 TPa (see Table III), which is very close to, but slightly higher

than our original estimate of 1 TPa3. Going beyond this approximation, the total enthalpies,

including the zero-point pressures, can be estimated using a linear approximation,

Htot = Havg + EZPE, avg + pZPEVavg (10)

where

pZPE = −∂EZPE

∂V
(11)

is the zero-point pressure, V is the volume, and the subscripts avg denote the average values

of each quantity between 1 and 1.5 TPa. Note that the latter two quantities in Eq. (10)

correspond to the zero-point enthalpy. Estimating pZPE using a simple finite-difference gives

total enthalpies of −0.35765 and −0.35976 Ry/proton for I41/amd and R-3m, respectively.

This suggests that the actual transition pressure is a bit lower than the simple enthalpy

estimate, and is in fact in agreement with our original prediction of ∼1 TPa3.
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FIG. 2: (color online). PHDOS of I41/amd (dashed red line) and R-3m (solid blue line) at 1.5

TPa. The results have been normalized by the number of atoms per primitive unit-cell. Negative

values indicate imaginary frequencies.

As can be inferred from Table III and the discussion above, the large decrease in the

I41/amd → R-3m transition pressure from the static-lattice prediction (∼2.5 TPa3) arises

primarily from the significantly lower EZPE in R-3m, as well as a more minor contribution

from the lower pZPE. To help understand this, the PHDOS for both structures is shown

in Fig. 2. It can be seen that there are three differences that lead to this behavior: (i)

the density of high-frequency phonons is greater for I41/amd, and also occurs at higher

frequencies (3180 – 4430 cm−1 vs 3000 – 4230 cm−1); (ii) I41/amd has a significant density

of mid-frequency phonons (∼1400 – 3000 cm−1), while such modes are mostly absent in

R-3m (e.g., I41/amd shows significant peaks at 1510, 2150, and 2990 cm−1); and therefore

(iii) the PHDOS for R-3m is mostly concentrated at low frequencies (. 1400 cm−1).

In passing, we note that R-3m shows a small density of imaginary phonon states at 1.5

TPa. However, estimating the resulting energy within the harmonic approximation3 shows

that it only integrates to 1.372 · 10−5 Ry/proton. While this is within the accuracy of our

calculations, this behavior is in fact expected considering that it is indicative of instability in

a lattice of ions treated classically; and classically, the I41/amd → R-3m transition occurs

near 2.5 TPa3, as discussed above. This is further confirmed by the fact that the instability

goes to zero with increasing pressure, while such behavior begins to develop in I41/amd –

see Ref. 3.
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FIG. 3: (color online). Gibbs free energy vs temperature for I41/amd (dashed red line) and R-3m

(solid blue line) at 1.5 TPa.

Considering that the PHDOSs are quite different between I41/amd and R-3m and it is

finite-temperature effects that are focused on below (i.e., Tc), the possibility of vibrational

entropic stabilization of one phase over the other exists. In order to estimate this, the

quasiharmonic approximation can be used,

F (V, T ) = E0(V ) + kBT

∫ ∞
0

dω F (ω) ln

[
sinh

(
~ω

2kBT

)]
(12)

where F (V, T ) is the Helmholtz free energy at volume V and temperature T and E0(V ) is

the static-lattice energy. From this, the Gibbs free energy G can be calculated via G =

F + pV , given the pressure p. At T = 0K, p is given by the external pressure plus the

zero-point pressure [Eq. (11)]. However, for a fixed V , p is actually a function of T , due to

thermal expansion of the lattice caused by anharmonic phonons. Contrary to the expectation

that such effects may be large31, calculations of the melting line of hydrogen (not shown)32

indicate that in fact thermal expansion is in fact small, at least up to a few hundred K where

atomic metallic hydrogen is likely to melt anyway; and since the purpose of this discussion

is just to understand qualitative changes that may arise at finite-T , we can estimate p using

the T = 0K value.

Figure 3 shows the resulting free energy G estimated using Eq. (12) and the value of

p at T = 0K. Despite the remarkably different PHDOSs (see again Fig. 2), the behaviors

of G with T are rather similar for both structures. Thus, temperature is not expected to

significantly affect the I41/amd→ R-3m transition.
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Based on these results, below we consider I41/amd from 500 GPa to 1.5 TPa and R-3m

from 1 to 3.5 TPa, and the I41/amd→ R-3m transition to occur between 1 and 1.5 TPa.

V. SUPERCONDUCTIVITY

In this section, we investigate superconductivity in the I41/amd and R-3m structures of

atomic metallic hydrogen. We first provide relevant computational details not discussed in

Section III, and convergence of the parameters necessary to evaluate Eqs. (2) and (3) with

respect to q-points. We then present and discuss the calculated parameters, and finally use

them to calculate Tc values.

A. Computational Details

In order to estimate Tc using Eqs. (2) and (3), 〈ω〉, ωln, ω̄2, and λ must all be deter-

mined. Of course, the frequency parameters can be calculated directly from the PHDOS.

For example, 〈ω〉 = (1/nph)
∫
dω F (ω)ω, where nph is the number of phonon modes and∫

dω F (ω) = nph. In order to calculate λ, a (slowly convergent) double-delta integration

must be performed on the Fermi surface – see Ref. 33 for a complete discussion and the

precise implementation details within Quantum ESPRESSO. In order to accurately perform

this integration, very dense k-point and q-point grids must be used. For the I41/amd and

R-3m structures, we found that an electronic grid of 483 k-points (and using 243 k-points to

calculate phonons, as discussed in Section III) gave convergence with no discernible error.

In order to determine a sufficient density for the q-point grid, we performed a series

of calculations with 13, 23, 43, 63, and 83 q-points, using I41/amd at 500 GPa as a test

case (we also considered R-3m at 2 TPa – not shown). It should be kept in mind that such

rigorous testing with respect to q-points is especially important in atomic metallic hydrogen,

as inadequate sampling has been shown to cause significantly incorrect results13,14. In fact,

our calculations below suggest that the results of a recent study considering Cs-IV (which

also has the I41/amd structure) over a more narrow pressure range than considered here

using only 33 q-points18 gives somewhat incorrect values for λ, both in magnitude and trend

with pressure. The values of λ for the various densities of q-points, as well as values of

〈ω〉 and ωln, are shown in Table IV. Relative convergence in λ is seen to require at least

11



TABLE IV: Convergence of 〈ω〉, ωln, and λ with the number of q-points for I41/amd at 500 GPa.

No. of q-points 〈ω〉 (K) ωln (K) λ

13 1660 1438 17.91

23 2307 1953 2.82

43 2277 2031 2.06

63 2287 1997 1.67

83 2295 2068 1.81

63 q-points (to be within 10% of the converged value, for example). This is likely due to

Fermi surface “hot spots” that have been shown to exist in other alkali metals34, which can

significantly contribute to the electron–phonon interaction. Table IV also shows, on the

other hand, that 〈ω〉 and ωln achieve relative convergence with as little as 23 q-points, which

is consistent with the density found necessary in our previous work to accurately calculate

the ZPEs of the structures of atomic metallic hydrogen3. Herein, 83 q-points were used for

all calculations (including those in Section IV), corresponding to 59 and 150 total q-points

in the irreducible BZ for I41/amd and R-3m, respectively.

B. Superconducting Parameters

As shown in Fig. 4, 〈ω〉 and ωln are both extremely high, and increase significantly with

pressure3; 〈ω〉 increases from 2295K to 4056K as the pressure is increased from 500 GPa

to 3.5 TPa, while ωln is significantly less (especially for R-3m), increasing from 2068K to

3308K over the same range. Furthermore, there is a significant decrease in both 〈ω〉 and

ωln at the I41/amd→ R-3m transition (e.g., by 765K and 926K, respectively, at 1.5 TPa),

consistent with the results and discussion in Section IV B.

More interesting is the behavior of λ with pressure; Fig. 5. Near molecular dissociation

(∼500 GPa), the values of λ in both the atomic and molecular phases are remarkably close.

In I41/amd, λ ≈ 1.81 (see also Table IV), whereas in the molecular phase (Cmca) λ ≈ 2 just

above 460 GPa, but appears to slowly decrease with increasing pressure – see Refs. 20,22.

Thus, given that λ and µ∗ are similar in both phases near molecular dissociation (see again

Section II for a discussion of µ∗), a smooth variation in Tc is likely to occur with increasing

12



FIG. 4: (color online). Temperature prefactors 〈ω〉 (solid blue line) and ωln (dashed red line) as a

function of pressure in atomic metallic hydrogen.

FIG. 5: (color online). Electron–phonon-induced interaction λ as a function of pressure in atomic

metallic hydrogen.

pressure in this range.

A large increase in λ is seen to occur from 500 – 700 GPa, from 1.81 to 2.32. To help

understand this, the electron–phonon spectral function, α2F (ω), at 500 GPa is compared to

that at 700 GPa in Fig. 6. It can be seen that there is an increase in coupling to both the low-

and high-frequency phonon modes as the atomic phase stabilizes, while there is relatively

little change in the coupling to those at mid frequency. The former increase is unexpected,

as with increasing pressure the PHDOS shifts to higher frequencies, as is indicated in Fig.

13



FIG. 6: (color online). Electron–phonon spectral function α2F (ω) of I41/amd at 500 and 700 GPa.

FIG. 7: (color online). Electron–phonon spectral function α2F (ω) of I41/amd (dashed red line)

and R-3m (solid blue line) at 1.5 TPa.

4. The sharp increase in λ, along with the increased 〈ω〉 and ωln (see again Fig. 4), suggests

that a correspondingly large increase in Tc should occur over this small pressure range, which

is shown below to indeed be the case.

At the I41/amd→ R-3m transition near 1.5 TPa, a large jump in λ occurs, from 1.43 to

3.39. This can be understood by comparing α2F (ω) for both structures; Fig. 7. In R-3m,

the large value of λ is seen to occur from a strong coupling into the low-frequency modes

[λ = 2
∫
dω α2F (ω)/ω]. This appears to be due to the correspondingly high PHDOS at low

frequencies, which is absent in I41/amd (see again Section IV B). Comparing Figs. 6 and 7

14



FIG. 8: (color online). Electron–phonon spectral function α2F (ω) of R-3m at 2 and 3 TPa.

also shows that in I41/amd there is decreased coupling into all modes with an increase in

pressure above 700 GPa, especially at low frequencies.

With increasing pressure, λ in R-3m decreases from its maximum to ∼1.98 by 3.5 TPa.

Figure 8 shows that this results from a weakened coupling into the low-frequency modes that

was responsible for the sharp increase in λ in the first place (near the I41/amd → R-3m

transition). This is likely due to an overall decrease in the PHDOS at low frequencies with

increasing pressure (not shown). These results, combined with those above, indicates that

coupling into the low-frequency modes are the key to achieving a large value of λ in atomic

metallic hydrogen.

The λ values presented above are much less than for the (unstable) fcc lattice. For

example, at 2 TPa λ ≈ 3.06 compared to λ ≈ 7 – 7.3216,17. The large difference can

be attributed to the even higher PHDOS at low frequencies in fcc compared to R-3m3,

which was above suggested to lead to very strong electron–phonon coupling. In Ref. 16, the

strong coupling into the low-frequency modes in fcc was attributed to the lattice being close

to instability. While this is consistent with (and likely influential) in the strong coupling

into R-3m, which is also close to lattice instability near 1 – 1.5 TPa with protons treated

classically (see Section IV B and Ref.3), this is not necessarily the cause. For example, such

behavior does not always occur, as λ for I41/amd appears low near its pressure limits of

lattice instability (e.g., ∼500 GPa), while it becomes largest near the center of this range

(e.g., ∼700 GPa) – see above.
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FIG. 9: (color online). Values of Tc for atomic metallic hydrogen calculated using Eqs. (2) and (3).

Tc for the high-pressure molecular phase is shown using a symbol.

C. Tc

Using the parameters in Figs. 4 and 5, Eqs. (2) and (3) were used to calculate Tc; Fig. 9.

The values are seen to be remarkably high, but nonetheless consistent with the discussion

above. The Allen–Dynes equation and its reparametrization17, in most cases, give much

higher estimates than the McMillan formula (as expected based on the discussion in Section

II). Given that ωln is significantly less than 〈ω〉, the increase is thus due entirely to the

correction factors f1 and f2. Comparing these, in a number of cases, shows that it is f1

(the strong-coupling correction) that is most important, especially in the reparametrized

Allen–Dynes equation17. For example, at 700 GPa f1 ≈ 1.31 and f2 ≈ 1.03.

Just above molecular dissociation, Tc ≈ 315 – 356K. The increase in λ combined with

increases in 〈ω〉 and ωln with pressure cause Tc to increase up to 403 – 481K by 700K. With

increasing pressure, Tc then decreases (in the I41/amd phase). However, at the I41/amd→

R-3m transition, a large jump in Tc then occurs, from 370 – 377K to 561 – 703K. This is

due entirely to the jump in λ, considering that 〈ω〉 and ωln are significantly less in R-3m

(see Fig. 4). Although, with increasing pressure, Tc then decreases. Thus, ∼764K represents

an approximate upper bound to Tc in atomic metallic hydrogen, and possibly conventional

superconductors (i.e., those described by BCS theory) in general. It is interesting to note

that secondary maxima in Tc occur in both I41/amd and R-3m. Given that there appears

to be monotonic decreases in λ above their maxima in both structures (see Fig. 5), this
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behavior is simply due to an interplay between this and 〈ω〉 or ωln.

VI. CONCLUSIONS

In conclusion, we investigated superconductivity in the ground-state structures of atomic

metallic hydrogen over the range 500 GPa to 3.5 TPa. Near molecular dissociation, the

electron–phonon coupling λ and renormalized Coulomb repulsion in the atomic phase were

demonstrated to be similar to the values of the molecular phase. This suggests a continuous

increase in Tc with pressure during the molecular-to-atomic transition, to ∼356K near 500

GPa. As the atomic phase stabilizes with increasing pressure, λ increases causing Tc to

increase to ∼481K near 700 GPa. Near the first atomic–atomic structural phase transfor-

mation near 1.5 TPa, a large jump in λ occurs due to a high PHDOS at low frequencies,

increasing Tc to as high as 764K.

While the Tc values presented incredibly high, they are nonetheless reasonable. However,

there are two caveats. First of all, even the lowest pressures considered in this work are higher

than those currently obtainable experimentally (342 GPa35). Nonetheless, all of them are

important to planetary physics (albeit likely at temperatures even higher than the values

of Tc). The other caveat is that it is quite possible that the Tc values are higher than the

melting temperatures of the phases of atomic metallic hydrogen. However, this suggests the

interesting possibility that the atomic metallic solid phase of hydrogen (at least the I41/amd

and R-3m structures) may exist entirely in superconducting states.
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