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PSEUDOGROUPS AND THEIR ÉTALE GROUPOIDS

MARK V. LAWSON1 AND DANIEL H. LENZ2

Abstract. A pseudogroup is a complete infinitely distributive inverse monoid.
Such inverse monoids bear the same relationship to classical pseudogroups of
transformations as frames do to topological spaces. The goal of this paper is to
develop the theory of pseudogroups motivated by applications to group theory,
C∗-algebras and aperiodic tilings. Our starting point is an adjunction between
a category of pseudogroups and a category of étale groupoids from which we
are able to set up a duality between spatial pseudogroups and sober étale
groupoids. As a corollary to this duality, we deduce a non-commutative version
of Stone duality involving what we call boolean inverse semigroups and boolean
étale groupoids, as well as a generalization of this duality to distributive inverse
semigroups. Non-commutative Stone duality has important applications in
the theory of C∗-algebras: it is the basis for the construction of Cuntz and
Cuntz-Krieger algbras and in the case of the Cuntz algebras it can also be
used to construct the Thompson groups. We then define coverages on inverse
semigroups and the resulting presentations of pseudogroups. As applications,
we show that Paterson’s universal groupoid is an example of a booleanization,
and reconcile Exel’s recent work on the theory of tight maps with the work of
the second author.

1. Preliminaries

A frame is a complete infinitely distributive lattice. The theory of frames can
be viewed as an approach to spaces in which open sets, and not points, are taken
as basic. This theory is interesting in its own right [6] and a key ingredient in
topos theory [22]. Johnstone discusses the origins of frame theory in his notes to
Chapter II of his classic book [6]. One sentence there is significant, and somewhat
surprising. He writes on page 76:

It was Ehresmann . . . and his student Bénabou . . . who first took the
decisive step in regarding complete Heyting algebras as ‘generalized
topological spaces’.

What Johnstone does not say is why Ehresmann was led to his frame-theoretic
viewpoint of topological spaces. In fact, Ehresmann’s motivation was to develop an
abstract theory of local structures in geometry. Local structures, such as differential
manifolds, are defined by means of atlases whose changes of co-ordinates belong to a
pseudogroup of transformations. The nature of the pseudogroup determines the na-
ture of the local structure and it was for this reason that Ehresmann needed an ab-
stract formulation of pseudogroups of transformations. He used ordered groupoids
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2 M. V. LAWSON AND D. H. LENZ

but it subsequently became clear that a simpler, but equivalent, formulation was
possible using inverse semigroups. Thus a complete abstract pseudogroup, to use
the terminology of Resende [26, 27], is a complete, infinitely distributive inverse
monoid; we shall explain what this definition means later in this section. In this
paper, we shall simply call them pseudogroups. Transformation pseudogroups are
just pseudogroups of partial homeomorphisms of a topological space and the idem-
potents of a transformation pseudogroup are just the partial identities on the open
subsets of the space. We can now see how frames arise: they are the partially
ordered sets of idempotents of pseudogroups. It was perhaps natural to disentangle
frames from their roots and study them on their own terms. But the premise of
this paper is that we now need to go back and generalize the foundations of the
classical theory of frames to pseudogroups. This is not an empty exercise because
it has become clear that the resulting theory provides the setting for the significant
applications of inverse semigroup theory to C∗-algebras. In fact, the theory in this
paper arose out of a detailed analysis of the relationships that exists between inverse
semigroups, topological groupoids and C∗-algebras [3, 4, 9, 10, 18, 20, 21, 24, 25].
We now recall some key definitions and establish some basic results.

A groupoid is a set G together with a partially defined associative multiplication,
denoted by concatenation, and an involution x 7→ x−1, satisfying the following
conditions:

(G1) (x−1)−1 = x.
(G2) If xy and yz exist, then xyz exists as well.
(G3) x−1x exists and if xy exists as well then x−1xy = y.
(G4) xx−1 exists and if zx exists as well then zxx−1 = z.

Elements of the form xx−1 are called identities of G and the set of all identities of G
is denoted by Go. Each groupoid comes with the maps d : G → Go and r : G → Go

defined by d(x) = x−1x and r(x) = xx−1. If G carries a topology making the
multiplication and inversion continuous, it is called a topological groupoid. The
most important class of topological groupoids are the étale groupoids. Classically,
an etale groupoid is a topological groupoid in which the domain map is a local
homeomorphism. However, in Theorem 5.18 of [27], Resende characterizes them
as those topological groupoids whose frames of open sets form a semigroup under
subset multiplication with an identity formed by the open set of all identities. This
is a fundamental observation in understanding how a topological structure such
as an étale groupoid can be related to algebraic structures such as quantales and
pseudogroups. For more background on topological groupoids, we refer the reader
to [26, 27].

Let (P,≤) be a poset. A minimum element in P is called zero denoted by 0. We
shall usually assume that our posets have zeros. For x ∈ P define

x↓ = {y ∈ E : y ≤ x},

the principal order ideal generated by x, and

x↑ = {y ∈ E : y ≥ x},

the principal filter generated by x. We extend this notation to subsets A ⊆ P and
define A↓ and A↑. A subset A such that A = A↓ is called an order ideal. Observe
that the intersection of order ideals is always an order ideal. If A is a finite set
then A↓ is said to be a finitely generated order ideal. A subset A of P is said to
be directed if for each a, b ∈ A there exists c ∈ A such that c < a, b. A filter in P
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is a directed subset A such that A = A↑. If A is any directed subset then A↑ is
a filter. If a and b are elements of P we write a↓ ∩ b↓ 6= 0 to mean that there is
some non-zero element below both a and b. If a↓ ∩ b↓ = 0 then we say a and b are
orthogonal. If X ⊆ P then X⊥ denotes all the elements of P orthogonal to every
element of X . Clearly the zero always belongs to this set.

For background on inverse semigroups we shall refer to [13]. One piece of nota-
tion we shall sometimes use is that we write d(s) = s−1s and r(s) = ss−1. It is
worth stressing that the order used with inverse semigroups is always the natural
partial order. Observe that a necessary condition for a subset of an inverse semi-
group to have a join is that the elements in the set be pairwise compatible where
elements s and t are compatible if s−1t and st−1 are idempotents. If these idempo-
tents are in fact both zeros then s and t are said to be orthogonal. Thus for inverse
semigroups complete always means that every compatible subset has a join. Com-
patibility plays a crucial role throughout this paper. An inverse semigroup S is said
to be distributive if it has joins of all finite compatible subsets and multiplication
distributes over the finite joins that exist. If this does not only holds for finite sets
but for arbitrary sets the semigroup is called infinitely distributive. Distributivity
is heavily used in the sequel. Pseudogoup morphisms will be semigroup homo-
morphisms that preserve compatible joins. An inverse semigroup is said to be an
inverse ∧-semigroup if all binary meets exist. It is an easy exercise to show, or see
[26, 27], that pseudogroups are inverse ∧-semigroups. A homomorphism between
such semigroups that preserves the meet operation is called a ∧-homomorphism.

The inverse semigroup S is said to satisfy the weak meet condition if the in-
tersection of any two principal order ideals is finitely generated as an order ideal.
This condition was introduced by Steinberg [31] who called an inverse semigroup
satisfying the condition a weak semilattice. If S is an inverse ∧-semigroup then in
fact a↓ ∩ b↓ = (a∧ b)↓. Thus inverse semigroups satisfying the weak meet condition
generalize inverse ∧-semigroups. In a weak semilattice, the intersection of any finite
number of principal order ideals is finitely generated as an order ideal.

A filter in an inverse subsemigroup S is a subset F that is closed upwards under
the natural partial order and directed. The set of all filters L(S) on an inverse
semigroup forms a groupoid as we shall now describe. If A is a filter define d(A) =
(A−1A)↑ and r(A) = (AA−1)↑. Define a partial product on L(S) by A ·B = (AB)↑

iff d(A) = r(B). By [21, 20] we then have that (L(S), ·) is a groupoid and is in fact
the groupoid underlying Paterson’s universal groupoid of an inverse semigroup S
[24]. Filters also play an important role in Exel’s work [3, 4] on relating inverse
semigroups and C∗-algebras. A filter is said to be proper if it does not contain zero.

Remark 1.1. The filters in this paper will always be assumed to be proper.

We shall have occasion in this paper to study a variety of different kinds of filters
but particularly important are the maximal or ultrafilters. The set of ultrafilters
forms a subgroupoid of the groupoid of all filters of an inverse semigroup. The
groupoid of ultrafilters has attracted attention in various guises. In the case of
inverse semigroups arsing from locally finite tilings, it is just the tiling groupoid
[9, 21]. In the case of inverse semigroups arising from locally finite graphs, it is
shown in [21] to agree with the graph groupoid introduced by Kumjian, Pask,
Raeburn and Renault in [11].

Ultrafilters in inverse semigroups satisfying the weak meet condition can be
handled rather easily as we now show. Observe first that by Zorn’s Lemma every
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non-zero element of an inverse semigroup belongs to an ultrafilter. We shall apply
this observation frequently in what follows.

A finite non-empty subset A ⊆ S is said to be consistent if there is a non-zero
element b ∈ S such that b ≤ a for all a ∈ A. We write b ≤ A and call it a lower
bound of A. Observe that we do not require that b ∈ A. An arbitrary subset of S
is said to be consistent if every finite non-empty subset is consistent. Filters are
examples of consistent subsets since they are directed. If A is a consistent subset
and a, b ∈ A then clearly a↓ ∩ b↓ 6= 0. We shall use this observation without further
comment when working with consistent subsets. The following is a consequence of
Zorn’s Lemma that we shall use repeatedly.

Lemma 1.2. Let S be a weak semilattice. Every consistent subset is contained in
a maximal consistent subset.

Proof. Let A be a consistent subset of an inverse semigroup S. Consider the poset
of all consistent subsets that contain A. This is non-empty since A itself belongs to
this set. The union of a chain of consistent subsets is consistent since consistency is
defined in terms of finite subsets. Thus the post of all consistent sets containing A
has a maximal member. Thus every consistent subset is contained in a maximally
consistent one. �

Lemma 1.3. Let S be a weak semilattice. Let A be a maximal consistent subset.
Let a, b ∈ A and suppose that a↓ ∩ b↓ = {c1, . . . , cm}↓. Then cj ∈ A for some j.

Proof. Suppose that {c1, . . . , cm} ∩A = ∅. Since A is a maximal consistent subset,
the sets {ci} ∪ A are inconsistent for each i. It follows that for each i there is
finite subset Bi ⊆ A such that {ci} ∪Bi is inconsistent. Put B =

⋃m

i=1 Bi ∪ {a, b}.
Then B ⊆ A and so B is a finite consistent set. Let z be a non-zero lower bound
of B and let F be any ultrafilter containing z. In particular, a, b ∈ F . It follows
that there is c ∈ F such that c ≤ a, b. Thus for some j we have that cj ∈ F .
However, {cj} ∪Bj ⊆ F which implies that {cj} ∪Bj is a consistent set. This is a
contradiction. It follows that cj ∈ A for some j, as claimed. �

The following proposition provides an alternative way of viewing ultrafilters.

Proposition 1.4. Let S be a weak semilattice. Every maximal consistent subset is
an ultrafilter, and every ultrafilter is a maximal consistent subset.

Proof. Let A be a maximal consistent subset. We prove first that A is a directed
subset. Let a, b ∈ A where a↓ ∩ b↓ = {c1, . . . , cm}↓. Then by Lemma 1.3, we have
that cj ∈ A for some j and clearly cj ≤ a, b. It follows that A↑ is a filter. But
filters are consistent subsets and A ⊆ A↑ and so A = A↑. We have therefore shown
that A is a filter and since A is maximal consistent and all filters are consistent
it follows that A is an ultrafilter. Conversely, let A be an ultrafilter. Then A is
certainly a consistent subset. If it is not maximal consistent then by Lemma 1.2
it must be contained in a subset that is. But by the above, such a subset would
be an ultrafilter which is a contradiction. It follows that A is a maximal consistent
subset. �

The next result is really a corollary to the above, but it is such an important
result that we promote it to a theorem.



PSEUDOGROUPS 5

Theorem 1.5. Let F be a proper filter in an inverse semigroup satisfying the weak
meet condition. Then F is an ultrafilter if and only if it satisfies the following
condition: if b is such that b↓ ∩ a↓ 6= 0 for all a ∈ F then b ∈ F .

Proof. Let F be an ultrafilter. We prove that it satisfies the given condition. Sup-
pose that b /∈ F . By assumption {b} ∪ F is a consistent subset. By Lemma 1.2, it
is contained in a maximal consistent subset. By Proposition 1.4, such a subset is
an ultrafilter. But this contradicts the fact that F is an ultrafilter. It follows that
b ∈ F . Conversely, let F be a filter that satisfies the condition. We prove that F is
an ultrafilter. Suppose not. Then F ⊆ G where G is any filter properly containing
F . Let b ∈ G \ F . Then {b} ∪ F is a consistent set and so b satisfies the premiss of
the condition. It follows that b ∈ F which is a contradiction. It follows that F is
an ultrafilter. �

The distinction between semigroups and monoids leads to a distinction we shall
have to make between distributive lattices and unital distributive lattices, and boolean
algebras and unital boolean algebras. Thus for us a distributive lattice is one that
does not necessarily have a top element, and what we call boolean algebras are
often referred to as generalized boolean algebras. A boolean space is a hausdorff
topological space with a basis of compact-open subsets. A continuous map between
spaces is proper if the inverse image of every compact set is compact. Classical
Stone duality states that the category of boolean algebras is dual to the category
of boolean spaces.

In a distributive lattice D a filter F is said to be prime if a∨ b ∈ F implies that
either a ∈ F or b ∈ F . Generalizations of prime filters will play an important role
in this paper. The following result is well-known in the unital case, but we shall
need it in the non-unital case as well.

Proposition 1.6.

(1) In a distributive lattice every ultrafilter is prime.
(2) A distributive lattice is boolean if and only if every prime filter is an ultra-

filter.

Proof. (1) Let F be an ultrafilter in a distributive lattice D. Suppose that c =
a ∨ b ∈ F but a, b /∈ F . By Theorem 1.5, there exists fa ∈ F such that a ∧ fa = 0
and fb ∈ F such that fb ∧ b = 0. But F is a filter and so f = fa ∧ fb ∈ F which
means that f ∧ a = 0 = f ∧ b. But f ∧ c = (f ∧ a) ∨ (f ∧ b). The lefthand-side
is non-zero since it is a meet of elements in a filter, but the righthand-side is zero.
This is a contradiction and so either a ∈ F or b ∈ F .

(2) We prove first the unital case of our result. Let D be a unital boolean algebra
and let P be a prime filter. Let a ∈ D be such that a ∧ p 6= 0 for all p ∈ P . Since
D is a unital boolean algebra we have that 1 = a∨ a′. But 1 ∈ P and P is a prime
filter. Thus either a ∈ P or a′ ∈ P . We cannot have a′ ∈ P because a ∧ a′ = 0
which contradicts our assumption. Thus a ∈ P and so by Theorem 1.5, we have
proved that P is an ultrafilter. Conversely, let D be a unital distributive lattice
such that every prime filter is an ultrafilter. We prove that D is boolean. We use
Corollary 4.9 of [6]. Thus we shall prove that every prime ideal is maximal. Let I
be a prime ideal in D. Suppose that it is not a maximal proper ideal. Then I ⊆ J
a maximal proper ideal by Lemma 2.3 of [6]. By Corollary 2.4 of [6], the ideal J
is also prime. We have that D \ J ⊆ D \ I where by Proposition 2.2 of [6], both
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D \ J and D \ I are prime filters. By assumption, both must be ultrafilters and so
D \J = D \ I giving I = J . It follows that I is a maximal proper ideal, as required.

We now turn to the non-unital case. Let D be a distributive lattice in which
every prime filter is maximal. We prove that D is a boolean algebra. To do this
we have to prove that e↓ is a boolean algebra for each e ∈ D. This can be achieved
by showing that every prime filter in e↓ is an ultrafilter. Let F ⊆ e↓ be a filter in
e↓. Then it is easy to check that F ↑ is a filter in D. In addition, if F ⊆ G ⊆ e↓ are
filters then F ↑ ⊆ G↑, and if F ↑ = G↑ then F = G. Let F ⊆ e↓ be a prime filter
in e↑. Then F ↑ is a prime filter in D. If F is not an ultrafilter in e↓ then there
is a filter G such that F ⊆ G ⊆ e↓. But F ↑ implies by assumption that F ↑ is an
ultrafilter and so F ↑ = G↑ giving F = G. We have therefore proved that in the
unital distributive lattice e↓ every prime filter is an ultrafilter and so e↓ is a unital
boolean algebra, as required.

Conversely, let D be a boolean algebra. We prove that every prime filter is an
ultrafilter. Let P be a prime filter and let a ∈ D be an element such that a∧ p 6= 0
for all p ∈ P . We shall prove that a ∈ P from which it follows that P is an
ultrafilter by Theorem 1.5. Choose e ∈ P and put P ′ = {e∧ p : p ∈ P}. Then P ′ is
a prime filter in the unital boolean algebra e↓. Observe that the element a ∧ e has
a non-empty meet with every element of P ′. But in a unital boolean algebra we
have seen that every prime filter is an ultrafilter and so P ′ is an ultrafilter and thus
by Theorem 1.5 we have that a ∧ e ∈ P ′. It follows that a ∈ P , as required. �

Notation In this paper, we shall use a number of different groupoids constructed
from an inverse semigroup S by means of filters. It may be helpful to list them
here:

• L(S) the groupoid of all proper filters on the inverse semigroup S. When
the non-proper filter S is adjoined we in fact obtain an inverse semigroup
[21, 20].

• G(S) is the groupoid of all completely prime filters when S is a pseudogroup.
• GP (S) is the groupoid of all prime filters when S is a distributive inverse
semigroup.

• GM (S) is the groupoid of all ultrafilters.
• GC(S) is the groupoid of all C-filters where C is a coverage on S.
• Gu(S) is Paterson’s universal groupoid that consists of all filters (for us all
proper filters) with the patch topology.

• Gt(S) is Exel’s tight groupoid that consists of all tight filters with the patch
topology.

• Gm(S) is the groupoid of ultrafilters equipped with the patch topology.

We would like to acknowledge one other author who has carried out pioneering
work in this area: Pedro Resende [26, 27, 23]. In many ways our approaches are
complementary since our interest is primarily in deriving dualities involving classes
of inverse semigroups. Our work also differs from his in a number of other ways:
Resende works with localic groupoids whereas we work with topological groupoids;
he uses quantales whereas our work is connected more to the theory of C∗-algebras;
and finally, his theory works at the level of objects only whereas we have introduced
suitable morphisms. However, the duality Theorem 2.23, at the level of objects,
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was explicitly proved in [23]. We shall make direct links to Resende’s work where
appropriate.

2. The adjunction

We shall be interested in two categories which at this stage we only define at
the level of objects: the category Inv of pseudogroups and the category Etale of
étale groupoids. Our goal is to define a functor G : Invop → Etale that takes a
pseudogroup and delivers an étale groupoid, and a functor B : Etale → Invop that
takes an étale groupoid and delivers a pseudogroup. We begin by constructing
both functors at the level of objects only in Section 2.1 and then explore how the
constructions can be lifted to maps in Section 2.2.

2.1. Objects only. The easiest functor to define is the second. Recall that a local
bisection A in a groupoid G is a subset satisfying the two conditions A−1A,AA−1 ⊆
Go. We shall usually refer to ‘local bisections’ simply as ‘bisections’. Here A−1

means the inverses of all elements of A, and the product is just the usual multipli-
caton of subsets of a category. It is well-known, and in any event easy to prove,
that the set of all bisections of a groupoid forms a pseudogroup. The idempotents
of this semigroup are just the subsets of Go and the natural partial order is given
by subset-inclusion. If G is now an étale groupoid, then we define B(G) to be the
set of all open bisections. We now have the object part of our functor.

Proposition 2.1. Let G be an étale groupoid. Then B(G), the set of all open
bisections of G under subset multiplication, is a pseudogroup.

The description of the object part of our second functor is more complex and
depends on an important class of filters. A filter F in a pseudogroup S is said to
be completely prime if

∨

ai ∈ F implies that ai ∈ F for some i. Such filters were
defined in [26] where they were called compatibly prime and are a generalization of
a concept important in frame theory [6]. Given a pseuodgroup S, we denote the
set of all completely prime filters on S by G(S).

Lemma 2.2. Let A be a filter in a pseudogroup S.

(1) A is completely prime if and only if A−1 is completely prime.
(2) A is completely prime if and only if d(A) is completely prime.

Proof. (1) This is straightforward.
(2) Suppose that A is completely prime. We prove that d(A) = (A−1A)↑ is

completely prime. Let x =
∨

i xi ∈ A−1 ·A. Then a−1a ≤ x for some a ∈ A; this is
always possible since if a, b ∈ A then (a∧b)−1(a∧b) ≤ a−1b. Clearly a−1a = xa−1a
and so by infinite distributivity we have that a−1a =

∨

i xia
−1a. Thus again by

infinite distributivity, a =
∨

i axia
−1a. By assumption, A is completely prime and

so axia
−1a ∈ A for some i. Thus axi ∈ A since A is upwardly closed. However

a−1axi ∈ A−1 ·A. Thus xi ∈ A−1 · A, again by upward closure, as required.
Suppose now that d(A) is completely prime. We prove that A is completely

prime. Let a =
∨

ai ∈ A. Then d(a) =
∨

d(ai) ∈ d(A). Where we use standard
properties of compatible joins [13] By assumption d(ai) ∈ d(A). It follows that
ai = ad(ai) ∈ A, as required. �

Clearly, d(A) and r(A) each contain idempotents. The following is stated as
Lemma 2.9 of [16].
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Lemma 2.3. Let F be a filter. Then F contains an idempotent if and only if it is
also an inverse subsemigroup.

We shall call filters of the above type idempotent filters.

Lemma 2.4. Let A and B be completely prime filters such that d(A) = r(B). Then
(AB)↑ is a completely prime filter such that d((AB)↑) = d(B) and r((AB)↑) =
r(A).

Proof. By Lemma 2.7 of [16], we have that (AB)↑ is a filter. We show that it
is completely prime. Let x =

∨

i xi ∈ A · B. Then ab ≤ x for some a ∈ A
and b ∈ B. Thus ab =

∨

i xi(ab)
−1ab. By infinite distributivity we have that

a−1ab =
∨

i a
−1xi(ab)

−1ab. Since A−1 ·A = B ·B−1 we have that a−1ab ∈ B. But
B is completely prime and so a−1xi(ab)

−1ab ∈ B. Thus aa−1xi(ab)
−1ab ∈ aB and

so xi ∈ A ·B, as required.
For the final claims, observe that (A ·B)−1 · (A ·B) = ((B−1A−1)↑(AB)↑)↑ and

that ((B−1A−1)↑(AB)↑)↑ = (B−1A−1AB)↑. Under our assumption that A−1 ·A =
B · B−1, we deduce that (B−1A−1AB)↑ = B−1 · B. The dual result is proved
similarly. �

On G(S) define a partial binary operation by

A ·B = (AB)↑ iff d(A) = r(B).

The proof of the following is now straightforward: essentially only associativity is
left to prove and that is easy.

Lemma 2.5. For each pseudogroup S, the structure (G(S), ·) is a groupoid.

For each s ∈ S define Xs to be the set of all completely prime filters that contains
s. Clearly X0 = ∅ although other sets Xs could also be empty.

Lemma 2.6. Let S be a pseudogroup.

(1) Xs is a bisection.
(2) X−1

s = Xs−1 .
(3) XsXt = Xst.
(4) Xs ∩Xt = Xs∧t.
(5) If s =

∨

i si then
⋃

iXsi = Xs.

Proof. (1) Let F,G ∈ Xs such that d(F ) = d(G). By Lemma 2.11 of [16], this
implies that F = G. The dual result can be proved similarly.

(2) Immediate from the properties of the natural partial order.
(3) It is clear that XsXt ⊆ Xst. Let F ∈ Xst. Put H = F−1 · F . Then

F = (stH)↑. Put A = (s(tHt−1)↑)↑ and B = (tH)↑. Then by Lemma 2.2(2), we
have that A ∈ Xs and B ∈ Xt, and A ·B = F .

(4) This is straightforward since filters are closed under binary meets.
(5) This is immediate from the definition of completely prime filters. �

Put τ = {Xs : s ∈ S}. By the lemma above, τ is a basis for a topology on G(S)
and in what follows we shall always regard G(S) equipped with this topology.

Lemma 2.7. G(S) is a topological groupoid.
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Proof. By the above lemma the inversion map is continuous. Denote the set of
composable elements in the groupoid G by G ∗ G and denote the multiplication
map by m : G ∗G → G. We observe that

m−1(Xs) =





⋃

06=ab≤s

Xa ×Xb



 ∩ (G(S) ∗ G(S))

for all s ∈ S. The proof is straightforward and the same as step 3 of the proof of
Proposition 2.22 of [16] and shows that m is a continuous function. �

We can now state our second main result.

Proposition 2.8. Let S be a pseudogroup. Then G(S), the set of all proper com-
pletely prime filters, is an étale groupoid.

Proof. It remains to show that G(S) is étale. There are a number of ways to prove
this. We could follow step 4 of the proof of Proposition 2.22 of [16]. We give a
different proof here.

We show first that G(S)o is an open subspace of G(S). Let F be an identity in
G(S). Then by Lemma 2.3, F is an inverse subsemigroup and so contains idempo-
tents. Let e ∈ F . Then F ∈ Xe. But every completely prime filter in Xe contains
an idempotent and so is an identity in the groupoid. Thus F ∈ Xe ⊆ G(S)o and is
an open set. Thus G(S)o is an open set.

Next we show that the product of two open sets is an open set. Let X and Y
be any open sets. By the definition of the topology, we may write X =

⋃

i Xsi and
Y =

⋃

j Xtj . Then we have

XY =
⋃

i,j

Xsitj

by Lemma 2.6(3). Thus the product of open sets is always open. �

We shall now describe the relationships between

S and B(G(S)), and G and G(B(G)).

Let S be a pseudogroup. The set Xs, a set of completely prime filters, is a
bisection by Lemma 2.6(1) and it is by definition open. Thus Xs ∈ B(G(S)).
Define ε : S → B(G(S)) by s 7→ Xs.

Proposition 2.9. The function ε : S → B(G(S)) has the following properties:

(1) It is a pseudogroup ∧-morphism.
(2) Every element of B(G(S)) is a compatible join of elements in the image of

ε.
(3) The map ε is an isomorphism of monoids if and only if the pseudogroup

S has the additional property that for all s, t ∈ S we have that Xs = Xt

implies that s = t.

Proof. (1) The map is a semigroup homomorphism by Lemma 2.6(3), it preserves
binary meets by Lemma 2.6(4) and it preserves compatible joins by Lemma 2.6(5).
It is a monoid map essentially by Lemma 2.3.

(2) Each element of B(G(S)) is an open bisection and every open set, by defini-
tion, is a union of open sets of the form Xs.

(3) Only one direction needs proving. We assume thatXs = Xt implies that s = t
for all s, t ∈ S. It remains to prove that ε is surjective. This will follow if we can
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prove that Xs and Xt compatible implies that s and t are compatible. In turn, this
will follow is we can prove that if Xs contains only idempotent filters then s must
be an idempotent. Observe that the assumption implies that Xs = Xs∧s−1s. But
then since ε is injective we deduce that s = s∧ s−1s and so s is an idempotent. �

A pseudogroup S is said to be spatial if Xs = Xt implies that s = t for all
s, t ∈ S. By part (3) of the preceeding proposition, a pseudogroup is spatial if and
only if ε is an isomorphism of monoids.

The proof of the following is straightforward.

Lemma 2.10. Let G be an étale groupoid. For each g ∈ G define Fg to be the set
of all open bisections that contain g. Then Fg is a completely prime filter in the
pseuodgroup B(S).

Let G be a étale groupoid. Define η : G → G(B(G)) by g 7→ Fg. By the above
lemma this is a well-defined map. A functor α : G → H is called a cover if it
satisfies two conditions: d(g) = d(g′) and α(g) = α(g′) implies that g = g′, and if
α(e) = d(h) where e is an identity then there exists g ∈ G such that d(g) = e and
α(g) = h.

Proposition 2.11. The function η : G → G(B(G)) is a continuous covering func-
tor.

Proof. Recall that in an étale groupoid the open bisections form a basis for the
topology [26]. We may deduce from this, and the fact that the multiplication
function is continuous, that if Og is an open bisection containing g ∈ G and g = hk
then there are open bisections h ∈ Oh and k ∈ Ok such that OhOk ⊆ Og. It now
readily follows that η is a functor.

We now prove that η is a covering functor. Suppose that d(g) = d(h) and
η(g) = η(h). Then there is an open bisection O that contains both g and h. But it
then follows immediately from the definition of bisection that g = h. Now suppose
that η(e) = d(F ) where e is an identity and F is a completely prime filter in B(G).
By definition d(F ) = Fe. Let b ∈ F be any open bisection. By assumption e ∈ b−1b.
Thus we may find g ∈ b such that e = g−1g. Consider Fg. Then d(Fg) = d(F ) and
b ∈ Fg ∩ F . By Lemma 2.11 of [16], we have that Fg = F , as required.

It remains to show that η is continuous. Let b ∈ B(G) be an open bisection.
Then

g ∈ η−1(Xb) ⇔ Fg ∈ Xb ⇔ b ∈ Fg ⇔ g ∈ b.

Thus η−1(Xb) = b. �

An étale groupoid is said to be sober if the map η is a homeomorphism.

Proposition 2.12.

(1) For every étale groupoid G the pseudogroup B(G) is spatial.
(2) For every pseudogroup S the étale groupoid G(S) is sober.

Proof. (1) Let U and V be two distinct open bisections in B(G). Without loss of
generality, there exists g ∈ U and g /∈ V . But then Fg is a completely prime filter
in B(G) that contains U and omits V .

(2) Let S be a pseudogroup. We show that every completely prime filter in
B(G(S)) is of the form Ff where f ∈ G(S) is a uniquely determined element. We
show first that such an f exists. Define f = {s ∈ S : Xs ∈ F}. From the fact
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that F is completely prime and that the sets Xs form a basis of open bisections for
G(S)) it follows that f is non-empty. Using Lemma 2.6, it is routine to verify that
f is a completely prime filter and by construction Ff ⊆ F . Let O ∈ F . Then O
can be written as a union of open bisections of the form Xs for some s. It follows
that O ∈ Ff .

Now suppose that Ff = Fg for completely prime filters f and g in S. Let s ∈ f .
Then f ∈ Xs and so by assumption Xs ∈ Fg which gives s ∈ g. It follows that
f ≤ g. The reverse inclusion follows by symmetry.

It remains to show that η is an open map. Let Xs be a basic open bisection in
G(S). Then η(Xs) consists of all Ff where f ∈ Xs. But this is precisely the set
{Ff : Xs ∈ Ff} which is the basic open set XXs

. �

2.2. Adding the morphisms. What we would like to do is prove that, for suitable
definitions of morphisms, the functor

G : Invop → Etale

is right adjoint to the functor

B : Etale → Invop.

Since the idempotent pseudogroups are the frames and the étale groupoids in which
every element is an identity are just the topological spaces, this would generalize the
classical adjunction between categories of these structures; see Theorem 1, page 476
of [22] and Theorem 1.4, page 42 of [6]. The problem is in defining appropriate
morphisms. Frames have top elements preserved by frame morphisms but this is
not true of general pseudogroups. This means that the inverse images of completely
prime filters might be empty. We do, however, have the following.

Lemma 2.13. Let θ : S → T be a pseudogroup ∧-morphism. If F is a completely
prime filter in T and θ−1(F ) is non-empty then it is a completely prime filter.

Proof. Let a, b ∈ θ−1(F ). Then θ(a), θ(b) ∈ F . But F is a filter in a pseudogroup
and so θ(a) ∧ θ(b) ∈ F . We have assume that θ is a ∧-morphism and so θ(a ∧ b) =
θ(a) ∧ θ(b). Thus a ∧ b ∈ θ−1(F ). It is clear that θ−1(F ) is closed upwards, and it
is completely prime because θ is a pseudogroup morphism. �

A function θ : S → T between pseudogroups will be called callitic if it satisfies
two conditions:

(1) it is a ∧-morphism of pseudogroups, and
(2) for each completely prime filter F in T , we have that F ∩ im(θ) 6= ∅.

Lemma 2.14. Let θ : S → T be a callitic morphism of pseudogroups. Then

θ−1 : G(T ) → G(S)

is a continuous covering functor.

Proof. The assumption that θ is callitic simply ensures that for each completely
prime filter F the set θ−1(F ) is non-empty. It follows by Lemma 2.13, that
θ−1 : G(T ) → G(S) is a well-defined function. The bulk of the proof is taken
up with showing that θ−1 is a functor. Let F be an identity completely prime
filter in T . Then F contains idempotents by Lemma 2.4. In particular, it must
contain the top idempotent in the frame E(T ) by upward closure. Since θ is a
frame morphism when restricted to the semilattice of idempotents it follows that
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θ−1(F ) contains the top element of E(S). Thus θ−1(F ) is a completely prime filter
containing idempotents and so it is an identity in the groupoid.

We prove that if F and G are completely prime filters such that F−1 ·F = G·G−1

then
(θ−1(F )θ−1(G))↑ = θ−1((FG)↑).

We prove first that
θ−1(F )θ−1(G) ⊆ θ−1(FG).

Let s ∈ θ−1(F )θ−1(G). Then s = ab where a ∈ θ−1(F ) and b ∈ θ−1(G). Thus
θ(s) = θ(a)θ(b) ∈ FG. It follows that s ∈ θ−1(FG). Observe that θ−1(X)↑ ⊆
θ−1(X↑). It follows that

(θ−1(F )θ−1(G))↑ ⊆ θ−1((FG)↑).

We now prove the reverse inclusion. Let s ∈ θ−1((FG)↑). Then θ(s) ∈ F ·G and so
fg ≤ θ(s) for some f ∈ F and g ∈ G. The map θ is assumed callitic and so there
exists v ∈ S such that θ(v) ∈ G. Consider the product θ(s)θ(v)−1. Since θ(s) ∈ F ·G
and θ(v)−1 ∈ G−1 we have that θ(s)θ(v)−1 ∈ F · G · G−1 = F · F−1 · F = F .
Thus θ(sv−1) ∈ F , and we were given θ(v) ∈ G, and clearly (sv−1)v ≤ s. Put
a = sv−1 and b = v. Then ab ≤ S where θ(a) ∈ F and θ(b) ∈ G. It follows that
s ∈ (θ−1(F )θ−1(G))↑.

We may now show that θ−1 is a functor. Let F be any completely prime filter.
Observe that θ−1(F )−1 = θ−1(F−1). We have that

(θ−1(F−1)θ−1(F ))↑ = (θ−1(F )−1θ−1(F ))↑ = d(θ−1(F ))

and
θ−1((F−1F )↑) = θ−1(d(F )).

Hence
θ−1(d(F )) = d(θ−1(F )).

A dual result also holds and so θ−1 preserves the domain and codomain operations.
Suppose that d(F ) = r(G) so that F · G is defined. By our calculation above
d(θ−1(F )) = r(θ−1(G)) and so the product θ−1(F ) · θ−1(G) is defined. By our
main result above we have that

θ−1(F ·G) = θ−1(F ) · θ−1(G),

as required.
The proof that θ−1 is a covering functor follows the same lines as the proof of

Proposition 2.15 of [16]. It remains to show that it is continuous. A basic open set
of G(S) has the form Xs for some s ∈ S. It is simple to check that this is pulled
back to the set Xθ(s). �

We also have the following whose proof is straightforward.

Lemma 2.15. The composition of callitic maps is callitic.

Identity maps are callitic and so pseudogroups and their callitic maps form a
category.

A morphism θ : S → T is called hypercallitic if for each t ∈ T we have that

t =
∨

s∈S

(t ∧ θ(s)).

Observe that since t∧θ(s) ≤ t the righthand-side is well-defined. Frame morphisms
are always hypercallitic because tops are mapped to tops.
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Lemma 2.16. Hypercallitic maps are callitic.

Proof. Let θ : S → T be a hypercallitic map. Let F be a completely prime filter
in T and let t ∈ T . By assumption, we may write t =

∨

s∈S(t ∧ θ(s)). But F is
completely prime and so t∧ θ(s) ∈ F for some s ∈ S. It then follows that θ(s) ∈ F ,
as required. �

The proof of the following is immediate from the definition of hypercallitic map.

Lemma 2.17. Let θ : S → T be a pseudogroup morphism such that each element
of T is the join of a compatible subset of the image of θ. Then θ is hypercallitic.

The following is an important consequence.

Corollary 2.18. The map ε : S → B(G(S)) is hypercallitic.

The following result explains the real reason for our interest in hypercallitic
maps.

Lemma 2.19. Let θ : G → H be a continuous covering functor between two étale
groupoids. Then θ−1 : B(H) → B(G) is hypercallitic.

Proof. The proof that we have a ∧-morphism of pseudogroups basically follows the
proof of Proposition 2.17 of [16]. It remains to show that θ−1 is hypercallitic. From
Exercise I.1.8, Question 6 of [26], we learn that if G is a topological groupoid in
which Go is an open subspace then G has a basis consisting of open bisections. Let
B be a non-empty open bisection in G and let g ∈ B. Then θ(g) ∈ H . Clearly
H is an open set containing θ(g) but not a bisection. However, since H is étale, it
follows that H is a union of open bisections and so θ(g) ∈ Cg an open bisection Cg

in H . Since θ is continuous g ∈ θ−1(Cg) is open and because θ is a covering functor
θ−1(Cg) is a bisection. Thus g ∈ B ∩ θ−1(Cg) an open bisection in G. It follows
that we may write

B =
⋃

g∈B

(B ∩ θ−1(Cg)).

�

There is another way of seeing the importance of hypercallitic maps using a
construction of Resende [26, 27]. Let S be a pseudogroup. Define L∨(S) to be the
set of all order ideals of S that are closed under compatible joins. This is called
the enveloping quantale of S. It is, in particular, a frame with top element S.
Let θ : S → T be a morphism of pseudogroups. Then we may define a function
θ̄ : L∨(S) → L∨(T ) by θ̄(A) = [A↓]∨ which means the downward closure of A
followed by the closure under compatible joins. The following lemma grew out of
conversations with Resende.

Lemma 2.20. The map θ̄ defined above is a frame map if and only if θ is hyper-
callitic.

Proof. The map θ̄ is a frame map if and only if θ̄(S) = T . That is if and only if
[θ(S)↓]∨ = T . This means that for each t ∈ T we may find ti ∈ θ(S)↓ such that
t =

∨

ti. But ti ∈ θ(S)↓ means that ti ≤ θ(si) for some si ∈ S. In particular
we have that ti = ti ∧ θ(si). Thus t =

∨

ti ∧ θ(si). It is now easy to show that
t =

∨

s∈S t ∧ θ(s), as required. �
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The following lemma answers a question that the reader might ask themselves
when reading the statement and proof of the Adjunction Theorem below.

Lemma 2.21. Let θ : S → T be a callitic morphism of pseudogroups where T is
spatial. Then θ is in fact hypercallitic.

Proof. Let t ∈ T where t 6= 0. Then the set of all completely prime filters Xt

containing t cannot be empty because then Xt = X0 would imply that t = 0. We
prove that

Xt = X∨s∈S(t∧θ(s))

from which the result follows by the spatiality of T . Let F ∈ Xt. Since θ is
callitic there exists θ(s) ∈ F for some s ∈ S. Thus t ∧ θ(s) ∈ F . It follows that
F ∈ X∨s∈S(t∧θ(s)). Conversely, if F ∈ X∨s∈S(t∧θ(s)) then clearly F ∈ Xt. �

We may now define our categories. We define the category Inv to have pseu-
dogroups as objects and callitic pseudogroup maps as morphisms. In what follows
we work with the dual category Invop for convenience. We define Etale to have
étale groupoids as objects and continuous covering functors as morphisms. There is
a functor G : Invop → Etale that takes a pseudogroup S to the étale groupoid G(S)
by Proposition 2.8 and takes the callitic map θ : S → T to the continuous covering
functor θ−1 : G(T ) → G(S) by Lemma 2.14. There is a functor B : Etale → Invop

that takes an étale groupoid G to a pseudogroup B(G) by Proposition 2.1 and takes
the continuous covering functor θ : G → H to the callitic morphism of pseudogroups
θ−1 : B(H) → B(G) by Lemma 2.19. Our main theorem is the following.

Theorem 2.22 (Adjunction). The functor

G : Invop → Etale

is right adjoint to the functor

B : Etale → Invop.

Proof. Given a continuous covering functor α : G → G(S), we may construct the
callitic map α−1ε : S → B(G). This is just the map

s 7→ α−1(Xs).

Given a callitic map β : S → B(G) we may construct the continuous covering functor
β−1η : G → G(S). This is just the map

g 7→ β−1(Fg).

We shall that these two constructions are mutually inverse.
Let β : S → B(G) be a callitic morphism of pseudogroups. Define α(g) =

β−1(Gg). Then the map we get from S to B(G) after applying the above pro-
cedures twice is the map s 7→ α−1(Xs). We have that g ∈ α−1(Xs) ⇔ α(g) ∈
Xs ⇔ β−1(Fg) ∈ Xs ⇔ s ∈ β−1(Fg) ⇔ β(s) ∈ Fg ⇔ g ∈ β(s). It follows that
β(s) = α−1(Xs), as required.

Let α : G → G(S) be a continuous covering functor. Define β(s) = α−1(Xs).
Then then map we get from G to G(S) after applying the above procedures twice
is the map g 7→ β−1(Fg). We have that s ∈ β−1(Fg) ⇔ β(s) ∈ Fg ⇔ α−1(Xs) ∈
Fg ⇔ g ∈ α−1(Xs) ⇔ α(g) ∈ Xs ⇔ s ∈ α(g), as required.

Naturality is straightfoward to prove here and so we have an adjunction. �
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The map η : G → G(B(G)) of Proposition 2.11 is the unit of the adjunction. The
map ε : S → B(G(S)) of Proposition 2.9 is the counit of the adjunction.

Let Invsp be the category of spatial pseudogroups and callitic pseudogroup mor-
phisms. Let Etaleso be the category of sober étale groupoids and continuous cov-
ering functors. From the above theorem, Proposition 2.12 and general category
theory we have proved the following.

Theorem 2.23 (Duality). The category Invop
sp is equivalent to the category Etaleso.

We have already remarked in the Introduction that the above theorem, at the
level of objects, was first proved in [23].

3. Non-commutative Stone dualities

The main goal of this section is to derive the duality theorems for boolean in-
verse semigroups proved in [16, 18] from Theorem 2.23, however we shall begin
by proving a duality theorem for a wider class of inverse semigroups. An inverse
semigroup S is said to be distributive if it has joins of all finite compatible subsets
and multiplication distributes over the finite joins that exist. A morphism of dis-
tributive inverse semigroups is a semigroup morphism that preserves the joins of
finite compatible subsets. It is worth noting that distributive inverse monoids are
of independent interest [8] and that they have a distributive lattice of idempotents.

A filter F in a distributive inverse semigroup is said to be prime if a ∨ b ∈ F
implies that a ∈ F or b ∈ F . The class of prime filters in distributive inverse
semigroups will play a key role in this section.

3.1. Idl-completions. The results of Section 2 were proved only for pseudogroups.
In order to obtain dualities for a wider class of inverse semigroups we shall need
a way of completing inverse semigroups to pseudogroups. The basis of this is a
construction due to Boris Schein [30, 13]. Let S be an inverse semigroup. Define
C(S) to be the set of all compatible order ideals of S with subset multiplication
as the operation. Then C(S) is a pseudogroup and the map ι : S → C(S), given
by s 7→ s↓, is a semigroup homomorphism. In addition, C is left adjoint to the
forgetful functor from the category of pseudogroups and pseudogroup morphisms to
the category of inverse semigroups and semigroup homomorphisms. If X and Y are
compatible subsets of S then X↓ and Y ↓ are compatible order ideals and X↓Y ↓ =
(XY )↓. Given a semigroup homomorphism θ : S → T , we may therefore define a
function Θ: C(S) → C(T ) by Θ(A) = θ(A)↓ which is a semigroup homomorphism.
Observe that if A =

⋃

iAi then Θ(A) =
⋃

iΘ(Ai). Thus Θ is a morphism of
pseudogroups and gives an explicit description of the induced functor from the
category of inverse semigroups and semigroup homomorphisms to the category of
pseudogroups and pseudogroup morphisms.

When S is a distributive inverse semigroup, we shall work with a cut down
version of C(S) which uses a finitary version of a construction used by Rinow [29].
An element A of C(S) is said to be ∨-closed if it is closed under joins of its finite
subsets; such subsets are necessarily compatible since A is a compatible order ideal.
We denote by Idl(S) the set of all ∨-closed elements of C(S). Observe that if A is
an order ideal then it becomes a ∨-closed order ideal when we include all the joins
of finite subsets of A. We denote this set by A∨ and call it the ∨-closure of A. If
A is a compatible order ideal then A∨ is a ∨-closed compatible order ideal as can
easily be verified. The operation A 7→ A∨ satisfies the following conditions:
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(Cl1): A ⊆ A∨.
(Cl2): If A ⊆ B then A∨ ⊆ B∨.
(Cl3): A∨ = (A∨)∨.
(Cl4): A∨B∨ = (AB)∨.

The proofs are all straightforward except for (Cl4) which needs some comment.
The proof of the inclusion A∨B∨ ⊆ (AB)∨ follows from the fact that multiplication
distributes over compatible joins. The proof of the reverse inclusion uses the fact
that A∨B∨ is an order ideal.

Proposition 3.1. Let S be a distributive inverse semigroup. Then Idl(S) is a
pseudogroup and the homomorphism ι : S → Idl(S) given by s 7→ s↓ preserves
binary joins of compatible pairs of elements.

In addition, Idl is left adjoint to the forgetful functor from the category of pseu-
dogroups and pseudogroup morphisms to the category of distributive inverse semi-
groups and their morphisms.

If θ : S → T is a morphism of distributive inverse semigroups then Θ: Idl(S) →
Idl(T ) defined by Θ(A) = [θ(A)↓]∨ is the induced morphism of pseudogroups.

Proof. It is clear that Idl(S) is closed under inverses, and it is closed under mul-
tiplication by (C4) above. It follows that Idl(S) is an inverse semigroup. Observe
that Idl(S) is actually an inverse subsemigroup of C(S) and so the natural partial
orders agree. A compatible set of elements in Idl(S) has a join in C(S) and this can
be reflected into Idl(S) using the operation A 7→ A∨. Thus every compatible subset
of Idl(S) has a join. It is now easy to prove using the properties of the ∨-closure
operation that Idl(S) is infinitely distributive. Observe that the idempotents of
Idl(S) are the ∨-closed order ideals in the meet semilattice E(S) and that there is
a maximum idempotent E(S) and so the semilattice of idempotents of Idl(S) forms
a frame. In the monoid case, this can be deduced from Corollary in Section 2.11 of
[6]. It follows that Idl(S) is a pseudogroup.

The map ι : S → Idl(S) is a homomorphism. Suppose that c = a ∨ b in S.
Clearly ι(a), ι(b) ⊆ ι(c). But any ∨-closed element of C(S) that contains a and b
must contain c. It follows that ι(c) = ι(a) ∨ ι(b).

Let α : S → T be a homomorphism to a pseudogroup that preserves finite com-
patible joins. Then there is a unique morphism of pseudogroups ᾱ : Idl(S) → T
such that ᾱι = α defined by ᾱ(A) =

∨

A.
The proof of the last claim is routine. �

We call the pseudogroup Idl(S) the Idl-completion of S.
Prime filters in distributive inverse semigroups and completely prime filters in

their Idl-completions are related as follows.

Lemma 3.2. Let S be a distributive inverse semigroup.
If P is a prime filter in S define

Pu = {A ∈ Idl(S) : A ∩ P 6= ∅}.

Then Pu is a completely prime filter in Idl(S).
If F is a completely prime filter in Idl(S) define

F d = {s ∈ S : s↓ ∈ F}.

Then F d is a prime filter in S.
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The above two operations are mutually inverse and set up an order isomorphism
between the poset of prime filters on S and the poset of completely prime filters on
Idl(S).

Proof. Clearly the set Pu is closed upwards. Let A,B ∈ Pu. Then s ∈ A ∩ P and
t ∈ B ∩ P . But P is a filter and so there exists p ∈ P such that p ≤ s, t. But then
p ∈ A∩B and so Pu is closed under binary intersections. Suppose that

∨

Ai ∈ Pu.
Thus there exists p ∈ P such that p ∈

∨

i Ai. By definition p = ∨m
j=1aj for some

finite set of elements aj in the Ai. But P is a prime filter and so ak ∈ P for some
k. Thus one of the Ai, the one containing ak, belongs to Pu as required. Thus Pu

is a completely prime filter.
We now show that F d is a prime filter. Let s, t ∈ F d. Then s↓, t↓ ∈ F . Thus

A = s↓ ∩ t↓ ∈ F . Now A =
∨

a∈A a↓ ∈ F and so a↓ ∈ F for some a ∈ A. Thus

a ∈ F d and a ≤ s, t. It is clear that F d is closed upwards. It remains to show that
F d is a prime filter. Let s ∨ t ∈ F d. Then (s ∨ t)↓ ∈ F . But (s ∨ t)↓ = s↓ ∨ t↓ ∈ F .
It follows that s↓ ∈ F or t↓ ∈ F . Thus s ∈ F or t ∈ F .

It is now routine to check that these two operations are mutually inverse and
order-preserving. �

3.2. Coherent pseudogroups. We shall now characterize the pseudogroups that
arise as Idl-completions. To do this we need the following definition. We say that
the compatible subset X of a pseudogroup S is a covering of the element a if
a ≤

∨

X . An element a ∈ S in a pseudogroup S is said to be finite if for any
compatible subset X ⊆ S such that a ≤

∨

X there exists a finite subset Y of X
such that a ≤

∨

Y . In other words, every covering has a finite subcovering. In
the case of the frames of open sets of a topological space the finite elements are
just the compact ones. It is worth noting that the inequalities can be replaced by
equalities; see page 63 of [6]. We denote the set of finite elements of a pseudogroup
S by K(S).

Lemma 3.3. Let S be a pseudogroup.

(1) If a is finite then a−1 is finite.
(2) If a is any element and e is a finite idempotent such that e ≤ a−1a then ae

is finite.
(3) If a is finite then a−1a is finite, and dually.
(4) If a and b are finite and a−1a = bb−1 then ab is finite.

Proof. (1) Straightforward.
(2) Let a be any element and e a finite idempotent e ≤ a−1a. We prove that ae

is finite. Suppose that ae ≤
∨

xi. Then e = a−1ae ≤
∨

a−1xi. But e is finite and
so e ≤

∨m
i=1 a

−1xi. Thus ae ≤
∨m

i=1 aa
−1xi ≤

∨m
i=1 xi. It follows that ae is finite.

(3) Let a be any finite element. Suppose that a−1a ≤
∨

xi. Then a ≤
∨

axi.
Thus a ≤

∨m

i=1 axi since a is finite. Hence a−1a
∨m

i=1 a
−1axi ≤

∨m

i=1 xi. Thus a
−1a

is finite.
(4) Let a and b be any finite elements where a−1a = bb−1. We prove that ab

is finite. Suppose that ab ≤
∨

xi. Then a−1abb−1 ≤
∨

a−1xib
−1. By assumption

a−1abb−1 is a finite idempotent. Thus we may write a−1abb−1 ≤
∨m

i=1 a
−1xib

−1.
Hence ab ≤

∨m

i=1 aa
−1xib

−1b ≤
∨m

i=1 xi. It follows that ab is finite. �

The above lemma tells us that the finite elements in a pseudogroup always form
an ordered groupoid [13].
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Lemma 3.4. Let S be a pseudogroup.

(1) The finite elements of S form an inverse subsemigroup if and only if the
finite idempotents form a subsemigroup.

(2) If the finite elements form an inverse subsemigroup they form a distributive
inverse semigroup.

(3) Every element of S is a join of finite elements if and only if every idempo-
tent is a join of finite idempotents.

Proof. (1) Let a and b be arbitrary finite elements. Then a−1a and bb−1 are both
finite and so e = a−1abb−1 is finite and consequently ab = (ae)(eb) is finite.

(2) Observe that if a and b are compatible finite elements then a ∨ b is finite.
(3) Only one direction needs proving. Suppose that every idempotent is a join

of finite idempotents. Let a be an arbitrary element. By assumption we may write
a−1a =

∨

ei where ei ≤ a−1a and are finite. Thus a =
∨

aei and by Lemma 3.18(1)
the elements aei are all finite. �

A pseudogroup S is said to be coherent if the set of its finite elements forms
a distributive inverse subsemigroup and if every element of S is a join of finite
elements.

Proposition 3.5. A pseudogroup S is coherent if and only if there exists a dis-
tributive inverse semigroup T such that S is isomorphic to Idl(T ). In fact, any
coherent pseudogroup S is canonically isomorphic to Idl(K(S)).

Proof. Let T be a distributive inverse semigroup. We prove first that the finite
elements of Idl(T ) are precisely the elements of the form t↓ where t ∈ T . Observe

that t↓ = t↓. Let t↓ =
∨

Ai. Then t is in the ∨-closure of
⋃

Ai. Thus there is a
finite set of elements a1, . . . , am ∈

⋃

Ai such that t = ∨aj . But this implies that t↓

is the join of only finitely many of the Ai. Thus t↓ is finite. Suppose now that A
is a finite element. We have that A =

∨

a∈A a↓. By assumption there are finitely

many elements a1, . . . , am ∈ A such that A =
∨

a↓i . But if a = ∨ai then A = a↓,
as required. Clearly, every element of Idl(T ) is a compatible join of finite elements.
It follows that Idl(T ) is coherent and that its finite elements form a distributive
inverse semigroup isomorphic to T .

Now suppose that S is a coherent pseudogroup. Put T = K(S), a distributive
inverse semigroup by assumption. Define θ : Idl(T ) → S by θ(A) =

∨

A. This
is surjective since every element of S is the join of finite elements. Suppose that
θ(A) = θ(B). Let a ∈ A. Then a ≤

∨

A. Thus a ≤
∨

B. But a is a finite
element and so there is a finite subset b1, . . . , bm ∈ B such that a ≤ ∨ibi. But B is
∨-closed and so

∨

i bi ∈ B that implies a ∈ B. We have proved that A ⊆ B. The
reverse inclusion is proved similarly. It follows that θ is a bijection. It is clearly a
homomorphism. We have proved that K(Idl(T )) is isomorphic to S. �

A pseudogroup morphism between coherent pseudogroups is said to be coherent
if it preserves finite elements. The proof of the following is now straightforward. In
fact, the previous lemma just gives the object-part of the statement.

Lemma 3.6. The category of distributive inverse semigroups and their morphisms
is equivalent to the category of coherent pseudogroups and coherent pseudogroup
morphisms.
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Let θ : S → T be a morphism of distributive inverse semigroups and let Θ: Idl(S) →
Idl(T ) be the induced morphism of pseudogroups. Then Θ is a pseudogroup ∧-
morphism if and only if θ satisfies the following condition:

(DC1): If t ≤ θ(s1), θ(s2) then there exists s ≤ s1, s2 such that t ≤ θ(s).

Consider now the following condition on θ:

(DC2): For each prime filter P in T the inverse image θ−1(P ) is non-empty

Observe that assuming (DC1), condition (DC2) implies that the inverse images of
prime filters under θ are prime filters. We claim that Θ is callitic if and only if
θ satisfies (DC1) and (DC2). This essentially follows by Proposition 3.5 and the
fact that Idl(S) and Idl(T ) are coherent. We say that a morphism of distributive
inverse semigroups is callitic if its satisfies (DC1) and (DC2). We may now refine
Lemma 3.6 as follows.

Proposition 3.7. The category of distributive inverse semigroups and their cal-
litic morphisms is equivalent to the category of coherent pseudogroups and callitic
coherent pseudogroup morphisms.

3.3. Non-commutative Stone duality for distributive inverse semigroups.

In distributive inverse semigroups, we assume that finite compatible joins exist
but we make no assumption about the existence of meets. However, for those
finite subsets where meets do exist the following lemma shows that they behave as
expected with respect to joins. It is just the finitary case of [28].

Lemma 3.8. Let S be a distributive inverse semigroup. Suppose that a ∨ b exists
and that c ∧ (a ∨ b) exists. Then c ∧ a and c ∧ b both exist, the join (c ∧ a) ∨ (c ∧ b)
exists and

c ∧ (a ∨ b) = (c ∧ a) ∨ (c ∧ b).

It can easily be verified that the union of a totally ordered set of ∨-closed order
ideals of an inverse semigroup is again a ∨-closed order ideal. The proof of the
following result now follows from Zorn’s Lemma.

Lemma 3.9. Let S be an inverse semigroup. Let I be a ∨-closed order ideal of S
and let F be a filter disjoint from I. Then there is a ∨-closed order ideal J maximal
with respect to the two conditions: (1) I ⊆ J and (2) J ∩ F = ∅.

An order ideal P of an inverse semigroup S is said to be prime if a↓ ∩ b↓ ⊆ P
implies that either a ∈ P or b ∈ P .

Lemma 3.10. Let S be an inverse semigroup. Then a subset F is a prime filter if
and only if S \ F is a ∨-closed prime order ideal.

Proof. Suppose that F is a prime filter. We prove that P = S \ F is a ∨-closed
order ideal. Let a ∈ P and b ≤ a. Suppose that b /∈ P . Then b ∈ F and so a ∈ F ,
which is a contradiction. Thus P is an order ideal. Suppose that a↓ ∩ b↓ ⊆ P and
that a, b ∈ F . Then since F is a filter there exists c ∈ F such that c ≤ a, b. But
c ∈ P which is a contradiction. Finally, suppose that a, b ∈ P and that a and b are
compatible. If a∨ b ∈ F then either a or b is in F . It follows that a∨ b ∈ P and so
P is a ∨-closed prime ideal.

Conversely, suppose that P is a ∨-closed prime ideal. We prove that F = S \ P
is a prime filter. Let a ∈ F and a ≤ b. If b ∈ P then a ∈ P and so b ∈ F . Let
a, b ∈ F . Then if a↓ ∩ b↓ ⊆ P then either a or b is in P . It follows that there must
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exist c ≤ a, b such that c ∈ F . Finally, suppose that a ∨ b ∈ F . If a, b ∈ P then
a ∨ b ∈ P so at least one of a or b belongs to F . Thus F is a prime filter. �

Lemma 3.11. Let S be a distributive inverse semigroup.

(1) Let F be a filter in S and let P be a ∨-closed order ideal of S maximal
amongst all ∨-closed order ideals disjoint from F . Then P is a prime ∨-
closed order ideal.

(2) Let a, b ∈ S be such that b � a. Then there exists a prime filter that contains
b and omits a.

Proof. (1) Assume that a↓ ∩ b↓ ⊆ P . Define

P1 = [P ∪ {a}↓]∨ and P2 = [P ∪ {b}↓]∨.

Both are well-defined ∨-closed order ideals that contain P . Assume, for the sake of
argument, that both intersect the filter F in the elements f1 and f2 respectively.
We may write

f1 = p1 ∨ x1 and f2 = p2 ∨ y1

where p1, p2 ∈ P and x1 ≤ a and y1 ≤ b. Since F is a filter there is an element
f ∈ F such that f ≤ f1, f2. Thus we may write

f = (p1 ∨ x1)d(f) and f = (p2 ∨ y1)d(f).

By distributivity

f = p1d(f) ∨ x1d(f) and f = p2d(f) ∨ y1d(f).

Now f = f ∧ f . Thus by Lemma 3.8, we have that

f = (p1d(f)∧ p2d(f))∨ (p1d(f)∧ y1d(f))∨ (x1d(f)∧ p2d(f))∨ (x1d(f)∧ y1d(f)).

Each term belongs to P , the final term by assumption. Hence f ∈ P which is a
contradiction. Thus either P1 or P2 is disjoint from F . Without loss of generality
we may assume that P1 is disjoint from F . But then we must have that P1 = P
and so a ∈ P . It follows that P is a prime ∨-closed order ideal.

(2) Consider the filter b↑ and the order ideal a↓ which is clearly a ∨-closed order
ideal. By assumption, b↑ ∩ a↓ = ∅. By Lemma 3.9, we may find a ∨-closed order
ideal J such that a↓ ⊆ J and J ∩ b↑ = ∅ and maximal with respect to these
properties by Lemma 3.9. By (1) above, J is a prime ∨-closed order ideal. Thus by
Lemma 3.10, S \ J is a prime filter in S. By construction this prime filter contains
b and omits a, as required. �

The above lemma enables us to prove the following important result.

Proposition 3.12. Every coherent pseudogroup is spatial.

Proof. Let S be a coherent pseudogroup. By Lemma 3.5, we may assume that
S = Idl(T ) where T is a distributive inverse semigroup. Let A,B ∈ Idl(T ) be
distinct elements. We shall construct a completely prime filters that contains one
of these elements but not the other. Without loss of generality, we may assume
that there is b ∈ B such that b /∈ A. It follows that

b↑ ∩B = ∅.

Clearly B is a ∨-closed order ideal. Thus by Lemma 3.9, there exists a ∨-closed
order ideal P that contains B, is disjoint from b↑, and is a maximal ∨-closed order
ideal with respect to these two conditions. By Lemma 3.11, P is a prime ∨-closed
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order ideal. Thus by Lemma 3.10, the set F = T \ P is a prime filter in S that
contains b and is disjoint from B. By Lemma 3.2, we have that Fu is a completely
prime filter in S = Idl(T ). By definition B ∈ Fu and A /∈ Fu, as required. �

An étale groupoid G is said to be coherent if it satisfies three conditions:

(C1): The set KB(G) of compact-open bisections forms a basis for the topology
on G.

(C2): The set KB(G) of compact-open bisections is closed under subset mul-
tiplication.

(C3): The étale groupoid G is sober.

Whether or not an étale groupoidG is coherent largely depends on the properties
of Go, as we now show.

Lemma 3.13. Let G be an étale groupoid.

(1) Then G has a basis of compact-open bisections if and only if Go has a basis
of compact-open sets.

(2) G satisfies (C1) and (C2) if and only if Go satisfies (C1) and (C2).
(3) G is sober as an étale groupoid if and only if the space G0 is sober.
(4) G is coherent if and only if Go is coherent.

Proof. (1) We suppose first that Go has a basis of compact-open sets. We show that
G has a basis of compact-open bisections. Let U be any non-empty open bisection in
G and let g ∈ U . Since G is étale there is an open bisection V containing g such that
d restricted to V is a homeomorphism onto its image. It follows that d restricted
to U ∩ V is a homeomorphism onto its image and g ∈ U ∩ V . By assumption we
may find a compact-open set (and therefore bisection) B in Go containing g−1g and
contained in the image of U ∩ V . It follows that there is a compact-open bisection
A containing g such that d maps A to B and which is contained in U ∩ V . It
follows that every open bisection in G is a union of compact-open bisections. Thus
the compact-open bisections form a basis for the topology.

Suppose now that G has a basis of compact-open bisections. We prove that Go

has a basis of compact-open sets. Let U be an open set in Go and let e ∈ U . There
is therefore an open set V in G such that U = Go ∩ V . Thus U is also an open set
in G. Therefore there exists a compact-open bisection W such that e ∈ W ⊆ U . It
follows that W is a subset of Go.

(2) We suppose first that Go satisfies (C1) and (C2). This means that we assume
that Go has a basis of compact-open sets and the intersection of any two compact-
open sets is again compact-open.

We prove first that if A is a compact-open bisection then so too is A−1A. We
need only prove that it is compact. Let A−1A ⊆

⋃

i Oi be a covering by open
bisections. Then A ⊆

⋃

i AOi is also a covering by open bisections. By assumption,
A is compact and so we may find a finite number AO1, . . . , OAm that cover A.
Thus A ⊆

⋃m

i=1 AOi. Hence A−1A ⊆
⋃m

i=1 A
−1AOi. But A−1AOi ⊆ Oi and so

A−1A ⊆
⋃m

i=1 Oi. Thus A
−1A is compact.

Let A and B be two compact-open bisections. The product AB is an open bisec-
tion so it only remains to show that it is compact. Let AB ⊆

⋃

iCi where the Ci are
open bisections. Then A−1ABB−1 ⊆

⋃

iA
−1CiB

−1. Now A−1ABB−1 = A−1A ∩
BB−1 and so is compact. Thus we may write A−1ABB−1 ⊆

⋃m

i=1 A
−1CiB

−1 and
so AB ⊆

⋃m
i=1 AA

−1CiB
−1B ⊆

⋃m
i=1 Ci, as required.
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The proof of the converse is straightforward.
(3) Observe first that a covering functor η : G → H is bijective if and only if

the function η | Go : Go → Ho is bijective. It follows that η : G → G(B(G)) is
bijective if and only if η | Go : Go → G(B(G)o) is a bijective. However, filters that
are identities are determined by their idempotent elements, and the idempotents in
B(G) are the open subsets of Go. It follows that η : G → G(B(G)) is bijective if and
only if η : Go → G(B(Go)) is bijective. Now observe that if b is an open bisection
in G then η(b) = Xb. It follows that η is always an open map. We have therefore
proved that G is sober if and only if Go is sober.

(4) This is immediate by (1), (2) and (3) above.
�

Our definition of a coherent space is more general than the one given in [6], since
we do not require the space itself to be compact. It is a sober space, in our sense,
in which the compact-open sets form a basis that is closed under binary meets.

The result by Exel [5] can be viewed within this setting as a proof of sobriety.

Lemma 3.14. Let G be a coherent étale groupoid. Then KB(G) is a distributive
inverse semigroup and B(G) is a coherent pseudogroup

Proof. The inversion map on an étale groupoid G is a homeomorphism of G to
itself. Thus KB(G) is an inverse subsemigroup of B(G). If A and B are compatible
compact-open bisections then their join is an open bisection and compact because
the union of finitely many compact subsets is compact. Because B(G) is infinitely
complete and infinitely distributive it follows that KB(B) is finitely complete and
finitely distributive. We have used here (C2) above in the definition.

The finite elements of B(G) are the compact ones and so precisely the compact-
open bisections. Let A ∈ B(G) be an arbitrary open bisection. By (C1) above
in the definition, A can be written as a union of compact-open bisections. Thus
every element of B(G) is a join of finite elements. We have shown that B(G) is
coherent. �

Lemma 3.15. Let S be a coherent pseudogroup. Then G(S) is a coherent étale
groupoid. Moreover, the isomorphism ε establishes a bijection between the finite
elements of S and the compact-open bisections.

Proof. By Proposition 2.12(2), the groupoid G(S) is sober. Now S is isomorphic
to B(G(S)) via ε since every coherent pseudogroup is spatial by Proposition 3.12.
Under this isomorphism, finite elements of S are mapped to the compact-open
bisections of G(S). By the coherence of S, every s ∈ S is the joint of finite elements
and hence every Xs is a union of compact-open bisections which stem from the
range of ε. Thus every open bisection is a union of compact-open bisections. It
follows that G(S) satisfies (C1). Moreover, every compact-open bisection comes
comes from a finite element of S since the finite elements are closed under finite
joins by coherence. The condition (C2) holds because the finite elements of S are
closed under multiplication. �

Lemma 3.16. Let θ : G → H be a continuous covering functor between coherent
étale groupoids with the property that the inverse image of every compact-open bi-
section is a compact-open bisection. Then the inverse image of every compact-open
set is a compact-open set.



PSEUDOGROUPS 23

Proof. Let X be a compact-open subset of H . Since the groupoid H is coherent,
the compact-open bisections form a basis. Thus we may write X as a union of
compact-open bisections and so by compactness, we may write it as a finite union
of compact-open bisections. It follows that the inverse image of X under θ can be
written as finite union of compact-open bisections. Thus since θ−1(X) is a finite
union of compact sets it is compact. �

We shall say that a continuous map between topological spaces is coherent if the
inverse image under this map of any compact-open set is a compact-open set.

Theorem 3.17 (Duality for distributive inverse semigroups). The category of dis-
tributive inverse semigroups and their callitic morphisms is dually equivalent to the
category of coherent étale groupoids and coherent continuous covering functors.

Proof. We refine the duality of Theorem 2.23.
Let θ : G → H be a coherent continous covering functor between coherent étale

groupoids. Then B(θ) : B(H) → B(G) is a callitic morphism of pseudogroups. Since
G and H are both coherent, both B(G) and B(H) are coherent by Lemma 3.14.
Since θ is coherent B(θ) maps finite elements to finite elements by Lemma 3.16.
Thus B(θ) is coherent.

Let θ : S → T be a callitic coherent morphism between coherent pseudogroups.
Then G(θ) : G(T ) → G(S) is a continuous covering functor. By Lemma 3.15 both
G(S) and G(T ) are coherent étale groupoids. Since θ is also coherent, the inverse
image under G(θ) of every compact-open bisection is a compact-open bisection. It
follows by Lemma 3.16 that G(θ) is coherent. Finally, the category of distributive
inverse semigroups and their callitic morphisms is equivalent to the category of
coherent pseudogroups and their callitic morphisms by Proposition 3.7. �

We are now going to explicitly compute the functor giving the dual equivalence
in the previous theorem using the prime filters. Let S be a distributive inverse
semigroup. Define GP(S) to be the set of prime filters of S. For each s ∈ S define
Ys to be the set of all prime filters that contains s. Put π = {Ys : s ∈ S}.

Lemma 3.18. Let S be a distributive inverse semigroup. Then GP(S) is a groupoid
and π is a basis for a topology that makes GP(S) a topological groupoid.

Proof. Let P ∈ Ys ∩ Yt. Then s, t ∈ P . But P is a filter and so there exists p ∈ P
such that p ≤ s, t. Thus P ∈ Yp ⊆ Ys ∩ Yt. Thus π is a basis. Next we have to
check that the product of prime filters is a prime filter so that GP(S) is a groupoid.
This uses similar arguments to Lemmas 2.2 and 2.4. The proof that GP(S) is a
topological groupoid is similar to the proof of Lemma 2.7. �

Proposition 3.19. Let S be a coherent pseudogroup and let T be a distributive
inverse semigroup with S = Idl(T ) and T = K(S). Then the groupoid GP (T ) is
homeomorphic to the groupoid G(S).

Proof. Define a map GP (T ) → G(S) by P 7→ Pu. By Lemma 3.2 this is a bijection.
It is routine to check that this is a functor. Finally, we need to check that the map
is continuous and open. A basic open set in G(S) has the form Xs. By assumption,
s =

∨

i∈I si where the si are finite elements from T . Thus by Lemma 2.6(5), we
have that Xs =

⋃

i∈I Xsi where the si are finite. The inverse image of Xt where
t is finite is precisely Yt. Thus the map is continuous. The image of Yt is just Xt

and so the map is open. �
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The groupoid GP (S), where S is a distributive inverse semigroup, is called the
prime spectrum of S. In Theorem 3.17, the functor from distributive inverse semi-
groups to étale groupoids can be replaced by GP as by the proposition above
G(Idl(T )) is homeomorphic to GP (T ).

3.4. Non-commutative Stone duality for boolean inverse semigroups. We
shall now specialize Theorem 3.17 to obtain a new proof of the duality proved
directly in [18] from which the monoid case, first proved in [16], follows as a corollary.
It is important to be clear about the definitions we shall give so we highlight them:

• A distributive inverse semigroup whose semilattices of idempotents is a
boolean algebra is called a weakly boolean inverse semigroup.1

• A weakly boolean inverse semigroup that is also an inverse ∧-semigroup is
called a boolean inverse semigroup. A morphism of boolean inverse semi-
groups is an inverse semigroup homomorphism that preserves binary meets
and binary compatible joins.

Let S be a boolean inverse semigroup. Let a, b ∈ S such that b ≤ a. Then we
may construct a unique element, denoted by a\b such that b and a\b are orthogonal
and a = b ∨ (a \ b). See Lemma 3.27 for a proof in a slightly more general setting.
We call a \ b the (relative) complement of b in a.

Lemma 3.20.

(1) Let S be a distributive inverse semigroup. Then every ultrafilter is a prime
filter.

(2) Let S be a distributive inverse semigroup. It is weakly boolean if and only
if every prime filter is an ultrafilter.

(3) Let S be a distributive inverse ∧-semigroup. It is boolean if and only if
every prime filter is an ultrafilter.

Proof. (1) Observe that F is a prime filter (respectively, ultrafilter) in S if and
only if F−1 · F is a prime idempotent filter (respectively, idempotent ultrafilter).
Next observe that G is an idempotent prime filter (respectively, ultrafilter) in S if
and only if E(G) is a prime filter in E(S) (respectively, ultrafilter). We now apply
Proposition 1.6(1).

(2) This follows by the argument in (1) above combined with Proposition 1.6(2).
The proof of (3) is immediate by (2). �

It follows by the above result that the callitic morphisms of boolean inverse
semigroups are just the morphisms under which the inverse images of ultrafilters
are ultrafilters.

A boolean groupoid is a hausdorff étale topological groupoid with a basis of
compact-open bisections whose space of identities is a boolean space. A morphism
of boolean groupoids is a proper continuous covering functor.

It is useful to deconstruct the definition of a boolean groupoid. The following is
proved as Lemma 2.37 of [18].

Lemma 3.21. Let G be a hausdorff étale topological groupoid.

(1) G has a basis of compact-open bisections if and only if Go has a basis of
compact-open bisections.

(2) The product of two compact-open subsets is compact-open.

1This is not an ideal term. Perhaps pre-boolean inverse semigroup would be better.
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The following is Lemma 2.42(1) of [18].

Lemma 3.22. Boolean groupoids are sober.

Proposition 3.23.

(1) The hausdorff coherent étale groupoids are precisely the boolean groupoids.
(2) If G is a hausdorff coherent étale groupoid then KB(G) is a boolean inverse

semigroup.
(3) If S is a coherent pseudogroup whose finite elements form a boolean inverse

semigroup then G(S) is hausdorff. In particular, GP (T ) is hausdorff for all
boolean inverse semigroups T .

(4) Let S be a distributive inverse semigroup. Then GP (S) is hausdorff if and
only if S is a boolean inverse semigroup.

Proof. (1) Immediate.
(2) Observe that the semilattice of idempotents of KB(G) is given by the compact-

open subsets of the boolean space Go and so forms a boolean algebra. It remains
to show that KB(G) is an inverse ∧-semigroup. Let A and B be two compact-open
bisections. Clearly A ∩B is an open bisection so it only remains to show that it is
compact. Compact subsets of hausdorff spaces are closed. Thus A ∩ B is closed.
But A ∩B is a closed subset of the compact set A and so A ∩B is compact.

(3) We show the last statement. The first statement the follows from Lemma
3.19. We may write S = Idl(T ) where T is a boolean inverse semigroup. Let F and
G be distinct elements of G(S). Thus they are distinct completely prime filters in
S. It follows that F d and Gd are distinct prime filters in T and so by Lemma 3.20
they are distinct ultrafilters. It follows that there exists a ∈ A such that b /∈ B.
But T is an inverse ∧-semigroup and B is an ultrafilter and so by Lemma 2.7(2)
of [18], there exists c ∈ B such that b ∧ c = 0. By definition, Xa↓ is the set of all
completely prime filters that contain a↓ and Xc↓ is the set of all completely prime
filters that contain c↓. Observe that F ∈ Xa↓ and G ∈ Xb↓ ; both sets are open sets
in G(S); and their interesection is empty because b ∧ c = 0.

(4) We have that GP (S) is hausdorff if S is a boolean inverse semigroup. Suppose
now that GP (S) is hausdorff. Then we have that KB(GP (S)) is a boolean inverse
semigroup. But S is isomorphic to KB(GP (S)) by Theorem 3.17 and so is a boolean
inverse semigroup. �

Lemma 3.24. Let θ : G → H be a coherent continuous covering functor between
boolean groupoids. Then θ is proper.

Proof. Let X be a compact subset of H . By assumption H has a basis of compact-
open bisections and so H are thus X is covered by a family of compact-open bi-
sections. It follows that X is covered by a finite set of compact-open bisections.
Thus we may write X ⊆

⋃m
i=1 Bi where the Bi are compact-open bisections. It

follows that θ−1(X) ⊆
⋃m

i=1 θ
−1(Bi). The union is a finite union of compact-open

bisections. Now X is a compact subset of a hausdorff space and so X is closed.
It follows that θ−1(X) is a closed subset of G. But θ−1(X) is a closed subset of
a compact set and so is itself compact. Thus X compact implies that θ−1(X) is
compact. �

Using the preceding lemmas we can now specialize Theorem 3.17 to boolean
inverse semigroups and boolean groupoids. This gives immediately the following
result. It was first proved by direct means as Theorem 2.40 of [18].
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Theorem 3.25 (Duality for boolean inverse semigroups). The category of boolean
inverse semigroups and their callitic morphisms is dual to the category of boolean
groupoids and their proper continuous covering functors.

If S is an inverse semigroup, we denote by GM (S) the set of ultrafilters on S. In
Theorem 3.25, the functor from boolean inverse semigroups to boolean groupoids
can be replaced by GM by Lemma 3.20.

3.5. Weakly boolean inverse semigroups. Under the duality of Theorem 3.17,
weakly boolean inverse semigroups correspond to those coherent étale groupoid
whose space of identities is hausdorff. This is weaker than assuming that the whole
groupoid is hausdorff which by Proposition 3.23 implies that the associated inverse
semigroup is in fact boolean. Accordingly, a weakly boolean groupoid is a coherent
groupoid whose space of identities is hausdorff. By Lemma 3.13, this is equivalent
to an étale groupoid whose space of identities is a boolean space.

Theorem 3.26 (Duality for weakly boolean inverse semigroups). The category of
weakly boolean inverse semigroups and their callitic morphisms is dually equiva-
lent to the category of weakly boolean groupoids and coherent continuous covering
functors.

Weakly boolean inverse semigroups turn out to be important in understanding
Paterson’s universal groupoid. We shall describe how in Section 5.1. For this
reason, it is convenient to prove here some simple results about such semigroups.

Lemma 3.27. Let S be a weakly boolean inverse semigroup. Let a, b ∈ S such that
b ≤ a. Then we may construct a unique element, denoted by a \ b, such that b and
a \ b are orthogonal and a = b ∨ (a \ b).

Proof. We have that d(b) ≤ d(a). But the semilattice of idempotents of S is
a boolean algebra. Thus there exists e ≤ d(a) such that d(a) = e ∨ d(b) and
e ∧ d(b) = 0. Since we are working in a distributive inverse semigroup, it follows
that a = b ∨ ae and b ∧ ae = 0. Suppose that x ≤ a is such that a = b ∨ x and
b∧ x = 0. Then because we are working inside a principal order ideal we have that
d(a) = d(b)∨d(x) and d(b)∧d(x) = 0. But by uniqueness of relative complements
in booleans algebras we have that e = d(x) and so x = ae. �

We denote the element ae by a \ b, the relative complement of b in a.

Lemma 3.28. Let S be a weakly boolean inverse semigroup. Suppose that t ≤ s
and v ≤ u. Then (s \ t)(u \ v) = su \ (sv ∨ tu ∨ tv).

Proof. We have that

su = (s \ t)(u \ v) ∨ tv ∨ t(u \ v) ∨ (s \ t)v.

But

tu = tv ∨ t(u \ v) and sv = tv ∨ (s \ t)v.

Thus

su = (s \ t)(u \ v) ∨ tv ∨ sv ∨ tu.

It remains to show that (s \ t)(u \ v) and tv ∨ sv ∨ tu have only zero as a common
lower bound. But this follows from the fact that tv, t(u\v) and (s\ t)v are pairwise
orthogonal. �



PSEUDOGROUPS 27

The following result will be used in the context of weakly boolean inverse semi-
groups although we prove it in a more general case. Recall that Ys denotes the set
of all prime filters containing s.

Lemma 3.29. Let S be a distributive inverse semigroup. If every prime filter in
Ys is idempotent then s is idempotent.

Proof. Let P be any prime filter containing s. By assumption, P is an idempotent
filter and so by Lemma 2.3 it is an inverse subsemigroup of S. It follows that
Ys = Ys−1 . Thus s = s−1 by Lemma 3.11(2). Similarly Ys ⊆ Ys2 . Both Ys · Ys

and Ys2 · Ys are defined and so Ys2 ⊆ Ys. It follows that Ys = Ys2 and so by
Lemma 3.11(2), we have that s is an idempotent. �

4. Dense and tight coverages

In this section, we shall describe a way of constructing pseudogroups from inverse
semigroups and of constructing étale groupoids from families of filters.

4.1. Groupoids determined by families of filters. We show how the different
constructions of étale groupoids from filters in Section 3 may be unified. Our
approach was motivated by the notion of a coverage in the theory of frames [6] but
modified to deal with the greater complexity of the inverse case. We observe first
that the different kinds of filters were defined with respect to the join operation.
We shall therefore abstract the properties of the join that are necessary to obtain
an étale groupoid.

A coverage C on an inverse semigroup S is defined by the following data. For
each a ∈ S, there is a set C(a) of subsets of a↓, whose elements are called coverings,
satisfying the following axioms:

(R): {a} ∈ C(a) for all a ∈ S.
(I): If X ∈ C(a) then X−1 ∈ C(a−1).
(MS): X ∈ C(a) and Y ∈ C(b) imply that XY ∈ C(ab).
(T): If X ∈ C(a) and Xi ∈ C(xi) for each xi ∈ X then

⋃

i Xi ∈ C(a).

For motivation, work in a pseudogroup and interpret X ∈ C(a) to mean that a =
∨

x∈X x and observe that each of the above axioms is true.
A filter A on S is called a C-filter if x ∈ A and X ∈ C(x) then y ∈ A for some

y ∈ X . We shall use the word family to describe the set of all C-filters for a given
coverage C. We now show how these definitions unify what we have discussed so
far and take the opportunity to introduce two further examples.

Examples 4.1. Let S be an inverse semigroup.

(1) The simplest weak coverage is defined by putting C(x) = {{x}}. We call
this the trivial coverage. The C-filters are just the filters.

(2) Let S be a distributive inverse semigroup. Define C(x) to be those finite
subsets of x↓ whose joins are x. This defines a coverage. The C-filters are
just the prime filters.

(3) Let S be a pseudogroup. Define C(x) to be those subsets of x↓ whose joins
are x. This defines a coverage. The C-filters are just the completely prime
filters.

(4) Let S be an inverse semigroup. To define our next coverage we need some
notation. Let a ∈ A and B ⊆ S. Define a → B to mean that for each
0 6= x ≤ a there exists b ∈ B such that x↓ ∩ b↓ 6= 0. We call this the
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arrow relation and it was first defined in [21]. For each a ∈ S define T (a)
to consist of those subsets B ⊆ a↓ such that a → B. We claim that D
defines a coverage on S. It is immediate that (R) and (I) hold. Suppose
that X ∈ D(a) and Y ∈ D(b). Then since X ⊆ a↓ and Y ⊆ b↓ we have
that XY ⊆ (ab)↓. Let 0 6= z ≤ ab. Then aa−1z = z and so a−1z 6= 0.
It follows that 0 6= a−1z ≤ a−1ab ≤ b. Thus there exists y ∈ Y and
a u such that u ≤ y, a−1z. Observe that a−1au = u and so au 6= 0.
Thus 0 6= au ≤ ay, z. We now carry out a similar calculation starting
from au ≤ ay. Then auy−1 ≤ a and so there exists x ∈ X and a v
such that v ≤ x, auy−1. Observe that vyy−1 = v and so vy 6= 0. Thus
0 6= vy ≤ xy, auy−1y = au ≤ z. It follows that (MS) holds. Finally, we
check that (T) holds. Let X ∈ D(a) and suppose that for each xi ∈ X
we have that Xi ∈ D(xi). We prove that

⋃

iXi ∈ D(x). Let 0 6= z ≤ a.
Then there exists 0 6= u ≤ z, xi for some xi ∈ X . But 0 6= u ≤ xi implies
that there exists y ∈ Xi and a v such that 0 6= v ≤ y, u. Thus there exists
0 6= u ≤ z, y where y ∈ Xi, as required. The D-filters are called dense
filters.

(5) This is the same as the above example but we only consider the finite
subsets of D. The resulting coverage is denoted by T and is called the tight
coverage. The T -filters are called tight filters.

Throughout the remainder of this section, C will be a coverage. If X ∈ C(a)
define d(X) = {x−1x : x ∈ X}.

Lemma 4.2. Let C be a coverage on S.

(1) X ∈ C(a) implies that d(X) ∈ C(a−1a).
(2) If X ⊆ a↓ then X ∈ C(a) if and only if d(X) ∈ C(a−1a).
(3) Let X,Y ∈ C(a). Then X ∧ Y = {x ∧ y : x ∈ X, y ∈ Y } ∈ C(a) and

X ∧ Y = Xd(Y ) = Y d(X).
(4) If X ∈ C(b) and X,Y ∈ C(a) then X ∧ Y ∈ C(b).

Proof. (1) We have that x ∈ X implies that x ≤ a and so x = ax−1x. Thus
a−1x = x−1x. By (R), we have that {a−1} ∈ C(a−1) and so by (MS) we have that
a−1X ∈ C(a−1a) but a−1X = {x−1x : x ∈ X} and the claim follows.

(2) By (1), only one direction needs proving. Suppose that X ⊆ a↓ and d(X) ∈
C(a−1a). Then by (MS), we have that ad(X) ∈ C(a). But X = ad(X) and the
result follows.

(3) Observe first that since x, y ≤ a the meet x ∧ y is defined. Since x and y
are compatible, x ∧ y = xy−1y = yx−1x. Thus X ∧ Y = X{y−1y : y ∈ Y } which
belongs to C(a) by (1) and (MS).

(4) It remains to show that X ∧ Y ∈ C(b). For each x ∈ X we have that x ≤ a
and so x = xa−1a. Thus for each x ∈ X we have that xd(Y ) ∈ C(x). But X ∈ C(b)
and so by (T), we have that Xd(Y ) ∈ C(b).

�

Our goal now is to show that the set of all C-filters forms an étale groupoid.

Lemma 4.3. Let A be a filter on the inverse semigroup S.

(1) A is a C-filter if and only if A−1 is a C-filter.
(2) A is a C-filter if and only if A−1 ·A is a C-filter.
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Proof. (1) Suppose that A is a C-filter. Let x ∈ A−1 where X ∈ C(x). Then
x−1 ∈ A and X−1 ∈ C(x−1) by axiom (I). By assumption, there exists y ∈ X−1

such that y ∈ A. But then y−1 ∈ A−1 where y−1 ∈ X , as required.
(2) Suppose that A is a C-filter. Let x ∈ A−1 · A where X ∈ C(x). Then

a−1b ≤ x where a, b ∈ A. It follows that ax ∈ A where aX ∈ C(ax) by axiom (MS).
By assumption, ay ∈ A for some y ∈ X . Thus a−1ay ∈ A−1 ·A and so y ∈ A−1 ·A,
as required.

Suppose now that A−1 · A is a C-filter. Let x ∈ A where X ∈ C(x). Then
x−1x ∈ A−1 · A where x−1X ∈ C(x−1X). By assumption, x−1y ∈ A−1 · A where
x−1X ∈ C(x−1x). Thus x−1y ∈ A−1 · A for some y ∈ A. Thus x−1xy ∈ A and so
y ∈ A, as required. �

Lemma 4.4. If A and B are C-filters and if A ·B exists then A ·B is a C-filter.

Proof. As we explained in Section 1, A · B is a filter and d(A · B) = d(B). Thus
the result follows from the lemma above. �

It follows that we may define the groupoid GC(S) of C-filters of S.
For each s ∈ S, define Zs to be the set of all C-filters that contain s. Define ξ to

be the set of all such sets.

Lemma 4.5.

(1) Zs is a bisection.
(2) Z−1

s = Zs−1 .
(3) ZsZt = Zst.
(4) Zs ∩ Zt is a union of elements of ξ.

Proof. (1) This follows by Lemma 2.11 of [16].
(2) This follows by Lemma 4.3(1).
(3) The inclusion ZsZt ⊆ Zst follows by Lemma 4.4. The proof of the reverse

inclusion uses the same argument as Lemma 2.21(4) combined with Lemma 4.3(2).
(4) Let A ∈ Zs ∩ Zt. Then s, t ∈ A. Since A is a filter there exists a ∈ A such

that a ≤ s, t. Observe that Za ⊆ Zs ∩ Zt and that A ∈ Za. �

It follows that ξ is a basis for a topology on GC(S).

Proposition 4.6. For each coverage C on the inverse semigroup S, the groupoid
GC(S) is an étale topological groupoid.

Proof. The proof follows the same approach as used in Lemma 2.7 and Proposi-
tion 2.8 by virtue of Lemma 4.5. �

4.2. Universal pseudogroups determined by coverages. Let S be an inverse
semigroup equipped with a coverage C. A semigroup homomorphism θ : S → T to
a pseudogroup is said to be a C-cover-to-join map if for each element a ∈ S and
C-cover A of a we have that θ(a) =

∨

ai∈A θ(ai). We single out two cases for special
terminology.

• In the case C = D, we shall refer instead to dense maps.
• In the case C = T , we shall refer instead to tight maps.

Suppose that π : S → PC(S) is a C-cover-to-join map to a pseudogroup such that
if θ : S → T is any C-cover-to-join map to a pseudogroup then there is a unique
morphism of pseudogroups θ̄ : PC(S) → T such that θ = θ̄π. Then we call PC(S)
the universal pseudogroup of (S, C).
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Examples 4.7.

(1) When C is the trivial coverage of Examples 4.1(1), the universal pseu-
dogroup is just C(S).

(2) When S is a distributive inverse semigroup equipped with the coverage
coming from finite joins, Examples 4.1(2), the universal pseudogroup is
Idl(S) by Proposition 3.1.

We do not know how to construct universal pseudogroups in general, but we
shall show how to construct them in all the cases of interest to us in this paper. To
do this, we examine Examples 4.1 in more detail. The first three examples share
a common property. In each case, C(a) ∩ C(b) 6= ∅ implies that a = b. We say
that such semigroups are separative (with respect to the coverage C) and that the
coverage is separated.

The last two examples are not separated. For the tight coverage, this is the origin
of Section 5 of [21]. It will turn out that constructing universal pseudogroups in
the case where the semigroup is separative with respect to the coverage is easy. In
the case where the semigroup is not separative, we try to construct a homomorphic
image which is separative with respect to the ‘induced coverage’. The meaning of
this latter phrase is unclear in general, but is not problematic in the case of the
dense and tight coverages. We deal with this case first and show that we can reduce
it to the separative case.

Let S be an inverse semigroup equipped with a coverage C. Define the relation
≡ on S by

a ≡ b ⇔ C(a) ∩ C(b) 6= ∅.

Lemma 4.8. The relation ≡ is a congruence on S.

Proof. We show first that ≡ is an equivalence relation. We have that {a} ∈ C(a)
and so a ≡ a. It is immediate that a ≡ b implies that b ≡ a. Suppose that a ≡ b
and b ≡ c. Let X ∈ C(a) ∩ C(b) and Y ∈ C(b) ∩ C(c). By Lemma 4.2(4), we have
that X ∧ Y ∈ C(a) ∩ C(c) and so a ≡ c. Thus ≡ is an equivalence relation and it is
a congruence by (MS). �

We denote by S the quotient of S by ≡, and the ≡-congruence class containing
s by s. There is a homomorphism σ : S → S given by s 7→ s.

Lemma 4.9. Let θ : S → T be a C-cover-to-join map to a pseudogroup. Then there
is a unique homomorphism θ̄ : S → T such that θ̄σ = θ.

Proof. Suppose that a ≡ b. Then there exists X ∈ C(a) ∩ C(b). But θ is a C-cover-
to-join map and so θ(a) =

∨

x∈X θ(x) and θ(b) =
∨

x∈X θ(x). Thus θ(a) = θ(b).

We may therefore define θ̄(a) = θ(a). �

The above lemma shows that C-cover-to-join maps factor through S. We now
turn to the specific cases of interest to us.

Lemma 4.10. Let D be the dense coverage on S.

(1) Let X ∈ D(a). Then there exists A ∈ D(a) such that σ(A) = X. In
addition, if X is finite then A can be chosen to be finite.

(2) If D(a) ∩ D(b) 6= ∅ then D(a) ∩ D(b) 6= ∅.
(3) Let X ∈ D(a). Then X ∈ D(a).
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Proof. Observe first that in this case the homomorphism σ is 0-restricted.
(1) By Lemma 4.2, we have that {x−1x : x ∈ X} ∈ D(a−1a). For each x ∈ X,

choose an idempotent ex such that σ(ex) = x−1x. Put A = {aex : x ∈ X} ⊆ a↓.
Observe that σ(aex) = ax−1x = x. Thus σ(A) = X. Observe that ifX is finite then
A is finite. We prove that a → A. Let 0 6= z ≤ a. Then z = ak for some idempotent
k. Thus 0 6= σ(z) ≤ σ(a) since σ is 0-restricted. Observe that σ(z) = σ(a)σ(k).
Thus there exists 0 6= u and x ∈ X such that u ≤ z,x. Choose any idempotent
f such that σ(f) = u−1u and put u = aexfk. Then σ(u) = u, using the fact
that uσ(k) = u, and so in particular u 6= 0. By construction u ≤ aex, z. We have
therefore proved that a → A.

(2) By definition, there exists X ∈ D(a)∩D(b). By (1) above, we may A ∈ D(a)
and B ∈ D(b) such that σ(A) = X = σ(B). Each element of A has the form
aex and each element of B has the form bfx where σ(aex) = x = σ(bex). Thus
aex ≡ bex. Choose Cx ∈ D(aex)∩D(bex) and put C =

⋃

x Cx. Then by axiom (T),
we have that C ∈ D(a) ∩ D(b).

(3) Let 0 6= σ(b) ≤ σ(a). Then σ(b) = σ(ab−1b). Thus b ≡ ab−1b. Therefore
there exists Y ∈ D(b) ∩ D(ab−1b). But X ∈ D(a) implies by (MS) that Xb−1b ∈
D(ab−1b). Thus by Lemma 4.2, we have that Y ∧ Xb−1b ∈ D(ab−1b). Now 0 6=
ab−1b and so there exists 0 6= z such that z ≤ ab−1b and z ≤ y ∧ xb−1b for some
y ∧ xb−1b ∈ Y ∧Xb−1b. But then 0 6= σ(z) ≤ σ(b), σ(x), as required. �

The following is immediate by the above lemma.

Corollary 4.11. With respect to either the dense or tight coverage on S, the quo-
tient semigroup S is separative.

We now prove two key propositions. The first provides more information about
the factorization arising from Lemma 4.9.

Proposition 4.12. Let S be an inverse semigroup equipped with the dense coverage
D and let θ : S → T be a D-cover-to-join map to a pseudogroup. Then the induced
homomorphism θ̄ : S → T is a D-cover-to-join map. An analogous result holds for
the tight coverage.

Proof. Let X ∈ D(a) in S. By Lemma 4.10, there exists A ∈ D(a) such that σ(A) =
X. By assumption, θ(a) =

∨

x∈A θ(x). But θ̄(σ(a)) = θ(a) and
∨

x∈X θ̄(σx) =
∨

x∈A θ(x) and the result follows. �

The second proposition tells us that S and S are essentially the same when it
comes to constructing étale groupoids.

Proposition 4.13. Let S be an inverse semigroup equipped with the dense coverage
D. Then the posets of dense filters on S and those on S are order-isomorphic
and this induces a homeomorphism between the groupoids GD(S) and GD(S). An
analogous result holds for the tight coverage.

Proof. We shall prove that the map A 7→ σ(A) is a homeomorphism.
Observe first that if A is a dense filter in S then σ(x) ∈ σ(A) if and only if x ∈ A.

Suppose that σ(x) ∈ σ(A). Then σ(x) = σ(a) for some a ∈ A. Thus x ≡ a. It
follows that there exists X ∈ D(x) ∩ D(a). But a ∈ A and A is a dense filter thus
there exists y ∈ X ∩ A. But y ≤ x and so x ∈ A, as required.
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Let A and B be dense filters. If A ⊆ B then clearly σ(A) ⊆ σ(B). Conversely,
suppose that σ(A) ⊆ σ(B). Let a ∈ A. Then σ(a) ∈ σ(A) = σ(B). Thus
σ(a) ∈ σ(B). It follows by our observation above that a ∈ B and so A ⊆ B.

We prove that if A is a dense filter then σ(A) is a dense filter. By the observation
above, it is clear that σ(A) is a directed set. Suppose that σ(a) ∈ σ(A) where a ∈ A
and σ(a) ≤ σ(b). Then σ(a) = σ(ba−1a). Thus again by the observation above,
we have that ba−1a ∈ A and so b ∈ A giving σ(b) ∈ σ(A). Let X ∈ D(a) where
a ∈ σ(A). By lemma 4.10, there exists X ∈ D(a) such that σ(X) = X. But a ∈ A
and so there exists b ∈ A ∩X . Thus σ(b) ∈ X ∩ σ(A), as required.

The map A 7→ A is a bijection. Suppose that A and B are dense filters such
that σ(A) = σ(B). Let a ∈ A. Then σ(a) ∈ σ(A) and so there exists b ∈ B such
that σ(a) = σ(b). It follows by the observation above that b ∈ B. By symmetry
it follows that A = B and so the map is injective. We now prove that this map
is surjective. Let A be a dense filter in S. Put A = σ−1(A). It is clear that A is
closed upwards. Let a, b ∈ A. Then σ(a), σ(b) ∈ A. Thus there exists σ(c) ∈ A

such that σ(c) ≤ σ(a), σ(b). It follows that σ(c) = σ(ac−1c) = σ(bc−1c). Hence
ac−1c ≡ bc−1c. Thus there exists X ∈ D(ac−1c) ∩ D(bc−1c). By Lemma 4.10,
σ(X) ∈ D(σ(c)). Thus σ(x) ∈ A, for some x ∈ X , since the filter is dense. But
then x ∈ A and x ≤ a, b. as required. Finally, let X ∈ D(a) where a ∈ A. Then
by Lemma 4.10, we have that X ∈ D(a). Thus σ(x) ∈ A for some x ∈ X and so
x ∈ A, as required. It follows that we have shown that the map is a bijection.

It remains to show that it induces a functor between the groupoids and that it is a
homeomorphism. Let A be a dense filter. We prove that σ(A−1 ·A) = σ(A)−1 ·σ(A).
Let σ(x) ∈ σ(A−1 · A). Then σ(a−1b) ≤ σ(x) for some a, b ∈ A. Thus σ(a−1b) =
σ(xd(a−1b)). But A−1 · A is a dense filter and so xd(a−1b)) ∈ A−1 · A. It follows
that x ∈ A−1 · A and so we may find c, d ∈ A such that c−1d ≤ x. But then
σ(c)−1σ(d) ≤ σ(x). We have therefore proved that σ(A−1 ·A) ⊆ σ(A)−1 ·σ(A). We
now prove the reverse inclusion. Let σ(x) ∈ σ(A)−1 ·σ(A). Then σ(a)−1σ(b) ≤ σ(x)
for some a, b ∈ A. Thus σ(a−1b) = σ(xd(a−1b)). But a−1b ∈ A−1 ·A a dense filter
and so xd(a−1b)) ∈ A−1 · A giving x ∈ A−1 · A. Thus σ(x) ∈ σ(A−1 ·A).

Suppose that A and B are dense filters such that A ·B exists. Then it follows by
the above that σ(A) · σ(B) exists. The proof that σ(A ·B) = σ(A) · σ(B) is similar
to the above proof.

It remains to show that our bijection is a homeomorphism. Let s ∈ S. Then Zs

consists of all dense filters that contain s. The fact that σ(Zs) = Zσ(s) is immediate
in one direction, and the converse follows since if σ(A) contains σ(s) then s ∈ A by
our observation at the head of the proof. It follows that our map is an open map.
Finally, the inverse image of Zσ(s) under our map is precisely Zs and so our map
is continuous. �

4.3. Universal pseudogroups: the idempotent-pure case. We begin by gen-
eralizing the classical notion of a nucleus on a frame [6] to pseudogroups. Let S
be an inverse semigroup. A function ν : S → S is called a nucleus if it satisfies the
following four conditions:

(N1): a ≤ ν(a) for all a ∈ S.
(N2): a ≤ b implies that ν(a) ≤ ν(b).
(N3): ν2(a) = ν(a) for all a ∈ S.
(N4): ν(a)ν(b) ≤ ν(ab) for all a, b ∈ S.
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The following is a routine derivation from the axioms.

Lemma 4.14. Let ν be a nucleus on an inverse semigroup S. Then

ν(ab) = ν(aν(b)) = ν(ν(a)b) = ν(ν(a)ν(b)).

Let S be an inverse semigroup equipped with a nucleus ν. Define

Sν = {a ∈ S : ν(a) = a},

the set of ν-closed elements of S. On the set Sν define

a · b = ν(ab).

A homomorphism θ : S → T is said to be idempotent-pure if θ(s) an idempotent
implies that s is an idempotent.

Lemma 4.15. The structure (Sν , ·) is a semigroup and the map S → Sν given by
a 7→ ν(a) is a surjective idempotent-pure semigroup homomorphism. In particular,
(Sv, ·) is an inverse semigroup whose natural partial order coincides with the one
in S.

Proof. The proof that the operation yields a semigroup follows from Lemma 4.14 as
does the proof that the map is a semigroup map. The image of an inverse semigroup
under a homomorphism is an inverse semigroup. Observe that if ν(s) = ν(t) then
s and t are bounded above and so are compatible. Thus the kernel of ν is a subset
of the compatibility relation and so idempotent-pure by [13].

We denote the natural partial order in Sν temporarily by �. Let a, b ∈ Sν .
Suppose first that a � b. Then a = b · a−1 · a. Thus a = ν(ba−1a), It follows
that ba−1a ≤ a. Observe that bb−1a = a and so aa−1 ≤ bb−1. Also ba−1a =
a(ba−1a)−1ba−1a. Thus ba−1a = ab−1b and so ba−1 is an idempotent. By symmetry
b−1a is also an idempotent and so a and b are compatible. But aa−1 ≤ bb−1 and
so a ≤ bb−1a ≤ b, as required. On the other hand, if a ≤ b then a = ba−1a. Thus
a = ν(a) = ν(ba−1a) and so a � b, as required. �

Proposition 4.16. Let ν be a nucleus on a pseudogroup S. Then Sν is a pseu-
dogroup and the natural map from S to Sν is an idempotent-pure pseudogroup ho-
momorphism.

Proof. Let {ai : i ∈ I} be a compatible subset of Sν . Since the kernel of ν is
contained in the compatibility relation, it is obviously a compatible subset of S and
so by assumption has a join a in S. Put a′ = ν(a) ∈ Sν . We claim that a′ is the
join of the ai in Sν . First ai ≤ a ≤ ν(a) = a′ and so it is an upper bound of the ai.
Suppose that b ∈ Sν and ai ≤ b for all i. Then a ≤ b and so a′ = ν(a) ≤ ν(b) = b.

For clarity we shall denote the join operation on Sν by
⊔

. We shall prove that
if
⊔

ai exists then
⊔

b · ai exists and that b ·
⊔

ai =
⊔

bai where b and the ai are all
ν-closed elements. In the semigroup S, the existence of

∨

ai implies the existence
of
∨

bai. Now bai ≤
∨

bai implies that ν(bai) ≤ ν(
∨

bai). Thus the ν(bai) are
pairwise compatible and so

∨

ν(bai) exists. It follows that
⊔

b · ai exists. Now

b · ⊔ai = ν(
∨

bai)

and
⊔

b · ai = ν(
∨

ν(bai)).
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Since bai ≤ ν(bai) it is immediate that ν(
∨

bai) ≤ ν(
∨

ν(bai)). To prove the
reverse inequality, we start with bai ≤

∨

bai and so ν(bai) ≤ ν(
∨

bai) from which
the inequality readily follows.

It remains to show that the map S → Sν given by a 7→ ν(a) is a pseudogroup
map. Suppose that ai is a compatible set of elements in S. We need to prove
that ν(

∨

ai) =
⊔

ν(ai). Since ai ≤ ν(ai) we have that
∨

ai ≤
∨

ν(ai) and so
ν(
∨

ai) ≤
⊔

ν(ai). The proof of the reverse inequality starts with ai ≤
∨

i ai, and
the desired inequality then follows readily. �

We may characterize the pseudogroup morphisms that may be described by
means of nuclei.

Theorem 4.17. Surjective idempotent-pure pseudogroup morphisms may be de-
scribed by means of nuclei.

Proof. Let θ : S → T be a surjective idempotent-pure pseudogroup morphism.
For each t ∈ T , the inverse image θ−1(t) is a compatible subset of S since θ is
idempotent-pure. Define θ∗ : T → S by

θ∗(t) =
∨

{s ∈ S : θ(s) ≤ t}.

Define ν : S → S by ν(s) = θ∗(θ(s)). Observe that θ∗ is an order-preserving map
and that s ≤ θ(θ∗(s)) for all s ∈ S and θ(θ∗(t)) = t for all t ∈ T since θ is assumed
surjective. It therefore follows that θ = θθ∗θ and θ∗ = θ∗θθ∗. We claim that ν is a
nucleus on S. The proofs that (N1), (N2) and (N3) hold are straightforward. The
proof of (N4) follows from the fact that multiplication distributes over compatible
joins.

It remains to show that (Sν , ·) is isomorphic to T . Let s, t ∈ Sν . Then

θ(s · t) = θ(ν(st)) = θθ∗θ(st) = θ(st) = θ(s)θ(t).

If s, t ∈ Sν and θ(s) = θ(t). Then θ∗θ(s) = θ∗θ(t) and so ν(s) = ν(t) giving
s = t. Finally, let t ∈ T . Then there exists s ∈ S such that θ(s) = t. Then
θθ∗θ(s) = θθ∗(t) giving θ(ν(s)) = t. �

A coverage C on an inverse semigroup S is said to be idempotent-pure if X ∈ C(a)
andX ⊆ E(S) implies that a is an idempotent. We shall now show how to construct
nuclei on the pseudogroup C(S) using idempotent-pure coverages.

Let A be a subset of the inverse semigroup S. The subset A is said to be C-closed
if X ⊆ A and X ∈ C(x) implies that x ∈ A. Define A by x ∈ A if and only if there
exists X ⊆ A such that X ∈ C(x).

Lemma 4.18.

(a): If C is separated then it is idempotent-pure, and s↓ = s↓ for all s ∈ S.
(b): Let C be an arbitrary idempotent-pure coverage on the inverse semigroup

S.
(1) Let A be a compatible order ideal. Then A is a C-closed compatible

order ideal.
(2) A is equal to the intersection of all C-closed compatible order ideals

that contain A.
(3) If E,F ⊆ E(S) are C-closed order ideals of the semilattice of idempo-

tents then so too is EF .
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Proof. (a) Let E ∈ C(x) where E ⊆ E(S). By (R) and (MS) we have that Ex−1 ∈
C(xx−1). But if e ∈ E then e ≤ x and so e = ex = xe. Thus ex−1 = exx−1 = e. It
follows that Ex−1 = E and so by assumption x = xx−1.

Let X ∈ C(a) where X ⊆ s↓. We prove that C(sa−1a) ∩ C(a) 6= ∅ from which
we get a = sa−1a and so a ≤ s. Now X ⊆ s↓ implies that X = sd(X). But
d(X) ∈ C(a−1a) and so sd(X) ∈ C(Sa−1a).

(b1) We show first that A is C-closed. Let X ⊆ A be such that X ∈ C(a). Let
x ∈ X . Then either x ∈ A or x ∈ A. If the latter then there exists Ax ⊆ A such that
Ax ∈ C(x). If the former then put Ax = {x} ∈ C(x) by (R). Put B =

⋃

x∈X Ax ⊆ A.

By (T), we have that B ∈ C(x). Thus x ∈ A.
Next we show that A is an order ideal. Let x ∈ A where X ∈ C(x) and suppose

that y ≤ x. Then y = xy−1y. But by (MS), we have that Xy−1y ∈ C(y). But A is
an order ideal and so Xy−1y ⊆ A. Thus y ∈ A, as required.

Finally, we show that A is a compatible subset. Let a, b ∈ A where X,Y ⊆ A are
such that X ∈ C(a) and Y ∈ C(b). Then by (I) and (MS), we have that X−1Y ∈
C(a−1b) But A is a compatible set and so X−1Y consists entirely of idempotents.
It follows by our assumption on the coverage that a−1b is an idempotent. Similarly
ab−1 is an idempotent. Thus a and b are compatible, as required.

(b2) This is immediate.
(b3) Let g ∈ EF . By assumption, g is an idempotent. There exists X ⊆ EF

such that X ∈ C(g). But EF ⊆ E,F . Thus g ∈ E and g ∈ F and so g ∈ EF , as
required.

�

Let A and B be subsets of S. Define the following sets

A−1B = {s ∈ S : As ⊆ B} and BA−1 = {s ∈ S : sA ⊆ B}.

Lemma 4.19. Let B be a C-closed order ideal. Then for any A, we have that
A−1B is a C-closed order ideal, and dually.

Proof. Let s ∈ A−1B. Then by definition As ⊆ B. Let t ≤ s and let a ∈ A.
Then at ≤ as. But as ∈ B and B is an order ideal and so at ∈ B. It follows that
t ∈ A−1B and so A−1B is an order ideal. Let X ⊆ A−1B where X ∈ C(x). Then
for each xi ∈ X we have that Axi ⊆ B. It follows that for each a ∈ A, we have
that aX ∈ C(ax) and aX ⊆ B. But B is C-closed and so ax ∈ B for every a ∈ A.
It follows by definition that x ∈ A−1B, as required. �

Let C be an idempotent-pure coverage on the inverse semigroup S. Denote by

C(S, C) the set of C-closed elements of C(S). Define ι : S → C(S, C) by ι(s) = (s↓).

Theorem 4.20. Let C be an idempotent-pure coverage on the inverse semigroup
S. Then the map A 7→ A defines a nucleus on C(S), and ι : S → C(S, C) is a
C-cover-to-join map which is universal amongst such maps to pseudogroups.

Proof. It is clear that axioms (N1), (N2) and (N3) hold. It remains to show that
(N4) holds. Let A,B ∈ C(S). We prove that AB ⊆ AB. Let C be any C-
closed compatible order ideal containing AB. Thus AB ⊆ C. It follows that
B ⊆ A−1C. By the above lemma, A−1C is a C-closed order ideal. Now B ⊆ B and
so B = B ∩B ⊆ A−1C ∩B. Observe that the intersection of a C-closed compatible
order ideal and a C-closed order ideal is a C-closed compatible order ideal. Thus
A−1C ∩ B is a C-closed compatible order ideal containing B. It follows that it
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must contain B. Hence B ⊆ A−1C. Thus AB ⊆ C. A dual argument shows that
AB ⊆ C, as required.

We now come to the proof of the second claim. We show first that ι is a C-
cover-to-join map. Let X ∈ C(a). Clearly ι(b) ≤ ι(a) for all b ∈ X . Suppose that
A ∈ C(S, C) such that ι(b) ≤ A for all b ∈ X . Then X ⊆ A. But A is a C-closed
subset and so a ∈ A from which it follows that ι(a) ≤ A. We have therefore proved
that ι(a) =

∨

b∈X ι(b), as required.

Let θ : S → T be any C-cover-to-join map to a pseudogroup. Define θ̄ : C(S, C) →
T by θ̄(A) =

∨

a∈A θ(a). Given s ∈ S we show that

θ(s) =
∨

x∈ι(s)

θ(x).

Clearly θ(s) ≤
∨

x∈ι(s) θ(x). To prove the reverse inequality we argue as follows.

Let x ∈ s↓. Then there exists X ∈ C(x) where X ⊆ s↓. But θ is a C-cover-to-join
map and so θ(x) =

∨

y∈X θ(y). However y ≤ s and so θ(y) ≤ θ(s). It follows that

θ(x) ≤ θ(s), as required. �

The above theorem tells us how to construct pseudogroups under certain cir-
cumstances, we now turn to the related groupoids.

Theorem 4.21. Let C be an idempotent-pure coverage on the inverse semigroup
S. Then the poset of C-filters on S is order isomorphic to the poset of completely
prime filters on C(S, C) and this induces a homeomorphism between the groupoids
GC(S) and G(C(S, C)).

Proof. We begin by setting up the bijection.
Let F be a C-filter in S. Define

Fu = {A ∈ C(S, C) : A ∩ F 6= ∅}.

We prove that Fu is a completely prime filter in C(S, C). Let A,B ∈ Fu. Then
A∩F 6= ∅ and B ∩F 6= ∅. Thus we may find elements f1 ∈ F ∩A and f2 ∈ F ∩B.
But f1, f2 ∈ F implies that there exists f ∈ F such that f ≤ f1, f2. Furthermore,
A and B are order ideals. Thus f ∈ A ∩ B. It follows that f ∈ F ∩ A ∩ B and
so A ∩ B ∈ Fu. Now let A ∈ Fu and A ≤ B. Then A ∩ F 6= ∅ and A ⊆ B and
so B ∩ F 6= ∅ giving B ∈ Fu. Finally, let

⊔

Ai ∈ Fu. Then
⋃

Ai ∈ Fu. Thus
⋃

Ai ∩F 6= ∅. It follows that there exists a ∈
⋃

Ai such that a ∈ F . By definition,
there exists X ∈ C(a) such that X ⊆

⋃

Ai. But a ∈ F and X ∈ C(a) implies that
there exists x ∈ F ∩X since F is a C-filter. But x ∈ X ⊆

⋃

Ai and so x ∈ Ai. It
follows that Ai ∈ Fu, as required.

Let P be a completely prime filter in C(S, C). Define

P d = {s ∈ S : s↓ ∈ P}.

We prove that P is a C-filter in S. We show first that P d is a directed set. Let

s, t ∈ P d. Then s↓, t↓ ∈ P . But P is a filter in a pseudogroup and so s↓ ∧ t↓ ∈ P .
Now in a pseudogroup we have that

s↓ ∧ t↓ =
⊔

u↓

where u↓ ≤ s↓, t↓. But P is a completely prime filter and so u↓ ∈ P for some such
u. Now sadly, we cannot deduce that u ≤ s, t so we need to do some more work.

We have that u ∈ s↓ and u ∈ t↓. Thus there is a subset {si : i ∈ I} ⊆ s↓ such that
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{si : i ∈ I} ∈ C(u) and a subset {tj : j ∈ J} ⊆ t↓ such that {tj : j ∈ J} ∈ C(u). We
therefore have that

u↓ =
⊔

i

s↓i

and

u↓ =
⊔

j

t↓j .

Observe that it immediately follows that each si is compatible with each tj . By
[28], we may write

u↓ =
⊔

i,j

s↓i ∧ t↓j .

But we now use again the fact that P is completely prime to deduce that s↓i ∧t
↓
j ∈ P

for some i and j. However, we ascertained above that si is compatible with tj . It

follows that si ∧ tj ≤ s, t exists and that (si ∧ tj)↓ = s↓i ∧ t↓j . Thus si ∧ tj ∈ P d

and is below both s and t. It is immediate that P d is closed upwards. It remains

to show that it is a C-filter. Let x ∈ P d where X ∈ C(x). Then x↓ =
⊔

y∈X y↓ ∈ P

and so y↓ ∈ P , since P is completely prime, and so y ∈ P d, as required.
It is immediate that P d is closed upwards. It remains to show that it is a C-filter.

Let x ∈ P d where X ∈ C(x). Then x↓ =
⊔

y∈X y↓ ∈ P and so y↓ ∈ P , since P is

completely prime, and so y ∈ P d, as required.
It remains to show that the above two operations are mutually inverse. We

begin by showing that F = (Fu)d. If a ∈ F then a↓ ∈ Fu and so a ∈ (Fu)d. Thus

F ⊆ (Fu)d. Let s ∈ (Fu)d. Then s↓ ∈ Fu. Thus s↓ ∩ F 6= ∅. It follows that there
is X ∈ C(x) such that X ⊆ s↓. But F is a C-filter and so there exists y ∈ X such
that y ∈ F . But y ≤ s and so s ∈ F , as required.

Next we show that P = (P d)u. Let A ∈ (P d)u. Then A∩P d 6= ∅. Let a ∈ A∩P d.

Then a↓ ∈ P and a↓ ≤ A. Thus A ∈ P . We have shown that (P d)u ⊆ P . To prove

the reverse inclusion let A ∈ P . We have that A =
⊔

a∈A a↓. But P is completely

prime and so a↓ ∈ P for some a ∈ A. Thus a ∈ P d and A ∈ (P d)u, as required.
We have therefore set up a bijection between the two groupoids. We show now

that this bijection is a functor. We show first that (F−1 · F )u = (Fu)−1 · Fu.
Let A ∈ (F−1 · F )u. Then there is f ∈ F such that f−1f ∈ A and f ∈ F . But

X = f↓ ∈ Fu and X−1X ≤ A, as required. The proof of the reverse inclusion is
straightforward.

Let F and G be two C-filters in S such that the product F · G is defined. Let

A ∈ (F ·G)u. Then fg ∈ A for some f ∈ F and g ∈ G. Observe that (f↓) · (g↓) =

(fg)↓. It follows that A ∈ Fu ·Gu. To prove the reverse inclusion let A ∈ Fu ·Gu.
Then XY ≤ A where X ∈ Fu and Y ∈ Gu. Thus X ∩ F 6= ∅ and Y ∩ G 6= ∅. Let
f ∈ X ∩ F and g ∈ Y ∩G. But then fg ∈ A and fg ∈ F ·G. Thus A ∈ (F ·G)u.

It follows that the two groupoids are isomorphic. It remains to show that this
isomorphism induces a homeomorphism. The basic open sets in GC(S) have the
form Zs where s ∈ S. We claim that the image of this set under the map F 7→ Fu

is the set Xt where t = s↓. Let s ∈ F where F is a C-filter. Then Fu is, as we

have seen, a completely prime filter. But s↓ ∩ F 6= ∅ and so t ∈ Fu. Conversely,
if A ∈ Xt then s ∈ Ad and (Ad)u = A. Thus our isomorphism is an open map.
Finally, consider the open subset XA where A ∈ C(S, C). Then XA =

⋃

Xt where



38 M. V. LAWSON AND D. H. LENZ

t = s↓ and s ∈ A. Thus we need only determine the inverse images of the set

Xt where t = s↓ for some s ∈ S. But this is just the set Zs. It follows that our
mapping is continuous and open and so it is a homeomorphism. �

A coverage C is said to be of finite type if the elements of C(a) are finite sets for
all a.

Lemma 4.22. Let C be an idempotent-pure coverage on S of finite type.

(1) The finite elements of C(S, C) are the elements of the form A where A is a
compatible order ideal of the form A = {a1, . . . , am}↓.

(2) The product of finite idempotents in C(S, C) is a finite idempotent.
(3) Every idempotent is a join of finite idempotents.
(4) C(S, C) is coherent.

Proof. (1) Let A = {a1, . . . , am}↓ ∈ C(S) and let A ≤
⊔

j Bj where the Bj are

C-closed elements of C(S). Then A is a subset of the C-closure of
⋃

j Bj . It follows
that each ai is in the closure of a finite union of some of Bj ’s. Thus A is contained
in the closure of a finite union of the Bj ’s under our assumption that the coverage

is of finite type. Thus A ≤
⊔p

j=1 Bj for some finite p and suitable relabelling.

Let A = {ai : i ∈ I}↓ be an element of C(S) such that A is finite. Then A =
⊔

i a
↓
i =

⊔p

i=1 a
↓
i for some finite number of ai and suitable relabelling.

(2) This follows from Lemma 4.18(3).

(3) If E is an idempotent in C(S, C) then E =
⊔

e∈E e↓.
(4) This follows by the results (2) and (3) above and Lemma 3.4. �

If C is a coverage of finite type, then we can clearly define what it means for
homomorphisms θ : S → T to distributive inverse semigroups to be C-cover-to-join
maps. We denote the inverse subsemigroup of finite elements in C(S, C) by K(S, C).
By the above lemma, we have now proved the following.

Theorem 4.23. Let C be an idempotent-pure coverage of finite type on the inverse
semigroup S. Then the pseudogroup C(S, C) is coherent. The map ι : S → K(S, C)
is a C-cover-to-join map and is universal amongst such maps to distributive inverse
semigroups.

4.4. Main results. We shall now apply the theory we have developed to three
coverages: the trivial, the dense and the tight.

We begin with the trivial coverage of Examples 4.1(1). This is a coverage of
finite-type and every inverse semigroup is separative with respect to this coverage.
The theorem below is a direct application of Theorems 4.20, 4.21 and 4.24 as well
as Proposition 3.19.

Theorem 4.24. Let S be an inverse semigroup equipped with the trivial coverage.

(1) The universal pseudogroup in this case is just P(S) = C(S) along with the
map π : S → P(S) where universality is with respect to arbitrary semigroup
homomorphisms to pseudogroups.

(2) The pseudogroup P(S) is coherent. Put D(S) = K(P(S)) along with the
map δ : S → D(S). This is the universal distributive inverse semigroup
where universality is with respect to arbitrary semigroup homomorphisms
to distributive inverse semigroups.

(3) The groupoid of all filters on S is homeomorphic to G(P(S)).
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(4) The groupoid of all filters on S is homeomorphic to GP (D(S)).

One application of the semigroup D(S) is in connection with the weak meet
condition.

Proposition 4.25. Let S be an inverse semigroup. Then S satisfies the weak meet
condition if and only if D(S) is an inverse ∧-semigroup.

Proof. The natural partial order in D(S) is subset-inclusion. Observe that s↓ ∩ t↓

is a compatible order ideal. It is finitely-generated if and only if the weak meet
condition holds. Suppose that D(S) is an inverse ∧-semigroup. Then in particular
s↓ ∧ t↓ exists and must equal a finitely-generated compatible order ideal. It follows
that s↓ ∩ t↓ is a finitely generated compatible order ideal. Conversely, suppose
that S satisfies the weak meet condition. Then s↓ ∧ t↓ always exists. An arbitrary

element of D(S) can be written A = s↓1∨ . . .∨s↓m. If B = t↓1∨ . . .∨ t↓n is any element

of D(S) then it can be verified that A ∧B =
∨

i,j(s
↓
i ∧ t↓j ). �

We now turn to the dense coverage and its properties.

Theorem 4.26. Let S be an inverse semigroup equipped with the dense coverage.
Then the universal pseudogroup π : S → PD(S) exists.

Proof. We put PD(S) = C(S,D) and define π(s) = ι(s). We now show that this has
the required universal properties. Let θ : S → T be a dense map to a pseudogroup.
By Lemma 4.9 and Proposition 4.12, there is a dense map φ : S → T such that
θ = φσ. By Corollary 4.11, the semigroup S is separative with respect to the dense
coverage. By Theorem 4.20, there is a pseudogroup morphism φ̄ : S → C(S,D)
such that φ = φ̄ι. If we put π = ισ and rechristen φ̄ as θ̄, we have that θ = θ̄π.
The uniqueness of θ̄ follows from the fact that each element of PD(S) is a join of
elements of the form π(s). �

We shall denote the universal pseudogroup with respect to the dense coverage
by Pd(S) and call it the dense pseudogroup of S.

Theorem 4.27. Let S be an inverse semigroup equipped with the dense coverage.
Then GD(S) is homeomorphic to the groupoid G(Pd(S)).

Proof. This is immediate by Proposition 3.13 and Theorem 4.21. �

We shall now briefly outline why we chose the name dense for this coverage.
With each inverse semigroup S, we may associate a left cancellative category C(S),
that we call its associated Leech category. The elements of this category are of the
form (e, s) where e is a non-zero idempotent and s a non-zero element such that
ss−1 ≤ e. The product (e, s)(f, t) is defined iff s−1s = f in which case its product
defined to be (e, st). In [19], we proved that there as a bijective correspondence
between what we called Ehresmann topologies on S and Grothendieck topologies on
C(S). One significant Grothendieck topology is the dense topology also referred to
as the ¬¬-topology; see pp 115, 273 of [22]. The dense coverage D can be used to
construct an Ehresmann topology D↓: for each idempotent e ∈ S if A ∈ D(e) then
A↓ ∈ D↓(e). We call this the dense Ehresmann topology. Using the correspondence
proved as Theorem 3.8 of [19], we may easily show that the dense coverage on S
gives rise to the dense Ehresmann topology on S which is associated with the dense
topology on C(S). This motivates our final result about the dense pseudogroup.
First we need a simple but illuminating lemma.
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Lemma 4.28. Let E be a meet semilattice. Let F ⊆ E be an order ideal. If
e ∈ (F⊥)⊥ is non-zero then e → eF .

Proof. Clearly eF ⊆ F and eF ⊆ e↓. Let 0 6= f ≤ e. Suppose that fF = 0. Then
f ∈ F⊥. But e ∈ (F⊥)⊥ and so ef = 0 but this is a contradiction. Thus fF 6= 0,
as required. �

Let e be an idempotent in a pseudogroup S. Define

e∗ =
∨

f∧e=0

f.

By construction we have that e ∧ e∗ = 0.

Theorem 4.29. The dense pseudogroup is boolean.

Proof. We may assume that we are working with a semigroup S separated with
respect to the dense coverage. To show that the pseudogroup is boolean, it is
enough to show that E∗∗ = E for any densely-closed order ideal of the semilattice
of idempotents of S. Since E ⊆ E∗∗, it is enough to prove that E∗∗ ⊆ E = E.

Let f ∈ E∗∗. Then f↓ ∧ E∗ = 0. We shall prove that f ∈ (E⊥)⊥ giving f ∈ E

by Lemma 4.26. Let e ∈ E⊥. Then e ∈ E∗ and so f↓ ∧ e↓ = 0. It follows that
fe = 0. �

We now turn to the tight coverage. A similar argument to that used in the proof
of Theorem 4.26 shows that there is a universal pseudogroup PT (S) with respect
to the tight coverage. However, by Lemma 4.22 this pseudogroup is coherent. Put
Dt(S) = K(PT (S)) and denote by δ : S → Dt(S) the corresponding map. We have
therefore proved result (1) below, a generalization of Theorem 2.1 the key result
of [18]. The proof of (2) below follows from Proposition 4.13, Theorem 4.21 and
Proposition 3.19.

Theorem 4.30. Let S be an inverse semigroup.

(1) There is a distributive inverse semigroup Dt(S) and a tight map δ : S →
Dt(S) which is universal for tight maps from S to distributive inverse semi-
groups.

(2) The étale groupoids GT (S) and GP (Dt(S)) are homeomorphic.
(3) If S satisfies the weak meet condition then Dt(S) is an inverse ∧-semigroup.

Proof. It remains to prove (3). Let s, t ∈ S such that s↓ ∩ t↓ = {a1, . . . , am}↓.

We prove that s↓ ∧ t↓ = {a1, . . . , am}↓ = A. We have that {a1, . . . , am}↓ ⊆ s↓.
Thus {a1, . . . , am}↓ ⊆ s↓ and so A ⊆ s↓ by Lemma 4.18(a). Similarly A ⊆ t↓.
Let a↓ ⊆ s↓, t↓. Then a ≤ s, t. Thus σ(a) = σ(sa−1a) = σ(ta−1a). Let X ∈
T (ta−1a) ∩ T (a) and Y ∈ T (a) ∩ T (sa−1a). By Lemma 4.2(3),(4), we have that
X ∧ Y ∈ T (a), T (ta−1a), T (sa−1a). Observe that X ∧ Y ⊆ {a1, . . . , am}↓. By
Lemma 4.10(3), we have that σ(a) =

∨

σ(X) ∧ σ(Y ) ≤ A. The result now follows
because every element of Dt(S) is a finite join of elements of the form a↓. �

We call the distributive inverse semigroup Dt(S) the tight completion of S.



PSEUDOGROUPS 41

5. Applications

5.1. Paterson’s universal groupoid. This groupoid was introduced by Paterson
[24] in functional-analytic terms, and described by means of filters by the second
author [21] and in a slightly revised form by the first author [20] in collaboration
with Stuart Margolis and Ben Steinberg. Let S be an inverse semigroup. If we
equip it with the simplest coverage of Examples 4.12(1), then the associated filters
are just all filters. We denote by Us the set of all filters containing s and by ω the
set of all such sets. The groupoid of all filters equipped with this topology will be
denoted by Gω(S). This is the groupoid and topology that one would expect on
the basis of the theory developed in this paper so far. See Theorem 4.24.

We shall now define a different topology on the same groupoid. For x, x1, . . . , xn ∈
S with x1, . . . , xn ≤ x, the set Ux;x1,...,xn

is defined by

Ux;x1,...,xn
= Ux ∩ U c

x1
∩ . . . ∩ U c

xn

where U c
x is the complement of Ux in the groupoid. Let Ω be the set of all such

subsets. We call this topology the patch topology. With respect to this topology,
the groupoid is called the universal groupoid and is denoted by means of Gu(S)
where ‘u’ stands for ‘universal’. In [21], the second author proves that Ω consists of
compact-open sets and that the space of identities is hausdorff. It therefore follows
by Lemma 3.13 that we have the following, using the terminology of Section 3.5

Theorem 5.1. The universal groupoid of an inverse semigroup is a weakly boolean
groupoid.

It is of interest to know when the universal groupoid is actually boolean as
opposed to being just weakly boolean. To do this, we shall use another description
of the topology of Gu(S) based on an alternative way of regarding filters. With
each filter X , we may associate a function j(X) : S → {0, 1} defined by

j(X)(x) = 1 if x ∈ X and j(X)(x) = 0 otherwise.

If we regard Γ as a poset with respect to its natural partial order and 2 = {0, 1}
as a meet-semilattice then j(X) is an order-preserving map with the additional
property that if j(X)(a) = 1 and j(X)(b) = 1 there exists c ≤ a, b such that
j(X)(c) = 1. Conversely, if α : S → 2 is an order-preserving map satisfying the
additional property then the set X of all elements a ∈ Γ such that α(a) = 1 is a
filter. In this way, we set up a bijective correspondence between filters on S and
certain kinds of order-preserving maps S → 2. In any event, the map j is injective.
Thus we can consider Gu(S) as a subset of {0, 1}S. The space {0, 1}S carries a
canonical topology: namely, the product topology where {0, 1} is given the discrete
topology. The equivalence of (1) and (5) below was first proved by Steinberg [31].

Proposition 5.2. Let S be an inverse semigroup. Then the following assertions
are equivalent:

(1) The groupoid Gu(S) is hausdorff.
(2) Every compact set in Gu(S) is closed.
(3) The map j : Gu(S) −→ {0, 1}S is continuous.
(4) The topology of Gu(S) is induced from the map j : Gu(S) −→ {0, 1}S.
(5) The semigroup satisfies the weak meet condition.

Proof. The topology of Gu(S) obviously comes from the restriction of certain open
subsets of {0, 1}S to Gu(S) . Thus the equivalence of (3) and (4) is clear. We
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are now going to show (4) =⇒ (1) =⇒ (2) =⇒ (5) =⇒ (4). Observe that the
implications (4) =⇒ (1) and (1) =⇒ (2) are immediate.

(2) =⇒ (5). Let x1, . . . , xn ∈ S and assume that U =
⋂n

j=1 Uxj
is non-empty.

The sets Uxj
are compact and therefore by assumption they are closed and so their

union is closed. But U ⊆ Ux1 is a closed subset of a compact set and so is itself
compact. Let X ∈ U . Then there exists x ∈ X such that x ≤ x1, . . . , xn and
X ∈ Ux ⊆ U . As X ∈ U was arbitrary, we can express U as the union of all these
Ux. But U is compact, and so we deduce (5).

(5) =⇒ (4). The proof is similar to the proof given in the case where the
semigroup is an inverse ∧-semigroup described in [21]. To show that the topology
induced by j agrees with the original topology, we have to show the following: for
arbitrary X ∈ Gu(S) and x1, . . . , xn, y1, . . . , ym with X ∈ Ux1 ∩ . . . ∩ Uxn

∩ U c
y1

∩
. . . ∩ U c

ym
, there exist z1, . . . , zk ≤ z with

(1) X ∈ Uz;z1,...,zk ⊆ Ux1 ∩ . . . ∩ Uxn
∩ U c

y1
∩ . . . ∩ U c

ym
.

By the weak meet condition we have

Ux1 ∩ . . . ∩ Uxn
= Ua1 ∪ . . . ∪ Uam

for suitable a1, . . . , al ∈ Γ with aj < xk for all j and k.
Let X ∈ Ux1 ∩ . . .∩Uxn

. Then there exists then a k ∈ {1, . . . ,m} with X ∈ Uak
.

Without loss of generality we can assume k = 1. This gives

X ∈ Ua1 ⊆ Ux1 ∩ . . . ∩ Uxn
.

We now have to deal with the U c
yj
. For each j we consider Uyj

∩Ua1 . By the weak
meet condition, we have

Uyj
∩ Ua1 = U

b
(j)
1

∪ . . . U
b
j

l(j)

with suitable b
(j)
1 , . . . , b

(j)
l(j) ≤ yj , a1. As X does not belong to Uyj

, j = 1, . . . ,m, we

obtain

X /∈ U
b
(j)
k

for k = 1, . . . , l(j). Putting this together we arrive at

X ∈ U
a1;b

(1)
1 ,...b

(1)

l(1)
,...,b

(m)
1 ,...,b

(m)

l(m)

⊆ Ux1 ∩ . . . ∩ Uxn
∩ U c

y1
∩ . . . ∩ U c

ym

and we are done. �

We therefore have the following result.

Corollary 5.3. The universal groupoid of an inverse semigroup is boolean if and
only if the inverse semigroup satisfies the weak meet condition.

But what exactly is the universal groupoid? Paterson gave one answer in terms
of topological groupoids [24]. We shall give another in terms of inverse semigroups.

Let S be a distributive inverse semigroup and GP (S) its associated coherent
groupoid of prime filters. Recall that a basis is given by π = {Ys : s ∈ S} where Ys

is the set of all prime filters containing s. Define Π = {Ys ∩ Y c
t : s, t ∈ S, t ≤ s}. It

is convenient to define Ys;t = Ys ∩ Y c
t where t ≤ s.

Lemma 5.4. Let S be a distributive inverse semigroup.

(1) With the above definition, Π is the basis for a topology on the groupoid
GP (S).
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(2) If S is also an inverse ∧-semigroup, then the set Ys∩Y c
t , where s and t are

arbitrary, is equal to an element of Π.
(3) If S is weakly boolean then the topologies generated by π and Π are the

same.
(4) Ys∨t;u∨v = Ys;(u∨v)s−1s ∪ Yt;(u∨v)t−1t.

Proof. (1) Suppose that (Ys ∩Y c
t )∩ (Yu ∩Y c

v ) 6= ∅ where t ≤ s and v ≤ u. Let P be
any prime filter belonging to this set. Then s, u ∈ P and t, v /∈ P . It follows that
there exists z ∈ P such that z ≤ s, u. Put a = zt−1t ≤ t and b = zv−1v ≤ v. Since
a, b ≤ z we have that c = a∨ b exists. Consider now the set Yz ∩ Y c

c . Suppose that
c ∈ P . Then since P is a prime filter either a ∈ P or b ∈ P . Suppose that a ∈ P .
Then t ∈ P which is a contradiction. It follows that P ∈ Yz ∩Y c

c . Let Q ∈ Yz ∩Y c
c .

Then a, b ∈ Q. Suppose that t ∈ Q. Then since a = zt−1t we would have a ∈ Q
which is a contradiction since Q omits c. Thus t /∈ Q. Similarly, v /∈ Q. It follows
that P ∈ Yz ∩ Y c

c ⊆ (Ys ∩ Y c
t ) ∩ (Yu ∩ Y c

v ). Thus Π is the basis for a topology on
GP (S).

(2) It is easy to check that Ys ∩ Y c
t = Ys ∩ Y c

s∧t.
(3) Let t ≤ s. Then d(t) ≤ d(s). By assumption, the semilattice of idempotents

of S is a boolean algebra and so there exists an idempotent e such that e ≤ d(s),
e ∧ d(t) = 0. and s = e ∨ d(t). By distributivity we have that s = se ∨ t and it is
easy to check that se∧ t = 0. Put u = se. We prove that Ys ∩Y c

t = Yu. Let X be a
prime filter in Ys ∩Y c

t . Then s ∈ X . But X is a prime filter and so either u ∈ X or
t ∈ X . We cannot have the latter and so u ∈ X and X ∈ Yu. Conversely, suppose
that X ∈ Yu. Then s ∈ X and we cannot have t ∈ X because u ∧ t = 0.

(4) Observe first that (u ∨ v)s−1s ≤ s. We have that (u ∨ v)s−1s ≤ (s ∨ t)s−1s.
But (s∨ t)s−1s = s∨ ts−1s and since s and t are compatible ts−1 is an idempotent.
Thus ts−1s ≤ s. It follows that s ∨ ts−1s = s, as required.

Let P ∈ Ys∨t;u∨v. Thus s ∨ t ∈ P . Since P is a prime filter either u ∈ P or
v ∈ P . Suppose that u ∈ P and (u ∨ v)s−1s ∈ P . Then u ∨ v ∈ P which is a
contradiction. It is clear that the lefthand-side is contain in the righthand-side.
Now let P ∈ Ys;(u∨v)s−1s ∪ Yt;(u∨v)t−1t. Suppose that P ∈ Ys;(u∨v)s−1s. Then s ∈ P

implies that s ∨ t ∈ P . Suppose that u ∨ v ∈ P . Then (u ∨ v)s−1s ∈ P which
is a contradiction. It follows that the righthand-side is contained in the lefthand-
side. �

It follows from (2) above that the topology generated by Π is a generalization of
the patch topology described on page 72 of [6].

Proposition 5.5. Let S be a distributive inverse semigroup.

(1) Ys;tYu;v = Ysu;sv∨tu∨tv .

(2) Y −1
s;t = Ys−1;t−1 .

(3) The groupoid GP (S) equipped with the patch topology is weakly boolean.

Proof. (1) Observe that since t ≤ s and v ≤ u we have that sv, tu, tv ≤ su. Thus
the join sv ∨ tu ∨ tv exists. Let X ∈ Ys;tv and Y ∈ Yu;v. Then su ∈ XY . Suppose
that sv ∨ tu ∨ tv ∈ XY . But XY is a prime filter and so either sv ∈ XY or
tu ∈ XY or tv ∈ XY but each of these is ruled out. Thus Ys;tYu;v ⊆ Ysu;sv∨tu∨tv.
We now prove the reverse inclusion. Put w = sv ∨ tu ∨ tv. Let Z ∈ Ysu;w. Put
X = (s(uZ−1 ·Zu−1)↑)↑ and Y = (uZ−1 ·Z)↑. Then X ·Y = Z and by construction
both X and Y are prime filters. Clearly s ∈ X and u ∈ Y . Suppose t ∈ X . Then we
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may write sueu−1 ≤ t for some e ∈ E(Z−1 ·Z). Thus (su)e(u−1s−1)(su) ≤ ts−1su.
But (su)e(u−1s−1)(su) ∈ Z and since t ≤ s we have that ts−1su = tu. Thus we
deduce that tu ∈ Z, which is a contradiction. Suppose v ∈ Y . Then ue ≤ v for
some e ∈ E(Z−1 · Z). Thus sue ≤ sv But (su)e ∈ ZZ−1Z = Z. Thus sv ∈ Z,
which is a contradiction. It follows that X ∈ Ys;t and Y ∈ Yu;v as required.

(2) We have that X ∈ Ys;t if and only if X−1 ∈ Ys−1;t−1 and we know that X is
a prime filter if and only if X−1 is a prime filter.

(3) We prove first that GP (S) is also an etale groupoid with respect to the patch
topology. By (2) above, it is clear that the inversion map is continuous with respect
to the patch topology.

We now show that the multiplication map is continuous with respect to the patch
topology. We use the same idea as in the proof of Proposition 4.3 of [21]. We prove
that m−1(Ys;t) is open. Let U · V = X ∈ Ys;t. Then s ∈ U · V and so we may find
u ∈ U and v ∈ V such that uv ≤ s. In addition, we may assume that u−1u = vv−1

since U−1 · U = V · V −1. Consider now Yu;tt−1u and Yv;vt−1t. We claim that
U ∈ Yu;tt−1u and V ∈ Yv;vt−1t. Suppose that tt−1u ∈ U . Then tt−1uv ∈ Z. But
tt−1uv ≤ tt−1s = t which implies that t ∈ Z, which is a contradiction. Suppose that
vt−1t ∈ V . Then uvt−1t ∈ Z and uvt−1t ≤ st−1t = t, which is a contradiction.
It remains to show that if A ∈ Yu;tt−1u and B ∈ Yv;vt−1t and A · B exists then
A · B ∈ Ys;t. Since u ∈ A and v ∈ B we have that uv ∈ A · B and uv ≤ s gives
s ∈ A · B. Suppose that t ∈ A · B. Then ab ≤ t where a ∈ A and b ∈ B and we
may assume that a−1a = bb−1 since A · B exists. From the fact that A is a filter
and u ∈ A we may also assume that a ≤ u. Similarly we may assume that b ≤ v.
We now calculate

a = au−1u = a(bb−1)u−1u = (ab)b−1u−1u ≤ t(b−1u−1)u ≤ ts−1u = tt−1ss−1u

which is equal to tt−1u. But this contradicts the fact that tt−1u /∈ A.
We need to show that the set of identities is an open subspace with respect to

the patch topology. Let P be an identity in the groupoid GP (S). Then it is an
inverse subsemigroup by Lemma 2.3 and so contains an idempotent e, say. Then
P ∈ Ye which consists entirely of idempotent prime filters. By (1) above and an
argument similar to the one employed in the proof of Proposition 2.8, we deduce
that the product of open sets is open. We have therefore proved that our groupoid
is étale.

To show that the groupoid with the patch topology is weakly boolean it is enough,
by Section 3.4, to show that the set of identities of GP (S), with respect to the
subspace topology, is a boolean space. The case where the distributive lattice has a
top element is dealt with in Proposition II.4.5 of [6]. We deal with the general case
here and use the same idea as that used in the proof of Proposition 5.2. The idea
for this proof goes back to Section 4.3 of Paterson [24]. Observe first that we can
restrict our attention to the distributive lattice E(S) since idempotent filters are
determined by the idempotents they contain. We give the set 2E(S) the discrete
topology. By the Axiom of Choice this is a compact space. A subbase for this
topology is given by sets of the form Ue and U c

e where e ∈ E(S) and

Ue = {θ : E(S) → 2 : θ(e)(1) = 1} and Ue
e = {θ : E(S) → 2 : θ(e)(1) = 1}.

With each filter, we may associate an element j(X) of 2E(S). This is an injective
function. If we restrict our attention to the prime filters on E(S) then the function
j restricts to a bijection with a closed subset of 2E(S). We denote this closed subset
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by P. The simple argument to prove that it really is closed is made explicit in
[17]. The restriction of the product topology to P is hausdorff and has a basis of
compact-open sets. The topology generated by Π restricted to the prime filters on
E(S) is easily seen to be homeomorphic to the restriction of the product topology
to the set P. Thus we have shown that the space GP (S) equipped with the patch
topology is boolean. �

If S is a distributive inverse semigroup then the groupoid GP (S) equipped with
the patch topology is called the weak booleanization of the groupoid GP (S) with its
usual topology. If S is a distributive ∧-semigroup then GP (S) equipped with the
patch topology is called the booleanization.

Let S be an arbitrary inverse semigroup. Put B(S) = KB(Gu(S)).

Theorem 5.6 (First booleanization).

(1) The universal groupoid Gu(S) of an inverse semigroup S is homeomorphic
to the weak booleanization of the groupoid GP (D(S)). In particular, the
weakly boolean inverse semigroup B(S) has the property that the universal
groupoid Gu(S) is homeomorphic to the groupoid GP (B(S)).

(2) If the inverse semigroup S also satisfies the weak meet condition then this
weak booleanization is in fact a booleanization.

Proof. (1) By Theorem 4.24(4), the groupoid of all filters of S with the usual
topology is homeomorphic to the groupoid GP (D(S)), where D(S) is a distributive
inverse semigroup, with its usual topology. Observe that the set Ux is mapped to
the set Ys where s = x↓ and that the inverse image of Ys∨t where s = x↓ and t = y↓

is the set Ux ∪ Uy. The groupoid GP (D(S)) equipped with the patch topology
is homeomorphic to the universal groupoid Gu(S). To see this start with the set
Ux;x1,...,xn

where x1, . . . , xn ≤ x. Then if we put s = x↓ and t = {x1, . . . , xn}↓

then in D(S) we have that t ≤ s. The set Ux;x1,...,xn
is therefore mapped by the

homeomorphism to the set Ys;t. By Lemma 5.4(4), the inverse image of arbitrary
sets of the form Ys;t is a union of sets of the form Ux;x1,...,xn

. It follows that the
given homeomorphism is also a homeomorphism when each groupoid is regarded
with respect to the new topology. The proof of the second claim follows by the
extension of Theorem 3.25 or the restriction of Theorem 3.17 to weakly boolean
inverse semigroups.

(2) This follows by (1) above, Proposition 4.25 and Theorem 3.25. �

Let S be an inverse semigroup. Define β : S → B(S) by β(s) = Us. This
homomorphism has an interesting property: if P is a prime filter in B(S) then
β−1(P ) is a filter in S. The key observation that proves this is the following.
Suppose that ∅ 6= Ux;x1,...,xn

⊆ Uy. Then x↑ ∈ Ux;x1,...,xn
giving x↑ ∈ Uy. Thus

x ≤ y and so Ux ⊆ Uy. It follows that Ux;x1,...,xn
⊆ Ux ⊆ Uy. We now describe the

universal property enjoyed by this homomorphism.

Theorem 5.7 (Second booleanization). Let S be an inverse semigroup and let
θ : S → T be a homomorphism to a weakly boolean inverse semigroup with the
property that the inverse image under θ of each prime filter in T is a filter in S.
Then there is a unique homomorphism of distributive inverse semigroups θ̄ : B(S) →
T such that θ̄β = θ.

Proof. We prove uniqueness first. Any morphism of distributive inverse semigroups
γ : B(S) → T is determined by its values on the elements of the form Ux;x1,...,xm

.



46 M. V. LAWSON AND D. H. LENZ

Observe now that the elements Ux1 , . . . , Uxm
are pairwise compatible in B(S) and

so their union
⋃m

i=1 Uxi
is a well-defined element. In B(S), we have that

Ux = Ux;x1,...,xm
∨

(

m
⋃

i=1

Uxi

)

and Ux;x1,...,xm
∧

(

m
⋃

i=1

Uxi

)

= 0.

The map γ preserves this information, essentially by Lemma 3.27, and so γ is
determined by its values on elements of the form Uy. This is enough to force
uniqueness.

We now turn to existence. By Theorem 4.24(2), there is a homomorphism of
distributive inverse semigroups φ : D(S) → T such that φδ = θ. The inverse image
under φ of a prime filter is a prime filter. We equip GP (D(S)) with the patch
topology. By Theorem 5.6(1), we may identify B(S) with the set of compact-open
bisections of GP (D(S)).

We may therefore assume that we are given a homomorphism φ : D → T from a
distributive inverse semigroup D to T such that the inverse images of prime filters
under φ are prime filters. Put B(D) equal to the set of all compact-open bisections
of GP (D) with respect to the patch topology of Proposition 5.5. Let B(S)′ be the
subset of B(D) consisting of those elements of the form Ys;t. By Proposition 5.5(1)
and (2), it is an inverse subsemigroup. Let υ : D → B(D) be the map s 7→ Ys. This
is an injective map by Lemma 3.11(2).

Define

φ̄(Ys;t) = φ(s) \ φ(t).

To show this is well-defined, suppose that Ys;t = Yu;v and that φ(s) \ φ(t) 6=
φ(u) \ φ(v). By Lemma 3.11(2), we may find a prime filter P in T which contains,
without loss of generality, φ(s)\φ(t) but not φ(u)\φ(v). By assumptionQ = φ−1(P )
is a prime filter in D. Clearly s ∈ Q and t /∈ Q. Thus Q ∈ Ys;t. By assumption
Q ∈ Yu;v. But this implies that φ(u) ∈ P and φ(v) /∈ P and so φ(u) \ φ(v) ∈ P ,
which is a contradiction. Thus this map is well-defined. By Lemma 3.28, it is a
homomorphism. It follows that we have defined a homomorphism from B(D)′ to
the semigroup T .

It remains to extend the map φ̄ to the whole of B(D). The first step is to
observe that if Ys;t and Yu;v are compatible in B(D) then φ(s) \ φ(t) is compatible
with φ(u) \ φ(v) by Lemma 3.28 and Proposition 5.5(2). Let P be a prime filter
containing (φ(s) \φ(t))−1(φ(u) \φ(v)). Then φ−1(P ) is a prime filter that contains
s−1u and omits s−1v ∨ t−1u∨ t−1v. Thus φ−1(P ) ∈ Y −1

s;t Yu;v. By assumption, this

contains only idempotent filters. Thus φ−1(P ) is an idempotent filter and so P is an
idempotent prime filter. Thus all the prime filters containing (φ(s) \φ(t))−1(φ(u) \
φ(v)) are idempotent. By Lemma 3.29, it follows that (φ(s) \ φ(t))−1(φ(u) \ φ(v))
is an idempotent. We deduce that φ(s) \ φ(t) and φ(u) \ φ(v) are compatible.

Given a finite union of compatible elements
⋃m

i=1 Ysi;ti in B(D) define

φ̄(

m
⋃

i=1

Ysi;ti) =

m
∨

i=1

φ(si) \ φ(ti).

We show that this map is well-defined. Suppose that

m
⋃

i=1

Ysi;ti =

n
⋃

j=1

Yuj ;vj .
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We need to prove that
m
∨

i=1

φ(si) \ φ(ti) =
n
∨

j=1

φ(uj) \ φ(vj).

By Lemma 3.11(2) it is enough to show that the set of prime filters containing the
lefthand-side is the same as the set of prime filters containing the righthand-side.
This is straightforward to prove given our assumption on φ. By construction, the
map φ̄ is a morphism of distributive inverse semigroups. �

Remark 5.8. The above theorem was inspired by the calculations on pp 190–191
of Paterson’s book [24].

5.2. The closure of the space of ultrafilters in the universal groupoid.

The goal of this section is to show that our notion of tight filters and tight maps
coincides with that of Exel [3, 4].

Lemma 5.9. Let S be a semigroup and let F be a proper filter.

(1) A is a tight filter (respectively, ultrafilter) if and only if A−1 · A is a tight
filter (respectively, ultrafilter).

(2) A is an idempotent tight filter (respectively, ultrafilter) in S if and only if
E(A) is a tight filter (respectively, ultrafilter) in E(S).

Proof. (1) The claim concerning tight filters follows from Lemma 4.3. The proof
of our claim concerning ultrafilters follows from Proposition 2.13 [16] since the
argument used there in fact works in any inverse semigroup.

(2) A filter A is an idempotent filter if and only if A = E(A)↑. It is im-
mediate that if A is a tight filter then E(A) is a tight filter since E(A) ⊂ A.
Conversely, suppose that E(A) is a tight filter. Let {a1, . . . , am} ∈ T (a). Then
{d(a1), . . . ,d(am)} ∈ T (d(a)). By assumption d(ai) ∈ E(A) for some i. Now
a,d(ai) ∈ A and A is an inverse subsemigroup and so ai = ad(ai) ∈ A, as required.

The proof of our claim concerning ultrafilters follows from Proposition 2.13 [16]
since the argument used there in fact works in any inverse semigroup. �

Our first important result about tight filters is the following.

Proposition 5.10. Every ultrafilter is a tight filter.

Proof. Let A be an ultrafilter. Then A−1 · A is an idempotent ultrafilter by
Lemma 5.9. If we can prove that all idempotent ultrafilters are tight then the
result will follow from Lemma 5.9 again. Thus we assume that A is an idempotent
ultrafilter and prove that it is tight. But A is an ultrafilter in the inverse semigroup
if and only if E(A) is an ultrafilter in the semilattice of idempotents. It follows
from Lemma 2.33 of [16] that every ultafilter in a semilattice is tight. Thus E(A)
is tight and so A is tight by Lemma 5.9. �

We denote the set of all tight filters of our inverse semigroup S equipped with the
restriction of the patch topology on the universal groupoid by Gt(S). A basis of this
topology is given by the sets Wx;x1,...xn

= Ux;x1,...xn
∩ Gt for x1, . . . , xn ≤ x ∈ S.

The groupoid of ultrafilters equipped with the restriction of the patch topology on
the universal groupoid is denoted by Gm(S). A basis for this topology is given
by the sets Vx;x1,...,xn

= Ux;x1,...xn
∩ Gm. By the proposition above, we have the

following inclusions
Gm(S) ⊆ Gt(S) ⊆ Gu(S).
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Lemma 5.11. Let F be a tight filter. Let x1, . . . , xn ≤ x be such that x ∈ F and
{x1, . . . , xm} ∩ F = ∅. Then x↓ ∩ {x1, . . . , xm}⊥ 6= 0.

Proof. Suppose that x ∈ F and {x1, . . . , xm}∩F = ∅ but that x↓∩{x1, . . . , xm}⊥ =
0. Let 0 6= y ≤ x. Then by our assumption, y cannot be orthogonal to all xi and

so there exists an i such that x↓
i ∩ y↓ 6= 0. It follows that a → {x1, . . . , xm}. But F

is a tight filter and so xi ∈ F for some i which is a contradiction. �

The next results provide the remaining key properties about tight filters.

Proposition 5.12.

(1) Let F be a tight filter. Then every open set in the universal groupoid con-
taining F also contains an ultrafilter.

(2) Let F be a filter that is not tight. Then there is an open set in the universal
groupoid of S that contains F but does not contain any ultrafilter.

Proof. (1) Let F be a tight filter and let U be an open set containing F . Then
we may find x and elements x1, . . . , xm ≤ x such that F ∈ Ux;x1,...,xm

⊆ U . Thus
x ∈ F and {x1, . . . , xm} ∩ F = ∅. By Lemma 5.11, there is a non-zero element
z ≤ x and orthogonal to all the xi. Let G be an ultrafilter containing z. Then
x ∈ G and {x1, . . . , xm} ∩G = ∅. Thus G ∈ Ux;x1,...,xm

and so G ∈ U .
(2) Let F be a filter that is not tight. Then there exists x ∈ F and a covering

x → {x1, . . . , xm} ∈ T (x) such that F ∩ {x1, . . . , xm} = ∅. Clearly F ∈ Ux;x1,...,xm
.

However if G were any ultrafilter in this open set we would have x ∈ G and so,
by (1) above, we would have to have xi ∈ G for some i which is a contradiction.
We have therefore have found an open set containing F that does not contain any
ultrafilter. �

The proof of the following is now immediate by the above and can be viewed as
the filter version of a result first proved by Exel in [4].

Theorem 5.13. Let S be an inverse semigroup. Then the closure of the set of
ultrafilters in the universal groupoid of S is precisely the set of tight filters.

5.3. Inverse semigroups in which every tight filter is an ultrafilter. The
first goal of this section is to reconcile Exel’s work [3, 4] with that of the second
author [21]. This involves determining when Gm(S) = Gt(S). The following is
Proposition 4.4(b) of [21].

Lemma 5.14. The identities Gu(S)o form a closed subset of Gu(S).

Our next theorem extends the results found in [21].

Theorem 5.15. Let S be an inverse semigroup. Then the following are equivalent.

(1) Gm(S) is closed in Gu(S).
(2) Every tight filter is an ultrafilter.
(3) Every idempotent tight filter is an idempotent ultrafilter.
(4) Gm(S)o is closed in Gu(S)o.
(5) For arbitrary x1, . . . , xn ≤ x ∈ S the set Vx;x1,...,xn

is compact.
(6) The tight completion Dt(S) of S is weakly boolean.

Proof. The equivalence of (1) and (2) is immediate by Theorem 5.13. The equiva-
lence of (2) and (3) follows by Lemma 5.4.
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Suppose that (3) holds. The closure of Gm(S)(0) is contained in Gu(Γ)
(0) which

by assumption is contained in Gm(S)(0) and so (4) holds. Conversely, suppose that
(4) holds. Let F be an idempotent tight filter. Such a filter belongs to the closure
of Gm(S)(0) which is assumed to be Gm(S)(0) itself. Thus F is an ultrafilter and
so (3) holds. The equivalence of (4) and (5) was proved in [21].

We now prove the equivalence of (2) and (6). The distributive inverse semigroup
Dt(S) is weakly boolean if and only if every prime filter is an ultrafilter by Propo-
sition 1.6. By Proposition 4.13, the poset of tight filters on S is order-isomorphic
to the poset of tight filters on S. By Theorem 4.21, the poset of tight filters on S is
order-isomorphic to the poset of completely prime filters on C(S, T ) By Lemma 3.2,
the poset of completely prime filters on C(S, T ) is order-isomorphic to the poset
of prime filters on K(S, T ) = Dt(S). It follows that the poset of tight filters on
S is order-isomorphic to the poset of prime filters on Dt(S). Under this order-
isomorphism maximal filters are mapped to maximal filters. Thus every tight filter
on S is an ultrafilter if and only if every ultrafilter on Dt(S) is a prime filter if and
only if Dt(S) is weakly boolean. �

An inverse semigroup is said to satisfy the compactness condition if any of the
equivalent conditions of the previous theorem holds.

Our goal now is to find simple sufficient conditions on an inverse semigroup that
imply it satisfies the compactness condition. The following lemma will be useful.

Lemma 5.16. Let S be an inverse semigroup with zero and let e and f be idem-
potents with f ≤ e.

(1) Ve;f 6= ∅ if and only if e↓ ∩ f⊥ 6= 0.
(2) If Ve;f =

⋃m

i=1 Vei then the ei can be chosen such that ei ≤ e.
(3) If Ve;f =

⋃m

i=1 Vei , where e1, . . . , em ≤ e, then e → {e1, . . . , em, f}.
(4) If e → {e1, . . . , em, f} where e1, . . . , em ≤ e then Ve;f ⊆

⋃m

i=1 Vei .

Proof. (1) Let F ∈ Ve;f . Then F is an ultrafilter such that e ∈ F and f /∈ F . Every
ultrafilter is a tight filter by Proposition 5.10, and so by Lemma 5.11 there exists
0 6= i ≤ e such that i ∧ f = 0. Hence e↓ ∩ f⊥ 6= 0. We now prove the converse.
Let 0 6= i ≤ e such that i ∧ f = 0. By Zorn’s Lemma, there is an ultrafilter F
containing i. But then e ∈ F and f /∈ F and so F ∈ Ve;f , as required.

(2) Suppose that Ve;f =
⋃m

i=1 Vxi
. Each ultrafilter in Ve;f contains an idempotent

and so is itself an idempotent ultrafilter. We may therefore assume that the xi are all
idempotents. We claim that Ve;f =

⋃m

i=1 Vxi∧e. Let F ∈ Ve;f . Then by assumption
F ∈ Vxi

for some i. But e ∈ F and so e ∧ xi ∈ F . It follows that F ∈ Vxi∧e.
Conversely let F ∈ Vxi∧e. Then e ∈ F and xi ∈ F . It follows that F ∈ Ve;f .

(3) Suppose that Ve;f =
⋃m

i=1 Vei . Let 0 6= z ≤ e. If z ∧ f 6= 0 then we are done
so we may suppose that z ∧ f = 0. Thus z ∈ e↓ ∩ f⊥. Let G be any ultrafilter
containing z. Then e ∈ G and f /∈ G. It follows that ei ∈ G for some i. Thus
z ∧ ei 6= 0, as required.

(4) Suppose that e → {e1, . . . , em, f}. Let F ∈ Ve;f 6= ∅. By Proposition 5.10,
every ultrafilter is a tight filter and so either f ∈ F or ei ∈ F for some i. Since
we have excluded the former, it follows that ei ∈ F . This shows that Ve;f ⊆
⋃m

i=1 Vei . �

Condition (1) above is equivalent to saying that the semilattice of idempotents
of the inverse semigroup is 0-disjunctive.
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The following gives a necessary condition for the compactness condition to hold.

Proposition 5.17. Let S be an inverse semigroup with zero. Suppose that for
arbitrary idempotents e, f in S with f ≤ e either Ve;f is empty or there exist
idempotents e1, . . . , em ≤ e with

Ve;f =

m
⋃

k=1

Vek .

Then the compactness condition holds.

Proof. We shall prove that every tight idempotent filter is an idempotent ultrafilter
and the result will follow by Theorem 5.15. Suppose to the contrary that P is a tight
idempotent filter that is not an ultrafilter. Then P ⊆ Q where Q is an ultrafilter.

Let f ∈ Q where f /∈ P where f may be chosen without loss of generality as
an idempotent. Let e ∈ P be any idempotent. Then e ∧ f ∈ Q and is not in P .
Thus we may find an idempotent e ∈ P such that f ≤ e. Now P is a tight filter
that contains e and omits f . It follows by Lemma 5.6 that there is 0 6= z ≤ e and
z∧f = 0. By Lemma 5.16(1), we have that Ve;f is non-empty. Thus by assumption

Ve;f =

n
⋃

j=1

Vej

where the e1, . . . , em ≤ e. By Lemma 5.16(3), we have that e → {e1, . . . , en, f}.
Now e ∈ P and f /∈ P and P is a tight filter and so ei ∈ P for some i. But then
ei ∈ Q giving f, ei ∈ Q and ei ∧ f = 0 which is a contradiction. �

Proposition 5.18. Let S be an inverse semigroup satisfying the weak meet con-
dition. Then a subbasis for the topology on Gm(S) is given by the sets Vx where
x ∈ S.

Proof. It suffices to show that for arbitrary X ∈ Gm(S) and z1, . . . , zn ≤ z ∈ S
with X ∈ Vz;z1,...,zn , we have X ∈ Vx ⊆ Vz;z1,...,zn for a suitable x. To that end, let
X be an ultrafilter that contains z and omits z1, . . . , zn. We now use the properties
of ultrafilters in inverse semigroups satisfying the weak meet condition described
in Section 1. By Theorem 1.5, there is an elements x ∈ X such that x ≤ z and

x↓ ∩ z↓i = 0 for 1 ≤ i ≤ n. Clearly X ∈ Vx and Vx ⊂ Vz;z1,...,zn . �

Theorem 5.19. If the inverse semigroup S satisfies the weak meet condition, then
the following are equivalent:

(1) S satisfies the compactness condition.
(2) For any x ∈ S the set Vx is compact.
(3) For any x1, . . . , xn ≤ x the set Vx;x1,...,xn

is compact.
(4) For arbitrary idempotents e, f1, . . . , fn in S with fj ≤ p for j = 1, . . . , n,

there exist idempotents e1, . . . , em ≤ e with

Ve;f1,...,fn =

m
⋃

k=1

Vek .

(5) For arbitrary idempotents e, f in S with f ≤ e, if Ve:f 6= ∅ then there exist
idempotents e1, . . . , em ≤ e with

Ve;f =
m
⋃

k=1

Vek .
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(6) The tight completion Dt(S) of S is boolean.

Proof. (1) =⇒ (2). It suffices to consider the case where x = e is an idempotent
in S. Then Ve is just the intersection of Ue, which is compact by results of the
previous section, and the set of identities of Gm(S), which is closed by assumption.
Hence Ve is compact.

(2) =⇒ (3). By definition of the topology, the sets Vx are open and hence their
complements are closed. As closed subsets of compact sets are compact we obtain
(3).

(3) =⇒ (4). By the weak meet condition, the topology is generated by the Vx

where x ∈ S. Hence any set V = Ve;f1,...,fn can be written as a union of sets of
the form Vx with suitable x ≤ e. As V is compact by (3), finitely many of such x
suffice.

(4) =⇒ (5). This is clear.
(5) =⇒ (1). This was proved as Proposition 5.17.
(1) ⇐⇒ (6). This follows from Theorem 5.15(6) and the fact that if S is a weak

meet semigroup then Dt(S) is an inverse ∧-semigroup by Theorem 4.30. �

Condition (5) above is a generalization of Theorem 2.22 of [18].
A variant of (4) and (5) was introduced in [21] under the name of trapping con-

dition and shown to imply the compactness condition. It was then realized in [18]
that, in the context of suitable semilattices, the trapping condition is actually equiv-
alent to the compactness condition. Our result above generalizes the corresponding
results of [21, 18].

Let S be an inverse semigroup. If e and f are idempotents of S such that e ≤ f
and if e ≤ i ≤ f then either e = i or f = i, then we say that e is a 1-step restriction
or one-step restriction of f .2 Inductively, we define f to be an n-step restriction of
e if there exists an (n−1)-step restriction i of e such that f is a 1-step restriction of
i. Note that we make no assumption that n is unique. We say that the semilattice
of idempotents of S has finite-depth if whenever 0 6= e ≤ f then e is an n-step
restriction of f for some finite n.

Lemma 5.20. Let S be an inverse semigroup whose semilattice of idempotents has
finite-depth. If 0 6= f ≤ e then Ve;f can be written as a finite union of sets of the
form Vi;j where j ≤ i and j is a 1-step restriction of i.

Proof. Let f ≤ e be an n-step restriction. Then there is an idempotent i such that
f ≤ i ≤ e where f is a 1-step restriction of i and i is an n− 1-step restriction of e.
Observe that Ve;f = Ve;i ∪ Vi;f . The result follows by iteration. �

A one-step restriction f of e is said to be weakly complemented if there exist
one-step restrictions e1, e2, . . . ∈ f⊥ of e such that g ≤ e and g∧ f = 0 implies that
g ≤ ei for some i.

We say that the semilattice of idempotents of S is pseudofinite or locally finite if
for each e ∈ E(S) the set e↓\{e} is a finitely generated order ideal. This is equivalent
to saying that each idempotent has only finitely many one-step restrictions.

An inverse semigroup S with zero is said to be coarse-grained if its semilattice
of idempotents is locally finite, has finite-depth, and is such that any one-step
restriction is weakly complemented.

2We would usually say that f covers e but in this paper that could cause confusion.
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Theorem 5.21. A coarse-grained inverse semigroup satisfies the compactness con-
dition.

Proof. We show that the condition of Proposition 5.17 holds. By Lemma 5.20, it is
enough to deal with the case where f ≤ e is a one-step restriction. We assume that
Ve;f 6= ∅. By assumption, we may find finitely many one-step restrictions e1, . . . , em
such that g ≤ e and g ∧ f = 0 implies that g ≤ ei for some 1 ≤ i ≤ m. We will
show that

Ve;f =

m
⋃

k=1

Vek .

Let X ∈ Ve;f . Then e ∈ X and f /∈ X . We know that E(X) is an ultrafilter in E(S)
by Lemma 5.9(2). Thus there exists i ∈ E(X) such that i ∧ f = 0. Thus we may
find g ∈ X , an idempotent, such that g ≤ e and g ∧ f = 0. By assumption g ≤ ei
for some i and so X ∈ Vei . To prove the reverse inclusion, suppose that X ∈ Vei .
Then ei ≤ e implies that e ∈ X . But ei ∧ f = 0 and so f /∈ X , as required. �

Example 5.22. The inverse semigroup constructed from a locally finite graph is
coarse-grained. The semilattice of idempotents of this semigroup is unambiguous
[18] and so the set of one-step restrictions of an idempotent is an orthogonal subset.
The semilattice of idempotents has finite-depth by construction and is locally finite
by fiat.

6. Concluding remarks

6.1. Ehresmann’s legacy. We begin by expanding slightly our remarks in the
Preliminaries concerning the origins of frame theory in pseudogroup theory. Ehres-
mann’s work on pseudogroups and local structures that Johnstone refers to can be
found collected in Partie II-1 of [2] as paper 47 and, incidently, is the only paper
Ehresmann wrote in his native German. Its title is Gattungen von lokalen Struk-
turen3. The reader will recall from introductory courses in differential geometry
that differential manifolds of various complexions are defined by means of atlases
whose changes of charts are required to satisfy certain conditions depending on
the type of manifold being defined. For the constructions to work, the changes of
charts need to belong to a so-called pseudogroup of transformations. Differential
geometers, such as Ehresmann, were well aware in the 1950’s that a whole range of
local structures, important in differential geometry, could be defined in the same
way: for example, fibrations and foliations. Furthermore, category theory, devel-
oped in the 1940’s, pointed the way to describing classes of structures in general.
Ehresmann, in his Gattungen-paper, attempts to combine these two approaches to
describing local structures. His goal is to describe, in categorical terms, the process
of constructing a category of local structures from a pseudogroup. This goal in fact
becomes the basis of the papers collected in Partie II-1. Although pseudogroups
have frames of idempotents, frame theory turned its back on pseudogroups and
they do not occur at all in either [6] or [22]. Ehresmann’s work on pseudogroups
was generally neglected except in East Germany [29] and within inverse semigroup
theory where his ideas turned out to be extremely fertile: they form the basis of
the book [13].

3‘Species of local structures’.
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6.2. Motivation for the theory. Inverse semigroups arise naturally in the theory
of C∗-algebras. This was first observed by Renault [25] and was later developed
more explicitly by Paterson [24]. The salient idea in this context is that C∗-algebras
can be constructed from topological groupoids which in turn can be constructed
from inverse semigroups. Exel’s work [3] is a prime example of this fruitful ap-
proach to constructing C∗-algebras. In this way many interesting C∗-algebras,
such as graph algebras and tiling algebras, can be constructed from inverse semi-
groups. This raises the question of the nature of the relationship between in-
verse semigroups and topological groupoids. The authors’ interest in this question
was aroused by Kellendonk’s work [9, 10] on aperiodic tilings as models of quasi-
crystals. The second author’s paper [21] reanalysed Paterson’s work in the light of
Kellendonk’s and presented a general order-based approach to the construction of
groupoids from inverse semigroups. This approach yields an alternative description
of Paterson’s universal groupoid and at the same time features a certain reduc-
tion of the universal groupoid. This reduction is the tiling groupoid in the case
of tiling semigroups and the graph groupoid in the case of graphs. In this way a
unified treatment of certain basic properties concerning e.g. ideal theory of tiling
groupoids and graph groupoids becomes possible. The order-based approach to the
construction of groupoids from inverse semigroups was then developed further by
the first author in collaboration with Stuart Margolis and Ben Steinberg in terms
of filters [20]. Thus the topological groupoids arising in the theory of C∗-algebras
were groupoids of filters. This set the stage for [16], where the first author showed
that the topological groupoids arising in the case of the Cuntz C∗-algebras could
be constructed from a class of inverse monoids, called boolean inverse monoids, in
a way generalising the classical Stone duality between unital boolean algebras and
boolean spaces. This was subsequently generalized to boolean inverse semigroup in
[18] where the Thompson groups and the Cuntz-Krieger C∗-algebras were shown
to arise naturally from this more generality duality. It is now that frames naturally
reappear. In Johnstone’s book [6], Stone duality is obtained as a consequence of
the adjunction that exists between the category of frames, or rather their dual the
category of locales, and the category of topological spaces. Thus the question arises
of obtaining the non-commutative Stone dualities described in [16, 18] in terms of
a generalization of frame theory in which frames are replaced by pseudogroups and
topological spaces by étale topological groupoids. This was the starting point for
this paper. For applications of our theory to groups and C∗-algebras we refer the
reader to [18].

6.3. Booleanizations. Given an inverse semigroup S we can ask what the best
weakly boolean inverse semigroup associated with S might be. The first answer is
given via Paterson’s universal groupoid and the weakly boolean inverse semigroup
B(S) characterized in Theorem 5.7. This semigroup can always be constructed
and contains an isomorphic copy of S. However, the construction of B(S) does
not take account of any boolean-like properties, whatever that might mean, that S
may already possess. Alternatively, we may construct by Theorems 4.26 and 4.29
the dense pseudogroup Pd(S). This is a boolean inverse monoid and takes account
of the boolean-like properties of the semigroup S on account of the fact that the
map π : S → Pd(S) is a dense map. Howevever, Pd(S) is not coherent in general.
Intuitively, this provides the motivation for the construction of the distributive
inverse semigroup Dt(S), the tight completion of S, in Theorem 4.30. It is not
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weakly boolean in general, but it is when S satisfies the compactness condition.
In this case, the associated groupoid is constructed from ultrafilters on S and the
map δ : S → Dt(S) is a tight map. Inverse semigroups satisfying the compactness
condition, were the subject of the second author’s papers which began with an
examination in [14, 15] of some ideas to be found in [1] and then led via [16, 17] to
[7, 18] where special cases of some of the ideas in this paper were developed.
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