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INVERSION FORMULAS FOR THE SPHERICAL
MEANS IN CONSTANT CURVATURE SPACES

YURI A. ANTIPOV, RICARDO ESTRADA, AND BORIS RUBIN

Abstract. The work develops further the theory of the following
inversion problem, which plays the central role in the rapidly de-
veloping area of thermoacoustic tomography and has intimate con-
nections with PDEs and integral geometry: Reconstruct a function
f supported in an n-dimensional ball B, if the spherical means of
f are known over all geodesic spheres centered on the boundary of
B. We propose a new unified approach based on the idea of ana-
lytic continuation. This approach gives explicit inversion formulas
not only for the Euclidean space Rn (as in the original set-up)
but also for arbitrary constant curvature space X , including the
n-dimensional sphere and the hyperbolic space. The results are ap-
plied to inverse problems for a large class of Euler-Poisson-Darboux
equations in constant curvature spaces of arbitrary dimension.

1. Introduction

The paper deals with the spherical mean operator, which is also
known as the spherical mean Radon transform. Importance of this
transformation in analysis and geometry and many of its properties
(which are still surprising!) were indicated by many authors; see, e.g.,
[11, p. 699], [31, 57]. In recent years an interest to this object has
grown tremendously in view of a series of challenging problems. One
of them is characterization of sets of injectivity (and non-injectivity) of
this transform; see [15, 4, 5, 56] and references therein. Another source
of mathematical problems related to the spherical means is the rapidly
developing thermoacoustic tomography (TAT), the revolutionary role
of which in medical imaging was pointed out in many publications; see
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[1]-[3], [18, 19], [20]-[23], [30, 35], [34]-[36], [38], [46]-[50], [59, 61]. The
present investigation belongs to this area.
Setting of the problem and motivation. Let f be an infinitely

differentiable function with compact support in the open ball B = {x ∈
R
n : |x| < R}; ∂B is the boundary of B. We consider the spherical

mean Radon transform Mf which integrates f over spheres centered
on ∂B:

(1.1) (Mf)(ξ, t) =
1

σn−1

∫

Sn−1

f(ξ − tθ) dθ,

where

ξ ∈ ∂B, t ∈ R+ = (0,∞),

Sn−1 is the unit sphere in R
n with the area σn−1, and dσ stands for the

usual Lebesgue measure on Sn−1. For the classical Radon transforms,
their modifications, and applications see, e.g., [12, 14, 26, 13, 29, 42].
The general problem of reconstructing f from known data (Mf)(ξ, t)

on the cylinder ∂B × R+ is an immediate consequence of the following
commonly accepted mathematical model of TAT in R

3 (see, e.g., [36,
59, 30] and references therein):
Given a function c(x), the speed of the ultrasound propagation in the

tissue, and a function g(ξ, t), the measured value of the pressure at the
time t at the transducers location ξ ∈ S2, find a function f(x), the
initial pressure distribution p(x, 0) (the TAT image), if

(1.2)






ptt = c2(x)∆p for all t ≥ 0, x ∈ R
3,

p(x, 0) = f(x), pt(x, 0) = 0 for all x ∈ R
3,

p(ξ, t) = g(ξ, t) for all ξ ∈ S2 (⊂ R
3), t ≥ 0.

Here, pt and ptt are the first and second time derivatives, and ∆ is the
Laplace operator with respect to the spatial variable x.
This problem admits immediate generalization to arbitrary dimen-

sions, more general Riemannian spaces, and a broad class of differential
equations of the Euler-Poisson-Darboux (EPD) type. In the Euclidean
case, a thorough discussion of main inversion methods in terms of their
assumptions and computational features can be found in [36, 59]. In
the important particular case of constant speed c(x), solution to this
problem is equivalent to reconstruction of f from its spherical mean
(1.1).
Explicit inversion formulas for Mf are of particular interest. For n

odd, such formulas were obtained by Finch, Patch, and Rakesh in [19].
Another derivation was suggested by Palamodov [47, Section 7.5]; see
also [21, 22, 61]. The corresponding formulas for n even were obtained
by Finch, Haltmeier, and Rakesh in [18]. An explicit inversion formula



SPHERICAL MEANS 3

which relies on completely different ideas and covers both odd and even
cases, was suggested by Kunyansky [38].
In spite of the elegance and ingenuity, the derivation of the existing

inversion formulas for Mf is pretty involved, and basic ideas behind
it remain mysterious. In view of practical importance, it would be
desirable to find an independent simple proof of known formulas and
thus check their correctness. Moreover, the prospective new method
should be applicable to more general geometric and analytic settings
and thus lead to further progress.
A simple proof for n odd was suggested by the third author [54],

who suggested to treat M as a member of a certain analytic family of
operators and applied the results to the inverse problem of type (1.2)
for the more general EPD equation in the case c(x) ≡ const.
In the present article we suggest a new approach, which is concep-

tually simple and leads to inversion formulas for Mf for all n ≥ 2. As
in [54], the key idea is analytic continuation, however, the reasoning is
different. We extend our method to the similar problem for spherical
means on the n-dimensional sphere and the hyperbolic space, where
the theory of EPD equations is also well-developed. This extension
seems to be new and paves the way to diverse settings, when the rele-
vant geodesic balls and spherical means are considered in more general
Riemannian spaces.
Regarding generalizations to general Riemannian spaces, some com-

ments are in order. The corresponding wave equations and their EPD
generalizations were studied in [39, 32, 33], [43]-[45]. For example, the
wave equation on the n-dimensional sphere Sn has the form [39]

(1.3) δxu = uωω +

(
n− 1

2

)2

u, (x, ω) ∈ Sn × (0, π),

where δx denotes the Beltrami-Laplace operator. The Cauchy problem
for the relevant EPD equation

(1.4) �̃αu = 0, u(x, 0) = f(x), uω(x, 0) = 0,

where

(1.5) �̃αu = δxu− uωω − (n− 1 + 2α) cotω uω + α(n− 1 + α)u,

and various modifications were discussed in [9, 10, 24, 32, 33, 44]. The
problem (1.4) for the case α = 0, corresponding to the usual Darboux
equation, was studied by Olevskii [43] and also by Kipriyanov and
Ivanov [32]. Our definition of the EPD-equation on Sn differs from
that in [32] and agrees with [44]. The particular case α = (1 − n)/2,
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corresponding to the wave equation (1.3), can be regarded as the spher-
ical analogue of the TAT model (1.2) with constant speed.

Plan of the paper and main results. Section 2 contains prelim-
inaries. Here the main statement is Lemma 2.2. For convenience of
the reader and better treatment of the subject, we supply this lemma
with alternative proofs, which are based on different ideas and use dif-
ferent tools, while leading to the same result. All these are presented
in Appendix. Section 3 contains derivation of inversion formulas for
Mf in the Euclidean case. The main inversion results are presented
in Theorems 3.4 and 3.7; see also modified inversion formulas (3.21),
(3.22). The results of Section 3 are applied in Section 4 to the Cauchy
problem for the Euler-Poisson-Darboux equation

(1.6) �αu≡∆u−utt−
n+2α−1

t
ut=0, u(x, 0)=f(x), ut(x, 0)=0,

where f is a smooth function with compact support in the ball B. Using
the results of Section 3 combined with known properties of Erdélyi-
Kober fractional integrals, we give explicit solution (Theorem 4.1) to
the following inverse problem:

Given the trace u (ξ, t) of the solution of (1.6) for all (ξ, t) on the
cylindrical surface ∂B × R+, reconstruct f(x).
The particular case α = (1−n)/2 gives explicit solution to the TAT

problem (1.2) with constant speed c(x) ≡ 1.
The spherical mean Radon transform on the n-dimensional unit

sphere Sn in R
n+1 is studied in Section 5. Inversion formulas for this

transform are given in Theorems 5.3 and 5.5. The relevant inverse
problem for the EPD equation on Sn is solved in Section 6. Section 7
contains derivation of inversion formulas for the spherical mean Radon
transform in the n-dimensional hyperbolic space. Here the main results
are given by Theorems 7.3 and 7.5 .
Acknowledgements. The third author is grateful to Mark Agra-

novsky, who encouraged him to study this problem, and also to Pe-
ter Kuchment and Leonid Kunyansky for useful discussions. Special
thanks go to David Finch, who shared with us his knowledge of the
subject.

2. Auxiliary statements

Notation. We use abbreviation a.c. to denote analytic continuation;
σn−1 = 2πn/2/Γ(n/2) is the area of the unit sphere Sn−1 in R

n. We
write dθ (dξ) for the usual Lebesgue measure on Sn−1 (on ∂B, resp.);
[a] denotes the integer part of a real number a; (·)λ+ means (·)λ if the
expression in parentheses is positive and zero, otherwise.
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We will need the following lemmas.

Lemma 2.1. Let ϕ ∈ C∞
c (R).

(i) If m = 0, 1, 2, . . ., then

(2.1) a.c.
α=−2m

∫

R

|t|α−1

Γ(α/2)
ϕ(t) dt = cm,1 ϕ

(2m)(0), cm,1 =
(−1)mm!

(2m)!
.

(ii) If m = 1, 2, . . ., then

a.c.
α=1−2m

∫

R

|t|α−1

Γ(α/2)
ϕ(t) dt = cm,2

∫

R

ϕ(2m−1)(t)

t
dt(2.2)

= −cm,2

∫

R

ϕ(2m)(t) log |t| dt,(2.3)

where cm,2 = (Γ(1/2−m)(2m−1)!)−1 and the integral on the right-hand
side of (2.2) is understood in the principal value sense.

Proof. Both statements summarize known facts from [27, Chapter 1,
Sec. 3]. For instance, (ii) can be proved as follows. Using the equality

|t|α−1 =
Γ(α)

Γ(α + 2m− 1)
(|t|α+2m−2 sgnt)(2m−1),

we write the left-hand side of (2.2) in the form

− a.c.
α=1−2m

Γ(α)

Γ(α + 2m− 1) Γ(α/2)
(|t|α+2m−2 sgnt, ϕ(2m−1)(t)).

The latter yields the principal value integral

1

Γ(1/2−m)(2m− 1)!

∫

R

ϕ(2m−1)(t)

t
dt,

which coincides with (2.3). �

Lemma 2.2. Let n > 2, |h| < 1.
(i) The integral

(2.4) gα(h) =
1

Γ(α/2)

1∫

−1

|t−h|α−1 (1− t2)(n−3)/2 dt, Re α > 0,

extends as an entire function of α and this extension represents a C∞

function of h uniformly in α ∈ K for any compact subset K of the
complex plane.
(ii) Moreover,

(2.5) a.c.
α=3−n

gα(h) = Γ((n− 1)/2).
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B
supp f

ξ

Figure 1. The Euclidean case.

The proof of this lemma is given in Appendix.

3. The Euclidean case. Derivation of the Inversion

Formula

We recall that our aim is to reconstruct a C∞ function f supported
in the ball B = {x ∈ R

n : |x| < R} provided that the spherical means

(Mf)(ξ, t) =
1

σn−1

∫

Sn−1

f(ξ − tσ) dσ, (ξ, t) ∈ ∂B × R+,

are known for all spheres centered on the boundary ∂B of B (Fig. 1).
We introduce the “back-projection” operator P that sends a function

F (ξ, t) on ∂B × R+ to a function (PF )(x) on B by the formula

(3.1) (PF )(x) =
1

|∂B|

∫

∂B

F (ξ, |x− ξ|) dξ, x ∈ B,

where dξ stands for the surface element of ∂B and |∂B| denotes the
area of ∂B.

3.1. The case n > 2. Consider the following analytic family of oper-
ators

(3.2) (Nαf)(ξ, t) =

∫

B

|t2 − |y − ξ|2|α−1

Γ(α/2)
f(y) dy,

(ξ, t) ∈ ∂B × R+, Re α > 0.
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Lemma 3.1. Let f be an infinitely differentiable function supported in
B = {x ∈ R

n : |x| < R}. Then

(3.3) a.c.
α=3−n

(PNαf)(x) = λn

∫

B

f(y)

|x− y|n−2
dy,

(3.4) λn = (2R)2−nπ−1/2 Γ(n/2).

Proof. For Reα > 0, changing the order of integration, we obtain

(PNαf)(x) =

∫

B

f(y) kα(x, y) dy,

where

kα(x, y) =
1

|∂B|Γ(α/2)

∫

∂B

||x−ξ|2−|y−ξ|2|α−1 dξ

=
1

σn−1 Γ(α/2)

∫

Sn−1

||x|2 − |y|2 − 2Rθ · (x− y)|α−1 dθ

=
(2R |x− y|)α−1

σn−1

∫

Sn−1

|θ · σ − h|α−1

Γ(α/2)
dθ,(3.5)

σ =
x− y

|x− y| , h =
|x|2 − |y|2
2R |x− y| .

By the rotation invariance of the inner product, the integral in (3.5) is
independent of σ and can be written as

σn−2

Γ(α/2)

1∫

−1

|t−h|α−1 (1− t2)(n−3)/2 dt = σn−2 gα(h);

cf. (2.4). Note that |h| < 1− δ for some δ > 0 because x and y belong
to the support of f and the latter is separated from the boundary of
B. Hence, Lemma 2.2 yields

a.c.
α=3−n

(PNαf)(x) =
(2R)2−n σn−2

σn−1

∫

B

f(y)

|x− y|n−2
a.c.

α=3−n
gα(h) dy

= λn

∫

B

f(y)

|x− y|n−2
dy, λn = (2R)2−nπ−1/2 Γ(n/2)

(to justify interchange of integration and analytic continuation, the
reader may consult, e.g., [52, Lemma 1.17 ]). �
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Let us obtain another representation of the analytic continuation of
PNαf , now, in terms of the spherical means of f .

Lemma 3.2. Let f be an infinitely differentiable function supported in
B = {x ∈ R

n : |x| < R},

(3.6) D =
1

2t

d

dt
, δn =

(−1)[n/2−1] Γ((n− 1)/2)

(n−3)!
.

(i) If n = 3, 5, . . . , then

(3.7) a.c.
α=3−n

(PNαf)(x) =
δn

2Rn−1

∫

∂B

Dn−3[tn−2(Mf)(ξ, t)]
∣∣∣
t=|x−ξ|

dξ.

(ii) If n = 4, 6, . . . , then

(3.8)

a.c.
α=3−n

(PNαf)(x) = − δn
π Rn−1

∫

∂B

dξ

2R∫

0

tDn−2[tn−2(Mf)(ξ, t)] log |t2−|x−ξ|2| dt.

Proof. Passing to polar coordinates, we have

(Nαf)(ξ, t) = σn−1

2R∫

0

|t2 − r2|α−1

Γ(α/2)
(Mf)(ξ, r) rn−1 dr

=

4R2∫

0

|t2 − τ |α−1

Γ(α/2)
ϕξ(τ) dτ, ϕξ(τ) =

σn−1

2
τn/2−1(Mf)(ξ, τ 1/2).

Since the support of f is separated from the boundary of B, there is
an ε > 0 such that ϕξ(τ) ≡ 0 when τ /∈ (ε, 4R2 − ε). Hence, ϕξ(τ) can
be regarded as a function in C∞

c (R) and we can write

(Nαf)(ξ, t) =

∫

R

|τ |α−1

Γ(α/2)
ϕξ(τ + t2) dτ.

Now, Lemma 2.1 yields the following equalities.
For n = 3, 5, . . . :

a.c.
α=3−n

(Nαf)(ξ, t)=δn,1 ϕ
(n−3)
ξ (t2), δn,1=

(−1)(n−3)/2 ((n−3)/2)!

(n−3)!
.

For n = 4, 6, . . . :

a.c.
α=3−n

(Nαf)(ξ, t)=δn,2

∫

R

ϕ
(n−2)
ξ (τ) log |τ−t2| dτ,
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δn,2 = − 1

Γ((3−n)/2) (n−3)!
.

Combining these formulas with the backprojection P and noting that
operations a.c. and P commute, we obtain

For n = 3, 5, . . . :

a.c.
α=3−n

(PNαf)(x) =
δn,1
|∂B|

∫

∂B

ϕ
(n−3)
ξ (|x− ξ|2) dξ.

For n = 4, 6, . . . :

a.c.
α=3−n

(PNαf)(x) =
δn,2
|∂B|

∫

∂B

dξ

4R2∫

0

ϕ
(n−2)
ξ (τ) log |τ−|x− ξ|2| dτ.

These formulas give the desired result. �

Comparing different forms of the analytic continuation in Lemmas
3.1 and 3.2, we obtain the following statement.

Lemma 3.3. Let f be an infinitely differentiable function supported in
the unit ball B = {x ∈ R

n : |x| < R}, D = 1
2t

d
dt
. Then

(3.9) λn

∫

B

f(y)

|x− y|n−2
dy

=





δn
2Rn−1

∫

∂B

Dn−3[tn−2(Mf)(ξ, t)]
∣∣∣
t=|x−ξ|

dξ,

if n=3, 5, . . . ,

− δn
π Rn−1

∫

∂B

dξ

2R∫

0

tDn−2[tn−2(Mf)(ξ, t)] log |t2 − |x− ξ|2| dt,

if n=4, 6, . . . ,

where λn and δn are defined by (3.4) and (3.6), respectively.

The left-hand side of (3.9) is a constant multiple of the Riesz poten-
tial of order 2 defined by

(3.10) (I2f)(x) =
Γ(n/2− 1)

4πn/2

∫

B

f(y) dy

|x− y|n−2

and satisfying

(3.11) −∆I2f = f, ∆ =
n∑

k=1

∂2

∂x2k
.
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Thus, we arrive at the following result.

Theorem 3.4. Let f be an infinitely differentiable function supported
in the unit ball B = {x ∈ R

n : |x| < R}, D = 1
2t

d
dt
.

(i) If n = 3, 5, . . . , then

(3.12) f(x) = dn,1∆

∫

∂B

Dn−3[tn−2(Mf)(ξ, t)]
∣∣∣
t=|x−ξ|

dξ,

dn,1 =
(−1)(n−1)/2 π1−n/2

4RΓ(n/2)
.

(ii) If n = 4, 6, . . . , then

(3.13) f(x)=dn,2∆

∫

∂B

dξ

2R∫

0

tDn−2[tn−2(Mf)(ξ, t)] log |t2−|x−ξ|2| dt,

dn,2 =
(−1)n/2−1 π−n/2

2R (n/2− 1)!
.

3.2. The case n = 2. LetD be the open disk in R
2 of radius R centered

at the origin. In this section, for the sake of completeness, we reproduce
(with minor changes) the argument from [18], keeping in mind that the
Riesz potential of order 2 in the previous section is substituted by the
logarithmic potential

(3.14) (I∗f)(x) =
1

2π

∫

D

f(y) log |x− y| dy ,

satisfying ∆I∗f = f .
The following statement is a substitute for Lemma 2.2.

Lemma 3.5. Let −1 < h < 1, σ ∈ S1. Then

(3.15) g∗ ≡
∫

S1

log |θ · σ − h| dθ = −2π log 2.

Proof. Owing to rotational invariance, we can write

(3.16) g∗ = 2

∫ 1

−1

log |t− h|√
1− t2

dt .

This integral is known; see, e.g., [17, p. 296], [18].1 �

1A more general integral was evaluated in [7, Lemma 6.1].
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Lemma 3.6. Let f be a C∞ function supported in D. Then

(3.17) (I∗f)(x)=
1

2πR

∫

∂D

2R∫

0

(Mf) (ξ, t) log
∣∣t2−|x−ξ|2

∣∣ t dt dξ+cf ,

cf = − logR

2π

∫

D

f(y) dy.

Proof. Let

(N∗f) (ξ, t)=

∫

D

f (y) log
∣∣t2−|y−ξ|2

∣∣ dy.

Changing the order of integration and making use of (3.15) with

σ =
x− y

|x− y| , h =
|x|2 − |y|2
2R |x− y| ,

we obtain

(PN∗f)(x) =

∫

D

f(y) k∗(x, y) dy,

where

k∗(x, y) =
1

2πR

∫

∂D

log
∣∣|x− ξ|2 − |y − ξ|2

∣∣ dξ

=
1

2πR

∫

∂D

log
∣∣|x|2 − |y|2 − 2ξ · (x− y)

∣∣ dξ

=
1

2π

∫

S1

(log(2R |x− y|) + log |h− θ · σ|) dθ

= log(2R |x− y|) + g∗
2π

= logR + log |x− y|.

This gives

(3.18) (PN∗f)(x) =

∫

D

f(y) log |x− y| dy + logR

∫

D

f(y) dy.

On the other hand, (PN∗f)(x) can be expressed in terms of the spher-
ical means. Indeed, passing to polar coordinates, we have

(N∗f) (ξ, t) = 2π

2R∫

0

(Mf) (ξ, r) log |r2 − t2| rdr
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and therefore,

(3.19) (PN∗f)(x) =
1

R

∫

∂D

2R∫

0

(Mf) (ξ, r) log
∣∣r2−|x−ξ|2

∣∣ r dr dξ.

Comparing (3.18) and (3.19), we arrive at (3.17). �

Lemma 3.6 allows us complete Theorem 3.4 in the following way.

Theorem 3.7. Let f be an infinitely differentiable function supported
in the disk D = {x ∈ R

2 : |x| < R}. Then

(3.20) f (x) = ∆


 1

2πR

∫

∂D

2R∫

0

(Mf) (ξ, t) log
∣∣t2−|x−ξ|2

∣∣ t dt dξ


 .

Formula (3.20) can be formally obtained from (3.13) by setting n = 2.
It coincides with formula (1.4) in [18].

3.3. Modified inversion formulas. We can replace f by ∆f in (3.9)
Since f is smooth and suppf is separated from the boundary of B,
then I2∆f = −f . Furthermore, since u(x, t) ≡ (Mf)(x, t) satisfies the
Darboux equation

�u ≡ ∆u− utt −
n− 1

t
ut = 0

and ∆ commutes with rotations and translations, then

(M∆f)(x, t) = (∆Mf)(x, t) = L[(Mf)(x, ·)](t), ∀x ∈ R
n, t > 0,

where

L =
d2

dt2
+
n− 1

t

d

dt
;

see, e.g., [29, p. 17]. This reasoning and its obvious analogue for n = 2
give the following modifications of inversion formulas (3.12), (3.13),
and (3.20) with the same constant factors:
(i) If n = 3, 5, . . . , then

(3.21) f(x) = dn,1

∫

∂B

Dn−3[tn−2(LMf)(ξ, t)]
∣∣∣
t=|x−ξ|

dξ.

(ii) If n = 2, 4, 6, . . . , then

(3.22) f(x)=dn,2

∫

∂B

dξ

2R∫

0

tDn−2[tn−2(LMf)(ξ, t)] log |t2−|x−ξ|2| dt.
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Formula (3.21) agrees with [54, formula (3.8)].

4. Spherical means and EPD equations

Consider the Cauchy problem for the Euler-Poisson-Darboux equa-
tion:

(4.1) �αu ≡ ∆u− utt −
n+ 2α− 1

t
ut = 0 ,

(4.2) u(x, 0) = f(x), ut(x, 0) = 0.

As in the previous section, we assume that f is a smooth function with
compact support in the ball B = {x ∈ R

n : |x| < R}. If α ≥ (1−n)/2,
then (4.1)-(4.2) has a unique solution

(4.3) u(x, t) = (Mαf)(x, t), x ∈ R
n, t ∈ R+,

where Mαf is defined as analytic continuation of the integral

(Mαf)(x, t)=
Γ (α+n/2)

πn/2Γ (α)

∫

|y|<1

(1−|y|2)α−1f(x−ty) dy, Reα>0;

see [8] for details. If α = 0, then M0f ≡ a.c.
α=0

Mαf represents the

spherical mean (1.1).

Consider the following problem:
Given the trace u (ξ, t) of the solution of (4.1) - (4.2) for all (ξ, t) ∈

∂B × R+, reconstruct f(x).

To solve this problem we need some facts from fractional calculus;
see, e.g., [55, Sec. 18.1] or [17, Sec. 9.6]. For Reα > 0 and η ≥ −1/2,
the Erdélyi-Kober fractional integral of a function ϕ on R+ is defined
by

(4.4) (Iαη ϕ)(t) =
2t−2(α+η)

Γ(α)

∫ t

0

(t2 − r2)α−1r2η+1ϕ(r) dr, t > 0.

In our case it suffices to assume that ϕ is infinitely smooth and sup-
ported away from the origin. Then Iαη ϕ extends as an entire function

of α and η, so that I0ηϕ = ϕ,
(
Iαη

)−1
ϕ = I−α

η+αϕ,

(I−m
η ϕ)(t) = t−2(η−m)Dm t2ηϕ(t), D =

1

2t

d

dt
.

Assuming x = ξ ∈ ∂B and passing to polar coordinates, we obtain

(4.5) uξ(t) = (Mαf)(ξ, t) =
Γ (α + n/2)

Γ (n/2)

(
Iαη ϕξ

)
(t) ,
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where uξ (t) = u(ξ, t), ϕξ (t) = (Mf)(ξ, t), η = n/2− 1. This gives

(4.6) ϕξ =
Γ(n/2)

Γ(α + n/2)

(
Iαη

)−1
uξ =

Γ(n/2)

Γ(α + n/2)
I−α
η+αuξ.

Now, since ϕξ(t) = (Mf)(ξ, t) is known, we can use Theorem 3.4 to
reconstruct f by the following formulas.

Theorem 4.1. Let f be an infinitely differentiable function supported
in the unit ball B = {x ∈ R

n : |x| < R}, D = 1
2t

d
dt
.

(i) If n = 3, 5, . . . , then

f(x) = d̃n,1∆

∫

∂B

Dn−3[tn−2(I−α
η+αuξ) (t)]

∣∣∣
t=|x−ξ|

dξ,

d̃n,1 =
(−1)(n−1)/2 π1−n/2

4RΓ(α + n/2)
.

(ii) If n = 2, 4, 6, . . . , then

f(x) = d̃n,2∆

∫

∂B

dξ

2R∫

0

tDn−2[tn−2(I−α
η+αuξ) (t)] log |t2 − |x− ξ|2| dt,

d̃n,2 =
(−1)n/2−1 π−n/2

2RΓ(α + n/2)
.

The case α = (1− n)/2 in this theorem gives explicit solution to the
TAT problem (see Introduction) with constant speed c(x) ≡ 1. More-
over, after f has been found, we can reconstruct u(x, t) in the whole
space by setting u(x, t) = (Mαf)(x, t). The latter gives an explicit so-
lution to the Cauchy problem for the generalized EPD equation (4.1)
with initial data on the cylinder ∂B × R+.

5. Spherical Means on Sn

The suggested method of analytic continuation enables us to study
the spherical mean Radon transform Mf on arbitrary constant cur-
vature space X . In this setting, suppf ⊂ B, where B is a geodesic
ball centered at the origin, and the spherical means of f are evaluated
over geodesic spheres, the centers of which are located on the bound-
ary of B. In this section we consider the case, when X = Sn is the
n-dimensional sphere in R

n+1.
Given x ∈ Sn and t ∈ (−1, 1), let

(5.1) (Mf)(x, t) =
(1− t2)(1−n)/2

σn−1

∫

x·y=t

f(y) dσ(y)
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ξ

B

supp f

Figure 2. The spherical case.

be the mean value of a function f ∈ C∞(Sn) over the planar section
{y ∈ Sn : x · y = t} (Fig.2).
Our aim is to reconstruct f under the following assumptions:

(a) The support of f lies on the spherical cap

(5.2) Bθ = {x ∈ Sn : x · en+1 > cos θ},
(the geodesic ball of radius θ), where en+1 = (0, . . . , 0, 1) is the north
pole of Sn and θ ∈ (0, π/2] is fixed.
(b) The mean values (5.1) are known for all x = ξ ∈ ∂Bθ and all
t ∈ (−1, 1), where ∂Bθ is the boundary of Bθ.
This problem can be solved using the method of the previous section.

Let us fix our notation. In the following Sn
+ = {x ∈ Sn : xn+1 ≥ 0}

is the upper hemisphere, B0 denotes the unit ball in the hyperplane
xn+1 = 0; Sn−1 stands for the boundary of B0, which is also the bound-
ary of Sn

+. For x ∈ Sn
+ we write

x = (x′,
√

1− |x′|2), x′ = (x1, . . . , xn, 0) ∈ B0,

so that
∫

Sn
+

f(x) dx =

∫

B0

f(x′,
√
1− |x′|2)

√

1 +

(
∂xn+1

∂x1

)2

+ . . .+

(
∂xn+1

∂xn

)2

dx′

=

∫

B0

f(x′,
√
1− |x′|2) dx′√

1− |x′|2
.
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We introduce the backprojection operator P , that sends functions
on ∂Bθ × (−1, 1) to functions on Bθ by the formula

(5.3) (PF )(x) =
1

|∂Bθ|

∫

∂Bθ

F (ξ, ξ · x) dξ, x ∈ Bθ.

Here dξ and |∂Bθ| denote the surface element and the area of ∂Bθ,

respectively. We denote by B̃θ the orthogonal projection of Bθ onto
the hyperplane xn+1 = 0.

5.1. The case n > 2. Assuming (ξ, t) ∈ ∂Bθ × (−1, 1) and Reα > 0,
consider the following analytic family of operators

(5.4) (Nαf)(ξ, t) =

∫

Bθ

|ξ · y − t|α−1

Γ(α/2)
f(y) dy.

Lemma 5.1. Let f ∈ C∞(Sn), suppf ⊂ Bθ. Then

(5.5) a.c.
α=3−n

(PNαf)(x) =
Γ(n/2) (sin θ)2−n

π1/2

∫

B̃θ

f̃(y′) dy′

|x′ − y′|n−2
,

(5.6) f̃(y′) = (1− |y′|2)−1/2 f(y′, (1− |y′|2)1/2).

Proof. For Reα > 0, changing the order of integration, we obtain2

(PNαf)(x) =

∫

Bθ

f(y) kα(x, y), dy, kα(x, y) =
1

|∂Bθ|

∫

∂Bθ

|ξ · (x− y)|α−1

Γ(α/2)
dξ.

Since ξ has the form ξ = en+1 cos θ + ω sin θ, ω ∈ Sn−1, then

|ξ · (x− y)| = |(xn+1 − yn+1) cos θ + (x′ − y′) · ω sin θ|
= |h− ω · σ| |x′ − y′| sin θ,(5.7)

(5.8) h =
xn+1 − yn+1

|x′ − y′| cot θ, σ =
x′ − y′

|x′ − y′| .

Hence,

(5.9) kα(x, y) =
(|x′ − y′| sin θ)α−1

σn−1

∫

Sn−1

|h− ω · σ|α−1

Γ(α/2)
dω.

2For the sake of convenience, we use some notations which mimic analogous
expressions in the Euclidean case.
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The integral in (5.9) is independent of ξ and can be written as

σn−2

Γ(α/2)

1∫

−1

|t−h|α−1 (1− t2)(n−3)/2 dt = σn−2 gα(h);

cf. (2.4). This gives

(5.10) kα(x, y) =
σn−2 (|x′ − y′| sin θ)α−1

σn−1
gα(h).

Let us show that |h| < 1. We write

x = en+1 cos γ + u sin γ, y = en+1 cos δ + v sin δ,

γ, δ ∈ (0, θ); u, v ∈ Sn−1; h̃ =
xn+1 − yn+1

|x′ − y′| .

Then

|h̃|2 =
(cos γ − cos δ)2

|u sin γ − v sin δ|2

=
(cos γ − cos δ)2

sin2 γ − 2(u · v) sin γ sin δ + sin2 δ

≤ (cos γ − cos δ)2

sin2 γ − 2 sin γ sin δ + sin2 δ
=

(cos γ − cos δ)2

(sin γ − sin δ)2
.

Without loss of generality, suppose that γ ≤ δ. Then

|h̃| ≤ cos γ − cos δ

sin δ − sin γ
= tan

γ + δ

2
< tan θ,

and therefore, |h| = |h̃| cot θ < 1.
Since |h| < 1, Lemma 2.2 yields

a.c.
α=3−n

(PNαf)(x) = cn

∫

Bθ

f(y) dy

|x′ − y′|n−2
= cn

∫

B̃θ

f̃(y′) dy′

|x′ − y′|n−2
,

f̃(y′)=(1−|y′|2)−1/2 f(y′, (1−|y′|2)1/2), cn=
Γ(n/2) (sin θ)2−n

π1/2
.

�

As before, we need one more representation of a.c.
α=3−n

(PNαf)(x), now

in terms of the spherical means (Mf)(ξ, t).

Lemma 5.2. Let f ∈ C∞(Sn), suppf ⊂ Bθ. Then

a.c.
α=3−n

(PNαf)(x) =
δn

(sin θ)n−1

∫

∂Bθ

(d/dt)n−3[(Mf)(ξ, t) (1−t2)n/2−1]
∣∣∣
t=ξ·x

dξ,
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if n = 3, 5, . . . , and

a.c.
α=3−n

(PNαf)(x) = − δn
π (sin θ)n−1

∫

∂Bθ

dξ

×
1∫

cos 2θ

(d/dt)n−2[(Mf)(ξ, t) (1− t2)n/2−1] log |t− ξ · x| dt,

if n = 4, 6, . . . , where δn is defined by (3.6).

Proof. For Reα > 0, by making use of the formula

(5.11)

∫

Sn

f(y) a(ξ · y) dy = σn−1

1∫

−1

a(τ)(Mf)(ξ, τ) (1− τ 2)n/2−1 dτ,

we have

(Nαf)(ξ, t) =
σn−1

Γ(α/2)

1∫

−1

(Mf)(ξ, τ) |τ − t|α−1(1− τ 2)n/2−1 dτ

=

∫

R

|τ |α−1

Γ(α/2)
ϕξ(τ + t) dτ, ϕξ(τ) = σn−1 (Mf)(ξ, τ) (1− τ 2)

n/2−1
+ .

Since f is smooth and its support is separated from the boundary ∂Bθ,
then (Mf)(ξ, τ) is smooth in the τ -variable uniformly in ξ and vanishes
identically in the respective neighborhoods of τ = ±1. Thus, we can
invoke Lemma 2.1 which yields the following equalities.
For n = 3, 5, . . . ; cos 2θ < t < 1:

a.c.
α=3−n

(Nαf)(ξ, t)=δn ϕ
(n−3)
ξ (t),

For n = 4, 6, . . . :

a.c.
α=3−n

(Nαf)(ξ, t) = −δn
π

1∫

cos 2θ

ϕ
(n−2)
ξ (τ) log |τ−t| dτ,

δn being defined by (3.6). The above formulas mimic those in the proof
of Lemma 3.2 and the result follows. �

Lemmas 5.1 and 5.2 imply the following inversion result for the spher-
ical means on Sn. In the statement below, ∆x′ = ∂21 + . . . + ∂2n is the
usual Laplace operator in the x′-variable.
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Theorem 5.3. Let f ∈ C∞(Sn), suppf ⊂ Bθ. Then

(5.12) f(x)=
dn xn+1

sin θ
∆x′f0(x

′,
√
1−|x′|2), dn=

(−1)[n/2−1]

2n−1πn/2−1Γ(n/2)
,

where f0(x) ≡ f0(x
′,
√
1− |x′|2) has the following form:

f0(x) = −
∫

∂Bθ

(d/dt)n−3[(Mf)(ξ, t) (1− t2)n/2−1]
∣∣∣
t=ξ·x

dξ

if n = 3, 5, . . . , and

f0(x) =
1

π

∫

∂Bθ

dξ

1∫

cos 2θ

(d/dt)n−2[(Mf)(ξ, t) (1− t2)n/2−1] log |t− ξ · x| dt

if n = 4, 6, . . . .

5.2. The case n = 2. We keep the notation of section 5.1. Let

(5.13) (I∗f)(x) ≡ (I∗f)(x
′,
√

1− |x′|2) = 1

2π

∫

Bθ

f(y) log |x′ − y′| dy,

so that

(5.14) ∆x′(I∗f)(x) = (1− |x′|2)−1/2 f(x) = f(x)/x3.

Lemma 5.4. Let f be a C∞ function supported in Bθ. Then

(5.15) (I∗f)(x)=
1

|∂Bθ|

∫

∂Bθ

1∫

−1

(Mf) (ξ, τ) log |τ − ξ · x| dτ dξ+cf ,

cf = − 1

2π

(
log

sin θ

2

) ∫

Bθ

f(y) dy.

Proof. Let

(N∗f) (ξ, t) =

∫

Bθ

f(y) log |ξ · y − t| dy, (ξ, t) ∈ ∂Bθ × (−1, 1).

Changing the order of integration, owing to (5.7), we obtain

(PN∗f)(x) =

∫

Bθ

f(y) k∗(x, y) dy,
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where

k∗(x, y) =
1

|∂Bθ|

∫

∂Bθ

log |ξ · (x− y)| dξ

=
1

2π

∫

S1

[log |x′ − y′|+ log sin θ + log |h− ω · σ|] dω

= log |x′ − y′|+ log sin θ +
g∗
2π
,

g∗ ≡
∫

S1

log |h− ω · σ| dω = 2

∫ 1

−1

log |t− h|√
1− t2

dt = −2π log 2;

cf. Lemma 3.5. This gives

(5.16) (PN∗f)(x) = 2π (I∗f)(x) +
(
log

sin θ

2

) ∫

Bθ

f(y) dy.

On the other hand, by (5.11),

(5.17) (PN∗f)(x) =
1

sin θ

∫

∂Bθ

1∫

−1

(Mf)(ξ, τ) log |τ − ξ · x| dτdξ.

Comparing (5.17) with (5.16), we obtain the result. �

Lemma 5.4 allows us complete Theorem 5.3 in the following way.

Theorem 5.5. Let f be an infinitely differentiable function supported
in the spherical cap Bθ = {x ∈ S2 : x · e3 > cos θ}, θ ∈ (0, π/2]. Then

(5.18) f (x) =
x3

2π sin θ
∆x′

∫

∂Bθ

1∫

−1

(Mf) (ξ, τ) log |τ − ξ · x| dτ dξ.

Formula (5.18) can be formally obtained from (5.12) by setting n = 2.

6. The inverse problem for the EPD equation on Sn

The Euler-Poisson-Darboux equation on Sn has the form

(6.1) �̃αu ≡ δxu− uωω − (n− 1 + 2α) cotω uω + α(n− 1 + α)u = 0.

Here x ∈ Sn is the space variable, ω ∈ (0, π) is the time variable,
δx is the relevant Beltrami-Laplace operator. For the sake of simplic-
ity, we restrict ourselves to the case Reα > −n/2. In this case the
corresponding Cauchy problem

(6.2) �̃αu = 0, u(x, 0) = f(x), uω(x, 0) = 0,
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with f ∈ C∞(Sn) has a solution u(x, ω) = (Mαf)(x, cos ω), where
(Mαf)(x, t) is defined as analytic continuation of the integral

(6.3) (Mαf)(x, t) =
cn,α

(1− t2)α−1+n/2

∫

x·y>t

(x · y − t)α−1f(y)dy,

cn,α = 2α−1π−n/2Γ(α + n/2)/Γ(α), Re α > 0, t ∈ (−1, 1);

see [44], [53, p. 179], and references therein.
Let Bθ = {x ∈ Sn : x · en+1 > cos θ} be the spherical cap of a fixed

radius θ ∈ (0, π/2] and let ∂Bθ be the boundary of Bθ. Our aim is to
solve the following
Inverse problem. Suppose that the values g(ξ, ω) of the solution

of (6.2) are known for all (ξ, ω) ∈ ∂Bθ × (0, π). Reconstruct the initial
function f ∈ C∞(Sn), provided that the support of f lies in Bθ.
This problem can be solved using the results of the previous section.

Assuming Reα > 0, we pass to spherical polar coordinates and write
(6.3) as

(Mαf)(ξ, t) =
cn,α σn−1

(1− t2)α−1+n/2

1∫

t

(τ − t)α−1(Mf)(ξ, τ) (1− τ 2)n/2−1 dτ.

Then we set
Fξ(t) = (Mf)(ξ, t) (1− t2)n/2−1,

Gα,ξ(t) =
21−απn/2

Γ(α + n/2) σn−1
(1− t2)α−1+n/2g(ξ, cos−1 t),

and invoke Riemann-Liouville fractional integrals [55]

(6.4) (Iα−u)(t) =
1

Γ(α)

1∫

t

(τ − t)α−1u(τ) dτ, Re α > 0.

Thus, if Reα > 0, then

(6.5) (Iα−Fξ)(t) = Gα,ξ(t).

Since f is infinitely differentiable and the support of f is separated
from the boundary ∂Bθ, then Fξ is infinitely differentiable on (−1, 1)
uniformly in ξ and suppFξ does not meet the endpoints ±1. It follows
that (6.5) extends by analyticity to all complex α, and we have

(Mf)(ξ, t) = (1− t2)1−n/2(I−α
− Gα,ξ)(t)

where I−α
− is understood in the sense of analytic continuation. Now

Theorem 5.3 yields the following explicit solution of our inverse prob-
lem.
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Theorem 6.1. Let Bθ be the spherical cap on Sn of radius θ ∈ (0, π/2],

Gα,ξ(t)=
21−απn/2

Γ(α+n/2) σn−1
(1− t2)α−1+n/2g(ξ, cos−1 t), Re α>−n/2,

where g is a given function on ∂Bθ × (0, π). If the initial function f in
the Cauchy problem (6.2) is infinitely differentiable and the support of
f lies in the interior of Bθ, then f can be reconstructed by the formula

(6.6) f(x)=
dn xn+1

sin θ
∆x′f0(x

′,
√

1−|x′|2), dn=
(−1)[n/2−1]

2n−1πn/2−1Γ(n/2)
,

where f0(x) ≡ f0(x
′,
√
1− |x′|2) has the following form:

f0(x) = −
∫

∂Bθ

(d/dt)n−3[(I−α
− Gα,ξ)(t)]

∣∣∣
t=ξ·x

dξ

if n = 3, 5, . . . , and

f0(x) =
1

π

∫

∂Bθ

dξ

1∫

cos 2θ

(d/dt)n−2[(I−α
− Gα,ξ)(t)] log |t− ξ · x| dt

if n = 2, 4, 6, . . . .

We recall that the case α = (1−n)/2 in this theorem gives a solution
of the relevant inverse problem for the wave equation on Sn in the
framework of the formal spherical TAT model.

7. Spherical Means in the Hyperbolic Space

Most of the facts listed below can be found in [60]. Let E
n,1, n ≥ 2,

be the real pseudo-Euclidean space of points x = (x1, . . . , xn+1) with
the inner product

(7.1) [x, y] = −x1y1 − · · · − xnyn + xn+1yn+1.

The hyperbolic space H
n is interpreted as the “upper” sheet of the

two-sheeted hyperboloid

(7.2) H
n = {x ∈ E

n,1 : [x, x] = 1, xn+1 > 0}.
The hyperbolic coordinates of a point x = (x1, . . . , xn+1) ∈ H

n are
defined by

(7.3)






x1 = sinh r sinωn−1 . . . sinω2 sinω1,
x2 = sinh r sinωn−1 . . . sinω2 cosω1,
...........................................................................................
xn = sinh r cosωn−1,
xn+1 = cosh r,
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cosh R

x

0

ξ

e

n+1

Rn

n+1

B

Figure 3. The hyperbolic case.

where

0 ≤ ω1 < 2π; 0 ≤ ωj < π, 1 < j ≤ n− 1; 0 ≤ r <∞.

By (7.3), each x ∈ H
n can be represented as

(7.4) x = ω sinh r + en+1 cosh r = (ω sinh r, cosh r)

where ω is a point of the unit sphere Sn−1 in R
n with Euler angles

ω1, . . . , ωn−1. We regard R
n as the hyperplane xn+1 = 0 in En,1. The

invariant (with respect to hyperbolic motions) measure dx in H
n is

given by dx = sinhn−1 r dωdr, where dω is the surface element of Sn−1.
The geodesic distance between points x and y in H

n is defined by

dist(x, y) = cosh−1[x, y] (i.e., cosh dist(x, y) = [x, y]).

Given x ∈ H
n and t > 1, let

(7.5) (Mf)(x, t) =
(t2 − 1)(1−n)/2

σn−1

∫

[x,y]=t

f(y) dσ(y)

be the mean value of f over the planar section {y ∈ H
n : [x, y] = t}.

As before, our aim is to reconstruct a function f ∈ C∞(Hn) under
the following assumptions:
(a) The support of f lies in the geodesic ball (Fig.3)

B = {x ∈ H
n : dist(x, en+1) < R} = {x ∈ H

n : xn+1 < coshR},
where en+1 = (0, . . . , 0, 1) is the origin of Hn and R > 0 is fixed.
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(b) The mean values (7.5) are known for all x = ξ ∈ ∂B and all t > 1,
where ∂B is the boundary of B.
Owing to (7.4), we can write x ∈ H

n as

x = (x′,
√

1 + |x′|2), x′ = (x1, . . . , xn, 0) ∈ R
n,

so that

(7.6)

∫

Hn

f(x) dx=

∫

Rn

f(x′,
√
1+|x′|2) ρ(x′) dx′, ρ(x′)=

√
1+2|x′|2
1+|x′|2 .

We introduce the “back-projection” operator P that sends functions
on ∂B × (1,∞) to functions on B by the formula

(7.7) (PF )(x) =
1

|∂B|

∫

∂B

F (ξ, [ξ, x]) dσ(ξ), x ∈ B.

Let

B̃ = {x′ ∈ R
n : |x′| < sinhR}

be the orthogonal projection of B onto the hyperplane xn+1 = 0. If
ξ = en+1 coshR + ω sinhR, ω ∈ Sn−1, and x = (x′, xn+1) ∈ B, then

[ξ, x] =
√
1 + |x′|2 coshR − (x′ · ω) sinhR,

and (PF )(x) is actually a function of x′ ∈ B̃. We denote this function
by (P̃F )(x′).

7.1. The case n > 2. Let, as above, ξ ∈ ∂B, t > 1. Consider the
analytic family of operators

(7.8) (Nαf)(ξ, t) =

∫

B

|[ξ, y]− t|α−1

Γ(α/2)
f(y) dy, Reα > 0,

Lemma 7.1. If f ∈ C∞(Hn), suppf ⊂ B, then

(7.9) a.c.
α=3−n

(P̃Nαf)(x′) =
Γ(n/2) (sinhR)2−n

π1/2

∫

B̃

f̃(y′)

|x′ − y′|n−2
dy′,

(7.10) f̃(y′) = f(y′,
√
1 + |y′|2)

√
1 + 2|y′|2
1 + |y′|2 .

Proof. For Reα > 0, changing the order of integration, we obtain

(PNαf)(x)=

∫

B

f(y) kα(x, y) dy, kα(x, y)=
1

|∂B|

∫

∂B

|[ξ, (x−y)]|α−1

Γ(α/2)
dσ(ξ).
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Since ξ has the form ξ = en+1 coshR + ω sinhR, ω ∈ Sn−1, then

|[ξ, (x− y)]| = |(xn+1 − yn+1) cosh R− (x′ − y′) · ω sinhR|
= |h− ω · σ| |x′ − y′| sinhR,

(7.11) h =
xn+1 − yn+1

|x′ − y′| cothR, σ =
x′ − y′

|x′ − y′| .

Hence,

kα(x, y) =
(|x′ − y′| sinhR)α−1

σn−1

∫

Sn−1

|h− ω · σ|α−1

Γ(α/2)
dω

=
σn−2 (|x′ − y′| sinhR)α−1

σn−1
gα(h), cf. (5.10).

If |h| < 1, we can apply Lemma 2.2 and write the integral over B as

that over B̃ ⊂ R
n. This will give the result.

It remains to show that |h| < 1. By symmetry we may suppose that
|y′| ≤ |x′| , which we shall do from now on. Let

a = |y′|, b = |x′|, b0 = sinhR.

Since |x′ − y′| ≥ |x′| − |y′|, then

h ≤ fa (b) cothR, fa (b) =

√
1 + b2 −

√
1 + a2

b− a
.

For a fixed, the function fa (b) is increasing in (a,∞), because

f ′
a (b) =

D (a, b)

(b− a)2
√
1 + b2

, D (a, b) =
√
(1 + b2) (1 + a2)− 1− ab > 0.

Hence, h ≤ fa(sinhR) cothR. The right-hand side of this inequality is
less than 1. Indeed, setting b0 = sinhR, we have

fa(sinhR) cothR =

√
1 + b20 −

√
1 + a2

b0 − a

√
1 + b20
b0

< 1,

⇔ 1 + b20 −
√

(1 + a2) (1 + b20)

(b0 − a) b0
< 1,

⇔ 1 + b20 −
√

(1 + a2) (1 + b20) < (b0 − a) b0,

⇔ 0 < D (a, b0) .

This completes the proof. �
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Lemma 7.2. Let f ∈ C∞(Hn), suppf ⊂ B. Then

a.c.
α=3−n

(PNαf)(x) =
δn

(sinhR)n−1

∫

∂B

(d/dt)n−3[(Mf)(ξ, t) (t2−1)n/2−1]
∣∣∣
t=[ξ,x]

dξ,

if n = 3, 5, . . . , and

a.c.
α=3−n

(PNαf)(x) = − δn
π (sinhR)n−1

∫

∂B

dξ

×
cosh 2R∫

1

(d/dt)n−2[(Mf)(ξ, t) (t2 − 1)n/2−1] log |t− [ξ, x]| dt,

if n = 4, 6, . . . , where δn is defined by (3.6).

Proof. For Reα > 0, by making use of the formula

(7.12)

∫

Hn

f(y) a([ξ, y]) dy = σn−1

∞∫

1

a(τ)(Mf)(ξ, τ) (τ 2 − 1)n/2−1 dτ,

we have

(Nαf)(ξ, t) =
σn−1

Γ(α/2)

∞∫

1

(Mf)(ξ, τ) |τ − t|α−1(τ 2 − 1)n/2−1 dτ

=

∫

R

|τ |α−1

Γ(α/2)
ϕξ(τ + t) dτ, ϕξ(τ) = σn−1 (Mf)(ξ, τ) (τ 2 − 1)

n/2−1
+ .

Since f is smooth and the support of f is separated from the boundary
∂B, then (Mf)(ξ, τ) is smooth in the τ -variable uniformly in ξ and
vanishes identically in the respective neighborhood of τ = 1. Thus,
Lemma 2.1 yields the following equalities:
For n = 3, 5, . . . :

a.c.
α=3−n

(Nαf)(ξ, t)=δn ϕ
(n−3)
ξ (t),

For n = 4, 6, . . . :

a.c.
α=3−n

(Nαf)(ξ, t) = −δn
π

cosh 2R∫

1

ϕ
(n−2)
ξ (τ) log |τ−t| dτ,

δn being the constant from (3.6). Now the result follows; cf. Lemmas
3.2 and 5.2. �
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Lemmas 7.1 and 7.2 imply the following inversion result for the spher-
ical means on H

n. We recall that ∆x′ denotes the usual Laplace operator
in the x′-variable.

Theorem 7.3. Let n > 2. An infinitely differentiable function f sup-
ported in the geodesic ball B = {x ∈ H

n : dist(x, en+1) < R}, can be
reconstructed from its spherical means (Mf) (ξ, τ), (ξ, t) ∈ ∂B×(1,∞),
by the formula

f(x)=
dn xn+1

|x| sinhR ∆x′f0(x
′,
√

1−|x′|2), dn=
(−1)[n/2−1]

2n−1πn/2−1Γ(n/2)
,

where |x| =
√

|x′|2 + x2n+1 and f0(x) ≡ f0(x
′,
√
1 + |x′|2) has the fol-

lowing form:

f0(x) = −
∫

∂B

(d/dt)n−3[(Mf)(ξ, t) (t2 − 1)n/2−1]
∣∣∣
t=[ξ,x]

dξ,

if n = 3, 5, . . . , and

f0(x) =
1

π

∫

∂B

dξ

cosh 2R∫

1

(d/dt)n−2[(Mf)(ξ, t) (t2−1)n/2−1] log |t−[ξ, x]| dt

if n = 4, 6, . . . .

7.2. The case n = 2. The argument follows Section 5.2 almost verba-
tim. Let

(7.13) (I∗f)(x) =
1

2π

∫

B

f(y) log |x′ − y′| dy,

so that

(7.14) ∆x′(I∗f)(x) = f̃(x′) = |x| f(x)/x3.
Lemma 7.4. If f be a C∞ function supported in B, then

(7.15) (I∗f)(x)=
1

|∂B|

∫

∂B

∞∫

1

(Mf) (ξ, τ) log |τ − [ξ, x]| dτ dξ+cf ,

cf = − 1

2π

(
log

sinhR

2

) ∫

B

f(y) dy.

Proof. Let

(N∗f) (ξ, t) =

∫

B

f(y) log |[ξ, y]− t| dy, (ξ, t) ∈ ∂B × (1,∞).
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Changing the order of integration, we obtain

(PN∗f)(x) =

∫

B

f(y) k∗(x, y) dy,

k∗(x, y = log |x′ − y′|+ log sinhR− log 2 (see the proof of Lemma 5.4)
This gives

(7.16) (PN∗f)(x) = 2π (I∗f)(x) +
(
log

sinhR

2

) ∫

B

f(y) dy.

On the other hand, by (7.12),

(7.17) (PN∗f)(x) =
1

sinhR

∫

∂B

∞∫

1

(Mf)(ξ, τ) log |τ − [ξ, x]| dτdξ.

Comparing (7.17) with (7.16), we obtain (7.15). �

Owing to (7.14), Lemma 7.4 allows us complete Theorem 7.3 as
follows.

Theorem 7.5. An infinitely differentiable function f supported in the
geodesic ball B = {x ∈ H

2 : dist(x, e3) < R} can be reconstructed from
its spherical means (Mf) (ξ, τ), (ξ, t) ∈ ∂B × (1,∞), by the formula

(7.18) f (x) =
x3

2π |x| sinhR ∆x′

∫

∂B

∞∫

1

(Mf) (ξ, τ) log |τ − [ξ, x]| dτ dξ.

Remark 7.6. As in Section 6, Theorems 7.3 and 7.5 can be applied to
solution of inverse problems for the EPD equation in the hyperbolic
space. The reasoning follows the same lines as before. We leave it to
the interested reader.

8. Appendix: Proof of Lemma 2.2

It is convenient to split the proof in two parts.
(i) We recall the notation

(8.1) gα(h) =
1

Γ(α/2)

1∫

−1

|t−h|α−1 (1− t2)(n−3)/2 dt, Re α > 0,
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where n > 2 and |h| ≤ 1 − δ, δ > 0. Changing variables t = 2τ − 1,
h = 2ξ − 1, we write gα(h) ≡ Gα((1 + h)/2), where

Gα(ξ) =
2α+n−3

Γ(α/2)

1∫

0

|τ−ξ|α−1 (1− τ)(n−3)/2 τ (n−3)/2 dt

= Uα(ξ) + Uα(1− ξ), δ/2 ≤ ξ ≤ 1− δ/2,(8.2)

Uα(ξ) =
2α+n−3

Γ(α/2)

ξ∫

0

(ξ − τ)α−1τ (n−3)/2(1− τ)(n−3)/2 dτ.

The last integral expresses through the Gauss hypergeometric function
so that Uα(ξ) = aξ(α) b(α) ζα(ξ), where

aξ(α) = 2α+n−3 ξ(n−3)/2+α Γ((n− 1)/2), b(α) =
Γ(α)

Γ(α/2)
,

ζα(ξ) =
1

Γ(α + (n− 1)/2)
F

(
n− 1

2
,
3− n

2
;
n− 1

2
+ α; ξ

)
;

see, e.g., [51, 2.2.6(1)]. Owing to [16, 2.1.6], ζα(ξ) extends as an entire
function of α, which is represented by an absolutely convergent power
series. Since δ/2 ≤ ξ ≤ 1−δ/2, this series converges uniformly in α ∈ K
for any compact subset K of the complex plane. Furthermore, aξ(α)
is also an entire function and b(α) is meromorphic with the only poles
−1,−3,−5, . . .. Since gα is an even function, i.e., gα(h) = gα(−h), these
poles are eventually removable. Hence, Gα(ξ) extends to all complex α
as an entire function of α and this extension represents a C∞ function
of ξ uniformly in α ∈ K. This gives the desired result for gα(h).
(ii) To compute analytic continuation of gα at α = 3 − n, first, we
assume 1/2 < Reα < 1 and |Imα| < 1 and represent Gα(ξ) as a
Mellin convolution

(8.3) Gα(ξ)=
2α+n−3

Γ(α/2)
f(ξ), f(ξ) =

∞∫

0

f1(τ)f2

(
ξ

τ

)
dτ

τ
,

where

f1(τ)=





τα+(n−3)/2(1−τ)(n−3)/2 if 0<τ <1,

0, if 1<τ <∞,
f2(τ) = |1−τ |α−1.

The Mellin transforms f̃j(s) =
∫∞

0
fj(τ)τ

s−1dτ (j = 1, 2) are evaluated
as

f̃1(s) =
Γ(s+ α + (n− 3)/2)Γ((n− 1)/2)

Γ(s+ α + n− 2)
, Re s >

3− n

2
− Reα ,
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f̃2(s) =
Γ(s)Γ(α)

Γ(s + α)
+

Γ(1− s− α)Γ(α)

Γ(1− s)
, 0 < Re s < 1−Reα.

By applying the convolution theorem and the relevant Mellin inversion
formula [58], we obtain

f(ξ) =
1

2πi

κ+i∞∫

κ−i∞

f̃(s) ξ−s ds, 0 < κ < 1− Reα,

where f̃(s) = f̃1(s)f̃2(s). The function f̃(s) has poles in the half-
plane Re s < κ at the points s = −j and s = −j − α − (n − 3)/2,
j = 0, 1, 2, . . .. Since 1/2 < Reα < 1, all these poles are simple, and
the Cauchy residue theorem yields

f(ξ) = Γ

(
n− 1

2

)
Γ(α)

∞∑

j=0

(−ξ)j
j!

[
Γ(α− j + (n− 3)/2)

Γ(α− j)Γ(α− j + n− 2)

+
ξα+(n−3)/2

Γ((n− 1)/2− j)

(
Γ(−α + (3− n)/2− j)

Γ((3− n)/2− j)
+

Γ((n− 1)/2 + j)

Γ(α+ (n− 1)/2 + j)

)]
.

Ultimately, we arrive at the following expression for Gα(ξ):

Gα(ξ) = λ1 F

(
1− α, 3− α− n;

5− n

2
− α; ξ

)
(8.4)

+ λ2 F

(
3− n

2
,
n− 1

2
;
n− 1

2
+ α; ξ

)
,

where

λ1 =
Γ((n− 1)/2)

23−α−nΓ(α/2)

(−1)n Γ(3− α− n) sinαπ

Γ((5− n)/2− α) cos (α + n/2)π
,

λ2 =
Γ((n− 1)/2)

23−α−nΓ(α/2)

ξα+(n−3)/2 Γ(α)

Γ(α+ (n− 1)/2)

(
1 +

cos nπ/2

cos (α + n/2)π

)
.

Case 1. Let n = 2m, m = 2, 3, . . .. Then

(8.5) Gα(ξ)=
π Γ(m− 1/2)

23−α−2m Γ(α/2) cos απ
[D1(ξ;α) +D2(ξ;α)],

where

D1(ξ;α) =
F (1− α, 3− α− 2m; 5/2− α−m; ξ)

(−1)mΓ(α+ 2m− 2) Γ(5/2− α−m)
,

D2(ξ;α) =
cot(απ/2)F (3/2−m,m− 1/2, α+m− 1/2; ξ)

ξ3/2−α−m Γ(1− α) Γ(α+m− 1/2)
.

A simple computation yields a.c.
α=3−2m

Gα(ξ)=Γ(m−1/2) = Γ((n−1)/2).
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Case 2. Let n = 2m+ 1, m = 1, 2, . . .. Then

(8.6) Gα(ξ)=
Γ(m) Γ(1− α/2)

22−α−2m cos (απ/2)
[E1(ξ;α) + E2(ξ;α)],

where

E1(ξ;α) =
F (1− α, 2− α− 2m; 2− α−m; ξ)

(−1)m+1 Γ(α− 1 + 2m) Γ(2− α−m)
,

E2(ξ;α) =
ξα+m−1F (1−m,m;α+m; ξ)

Γ(1− α) Γ(α+m)
.

Passing to the limit as α → 2−2m, we obtain a.c.
α=2−2m

Gα(ξ) = Γ(m) =

Γ((n−1)/2). This completes the proof. �

Remark 8.1. The basic equality (8.4) can be proved in a different way if
we rearrange hypergeometric functions in (8.2) using known formulas.
Specifically, the second term in (8.2) can be transformed by formulas
(33), (6), and (21) from [16, Section 2.9]. This gives

Uα(1− ξ) =
2α+n−3

Γ(α/2)
B

(
n− 1

2
, α

)
(A(ξ) +B(ξ)),

A(ξ) = γ1(α)F

(
1− α, 3− n− α;

5− n

2
− α; ξ

)
,

B(ξ) = (ξ(1− ξ))α+(n−3)/2γ2(α)F

(
α, α+ n− 2;

n− 1

2
+ α; ξ

)
,

γ1(α) =
Γ(α + (n− 1)/2) Γ(α+ (n− 3)/2)

Γ(α) Γ(α+ n− 2)
,

γ2(α) =
Γ(α + (n− 1)/2) Γ((3− n)/2− α)

Γ((n− 1)/2) Γ((3− n)/2)
=

sin(n− 1)/2)π

sin(n− 1)/2 + α)π
.

Owing to [16, 2.9(2)],

B(ξ) = γ2(α) ξ
(n−3)/2+α F

(
n− 1

2
,
3− n

2
;
n− 1

2
+ α; ξ

)
.

This gives (8.4).

An alternative proof of (ii) The following alternative proof is
instructive and leads to the same result. In fact, it suffices to prove the
equality

(8.7) a.c.
α=3−n

gα(h) = Γ((n− 1)/2)



32 YURI A. ANTIPOV, RICARDO ESTRADA, AND BORIS RUBIN

in the weak sense. Indeed, suppose that

(8.8) a.c.
α=3−n

(gα, ψ) ≡ a.c.
α=3−n

∫

R

gα(h)ψ(h) dh = Γ((n−1)/2)

∫

R

ψ(h) dh

for any C∞ function ψ with compact support in the interval (−1, 1).
Since, by Part (i), the analytic continuation of gα(h) represents a C∞

function of h uniformly in α ∈ K for any compact subset K of the
complex plane, then (use, e.g., [52, Lemma 1.17 ])

a.c.
α=3−n

(gα, ψ) = ( a.c.
α=3−n

gα, ψ)

and (8.8) yields ( a.c.
α=3−n

gα, ψ) = Γ((n− 1)/2) (1, ψ). This implies (8.7).

Let us prove (8.8). We denote

ρα(t) =
|t|α−1

Γ(α/2)
, ω(t) = (1− t2)

(n−3)/2
+ ,

where (·)+ stands for zero when the expression in brackets is non-
positive. We interpret these functions as D′-distributions on R. Then
gα is a convolution of ρα with the compactly supported distribution ω
so that (gα, ψ) = (ρα(s), (ω(t), ψ(s+ t))); see, [27, Ch. I, Sec. 4(2)].
If n is odd, n = 2m+ 3, m = 0, 1, . . ., then (2.1) yields

a.c.
α=3−n

(gα, ψ) = a.c.
α=−2m

(gα, ψ) = cm,1

(
d

ds

)2m

(ω(t), ψ(s+ t))
∣∣∣
s=0

= cm,1 (ω, ψ
(2m)) = cm,1 ([(1− t2)m](2m), ψ(t))

= (−1)mcm,1 (2m)! = m! = Γ((n− 1)/2).

Let now n be even. Since the convolution is commutative,

a.c. (gα, ψ) = a.c. (ω(t), (ρα(s), ψ(s+ t))) = (ω(t), a.c. (ρα(s), ψ(s+ t))).

If n = 2m + 2 (m = 1, 2, . . .), then, applying (2.2) and changing vari-
ables, we have

a.c.
α=3−n

(gα, ψ) = a.c.
α=1−2m

(gα, ψ) = cm,2

(
ω(t), p.v.

∫

R

ψ(2m−1)(s+ t)

s
ds
)

= (−1)m+1cm,2

1∫

−1

ψ(2m−1)(h) q(h) dh = (−1)mcm,2

1∫

−1

ψ(h) q(2m−1)(h) dh,

cm,2 =
1

Γ(1/2−m) (2m− 1)!
, q(h) = p.v.

1∫

−1

(t2−1)m

(t− h)
√
1− t2

dt
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(interchange of the order of integration can be justified if we complete
[−1, 1] to a closed contour and use [25, Section 7.1]). Now, q(h) is
a polynomial with leading term πh2m−1. This follows from the well
known relation for Chebyshev polynomials

(8.9) p.v.

1∫

−1

Tn(t) dt

(t− h)
√
1− t2

= πUn−1(h), −1 < h < 1,

and the fact that the leading terms of Tn(h) and Un(h) are 2
n−1hn and

2nhn, respectively; see formulas 10.11(47), 10.11(22), and 10.11(23) in
[16, vol. II)]. Hence integration by parts yields

a.c.
α=3−n

(gα, ψ) = (−1)mcm,2 π (2m−1)!

1∫

−1

ψ(h) dh = Γ(m+1/2)

1∫

−1

ψ(h) dh,

where Γ(m+ 1/2) = Γ((n− 1)/2). Thus, we are done. �
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18. D. Finch, M. Haltmeier, Rakesh, Inversion of spherical means and the wave

equation in even dimensions, SIAM J. Appl. Math. 68 (2007), 392-412.
19. D. Finch, S. K. Patch, Rakesh, Determining a function from its mean values

over a family of spheres, SIAM J. Math. Anal. 35 (2004), 1213–1240.
20. D. Finch, Rakesh, The range of the spherical mean value operator for functions

supported in a ball, Inverse Problems 22 (2006), 923–938.
21. , The spherical mean value operator with centers on a sphere, Inverse

Problems 23 (2007), S37–S49.
22. , Recovering a function from its spherical mean values in two and three

dimensions, in [59] , pp. 77–88.
23. F. Filbir, R. Hielscher, Ralf, W. R. Madych, Reconstruction from circular and

spherical mean data, Appl. Comput. Harmon. Anal. 29 (2010), 111-120.
24. B. A. Fusaro, A correspondence principle for the Euler-Poisson-Darboux (EPD)

equation in harmonic space, Glasnik Matem. 1(21) (1966), No. 1, 99–101.
25. F.D. Gakhov, Boundary value problems, Dover Publications, 1990.
26. I.M. Gel’fand, S.G. Gindikin, M.I. Graev, Selected topics in integral geometry,

Translations of Mathematical Monographs, AMS, Providence, RI, 2003.
27. I. M. Gel’fand, G. E. Shilov, Generalized functions, Vol. 1. Properties and

operations, Academic Press, New York-London, 1964.
28. S. Gindikin, J. Reeds, L. Shepp, Spherical tomography and spherical integral

geometry. Lectures in Applied Mathematics 30 (1994), pp. 8392.
29. S. Helgason, Integral geometry and Radon transform, Springer, New York-

Dordrecht-Heidelberg-London, 2011.
30. Y. Hristova, P. Kuchment, L. Nguyen, Reconstruction and time reversal in ther-

moacoustic tomography in acoustically homogeneous and inhomogeneous media,
Inverse Problems 24 (2008), no. 5, 055006, 25 pp.

31. F. John, Plane waves and spherical means applied to partial differential equa-
tions. Reprint of the 1955 original. Dover Publications, Inc., Mineola, NY, 2004.

32. I. A. Kipriyanov, L. A. Ivanov, Euler-Poisson-Darboux equations in Riemann-
ian space. (Russian) Dokl. Akad. Nauk SSSR 260 (1981), no. 4, 790-794.

33. I. A. Kipriyanov, L. A. Ivanov, The Cauchy problem for the Euler-Poisson-
Darboux equation in a homogeneous symmetric Riemannian space. I, Proc. of
the Steklov Inst. of Math., Issue 1 (1987), 159–168.

34. R. A. Kruger, Y. R. Fang, C. R. Appledorn, Photoacoustic ultrasound (PAUS)-
reconstruction tomography, Med. Phys. 22 (1995), 1605–1609.

35. P. Kuchment, Generalized transforms of Radon type and their applications, The
Radon transform, inverse problems, and tomography, 67–91, Proc. Sympos.
Appl. Math., 63, Amer. Math. Soc., Providence, RI, 2006.



SPHERICAL MEANS 35

36. P. Kuchment, L. Kunyansky, Mathematics of thermoacoustic tomography, Eu-
ropean Journal of Applied Mathematics 19 191–224.

37. P. Kuchment, E.T. Quinto, Some problems of integral geometry arising in
tomography (chapter XI in [13]).

38. L. Kunyansky, Explicit inversion formulae for the spherical mean Radon trans-
form, Inverse Problems 23 (2007), 373–383.

39. P. D. Lax, R. S. Phillips, An example of Huygens’ principle, Comm. Pure Appl.
Math. 31 (1978), 415–421.

40. J. S. Lowndes, A generalisation of the Erdlyi-Kober operators, Proc. Edinburgh
Math. Soc. (2) 17 1970/1971, 139–148.

41. , On some generalisations of the Riemann-Liouville and Weyl fractional
integrals and their applications, Glasgow Math. J. 22 (1981), 173–180.

42. F. Natterer, The mathematics of computerized tomography. Wiley, New York,
1986.
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