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ABSTRACT

At large magnetic Reynolds numbers, magnetic helicity evolution plays an important role in astro-
physical large-scale dynamos. The recognition of this fact led to the development of the dynamical
α quenching formalism, which predicts catastrophically low mean fields in open systems. Here we
show that in oscillatory αΩ dynamos this formalism predicts an unphysical magnetic helicity transfer
between scales. An alternative technique is proposed where this artifact is removed by using the
evolution equation for the magnetic helicity of the total field in the shearing–advective gauge. In the
traditional dynamical α quenching formalism, this can be described as an additional magnetic helicity
flux of small-scale fields that does not appear in homogeneous α2 dynamos. In αΩ dynamos, the
alternative formalism is shown to lead to larger saturation fields than previously obtained with the
traditional formalism.
Subject headings: MHD — turbulence — Sun: magnetic fields

1. INTRODUCTION

While the possibility, and indeed need, for astrophys-
ical dynamos was recognized quite early (Larmor 1919),
the study of dynamos has since been troubled by a
number of problems. Cowling’s anti-dynamo theorem
(Cowling 1933) initially appeared to demonstrate that
the entire concept was impossible, though Parker (1955)
eventually discovered the physics behind what has come
to be called the α effect. Cowling’s anti-dynamo theorem
was finally shown to be largely inapplicable by analyti-
cally solvable dynamos such as the Herzenberg dynamo
(Herzenberg 1958). Once the possibility of dynamo ac-
tion was demonstrated, the development of mean-field α
dynamo theory followed (Steenbeck et al. 1966), which
describes the generation of poloidal field from toroidal
fields.
While the generation of toroidal magnetic fields from

sheared poloidal fields is straightforward through the Ω
effect, the reverse process is tricky. Without it however,
dynamo action is impossible. The α effect, which re-
lies on helicity (twist) in the fluid motion, allows for the
generation of strong large-scale magnetic fields such as
those observed in the Universe. It can drive dynamo ac-
tion on its own (α2 systems), but as shear is ubiquitous
in astrophysics, shear-amplified dynamo action is gener-
ally expected to outperform α2 dynamos. Accordingly,
αΩ dynamos, which combine the effects, are expected to
be the dominant type of natural astrophysical dynamo
(Hubbard & Brandenburg 2011).
More recently however, there were indications, first

suggested by Vainshtein & Cattaneo (1992), that the α
effect decreases catastrophically already for weak mean
fields in the limit of large magnetic Reynolds num-
ber (i.e. low non-dimensionalized resistivities). Such
behavior would imply that mean-field dynamos driven
by the α effect could not generate the observed large-
scale magnetic fields. This claim stymied the field
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of large-scale dynamos for the 1990s. While strong
fields are observed in nature, the theoretical under-
standing appeared to have been cut down. Eventu-
ally it was recognized that this behavior is not gener-
ally applicable, being restricted to two-dimensional sys-
tems, or to homogeneous (non-dynamo generated) mean
fields (Blackman & Brandenburg 2002), and large-scale
dynamo simulations became common (Brandenburg
2001; Brandenburg & Dobler 2001). These new sim-
ulations occurred alongside the realization that mag-
netic helicity conservation, through the dynamical α
quenching formalism, provides an excellent theoreti-
cal understanding of the saturation of α–effect dy-
namos: the build-up of small-scale magnetic heli-
city quenches the α effect (Field & Blackman 2002).
Even so, the question of catastrophic quenching
has remained open, with indications of saturated
large-scale field strength decreasing with increasing
magnetic Reynolds number for shearing sheets and
open α2 systems (Brandenburg & Subramanian 2005;
Guerrero et al. 2010). Further, while the saturation
field strength in α2 systems with periodic or perfectly
conducting boundaries has been found to be indepen-
dent of the resistivity for adequately (and in practice
modestly) super-critical ReM , the time scale to reach
saturation increases linearly with ReM (Brandenburg
2001). This has led to the study of magnetic helicity
fluxes (Vishniac & Cho 2001; Brandenburg & Sandin
2004; Mitra et al. 2010; Candelaresi et al. 2011), where
the hope is that, because the build-up of small-scale mag-
netic helicity quenches the α effect, stronger and faster
growing dynamos should be possible if the helicity is,
instead, exported (as it cannot be non-resistively de-
stroyed).
Probing the reality of catastrophic quenching is nat-

urally difficult. Analytical theory is impossible, and di-
rect numerical simulations are limited to ReM that, while
significantly super-critical for many systems, are never-
theless orders of magnitude below those of astrophysical
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systems. The dynamical α quenching formalism allows
probing large ReM in systems it can handle, but its va-
lidity there cannot, of course, be directly verified. While
the evidence for and against catastrophic quenching is
limited, resolving the issue is a crucial step in advancing
dynamo theory.
The continued improvement in techniques to measure

turbulent dynamo coefficients from simulations have en-
abled new approaches to evaluating different formula-
tions of the dynamical quenching formalism. In partic-
ular, the test-field method (Schrinner et al. 2005, 2007)
has been used to rule out the possibility of catastrophic
quenching of the turbulent magnetic diffusivity ηt in α2

dynamos (Brandenburg et al. 2008a). Recent advances
in the theory of magnetic helicity fluxes in the presence
of shear (Hubbard & Brandenburg 2011) have led us to
continue these developments in dynamical quenching by
revisiting earlier results from shearing systems. Some-
what surprisingly, these developments return the 1-D α
dependent models to the first 0-D α dependent models
(Blackman & Brandenburg 2002). In addition, we shall
extend here earlier numerical studies of α2 dynamos in
open systems.

2. MEAN-FIELD MODELING

2.1. Mean-field dynamo action

We reproduce here some basic results of mean-field
modeling. The dynamos we will consider are in the fam-
ily of α2, αΩ, and α2Ω dynamos, i.e. dynamos where
the conversion of toroidal field to poloidal field occurs
through the α effect, while the conversion of poloidal to
toroidal field occurs through the α effect, the Ω effect,
and a combination of the two. In practice, because some
conversion of poloidal field to toroidal field through the α
effect is always present, αΩ dynamos are an approxima-
tion in the limit that the Ω effect is much stronger than
the α effect. All three dynamos, in an infinite, (shearing-)
periodic system arise from the same eigenvalue problem.
Although we will focus in this work on the discussion of

results from numerical simulations, these results are bet-
ter understood in terms of linear theory. We assume a
standard, isotropic homogeneous α, turbulent resistivity
ηt , and consider a system with shear velocity US = Sxŷ.
Under those conditions, the mean-field problem for a one-
dimensional α2Ω dynamo with kx = ky = 0 and kz = k
(i.e., averaging over the xy-plane) reduces to the eigen-
value problem

λB̂ =





−ηTk
2 −iαk 0

iαk + S −ηTk
2 0

0 0 −ηTk
2



 B̂. (1)

where ηT = η + ηt is the total, resistive and turbulent,
resistivity. The growing mode has eigenvalue and eigen-
vector

λ = |αk|
√

1− iQ − ηTk
2, (2)

B = B0

(

sin kz, sgn (αk)(1 +Q2)1/4 sin(kz + φ), 0
)

,

(3)

where

Q ≡
S

αk
(4)

is a measure of the relative shear and

φ = 1/2 arctanQ (5)

is the phase between Bx and By. The growth rate of the

α2Ω mode is ℜλ = |αk|
√

(1 + (1 +Q2)1/2)/2− ηTk
2.

From the above, we draw some significant conclusions
true for both αΩ and the more general α2Ω fields:

|hm| = |A ·B| =

∣

∣

∣

∣

(1 +Q2)1/4

k
B2

0 sinφ

∣

∣

∣

∣

, (6)

B2 = B2
0

(

sin2 kz + (1 +Q2)1/2 sin2[kz + φ]
)

, (7)

i.e., the magnetic helicity density and the current heli-
city density Cm ≡ J · B of the mean-field are spatially
uniform, while the amplitude of the mean-field is not
spatially uniform if S 6= 0 (Q 6= 0 and φ 6= π/2).
We next make the αΩ approximation, assuming that

|Q| ≫ 1. We also consider only the case of α, k, S ≥ 0 to
simplify notation (the other cases are analogous). This
implies that

(1+Q2)1/4 ≃ Q1/2 ≫ 1, φ =
π

4
, ℜλ = |αk|

√

Q/2−ηTk
2.

(8)
At constant ηT and S then, the system will be stationary
for α = αc such that

αc =
2η2Tk

3

S
, Q1/2 =

√

1

2

S

ηTk2
. (9)

Further, in such a state we have

hm

〈B2〉
=

2ηTk

S
. (10)

The α effect from maximally helical turbulence has α ∼
ηtkf , where kf is the energy-carrying scale of the turbu-
lence, and so the mean magnetic field of an αΩ dynamo
is expected to have very low helicity. As we will see, this
is an important consideration.

2.2. Catastrophic α–quenching

Given the level of interest, it should be noted that
“catastrophic” α–quenching has not been consistently
defined. We will choose the following definitions:

• Type 1 catastrophic quenching is probably the
most extreme case. Here, the saturated mean-field
strength varies inversely with ReM (or some non-
negligible negative power or similar).

• Type 2 catastrophic quenching is well understood
in an α2 dynamo in a triply-periodic setup as dis-
cussed in Section 2.3. Here, the time required for
final saturation scales linearly with ReM (or some
non-negligible positive power thereof).

A well known example of Type 2 catastrophic quenching
is seen in the simulations of Brandenburg (2001), while
Type 1 catastrophic quenching has been suspected to oc-
cur in the simulations of Brandenburg & Dobler (2001);
Brandenburg & Subramanian (2005), but this will be
challenged by the present work.
It should be noted that both Type 1 and 2 quench-

ings might be less than fully catastrophic in practice. A



3

system which rapidly reaches an ReM -independent field
strength and then resistively decays could be Type 1
and yet have a significant field for all relevant times.
Similarly, a system could take a prohibitive resistive
time to fully saturate, but already reach significant field
strengths on dynamical times.
Given the name α–quenching, it would be appropri-

ate to define a quenching type based on the value of
α. Such a definition is quite difficult however, as in the
saturated regime the dynamo-driving effect counterbal-
ances resistive decay, so the net dynamo-driving terms,
including the turbulent resistivity that must accompany
an α-effect, are expected to vary with η (and so with
Re−1

M ).

2.3. Dynamical α–quenching

Dynamical α–quenching is a theoretical advance that
uses the magnetic α-effect of Pouquet et al. (1976). Un-
der that hypothesis, the actual α effect in a system can
be decomposed into a component due to the kinetic ef-
fect, αK , and a component due to the backreaction of
the magnetic fields on the flow, αM :

α = αK + αM , αK ≃ −
τ

3
〈ω · u〉, αM =

τ

3ρ
〈j · b〉.

(11)
The mean current helicity density of the small-scale field,
〈j ·b〉, is not a tractable quantity but in general it is well
approximated by the mean magnetic helicity density of
the small-scale field, 〈a · b〉, through 〈j · b〉 ≃ k2f 〈a · b〉;

see Mitra et al. (2010) for results in an inhomogeneous
system. Note that under this definition, small-scale mag-
netic helicity is a mean quantity.
The mean small-scale magnetic helicity can be found

by subtracting the evolution equation of the large-scale
magnetic helicity from that of the total helicity. This
takes the form

∂h

∂t
= −2ηJ ·B −∇ ·F , (12)

∂hm

∂t
= 2E ·B − 2ηJ ·B −∇ ·Fm, (13)

∂hf

∂t
= −2E ·B − 2ηj · b−∇ ·Ff , (14)

where F = Fm+Ff is the sum of large-scale and small-

scale magnetic helicity fluxes and E ≡ u× b. Equa-
tion (1) assumes that E = αB − ηtJ . Under the hy-
pothesis that 〈j · b〉 ≃ k2f 〈a · b〉, Equation (14) can be
evolved in a mean-field simulation if a form for the flux
term is assumed. We call this traditional dynamical
α–quenching. In homogeneous, periodic systems, such
as homogeneous α2 dynamos in triply periodic cubes,
the flux term vanishes, and the concept behind dynam-
ical α–quenching can be tested. The application of dy-
namical α–quenching to this system predicts Type 2
quenching: there is an exponential growth phase which

ends when B
2
/B2

eq = k1/kf (Blackman & Brandenburg
2002). Subsequently, there is a resistively controlled sat-
uration phase with time 1/2ηk21, finally ending at a sat-

urated field strength of B
2
/B2

eq = kf /k1.

Recent work suggests that the appropriate ansatz
for the flux of mean small-scale magnetic helicity
is diffusive, with sub-turbulent diffusion coefficients
(Hubbard & Brandenburg 2010). However, recent work
has also demonstrated that shear poses a unique prob-
lem which can be seen in the case of a shearing-periodic
setup at a moment when all quantities are periodic
except for the imposed shear flow US = Sx ŷ. In
that case, the helicity flux has a horizontal component,
(US × B) × A, which is not periodic and has a finite
divergence. While the existence of this net flux through
the shearing-periodic boundaries might be unexpected,
the need for it can be simply explained. The solution
of an α2Ω dynamo has spatially uniform large-scale heli-
city (Equation (6)), but the E ·B term in Equation (13)
depends on z. A flux term with a finite divergence is
required to balance the equation, and is found in linear
theory, where Equations (13) and (14) take the form

∂hm

∂t
= 2E ·B − 2ηJ ·B −∇ · (Fm − E ×A), (15)

∂hf

∂t
= −2E ·B − 2ηj · b−∇ · (Ff + E ×A). (16)

When B takes the form in (3) and E = αB − ηtJ , the
∇ · (E ×A) terms cancel the E ·B terms.
If the flux term is not correctly handled, we can expect

the generation of artificial helicity “hot-spots” through
the E · B terms, which will non-linearly back-react on
the dynamo through Equation (11). While an adequate
diffusive flux may be able to smooth out such, this poses
a clear potential difficulty in applying dynamical α–
quenching to shearing systems.
If a mean-field model is solved in terms of the mean

magnetic vector potential A however, then hm is known
at every time step. Thus, rather than evolving Equa-
tion (14), one can evolve Equation (12) to find hf =

h− hm, avoiding the E ·B terms. One known difficulty
with this alternate technique is that spatially homoge-
neous components of A may develop and cause spuri-
ous spatial variation in αM when the latter is defined in
terms of A ·B. This can be remedied by subtracting out
the volume averaged 〈A〉V . We refer to this technique
of calculating hf as alternate dynamical α–quenching.
For systems with no native spatial variations in α, nor
any instabilities in the spatial variation of α, this pro-
cedure will in practice return one to the first attempts
to apply dynamical α–quenching using volume averages
(Blackman & Brandenburg 2002).
We use an α2 dynamo to test alternate dynamical

α–quenching against traditional dynamical α–quenching
(which, in this system, should be identical as there are no
spatial variations and so no fluxes). We show the agree-
ment in Figure 1. The small difference that develops is
due to a smaller rms spatial noise of αM in the alternate
quenching case.

2.4. Investigation procedure

Catastrophic α–quenching lives in the high ReM
regime, beyond the reach of current direct numerical sim-
ulation or laboratory experiment. This makes confirming
or disproving its existence impossible. The evidence for
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Fig. 1.— Mean-field simulations for an α2 dynamo at ReM =
103, comparing traditional (yellow/solid/thick) and alternate
(black/dashed) dynamical quenching models in a system where
they are formally identical.

its existence lies largely on mean-field simulations, which
confirm Type 2 quenching for homogeneous isotropic pe-
riodic α2 dynamos. Further, mean-field simulations us-
ing traditional α–quenching have strongly suggested the
existence of Type 1 quenching for shearing systems.
While we cannot simulate α2Ω dynamos at high ReM ,

we are in a position to run modest ReM shearing simula-
tions to compare the predictions of traditional quenching
(with and without diffusive magnetic helicity fluxes) with
those of alternate quenching. In the latter case, we do
not include uncertain diffusive fluxes because the mag-
netic helicity and therefore α-effect are not expected to
exhibit spatial dependencies, which we confirm.
Our procedure then is to run a direct numerical simu-

lation of an α2Ω dynamo, extract the spatial dependency
of α and compare it with the results of mean-field theo-
ries. Once mean-field theories have been weighed against
the evidence, we move to large ReM and examine the ev-
idence for or against Type 1 and 2 quenching.

3. NUMERICS

We perform mean-field numerical simulations for a
shearing sheet, with US = Sxŷ, and averaging per-
formed over the xy plane, so mean quantities are only a
function of z, reducing the problem to a one-dimensional
one. We use

E = αB − ηtJ , (17)

where ηt is assumed not to be quenched; see
Brandenburg et al. (2008a) for a numerical justification
of this. The total α is given by the sum of the kinetic
αK , presumed constant, and the magnetic αM . Accord-
ingly, ∂α/∂t = ∂αM/∂t. We solve the two systems of
equations

∂α

∂t
= −2ηtk

2
f

(

E ·B

B2
eq

+
α− αK

ηt/η

)

+Dα∇
2α, (18)

∂B

∂t
= ∇×

(

E − ηJ
)

(19)

for traditional quenching [i.e.,
Brandenburg & Subramanian 2005, Equations (9.14)

Fig. 2.— α profiles for a direct numerical simulation, well into
saturation with ReM = 27, presented in the frame co-moving
with the dynamo wave. Note that the α–quenching is clearly
anisotropic, which is beyond the scope of this paper. More im-
portantly, note that the quenching of αyy is nearly uniform.

and (9.15)] with a diffusive helicity flux with diffusion
coefficient Dα, and

∂h

∂t
= −2η

(

J ·B + αMB2
eq/ηt

)

(20)

αM = ηtk
2
f (h−A ·B)/B2

eq (21)

∂B

∂t
= ∇×

(

E − ηJ
)

(22)

for alternate quenching. Note that for alternate quench-
ing we also enforce

∫

z
A dz = 0 at every timestep to avoid

drifts in the magnetic vector potential. The essential dif-
ference between the two approaches can be traced back to
mutually canceling contributions to the large-scale and
small-scale magnetic helicity flux of the form ∓E ×A.
Our direct numerical simulations are made using the

Pencil Code, a finite-difference scheme sixth order in
space and third order in time. In the Pencil Code
runs, we use the test-field method (TFM) to determine
components of the α tensor as a function of position. For
information on TFM, see Brandenburg et al. (2008b) and
Brandenburg et al. (2008c).

4. MEASURED α PROFILES

4.1. Direct simulation

In Figure 2 we present data for the z dependence of α
well into the saturated regime for a direct simulation with
ReM = 27. The butterfly diagrams are shifted to the
frame comoving with the traveling dynamo wave, while
the bottom panels are time-averages taken in the shifted
domains (the quality of which can be estimated from the
plot of By). In the top-right panel we show the volume
rms of αxx in a semi-logarithmic plot. The deep spike
marks a reset of the test-fields (Ossendrijver et al. 2002;



5

Fig. 3.— Field and α = αK + αM (taken at the final
time) profiles for mean-field simulations, approximately saturated.
Black/solid: alternate quenching formula. Blue/dashed, red, black
and yellow/dash–dotted use the conventional quenching formula
with Dα/ηt = 10, 1, 0.1, 0.01, 0, respectively.

Hubbard et al. 2009). While it may appear from the con-
tour plot that αyy shows spatial variation, when a time
average (in the shifted domain) is taken, it is clear that
the actual result is that αyy is strongly quenched, and so
the spatial variation seen is merely spatial variation in
the residual α effect: the quenching is nearly uniform.
We must note here that the quenching is blatantly non-

isotropic. A study of this effect is beyond the scope of
this paper: we expect it to be a full project in its own
right, and intend to study it as such.

4.2. Mean-field approaches

In Figure 3 we show energies and αM profiles for mean-
field simulations similar to that of Figure 2 (ReM = 27,
kf = 3). The mean-field simulations are traditional
quenching with Dα/ηt ranging from 0 to 10 and a run
with alternate quenching. None of the traditional models
match the uniform quenching that is measured in Fig-
ure 2, showing large spatial variability that derives from
the E ·B term in Equation (14), not even the model with
Dα = 10ηt . The decrease in spatial variation of α with
increasing Dα suggests that the traditional model could
be made to function with an adequate diffusion term, but
this term would need to be absurd in scale (and would
hopelessly distort any simulation with “real” spatial vari-
ation in αM that needs to be correctly captured). The
alternate quenching formalism does result in the uniform
quenching, which is unsurprising as it eliminates the spa-
tial forcing from E ·B.
We take this as strong evidence that the alternate

quenching formalism is superior to traditional quench-
ing in sheared systems where drifts in A are tractable –
and that results obtained with traditional quenching in
the presence of shear should be viewed with suspicion.

5. MEAN FIELD: LARGE MAGNETIC REYNOLDS
NUMBERS

5.1. Early times

Fig. 4.— Field magnitudes for mean-field simulations, into the
non-kinematic regime. Black/solid: alternate quenching formula.
Blue/dashed, red, black and yellow/dash–dotted use the conven-
tional quenching formula with Dα/ηt = 10, 1, 0.1, 0.01, 0, respec-
tively. Note the oscillations, which persist at some level even with
Dα = 0.1ηt .

For early times, the predictions of both dynamical α–
quenching formalisms predict behavior similar to that
of α2 dynamos: exponential growth of the mean-fields
(and corresponding growth of αM ) until the total α effect
is reduced enough that the growth rate is reduced to
a fraction of its original self. This occurs when |α| =
|2η2Tk

3
1/S|, i.e., when

∣

∣

∣

τ

3
〈j · b〉

∣

∣

∣ = |αK | − |2η2Tk
3
1/S|. (23)

In terms of magnetic helicity, this becomes

|〈a · b〉| = k−2
f

3

τ

(

|αK | − |2η2Tk
3
1/S|

)

. (24)

Using the standard approximations for fully helical tur-
bulence, namely τ ≃ 1/urmskf , αK ≃ urms/3 and ηt ≃
τu2

rms/3, and writing Beq = urms, this reduces to

|〈a · b〉| ≃

(

1−
2k31Beq

3k2f |S|

)

B2
eq

kf
. (25)

As the growth is rapid, we will have hm ≃ −hf during
this stage, and so

|hm| =

(

1−
2k31Beq

3k2f |S|

)

B2
eq

kf
. (26)

However, αΩ dynamo mean-fields are only weakly helical,
i.e. hm ≪ B2/k1. Under the assumptions that the mean
field is approximately stationary, and that the shear is
strong enough to use Equation (10) as an approximation,
Equation (26) implies that:

〈B2〉 =
|S|

2ηTk
hm =

(

∣

∣

∣

∣

S

2αKk1

∣

∣

∣

∣

−
k21
k2f

)

B2
eq. (27)

As we have made the αΩ approximation that |S| ≫
|αKk1|, this implies that an αΩ field first feels nonlinear
effects for mean-field energies that are already in super-
equipartition.
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Fig. 5.— Field magnitudes, for mean-field simulations, into
the non-kinematic regime. Red/solid: alternate quenching for-
mula. Blue/dashed, red/dash-double-dotted, black/dash-dotted
and yellow/dash-double-dotted use the conventional quenching for-
mula with Dα/ηt = 10, 1, 0.1, 0, respectively. The curve for
Dα/ηt = 0.1 is extremely strongly coarse-grained for visibility:
the oscillations (for that run) are in fact far more frequent than
shown and would be a solid band if plotted fully.

In Figure 4 we show the early evolution of a mean-field
dynamo with ReM = 103, αK = −1/3, S = 1 and kf =
3. Equation (27) implies that the exit from exponential
growth occurs for B ≈ 1.18Beq, which is well captured
by alternate quenching, and traditional quenching with
strong diffusive fluxes.

5.2. Late times

We can analytically estimate the final field strength of
the dynamo for the alternate quenching formalism, while
for traditional models the problem is non-linear as can
be seen in Figure 3. The final state is achieved when
∂h/∂t = 0, i.e., when J ·B = 〈j · b〉. Combining this
with Equation (10) and assuming that the shear is strong
enough that α must be fully quenched α = αK+αM ≃ 0,
we find

B
2
≃ |S/2αKk1| (kf /k1)

2B2
eq. (28)

In Figure 5 we show the late time evolution of the same
mean field dynamos. It is clear that without significant
(Dα > 0.1ηt) helicity diffusion, the solution for tradi-
tional quenching is unstable, not surprising as the prob-
lem becomes non-linear. However, with moderate diffu-
sion the field strength behaves smoothly, with the final
energy level increasing with diffusion coefficient. Even so,
the saturation level of the traditional quenching model
with Dα = 10ηt is significantly below that of the alter-
nate quenching model. While the diffusion does smooth
out the helicity hot-spots, the spatial fluctuations of αM

in Figure 3 have a noteworthy impact on the final dy-
namo state. Finally, the saturation level of the alter-
nate model matches the estimate from Equation (28) of
B ≃ 3.7Beq to within the accuracy limits set by the
extremely slow late-time evolution (the change over a
time-step is comparable to the rounding errors).

6. DIRECT SIMULATIONS OF OPEN SYSTEMS

Fig. 6.— Butterfly plots of magnetic helicity. Top panel:
〈A〉V · B, i.e., the fictitious component of hm due to a spatially

homogeneous component of A. Middle panel: hm, adjusted for the
top panel. Bottom panel: hf . While there may be some spatial
structure in the bottom panels, it is intermittent in time, and the
residual from a near-cancellation (the bottom two panels use a very
different scale than the top one, see the color bars).

Numerical resources limit our ability to probe the high
ReM regime. However, we have run three simulations of
α2 dynamos in an open system, i.e., a system which can
export magnetic helicity. This system is the same one
as considered in Brandenburg & Subramanian (2005): a
helically forced cube, periodic in the horizontal direc-
tions and with vertical field conditions in the vertical
directions, which we have run for ReM = 86 and 156.
Additionally, as the vertical field condition is frequently
used instead of a proper vacuum condition, we also per-
formed a ReM = 156 run with potential field condition
in the vertical directions. The resulting time series are
given in Figure 7. Our resolution was 1283, for runs
with umax ≃ 0.15, urms ≃ 0.05 and η = 2 × 10−4 (for
ReM = 86) or η = 10−4 (for the other two). The veloc-
ity boundary has a stress-free vertical condition, and the
entropy a symmetric one.
Unlike the results reported in

Brandenburg & Subramanian (2005), there is no
clear indication of a reduction in the strength of the
mean field for higher magnetic Reynolds number, even
though the runs were followed for resistive times. How-
ever, the use of vertical field conditions as a proxy for
vacuum conditions appears to be a poor one. Note that
there does not appear to be a slow resistive phase. This
lack is expected as the open boundaries allow the system
to export total magnetic helicity (not just small-scaled
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Fig. 7.— Time series for α2 dynamos in open systems.
Black/solid: potential field extrapolation in the vertical direction.
Red/blue/dashed: vertical field condition on the vertical direction.
Potential field and VFb have ReM = 156 while VFc has ReM = 86.

The dash-double-dotted line corresponds to 1/k
1/2
f , i.e. the energy

level associated with the end of the kinematic phase.

helicity). Thus, the system should reach a steady
state where exchanges of helicity through the boundary
balance preferential destruction of small-scale helicity
on dynamical times, and for small total helicities.

7. DISCUSSION AND CONCLUSIONS

We have used the test-field method to examine the
predictions of catastrophic α–quenching resulting from
dynamically–quenched mean-field models in shearing
systems. Formulations for dynamical α–quenching which
are superior for the problem of shearing systems do not
predict Type 1 catastrophic quenching (reduced field
strength) but do predict Type 2 quenching (long final
saturation times), extending results that do not allow for
spatial variations of α (Blackman & Brandenburg 2002)

to models that do. We have further revisited simulations
of α2 dynamos in open systems and, at admittedly quite
modest ReM , found no evidence of field strength scaling
inversely with ReM .
The picture we see now for α–effect dynamos, moti-

vated by the concepts and formalism of dynamical α–
quenching, is one of exponential growth during a rapid
initial saturation phase. This phase ends when the mag-
netic helicity in the small-scale fields is comparable to
the helicity in the forcing that generates the α–effect. At
this point, the total magnetic helicity in the system has
not changed from its initial value. If the system is open,
exchanges with the exterior (Section 6) will tend to keep
the total magnetic helicity roughly constant, and the sys-
tem will then not evolve resistively. On the other hand, if
the system is closed the preferential resistive destruction
of small-scale magnetic helicity allows a further resistive
growth phase.
It is important to note that the energy in the large-

scale field is bounded below by its helicity. Weakly heli-
cal large-scale fields are possible, which can have super-
equipartition fields even at the end of the kinematic
growth phase. Weakly helical large-scale fields are a
natural product of sheared system, so rapid growth to
sub-equi-, equi- and super-equipartition fields are all ex-
pected to occur in nature, although all equi- and super-
equipartition fields in the high ReM systems of astro-
physics are expected to be weakly helical.
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Brandenburg, A., Rädler, K.-H., Rheinhardt, M., &

Subramanian, K. 2008a, ApJ, 687, L49
Brandenburg, A., Rädler, K.-H., & Schrinner, M. 2008b, A&A,

482, 739
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Schrinner, M., Rädler, K.-H., Schmitt, D., Rheinhardt, M.,

Christensen, U. 2005, Astron. Nachr., 326, 245
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