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Abstract
We use the saddle point theorem of Benci–Rabinowitz to study the existence
of periodic solutions with a fixed energy for second order Hamiltonian
conservative systems without any symmetry; the key difficulty of the proof
is proving the Palais–Smale condition and the non-constant property for the
minimax critical point.
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1. Introduction

We study the Newtonian equation in which the force F is generated by a potential V (q):

q̈ = F = −∂V (q)

∂q
, (1.1)

where q = q(t) = (q1, . . . , qn) ∈ C2(R, Rn), V ∈ C1(Rn, R), ∂V (q)/∂q denotes the
gradient of V (q) with respect to position q.

Define the Hamilton function:

H = H(q̇, q) = 1
2 |q̇|2 + V (q),

then it is well known that H is an integral of the system (1.1), the corresponding Hamiltonian
system is

ṗ = −∂H

∂q
, q̇ = ∂H

∂p
, (1.2)

where p = q̇.

∗ Dedicated to the memories of Professor Shi Shuzhong and all who died in the earthquake on 12 May 2008.
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It is a natural problem to ask whether (1.1) has a periodic solution with a fixed energy h.
More generally, in 1948, Seifert [17] used geometric and topological methods to study
Hamiltonian systems with H :

H

(
dq

dt
, q

)
= 1

2

∑
1�i,j�n

aij (q)
dqi

dt

dqj

dt
+ V (q) = Q + V, (1.3)

where {aij (q)} is a positive definite matrix.

Theorem 1.1 (Seifert, 1948). If aij (q) and V (q) are real analytic in G ⊂ Rn, V = H and
∂V (q)/∂q �= 0 on ∂G, V < H in G and Ḡ is homeomorphic to the unit ball in Rn. Then the
Lagrange equations corresponding to (Q − V ) have a periodic solution with energy H .

For the general first order Hamiltonian systems (1.2), it is more difficult than (1.1).
In 1978, Rabinowitz [14] used variational methods for strongly indefinite functionals to

study the existence of a periodic solution of (1.2) with a fixed energy. He obtained the following
famous result:

Theorem 1.2 (Rabinowitz, 1978). Let H ∈ C1(R2n, R). Suppose

(H1) for some b �= 0, H−1(b) is radially homeomorphic to S2n−1.
(H2) Hz(ζ ) �= 0, ∀ζ ∈ H−1(b).

Then the Hamiltonian system

dz

dt
= JHz (1.4)

possesses a periodic solution on H−1(b), where z = (p, q) ∈ R2n, H = H(p, q), Hz =(
∂H
∂p

, ∂H
∂q

)
, J = (0 −I

I 0

)
2n×2n

.

For the Hamiltonian systems (1.1)–(1.4), after Rabinowitz, there were many works. One
can refer [7, 11, 12, 16, 20] etc and references therein; here we mention only some related
works to this paper.

In 1979, Rabinowitz [15] generalized Seifert’s result. He studied a Hamiltonian of the form

H(p, q) = K(p, q) + V (q), (1.5)

and he obtained

Theorem 1.3 (Rabinowitz 1979). If K(p, q) ∈ C2(R2n, R) satisfies (∂K/∂p) ·p > 0, ∀p �=
0, V (q) ∈ C1(Rn, R) and D = {q ∈ Rn|V (q) < 1} is C2 diffeomorphic to a unit ball in Rn

and (∂V (q)/∂q) �= 0 on ∂D,K(0, q) = 0, q ∈ D and for fixed q ∈ D̄ and p ∈ Sn−1,

limα→∞K(αp, q) > 1 − V (q).

Then (1.1) has a periodic solution on the energy surface H−1(1).

In the 1980s, Benci [5], Gluck and Ziller [8] and Hayashi [9] used totally different methods
to prove.

Theorem 1.4 (Benci–Gluck-Ziller–Hayashi). Suppose V ∈ C2(Rn, R) and

� = {q ∈ Rn|V (q) < h} (1.6)

is bounded and non-empty, then the Hamiltonian system (1.1) has at least one periodic solution
of energy h.
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The proof of Gluck–Ziller and Hayashi used much of algebraic topology or differential
geometry but rather functional analysis, Benci used the singular potential well and
approximation scheme and the least action principle of Maupertuis–Jacobi which leads to
a problem of differential geometry.

Let � be an open set in Rn with C2-boundary, he considered the metric

dρ =
√

h − V (x) ds, x ∈ �̄, (1.7)

where ds is the Euclidean metric. Then he assumed

V (q) �= 0, ∀q ∈ ∂� (1.8)

and proved that every closed geodesic, by a suitable re-parametrization of the independent
variable (time), corresponds to a periodic solution of (1.1) of energy h. Here the closed
geodesics are the critical points of the ‘length’ functional:

J (γ ) =
∫

a(γ )|γ̇ |2 dt, γ ∈ C2(S1, �̄). (1.9)

Since a(x) is degenerate when x → ∂�, so it is very difficult to study directly the
functional (1.9). Benci [4, 5] used an approximation scheme which seems complex.

In the 1990s, when Ambrosetti and Coti Zelati [2, 3] studied the periodic solutions of
singular Hamiltonian systems with a fixed energy, they presented a new variational functional
different from J (γ ) in (1.9):

f (u) = 1

2

∫ 1

0
|u̇|2 dt

∫ 1

0
(h − V (u)) dt, u ∈ W 1,2(R/Z, Rn). (1.10)

They used the Ljusternik–Schnirelmann theory and the famous mountain-pass lemma
of Ambrosetti–Rabinowitz to study the existence of the weak solutions for N–body
problems (N � 2).

In this paper, we use the functional defined by Ambrosetti–Coti Zelati and the generalized
mountain–pass lemma of Benci–Rabinowitz [6] to prove directly the existence of non-constant
C2-periodic solutions for some second order Hamiltonian systems. We notice that until now,
no one has applied the famous generalized mountain–pass lemma of Benci–Rabinowitz to the
nice concrete functional of Ambrosetti–Coti Zelati. The key point of our proof is to prove the
Palais–Smale condition with positive level values and the non-constant property for the critical
point. We discovered some intrinsic estimates for the second order Hamiltonian systems, and
we notice that these estimates do not hold for the general first order Hamiltonian systems; our
estimates may have other applications.

We have the following theorem:

Theorem 1.5. Suppose V ∈ C1(Rn, R) satisfies:

(V1) There are constants µ1 > 0 and µ2 > 0 such that

〈V ′(q), q〉 � µ1V (q) − µ2, ∀q ∈ Rn,

(V2) V (q) � h, as |q| → +∞
(V3) V ′(q) → 0 as |q| → +∞.
(V4) V (q) � a|q|µ1 + b, a > 0, b ∈ R.
(V5) lim sup|q|→0 V (q) < h.

Then for ∀h > µ2/µ1, the system (1.1) with energy h has at least a non-constant C2-periodic
solution which can be obtained by the saddle point theorem of Benci–Rabinowitz .

Remark. (V3) can be deleted.
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2. Some lemmas

In order to prove theorem 1.1, it is well known [2] that we can define functional

f (u) = 1

2

∫ 1

0
|u̇|2 dt ·

∫ 1

0
(h − V (u)) dt, ∀u ∈ H 1, (2.1)

where

H 1 = W 1,2(R/Z, Rn). (2.2)

Lemma 2.1 ( [2, 3]). Let ũ ∈ H 1 be such that f ′(ũ) = 0 and f (ũ) > 0.
Set

1

T 2
=

∫ 1

0
(h − V (ũ)) dt

1

2

∫ 1

0
| ˙̃u|2 dt

. (2.3)

Then q̃(t) = ũ(t/T ) is a non-constant T -periodic solution for (1.1) and (1.2)in section 1.

By lemma 2.1, we have

Lemma 2.2. If ū ∈ H 1 is a critical point of f (u) and f (ū) > 0, then q̄(t) = ū(t/T ) is a
non-constant T -periodic solution of (1.1) and (1.2) in section 1.

Lemma 2.3 (Sobolev–Rellich–Kondrachov, compact imbedding theorem [1, 12, 20, 22]).
W 1,2(R/T Z, Rn) ⊂ C(R/T Z, Rn)

and the imbedding is compact.

Lemma 2.4 (Eberlein–Shmulyan [21] [10]). A Banach space X is reflexive if and only if any
bounded sequence in X has a weakly convergent subsequence.

Lemma 2.5 ( [12, 22]). Let q ∈ W 1,2(R/T Z, Rn),

(i) if
∫ T

0 q(t) dt = 0, then we have the Poincare–Wirtinger’s inequality∫ T

0
|q̇(t)|2 dt �

(
2π

T

)2 ∫ T

0
|q(t)|2 dt;

(ii) if q(0) = q(T ) = 0, then we have the Friedrics–Poincaré inequality:∫ T

0
|q̇(t)|2 dt �

(π

T

)2
∫ T

0
|q(t)|2 dt;

(iii) if
∫ T

0 q(t) dt = 0, we have the Sobolev’s inequality:

max
0�t�T

|q(t)| = ‖q‖∞ �
√

T

12

(∫ T

0
|q̇(t)|2 dt

)1/2

.

We define the equivalent norms in H 1 = W 1,2(R/T Z, Rn):

‖u‖H 1 =
(∫ 1

0
|u̇|2 dt

)1/2

+ |u(0)|
or

‖u‖H 1 =
(∫ 1

0
|u̇|2 dt

)1/2

+

∣∣∣∣
∫ 1

0
u(t) dt

∣∣∣∣.
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Lemma 2.6 (Benci–Rabinowitz [6], generalized mountain-pass lemma). Let X be a
Banach space, f ∈ C(X, R) satisfies (PS)+ condition. Let X = X1

⊕
X2, dim X1 < +∞,

Ba = {x ∈ X|‖x‖ � a},
S = ∂Bρ ∩ X2, ρ > 0,

∂Q = (BR ∩ X1) ∪ (∂BR ∩ (X1

⊕
R+e)), R > ρ,

where e ∈ X2, ‖e‖ = 1,

∂BR ∩ (X1

⊕
R+e) = {x1 + se|(x1, s) ∈ X1 × R+, ‖x1‖2 + s2 = R2},

Q = {x1 + se|(x1, s) ∈ X1 × R1, s � 0, ‖x1‖2 + s2 � R2}.
If

f |S � α > 0,

and

f |∂Q � 0,

then C = inf
φ∈	

sup
x∈Q

f (φ(x)) � α and is a critical value for f , where,

	 = {φ ∈ C(Q, X), φ|∂Q = id}.
References [7, 11, 13, 18, 19] gave simpler proofs, or applications, of Benci–Rabinowitz’s

theorem.

3. The proof of theorems 1.1

Lemma 3.1. If (V1)–(V3) and h > µ2/µ1 hold, f (u) satisfies the (PS)+ condition on H 1.

Proof. Let {un} ⊂ H 1 satisfy

0 < d � f (un) � C, f ′(un) → 0. (3.1)

Firstly, we claim {un} is bounded. By f (un) � C, we have

− 1

2
‖u̇n‖2

L2 ·
∫ 1

0
V (un) dt � C − h

2
‖u̇n‖2

L2 . (3.2)

By (V1) we have

〈f ′(un), un〉 = ‖u̇n‖2
L2 ·

∫ 1

0
(h − V (un) − 1

2
〈V ′(un), un〉) dt

� ‖u̇n‖2
L2

∫ 1

0

[
h +

µ2

2
−

(
1 +

µ1

2

)
V (un)

]
dt. (3.3)

By (3.2) and (3.3) we have

〈f ′(un), un〉 �
(

h +
µ2

2

)
‖u̇n‖2

L2 +

(
1 +

µ1

2

)(
2C − h‖u̇n‖2

L2

)

=
(

− µ1

2
h +

µ2

2

)
‖u̇n‖2

L2 + C1 = a‖u̇‖2
L2 + C1, (3.4)

where C1 = 2(1 + (µ1/2))C, a = −(µ1/2)h + (µ2/2).

5
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By f ′(un) → 0, there exist C2 > 0 and C3 > 0 such that

|〈f ′(un), un〉| � C2 + C3‖un‖ = C2 + C3(‖u̇n‖L2 + |un(0)|). (3.5)

By (3.4) and (3.5) we have

− (C2 + C3‖un‖) �
(
−µ1

2
h +

µ2

2

)
‖u̇n‖2

L2 + C1. (3.6)

If ‖u̇n‖L2 is unbounded, then since h > µ2/µ1, |un(0)| must be unbounded and there
exists a subsequence, still denoted by {un} s.t.

|un(0)| � b‖u̇n‖2
L2 , b > 0. (3.7)

By the Newton–Leibniz formula and the Cauchy–Schwarz inequality, we have

min
0�t�1

|un(t)| � |un(0)| − ‖u̇n‖2

� b‖u̇n‖2
2 − ‖u̇n‖2 → +∞, as n → +∞. (3.8)

So by (V2) we have∫ 1

0
V (un) dt � h, as n → +∞. (3.9)

lim
n→∞ f (un) = lim

n→∞
1

2

∫ 1

0
|u̇n|2 dt

∫ 1

0
(h − V (un)) dt � 0. (3.10)

This contradicts f (un) � C > 0. So ‖u̇n‖L2 � M1.
We notice that

f ′(un) · (un − un(0)) =
∫ 1

0
|u̇n|2 dt

∫ 1

0
(h − V (un)) dt

− 1

2

∫ 1

0
|u̇n|2 dt

∫ 1

0
〈V ′(un), un − un(0)〉 dt

= 2f (un) − 1

2

∫ 1

0
|u̇n|2

∫ 1

0
〈V ′(un), un − un(0)〉 dt. (3.11)

Then we claim |un(0)| is bounded.
Otherwise, there a subsequence, still denoted by un s.t. |un(0)| → +∞. Since

‖u̇n‖ � M1, then

min
0�t�1

|un(t)| � |un(0)| − ‖u̇n‖2 → +∞, as n → +∞. (3.12)

Then by (V3) we have

V ′(un) → 0, (3.13)

By Friedrics–Poincaré’s inequality ,we have∫ 1

0
|u̇n(t)|2 dt � π2

∫ 1

0
|un(t) − un(0)|2 dt, (3.14)

∫ 1

0
V ′(un)(un − un(0)) dt → 0, (3.15)

f ′(un) · (un − un(0)) → 0. (3.16)

So f (un) → 0, this is a contradication, hence un(0) is bounded, and ‖un‖ = ‖u̇n‖L2 + |un(0)|
is bounded.
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By the embedding theorem, {un} has a weakly convergent subsequence which is uniformly
converges to u ∈ H 1,2.

Hence

V (un) → V (u), 〈V ′(un), un〉 → 〈V ′(u), u〉. (3.17)

Furthermore, it is similar to the one by Ambrosetti–Coti Zelati [3]; the weakly convergent
subsequence is also strongly convergent to u ∈ H 1,2.

Since (PS) sequence un is bounded in H 1, so by Sobolev’s embedding inequality, we know
it is also bounded in the maximum norm. By the continuity of V, V (un) is also uniformly
bounded in maximum norm, so by f (un) � d > 0 , we have

0 < d � f (un) = 1

2
‖u̇n‖2

L2

∫ 1

0
(h − V (un)) dt � e

2
‖u̇n‖2

L2 , (3.18)

that is

‖u̇n‖2
L2 � 2d

e
> 0, ∀n ∈ N. (3.19)

It is easy to know that

〈f ′(un), un〉 = ‖u̇n‖2
L2

∫ 1

0

[
h − V (un) − 1

2
〈V ′(un), un〉

]
dt. (3.20)

Hence by (3.20), we have∫ 1

0
(h − V (un)) dt = 1

2

∫ 1

0
〈V ′(un), un〉 dt +

〈f ′(un), un〉
‖un‖2

. (3.21)

From (3.17), (3.19) and (3.21) and 〈f ′(un), un〉 � ‖f ′(un)‖ · ‖un‖ → 0, we deduce∫ 1

0
(h − V (un)) dt → 1

2

∫ 1

0
〈V ′(u), u〉 dt. (3.22)

From f (un) > 0, we deduce∫ 1

0
(h − V (un)) dt � 0. (3.23)

Since ‖u̇n‖2
L2 is bounded, so if∫ 1

0
(h − V (un)) dt → 0 (3.24)

then

f (un) = 1

2
‖u̇n‖2

L2

∫ 1

0
(h − V (un)) dt → 0. (3.25)

This is impossible by f (un) � d > 0. Hence from (3.17) and (3.22), we have∫ 1

0
(h − V (u)) dt = 1

2

∫ 1

0
〈V ′(u), u〉 dt > 0. (3.26)

By f ′(un) → 0, we have 〈f ′(un), v〉 → 0, that is∫ 1

0
u̇nv̇ dt

∫ 1

0
(h − V (un)) dt − 1

2
‖u̇n‖2

L2

∫ 1

0
〈V ′(un), v〉 dt → 0, ∀v ∈ H 1. (3.27)

Take v = u in (3.27) and we use (3.26) to get

lim
n→∞

∫ 1

0
u̇n · u̇ dt = lim

n→∞ ‖u̇n‖2
L2 . (3.28)
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By un ⇀ u weakly, we have∫ 1

0
u̇n · u̇ dt + |un(0) · u(0)| →

∫ 1

0
|u̇|2 dt + |u(0)|2. (3.29)

By the Sobolev embedding theorem, {un} has a subsequence, still denoted by {un} s.t.
un(0) → u(0).

We notice

‖un − u‖ =
(∫ 1

0
|u̇n − u̇|2 dt

)1/2

+ |un(0) − u(0)|

=
(∫ 1

0
|u̇n|2 dt − 2

∫ 1

0
u̇nu̇ dt +

∫ 1

0
|u̇|2 dt

)1/2

+ |un(0) − u(0)|

→ (‖u̇‖2
L2 − 2‖u̇‖2

L2 + ‖u̇‖2
L2 t)

1/2 + 0 = 0. (3.30)

that is, un → u strongly in E.

Remark. If (V3) is deleted, lemma 3.1 is still true.

Now we prove theorem 1.1. In Benci–Rabinowitz’s saddle point theorem, we take

X1 = Rn, X2 =
{
u ∈ W 1,2(R/Z, Rn),

∫ 1

0
u dt = 0

}
,

S =
{

u ∈ X2|
(∫ 1

0
|u̇2|2 dt

)1/2

= ρ

}
,

∂Q = {u1 ∈ Rn||u1| = R} ∪

{u = u1 + se, u1 ∈ Rn, e ∈ X2, ‖e‖ = 1, s > 0, ‖u‖ = (|u1(0)|2 + s2)1/2 = R > ρ}.
If u ∈ X2, by Sobolev’s inequality we have

‖u‖ �
√

12|u|∝.

Hence if ‖u‖ � δ → 0, then ‖u‖∝ � δ → 0. By V(5), for ‖u‖∝ small, there exists ε > 0
such that V (q) � h − ε, so we have

f (u) = 1

2

∫ 1

0
|u̇|2 dt ·

∫ 1

0
(h − V (u)) dt � 1

2
ε‖u‖2.

f |S � 1

2
ερ2 > 0.

On the other hand, if u ∈ X1, then we have

−
∫ 1

0
V (u) dt → −∞, |u| = R → +∞;

if

u ∈ {u = u1 + se, u1 ∈ Rn, e ∈ X2, ‖e‖ = 1, s > 0, ‖u‖ = (|u1(0)|2 + s2)1/2 = R > ρ},
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then by (V4) and Jensen’s inequality, we have

−
∫ 1

0
V (u1 + se) dt

� −
∫ 1

0
(a|u1 + se|µ1 + b) dt

� −
[
a

( ∫ 1

0
|u1 + se|2 dt

)µ1/2

+ b

]

= −a

[
|u1|2 + s2

∫ 1

0
|e(t)|2 dt

]µ1/2

− b

→ −∞, s → +∞(R → +∞).

So if R is large enough, we have

f |∂Q � 0.

By lemma (3.1), f satisfies (PS)+, so f has a critical value C > 0 the corresponding critical
point is non-constant by the definition of the functional f (u).
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