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Abstract We use some inequalities to study planar Newtonian circular restricted 3-
body problems with two equal primaries, we prove that the minimizer of the Lagrangian
action on “8” type symmetric loop spaces of the rotational coordinate systems is just
at the center of masses, which implies that we must add topological conditions in order
to get the true “8”–type solutions.
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1. Introduction

We study planar restricted 3-body problems ([1]). Suppose point masses m1 and m2

move around their center of mass in circular orbits. Choose units of length, time and
mass so that the angular velocity of rotation, the sum of masses of m1 and m2, and the
gravitational constant are all equal to one. Then for this choice the distance between
m1 and m2 is also equal to 1.

Consider the motion of an asteroid m3 in the plane of the orbits of m1 and m2. We
assume that the mass of m3 is considerably smaller than the masses of m1 and m2 so
we neglect the influence of m3 on the motion of the two larger bodies.

It is convenient to pass to a moving reference frame which rotates with unit angular
velocity around the center of mass of m1 and m2, in this frame m1 and m2 are at
rest. We choose coordinates x, y in the moving frame so that the points m1 and m2 lie
invariably on the x–axis and their center of mass is the origin of the coordinate system.
Then the equations governing the motion of the asteroid can be written in the following
form:

ẍ = 2ẏ +
∂V

∂x
(1.1)
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ÿ = −2ẋ +
∂V

∂y
(1.2)

V =
x2 + y2

2
+

1− µ

ρ1

+
µ

ρ2

(1.3)

Where µ = m2, 1 − µ = m1 and ρ1, ρ2 are the distances from q3 = (x, y) to q1 and
q2, and m1 and m2 have coordinates q1 = (−µ, 0), q2 = (1− µ, 0)

ρ1 =
√

(x + µ)2 + y2, ρ2 =
√

(x− 1 + µ)2 + y2 (1.4)

Given T > 0, µ = 1/2, m1 = m2 = 1/2, we look for “8” type noncollision T−
periodic solutions of (1.1)-(1.3).

We define the Lagrangian action on a “8”–type symmetry space:

f(q3) = f(x, y) =

∫ T

0

[
1

2
(|ẋ|2 + |ẏ|2) +

1

2
(x2 + y2) + (xẏ − yẋ)

]
dt

+
1

2

∫ T

0

 1√
(x + 1

2
)2 + y2

+
1√

(x− 1
2
)2 + y2

 dt (1.5)

q3 = (x, y) ∈ Λ =


q3 = (x, y)|x, y ∈ W 1,2(R/TZ,R),

q3(t + T/2) =

(
−1 0
0 1

)
q3(t),

q3(−t) = −q3(t),
q3(t) 6= q1 = (−1/2, 0), q2 =

(
1
2
, 0
)
.

 (1.6)

Where

W 1,2(R/TZ,R) =

{
x(t)

∣∣∣∣ x(t), ẋ(t) ∈ L2(R,R)
x(t + T ) = x(t)

}
(1.7)

Theorem 1.1 The minimizer of f(q3) on the closure Λ̄ of Λ is just the center of
masses.

2. The Proof of Theorem 1.1

We define the inner product and norm of W 1,2 :

〈x, y〉 =

∫ T

0

(xy + ẋẏ)dt (2.1)

||x|| = (

∫ T

0

x2dt +

∫ T

0

|ẋ|2dt)1/2 (2.2)

Lemma 2.1(Palais’s symmetry principle ([8])) Let σ be an orthogonal representa-
tion of a finite or compact group G in the real Hilbert space H such that for ∀σ ∈
G, f(σ ◦ x) = f(x), where f : H → R.
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Let Fix = {x ∈ H|σ ◦ x = x, ∀σ ∈ G}. Then the critical point of f in Fix is also a
critical point of f in H.

By Palais’ symmetry Principle, we know that the critical point of f(x, y) in Λ is a
“8”–type noncollision periodic solution of (1.1)–(1.3).

Lemma 2.2 For any (x, y) ∈ Λ, we have the integral of the angular momentum for
the third body: ∫ T

0

(x(t)ẏ(t)− y(t)ẋ(t))dt = 0 (2.3)

Proof For (x, y) ∈ Λ we have

x(t +
T

2
) = −x(t) (2.4)

y(t + T/2) = y(t) (2.5)

Hence we have∫ T

0

x(t)ẏ(t)dt = −
∫ T

0

x(t +
T

2
)ẏ(t +

T

2
)dt = −

∫ T

0

x(τ)ẏ(τ)dτ (2.6)

∫ T

0

y(t)ẋ(t)dt = y(t)x(t)|T0 −
∫ T

0

x(t)ẏ(t)dt = −
∫ T

0

x(τ)ẏ(τ)dτ (2.7)

Lemma 2.3 For any (x, y) ∈ Λ, we have the integral averages:∫ T

0

x(t)dt =

∫ T

0

y(t)dt = 0 (2.8)

Proof. x(−t) = −x(t), y(−t) = −y(t) and x(t + T ) = x(t), y(t + T ) = y(t) imply
(2.8).

In order to prove Theorem 1.1, we need some inequalities:
Lemma 2.4 (Poincare–Wirtinger [6]) Let q ∈ W 1,2(R/TZ,Rn) and

∫ T

0
q(t)dt = 0,

then

(i)

∫ T

0

|q̇(t)|2dt ≥
(

2π

T

)2 ∫ T

0

|q(t)|2dt (2.9)

(ii) Inequality (2.9) takes the equality if and only if

q(t) = α cos
2π

T
t + β sin

2π

t
t, α, β ∈ Rn (2.10)

Lemma 2.5( Jensen,[6]) 1◦. Assume φ is a convex function on [r,R], −∞ ≤ r ≤
R ≤ +∞, f̂ and p are integrable functions on [c, d],−∞ ≤ c ≤ d ≤ +∞, r ≤ f̂(x) ≤
R, p̂(x) ≥ 0,∀x ∈ [c, d] and

∫ d

c
p̂(x)dx > 0, then
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φ

(∫ d

c
p̂(x)f̂(x)dx∫ d

c
p̂(x)dx

)
≤
∫ d

c
p̂(x)φ(f̂(x))dx∫ d

c
p̂(x)dx

(2.11)

2◦ Inequality (2.11) takes the equality if and only if

f̂(x) = const (2.12)

Now we prove Theorem 1.1:
Lemma 2.6([7]) For mi > 0, α > 0, we have

∑
1≤i≤l,l+1≤j≤N

mimj

|qi − qj|α
≥

( ∑
1≤i≤l,l+1≤j≤N

mimj

)1+α
2

·

( ∑
1≤i≤l,l+1≤j≤N

mimj|qi − qj|2
)−α

2

,

(2.13)
and the above inequality takes the equality if and only if

|qi(t)− qj(t)| = λ(t) > 0, 1 ≤ i ≤ l, l + 1 ≤ j ≤ N, (2.14)

Proof by Cauchyy-Schwarz inequality we have∑
1≤i≤l,l+1≤j≤N

mimj =
∑

1≤i≤l,l+1≤j≤N

mimj
|qi − qj|α/2

|qi − qj|α/2

≤

( ∑
1≤i≤l,l+1≤j≤N

mimj

|qi − qj|α

)1/2

·

( ∑
1≤i≤l,l+1≤j≤N

mimj|qi − qj|α
)1/2

, (2.15)

By Holder inequality we have∑
1≤i≤l,l+1≤j≤N

mimj|qi − qj|α

≤

( ∑
1≤i≤l,l+1≤j≤N

mimj

) 2−α
2
( ∑

1≤i≤l,l+1≤j≤N

mimj|qi − qj|2
)α/2

, (2.16)

Hence the inequality (2.13) is proved. By the necessary and sufficient conditions
which make the Cauchy-Schwarz inequality and Holder inequality become the equalities,
we know (2.13) takes the equality if and only if

|qi(t)− qj(t)| = λ(t) > 0, 1 ≤ i ≤ l, l + 1 ≤ j ≤ N.

Since
∫ T

0
q3(t)dt = 0, so by Poincare–Wirtinger inequality we have

f(q3) ≥ [
1

2

(
2π

T

)2

+ 1/2]

∫ T

0

|q3|2dt +
1

2

∫ T

0

|q3 − q1|−1dt +
1

2

∫ T

0

|q3 − q2|−1dt (2.17)
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By (2.13), we have

f(q3) ≥
(

2π2

T 2
+

1

2

)∫ T

0

|q3|2dt + 21/2

∫ T

0

[
|q3 − q1|2 + |q3 − q2|2

]−1/2
(2.18)

By Jensen’s inequality we have

f(q3) ≥ (
2π2

T 2
+ 1/2)

∫ T

0

|q3|2dt + 2
1
2 T 3/2

[∫ T

0

(|q3 − q1|2 + |q3 − q2|2)dt

]−1/2

=

(
2π2

T 2
+

1

2

)∫ T

0

[
|q3 − q1|2 + |q3 − q2|2

]
dt

+2
1
2 · T 3/2 ·

{∫ T

0

[
|q3 − q1|2 + |q3 − q2|2

]
dt

}− 1
2

−
(

2π2

T 2
+

1

2

)
·
[
−2

∫ T

0

q3 · q1 +

∫ T

0

|q1|2 − 2

∫ T

0

q3 · q2 +

∫ T

0

|q2|2
]

= ϕ(s) =

(
2π2

T 2
+

1

2

)
s2 + 2

1
2 T 3/2 · s−1

−
(

2π2

T 2
+

1

2

)(
T

2

)
≥ inf {ϕ(s), s > 0} , (2.19)

(2.20)

where

s2 =

∫ T

0

[
|q3 − q1|2 + |q3 − q2|2

]
dt (2.21)

We notice that ϕ(s) is a strictly convex smooth function on s > 0 and ϕ(s) → +∞ as
s → 0+ and s → +∞, so ϕ(s) attains its infimum at some s0 > 0.

We notice that the inequality (2.20)take the equalities if and only if Poincare–
Wirtinger’s inequality and (2.13) and Jensen’s inequality take the equalities simultane-
ously, hence we have

q3(t) = α cos
2π

T
t + β sin

2π

T
t, α, β ∈ Rn, (2.22)

|q3(t)− q1| = |q3(t)− q2|, (2.23)

|q3(t)− q1|2 + |q3(t)− q2|2 = const, (2.24)

By (2.23) and (2.24) we have

|q3(t)− q1|2 = |q3(t)− q2|2 = const (2.25)

Let α = (a1, b1), β = (a2, b2). Then

|q3(t)− q1|2 = (a1 cos
2π

T
t + a2 sin

2π

T
t +

1

2
)2

+(b1 cos
2π

T
t + b2 sin

2π

T
t)2 = const (2.26)
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Let t = 0 and t = T/2 we have

(a1 +
1

2
)2 + b2

1 = (−a1 +
1

2
)2 + (−b1)

2 (2.27)

Then
a1 = 0 (2.28)

Let t = T/4, 3
4
T , we have(

1

2
+ a2

)2

+ b2
2 =

(
1

2
− a2

)2

+ (−b2)
2, (2.29)

Hence
a2 = 0 (2.30)

By a1 = a2 = 0 and (2.26), we have∣∣∣∣b1 cos
2π

T
t + b2 sin

2π

T
t

∣∣∣∣2 = const (2.31)

Let t = 0, T
4
, we have

b2
1 = b2

2 (2.32)

Hence by (2.31) and (2.32) we have

b2
1 + b1b2 sin

4π

T
t = const (2.33)

b1 = b2 = 0 (2.34)

So
q3(t) = 0 (2.35)

3. A Remark

From Theorem 1.1, we know that the pure symmetry conditions can’t imply the exis-
tence of the true “8”–type noncollision periodic solutions for planar circular restricted
3–body problems, so in order to obtain the true “8”–type noncollision periodic solutions,
we must add suitable topological conditions.

We define
Λ8 = {q3 ∈ Λ, deg(q3 − q1) = 1, deg(q3 − q2) = −1} (3.1)

Conjecture There are a, b > 0 such that for T ∈ [a, b], the minimizer of f(q3) on
Λ8 is a noncollision T–periodic solution of (1.1)–(1.3).
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