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Abstract. Generalized from the so-called teleparallel gravity which is exactly equivalent to general
relativity, the f(T ) gravity has been proposed as an alternative gravity model to account for the dark
energy phenomena. In this letter we prove that the external vacuum gravitational field for a spherically
symmetric distribution of source matter in the f(T ) gravity framework must be static and the conclusion
is independent of the radial distribution and spherically symmetric motion of the source matter that is,
whether it is in motion or static. As a consequence, the Birkhoff’s theorem is valid in the general f(T )
theory. We also discuss its application in the de Sitter space-time evolution phase as preferred to by the
nowadays dark energy observations.

PACS.98.80.Cq Modified theories of gravity

1 Introduction

The discovery of the accelerating expansion of the Uni-
verse has stimulated great efforts to investigate the funda-
mental theories of gravity. As a modified gravitational the-
ory, the f(T ) gravity has been proposed [1] to explain the
acceleration of the cosmic expansion and attracts much
attention recently. The framework is a generalization of
the so-called Teleparallel Equivalent of General Relativity
(TEGR) which was first propounded by Einstein in 1928
[2] and maturated in the 1960s (For some reviews, see [3,
4]). We know that the theory of general relativity is based
on Riemann geometry which involves only curvature com-
posed of the metric and its derivatives. On the contrary,
the TEGR is based on the so named Weitzenböck geom-
etry with the non-vanishing torsion. Owing to the defi-
nition of Weitzenböck connection rather than the Levi-
Civita connection, the Riemann curvature is automati-
cally vanishing in the TEGR framework. Therefore the
parallelism of distant vectors or tensors would be inde-
pendent of curves along which they are transported. That
is why the theory is also called Teleparallel Gravity. It
has been well studied that the TEGR, for a specific choice
of parameters, behaves completely equivalent to Einstein’s
theory of general relativity. Furthermore, by using the tor-
sion scalar T as the Lagrangian density, the TEGR can
give a field equation of the second order only, which is
simpler than Einstein’s field equation and avoids the in-
stability problems caused from higher order derivatives as
from the metric framework f(R) gravity demonstrated.
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The modified version of teleparallel gravity uses a gen-
eral function f(T ) as the model Lagrangian density. Sim-
ilar to the generalization of Einstein’s theory of general
relativity to the f(R) theory (For some references, see [5,
6,7,8]), the f(T ) theory can be directly reduced to the
TEGR if we choose a simplest case f(T ) = T . A variety
of f(T ) models have been proposed in succession to ex-
plain the late-time acceleration of the cosmic expansion
without the mysteriously so-called dark energy, and have
been fitted the cosmological data-sets very well (e.g. [1,9,
10,11,12,13,14]). In the theoretical aspect, the Lorentz in-
variance and conformal invariance of the f(T ) theory are
also investigated interestingly[15,16], and present many
interesting results. In this paper, we focus on the validity
of Birkhoff’s theorem in the f(T ) gravity.

The Birkhoff’s theorem, presented with an explicit proof
by George D. Birkhoff in 1923 [17], states that the spher-
ically symmetric gravitational field in vacuum must be
static, with a metric uniquely given by the Schwarzschild
solution form of Einstein equations [18]. It is well known
that the Schwarzschild metric is found in 1918 as the ex-
ternal (vacuum) solution of a static and spherical star. The
Birkhoff’s theorem claims that any spherically symmetric
object possesses the same static gravitational field, as if
the mass of the object were concentrated at the center. It
is the same feature as holding in the classical Newtonian
gravity. It means that the external gravitational field is
static even if the central spherical object is moving rad-
ically, like the collapsing processes (such as a collapsing
star or a violently exploding supernova), as long as the
motion is spherically symmetric. As a result, there is no
monopole gravitational radiation anyway, just as the case
of electromagnetic radiation physics.
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As a relatively newly proposed modified gravitational
theory, we do not know clearly for the f(T ) gravity whether
the vacuum solution of spherically symmetric field is still
static before. In this present paper, first we briefly review
the f(T ) theories in the following section, and in section
three we prove the validity of Birkhoff’s theorem in the
context of the f(T ) gravity. For the sake of clarity, we
firstly demonstrate the proof for a concrete form of a f(T )
model, and then complete it for the general case. The con-
clusions and discussions are devoted in the last section.

2 Elements of f(T ) Gravity

Instead of the metric tensor, the vierbein field ei(x
µ) is

the dynamical variable in the teleparallel gravity. It is de-
fined as the orthonormal basis of the tangent space at
each point xµ in the manifold, namely, ei ·ej = ηij , where
ηij = diag(1,−1,−1,−1) is the Minkowski metric. The
vierbein vector can be expanded in spacetime coordinate
basis: ei = eµi ∂µ, e

i = eiµdx
µ. According to the conven-

tion, Latin indices and Greek indices, both running from
0 to 3, label the tangent space coordinates and the space-
time coordinates respectively. The components of vierbein
are related by eiµe

µ
j = δ i

j , eiµe
ν
i = δ ν

µ .
The metric tensor is determined uniquely by the vier-

bein as
gµν = ηije

i
µe

i
ν , (1)

which can be equivalently expressed as: ηij = gµνe
i
µe

j
ν .

The definition of torsion tensor is given by then

T ρ
µν = Γ ρ

νµ − Γ ρ
µν , (2)

where Γ ρ
µν is the connection. Evidently, T ρ

µν vanishes in
the Riemann geometry since the Levi-Civita connection
is symmetric with respect to the two covariant indices.
Differing from that in Einstein’s theory of general relativ-
ity, the teleparallel gravity uses Weitzenböck connection
defined directly from the vierbein:

Γ ρ
µν = eρi ∂νe

i
µ. (3)

Accordingly the antisymmetric non-vanishing torsion is

T ρ
µν = eρi (∂µe

i
ν − ∂νe

i
µ). (4)

It can be confirmed that the Riemann curvature in this
framework is precisely vanishing:

Rρ
θµν = ∂µΓ

ρ
θν − ∂νΓ

ρ
θµ + Γ ρ

σµΓ
σ
θν − Γ ρ

σνΓ
σ
θµ = 0. (5)

In order to get the action of the teleparallel gravity, it
is convenient to define other two tensors:

Kµν
ρ = −

1

2
(T µν

ρ − T νµ
ρ − T µν

ρ ), (6)

and

S µν
ρ =

1

2
(Kµν

ρ + δ µ
ρ T θν

θ − δ ν
ρ T θµ

θ). (7)

Then the torsion scalar as the teleparallel Lagrangian is
defined by

T = T ρ
µνS

µν
ρ . (8)

The action of teleparallel gravity is expressed as

I =
1

16πG

∫
d4x e T, (9)

where e =det(eiµ) =
√
−g. Performing variation of the ac-

tion with respect to the vierbein, one can get the equations
of motion which are equivalent to the results of Einstein’s
theory of general relativity.

Just as in the f(R) theory, the generalized version of
teleparallel gravity could be obtained by extending the
Lagrangian density directly to a general function of the
scalar torsion T :

I =
1

16πG

∫
d4x e f(T ). (10)

This modification is expected to provide a natural way to
understand the cosmological observations, especially for
the dark energy phenomena, as a motivation. The vari-
ation of the action with respect to vierbein leads to the
following equations:

[
e−1eiµ∂σ(eS

σν
i )− T ρ

σµS
νσ

ρ

]
fT + S ρν

µ ∂ρTfTT

−
1

4
δ ν
µ f = 4πGT ν

µ , (11)

where fT and fTT represent the first and second order
derivative with respect to T respectively, and S σν

i = eρiS
σν

ρ .
T ν
µ is the energy-momentum tensor of the particular mater,

with assuming that matter couples to the metric in the
standard form.

3 The Validity of Birkhoff’s Theorem

We consider the external vacuum gravitational field so-
lution of a spherically symmetric object. The spherically
symmetric metric can always be written in the following
form:

ds2 = A2(t, r) dt2 −B2(t, r) dr2 − r2dθ2 − r2 sin2θ dφ2,
(12)

where A(t, r), B(t, r) are arbitrary functions of the coor-
dinates t and r. The corresponding vierbein field directly
reads

eiµ = diag
(
A(t, r), B(t, r), r, r sin θ

)
, (13)

and the determinant of vierbein is e = A(t, r)B(t, r)r2 sin θ.
Then the tensors defined in Eqs. (4,6,7) are determined,
and the torsion scalar is given by

T =
2
(
A(t, r) + 2A′(t, r) r

)

A(t, r)B2(t, r) r2
, (14)

where a prime denotes the derivative with respect to r
while the derivative with respect to t will be denoted by
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a dot overhead, according to which we will follow these
convention throughout this work.

For convenience, we introduce the tensor E ν
µ to stand

for the left hand side of Eq. (11), and the field equation
can be re-expressed then as

E ν
µ = 4πGT ν

µ . (15)

Firstly, we consider a typically concrete f(T ) model in
the following form, which has been studied frequently in
literature(e.g. [1,9,10]):

f(T ) = T + α(−T )n, (16)

where α and n are real constants with arbitrary sign and
the negative sign for convenience in the second term can
be absorbed in the coefficient α if one likes. It will be
shown later that other more complicated forms of f(T )
models possess the same conclusion of this form. Then
we work out all the components of E ν

µ , and find half of
them are not vanishing, including some quite complicated
ones. The two components we used, fortunately not very
complex, are given by respectively

E 0
1 =

[
αn(−T )n−1 − 1

]
Ḃ

A2B r
, (17)

E 1
1 =

1

2B2r2

[(
(nB2 + 1− 2n)A+ 2(1− 2n)rA′

)

·α
(
− T

)n−1
+ 2rA′ −

(
B2 − 1

)
A
]
. (18)

Since the non-diagonal elements of energy-momentum ten-
sor are equal to zero,E 0

1 always vanishes, restrictingB(t, r)
to be only the function of r, that is,

B(t, r) = B(r). (19)

There is no density or pressure of matter in the external
vacuum space, implying that E 1

1 is also equal to zero.
After some manipulation, Eq. (18) leads to

2nαn

(B2r)n−1

(
−

2A′

A
−

1

r

)n−1[B2 − 2 + 1
n

r
−
(
4−

2

n

)A′

A

]

+
4A′

A
+

2(1−B2)

r
= 0. (20)

It can be regarded as an algebraic equation of degree n
for (A′/A), with no analytical solutions generally if n > 2.
Nevertheless, for B is independent of t, Eq. (20) deter-
mines (A′/A) as an implicit function of r. So far as the
solution exists, it could be expressed as

A′(t, r)

A(t, r)
= G

(
r, B(r), α, n

)
≡ g(r). (21)

The integration of the above equation with respect to the
variable r gives that

lnA(t, r) =

∫
g(r)dr + C(t), (22)

where C(t) as the integral constant, is an arbitrary func-
tion of t. Therefore the function A(t, r) can be written
as

A(t, r) = e
∫
g(r)dreC(t). (23)

The factor eC(t) can always be absorbed in the metric
through a coordinate transformation t → t′, where t′ is
the new time coordinate defined as:

dt′ = eC(t)dt. (24)

Defining Ã(r) ≡ e
∫
g(r)dr, the metric presented in Eq. (12)

becomes

ds2 = Ã2(r) dt′2−B2(r) dr2 − r2dθ2− r2 sin2θ dφ2. (25)

This is exactly a static metric which is required by the
Birkhoff’s theorem validity. In the following we will discuss
a general case for the f(T) modified gravity model.

The f(T ) models investigated by several authors be-
fore take variant forms, most of which are more complex
than that we just considered in (16) form. It is imprac-
ticable to express the field equations of all these cases
so specifically as in the (20). Nonetheless, without being
concerned with the particular forms of f(T ) models, we
give the two field equations in vacuum E 0

1 = 0, E 1
1 = 0

directly as
ḂfT
A2Br

= 0, (26)

B2r2f +
(
2B2 − 4− 8r(A

′

A
)
)
fT

4B2r2
= 0. (27)

Eq.(26) also gives eq.(19). Noting that f and fT are both
functions of torsion T which according to eq.(14) can be
re-expressed as

T =
4

B2r

( 1

2r
+

A′

A

)
, (28)

it is clear that the A and A′ in Eq. (27) only present
in the form of (A′/A), just as in the case of Eq. (20).
Consequently, the relation (21) is preserved, and the static
metric so (25) is obtained again.

Note that the integral in (22) is performed over the
vacuum region, therefore the distribution and motion of

the internal source matter can not influence Ã(r) any way.
The only property of the source matter may appear in

Ã(r) is the total mass, or, more generally speaking, the
total charge. We then come to the conclusion that the
spherically symmetric vacuum solution of the f(T ) grav-
ity must be static, and is independent of the radial dis-
tribution and motion of the source matter, implying that
the Birkhoff’s theorem still holds generally.

4 Discussions and Conclusions

The Birkhoff’s theorem is a significant feature of the the-
ory of general relativity, in analogy to the Gauss theorem
in electromagnetism or classical Newtonian gravity. It has
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been confirmed to be valid in the Palatini formalism of
f(R) gravity, while it no longer holds in the metric formal-
ism generally[7,19,20]. Similar to the origination of f(R)
theories, the f(T ) gravity is extended from the telepar-
allel gravity which is equivalent to the theory of general
relativity. We prove in this brief report that the Birkhoff’s
theorem holds in a typical f(T ) model with the form of
power law, and also holds in general f(T ) gravities. The
validity of this conclusion is independent of the concrete
form of the f(T ) models. As a consequence, the signifi-
cant inference in the theory of general relativity, such as
the in-existence of the monopole gravitational wave, is also
possessed in the f(T ) gravities.

The Birkhoff’s theorem in the theory of general rela-
tivity leads to a second inference which is often discussed
in literature as that the vacuum space-time inside a spher-
ically distributed matter is flat. It has few actual applica-
tions in astrophysics observations indeed, since there is
usually no vacuum cavity in celestial bodies. Neverthe-
less, it is often considered as a help to understand the
fashion of the cosmic expansion [21,22]. Because of the
globally isotropy and homogeneity properties of the ob-
served universe in large scales, the distribution of distant
matter is close to spherically symmetric about us. Though
a great number of galaxies at Hubble distance is moving
away from us at the relativistic speeds, the local effect
can be neglected. That is to say, in the background of the
expanding Friedmann-Robertson-Walker(FRW) universe,
the ambient vacuum of a spherically symmetric star or
galaxy can be regarded as in the static Schwarzschild ge-
ometry. It explains that the celestial bodies move along
Newtonian trajectories which are impervious to the cos-
mic expansion.

It should be mentioned that the above inference, the
second one, which is not involved in the proof of this work
directly, is authentically valid only in Newtonian gravity
and the theory of general relativity without the cosmologi-
cal constant. It generally does not hold in modified gravity
[23]. It is just approximately correct even in the standard
ΛCDM model of cosmology. The non-vanishing cosmolog-
ical constant Λ in Einstein’s field equation is equivalent to
a special matter with the state parameter ω = −1 every-
where, which breaks the vacuum condition of the inside
space. From the local point of view, with the presence of
cosmological constant Λ, the vacuum gravitational field is
not described by the Schwarzschild solution but by the
Schwarzschild-de Sitter solution:

ds2 =
(
1−

2M

r
−
Λ

3
r2
)
dt2−

(
1−

2M

r
−
Λ

3
r2
)
−1

dr2−r2dΩ2

(29)
where dΩ2 = dθ2 + sin2 θdφ2. The spacetime is not abso-
lutely flat in the vacuum cavity where the total mass or
charge M = 0. For the current value given by the stan-
dard model of cosmology, Λ ∼ 10−52m−2, the term Λ

3 r
2

in the above metric can be neglected in the scale of solar
system where r ∼ 1013m when compared with the first
term O(1). Other topics involving the local influences of
the cosmic expansion have also been studied (e.g. [24,25]),
showing that the effects are inconsiderable. In the context

of the f(T ) gravity, the validity of the second inference is
beyond the scope of this present paper, for it involves the
concrete solution of particular f(T ) models, which still
needs and is worth of further studies. We will leave it for
future work.

Besides the popular studies of the f(T) gravity models
to cosmology for mimicking the dark energy behaviors,
there are also still lots of interesting topics in its astro-
physics applications, which in some sense might be more
practical and obviously is worthy of further investigations.

Acknowledgement

We thank Prof. Lewis H Ryder for lots of interesting dis-
cussions on possible roles the torsion may play in gravity
and cosmology physics during the project over years. This
work is partly supported by Natural Science Foundation
of China under Grant Nos.11075078 and 10675062 and
by the project of knowledge Innovation Program (PKIP)
of Chinese Academy of Sciences (CAS) under the grant
No. KJCX2.YW.W10 through the KITPC where we have
initiated this present work.

References

1. G. R. Bengochea and R. Ferraro, Phys. Rev. D 79, 124019
(2009).

2. A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Phys. Math.
Kl. 217 (1928); 224 (1928).

3. R. Aldrovandi and J. G. Pereira, An Introduction to

Teleparallel Gravity Instituto de Fisica Teorica, UNSEP, Sao
Paulo (http://www.ift.unesp.br/gcg/tele.pdf) (2007).

4. J. Garechi (2010), arXiv: 1010.2654.
5. S. Nojiri and S. D. Odintsov, Int. J. Geom. Methods Mod.
Phys. 4, 115 (2007); X.H.Meng and P.Wang, Class. Quant.
Grav. 20 (2003) 4949; ibid, 21 (2004) 951; ibid, 21 (2004)
2029; ibid,22 (2005) 23; ibid, Gen. Rel. Grav. 36 (2004) 1947;
ibid, Phys. Lett. B 584 (2004) 1; E.Flanagan, Class. Quant.
Grav. 21 (2003) 417; S. Nojiri and S. Odintsov, Phys. Lett. B,
576 (2003) 5; ibid, Phys. Rev. D 68 (2003) 123512; D.Volink,
Phys. Rev. D 68 (2003) 063510.

6. S. Capozziello and M. Francaviglia, Gen. Relativ. Gravit.
40, 357 (2008).

7. T. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451-497
(2010).

8. A. De Felice and S. Tsujikawa, Living Rev. Relativity 13,
3 (2010).

9. E. V. Linder, Phys. Rev. D 81, 127301 (2010).
10. P. Wu and H. Yu, Phys. Lett. B 693, 415-420 (2010).
11. R. Myrzakulov (2010), arXiv: 1006.1120.
12. K.K.Yerzhanov et al (2010), arXiv: 1006.3879.
13. R. J. Yang (2010), arXiv: 1007.3571.
14. G. R. Bengochea, Phys. Lett. B 695, 405-411 (2011).
15. B. J. Li, T. P. Sotiriou and J. D. Barrow, Phys. Rev. D
83, 064035 (2011).

16. R. J. Yang, Europhys. Lett. 93, 60001 (2011).
17. G. D. Birkhoff, Relativity and Modern Physics (Harvard
University Press, Cambridge, 1923) 4, 5, 11.

18. S. Weinberg, Gravitation and Cosmology (Wiley, New
York, 1972).

http://www.ift.unesp.br/gcg/tele.pdf


Xin-He Meng, Ying-Bin Wang: Birkhoff’s Theorem in the f(T ) Gravity 5

19. S. Capozziello, A. Stabile and A. Troisi, Phys. Rev. D 76,
104019 (2007).

20. V. Faraoni, Phys. Rev. D 81, 044002 (2010).
21. M. Harwit, Astrophysical Concepts(Springer, New York,
2006) 13:11, 13:12.

22. Peebles, Principle of Physical Cosmology (Princeton Uni-
versity Press, Princeton, 1993).

23. J. W. Moffat, V. T. Toth, MNRAS 395, L25-L28 (2009).
24. F. I. Cooperstock et al, Astrophys. J. 503, 61 (1998).
25. V. Kagramanova et al, Phys. Lett. B 634, 465 (2006).


	1 Introduction
	2 Elements of f(T) Gravity
	3 The Validity of Birkhoff's Theorem
	4 Discussions and Conclusions

