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CONTINUITY OF PLURISUBHARMONIC ENVELOPES IN C2

NİHAT GÖKHAN GÖĞÜŞ AND SÖNMEZ ŞAHUTOĞLU

ABSTRACT. We show that in C2 if the set of strongly regular points are closed in the bound-

ary of a smooth bounded pseudoconvex domain, then the domain is c-regular, that is, the

plurisubharmonic upper envelopes of functions continuous up to the boundary are con-

tinuous on the closure of the domain. Using this result we prove that smooth bounded

pseudoconvex Reinhardt domains in C2 are c-regular.

Let Ω be a domain in C
n and ∂Ω denote the boundary of Ω. For any upper bounded

function u on Ω we define the upper regularization u∗ of u on Ω as the function

u∗(z) = lim sup
w∈Ω,w→z

u(w)

for any z ∈ Ω. Given z ∈ Ω, we denote by Jz = Jz(Ω) the family of all positive Borel

measures µ ∈ C∗(Ω) such that u∗(z) ≤
∫

u∗ dµ for every u in the set PSHb(Ω) of all upper

bounded plurisubharmonic functions on Ω. Such measures are called Jensen measures

centered at z. For example, the Dirac measure δz ∈ Jz for every z ∈ Ω. For a nontrivial

example, let z ∈ Ω and consider a map f : D → Ω which is holomorphic in an open

neighborhood of the closure of the unit disk D so that f (0) = z. Define

µ f (ϕ) =
1

2π

∫ 2π

0
ϕ ◦ f (eiθ) dθ

for any function ϕ ∈ C(Ω). Then µ f defines a measure on Ω which belongs to Jz. Let us

denote the class of all measures of the form µ f , where f is a mapping as above, by Hz. It

was proved in [BS92] that the weak-∗ closure Hz in C∗(Ω) of Hz coincides with Jz when

z ∈ Ω. Moreover, by [Pol91] and [Pol93] if ϕ is an upper semicontinuous function on Ω,

then the function

Iϕ(z) = inf

{∫
ϕ dµ : µ ∈ Hz

}
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is plurisubharmonic and equal to the plurisubharmonic upper envelope Eϕ of ϕ on Ω,

where

Eϕ(z) = sup{u(z) : u ≤ ϕ and u is plurisubharmonic on Ω}.

We define the class of measures Ĵz for z ∈ Ω in the following way: A measure µ ∈
C∗(Ω) belongs to Ĵz if there exist points zj ∈ Ω and measures µj ∈ Jzj

such that {zj}
converges to z and {µj} converges to µ in the weak-∗ topology. A point z ∈ ∂Ω is said

to be c-regular if the following holds: If zj ∈ Ω, zj → z and µ ∈ Ĵz, then there exists a

sequence of measures µj ∈ Jzj
that converges weak-∗ to µ. A domain is called c-regular

if every boundary point is c-regular. The following theorem establishes the fact that reg-

ularity of plurisubharmonic envelopes is equivalent to c-regularity of the domain (see

[Göğ05, Göğ06]).

Theorem 1 (Göğüş). Let Ω be a bounded domain in Cn. All points in the boundary of Ω are

c-regular if and only if the envelope Eϕ is continuous on Ω for all functions ϕ ∈ C(Ω).

Plurisubharmonic upper envelopes of functions is an important tool in pluripotential

theory. One uses them in particular to construct homogeneous solutions of the complex

Monge-Ampère operator with continuous boundary data. In [Göğ05] the first author

used Jensen measures to completely characterize the domains where continuous func-

tions have continuous envelopes. For any function ψ ∈ C(∂Ω), the Perron-Bremermann

function for ψ is the function Sψ defined on Ω by

Sψ(z) = sup{u∗(z) : u∗|∂Ω ≤ ψ and u is plurisubharmonic on Ω}.

It is well-known due to Bremermann [Bre59], Walsh [Wal69], Bedford and Taylor [BT76]

that when Ω is a bounded strongly pseudoconvex domain in Cn, given a function ψ ∈
C(∂Ω), the function Sψ is maximal plurisubharmonic in the sense that (ddcSψ)n = 0

on Ω, Sψ is continuous, and also limw→z Sψ(w) = ψ(z) for every z ∈ ∂Ω. Thus Sψ is

the unique homogeneous solution of the complex Monge-Ampère operator with contin-

uous boundary data ψ when the domain is strongly pseudoconvex. Related to this, it

was proved in [Göğ05] that c-regularity of the domain is equivalent to the continuity of

Perron-Bremermann envelopes on smooth bounded pseudoconvex domains in Cn.

Theorem 2 (Göğüş). Let Ω be a smooth bounded pseudoconvex domain in Cn. Then all points in

the boundary of Ω are c-regular if and only if the Perron-Bremermann function Sψ is continuous

on Ω for every ψ ∈ C(∂Ω).

The motivation for this paper comes from the following theorem of the first author

[Göğ05].
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Theorem 3 (Göğüş). Let Ω be a bounded domain in Cn. Assume that the boundary of Ω is

c-regular. Then the set of strongly regular points is a closed subset of the boundary of Ω.

In this paper we prove that Theorem 3 has a converse on smooth bounded pseudo-

convex domains in C2 and smooth bounded pseudoconvex Reinhardt domains in C2 are

c-regular (see Theorem 4 and Theorem 5 in the next section).

The rest of the paper is organized as follows. The main results are given in the next

section. After that we give two examples to show that one cannot hope to have similar

results as in Theorem 4 and Theorem 5 in Cn for n ≥ 3. We postpone the proofs of the

results until after the examples. We conclude the paper with some remarks.

RESULTS

Our first result states that Theorem 3 has a converse on smooth bounded pseudoconvex

domains in C2.

Theorem 4. Let Ω be a smooth bounded pseudoconvex domain in C2. Then Ω is c-regular if and

only if the set of strongly regular points are closed in the boundary of Ω.

Combining Theorem 1, Theorem 2 and Theorem 4 we get the following corollary.

Corollary 1. Let Ω be a smooth bounded pseudoconvex domain in C2. Then the following state-

ments are equivalent:

i) The set of strongly regular points is closed in the boundary of Ω.

ii) The envelope Eϕ is continuous on Ω for all functions ϕ ∈ C(Ω).

iii) The Perron-Bremermann function Sψ is continuous on Ω for every ψ ∈ C(∂Ω).

We also show that smooth bounded Reinhardt domains in C2 are c-regular. How-

ever, not all smooth bounded pseudoconvex domains in C2 are c-regular. For example, a

smooth bounded convex domain whose boundary contains a single analytic disk is not c-

regular. See also Remark 4 at the end of the paper for a discussion about Hartogs domains

in C2.

Theorem 5. Smooth bounded pseudoconvex Reinhardt domains in C
2 are c-regular.

Hence on smooth bounded pseudoconvex Reinhardt domains in C2 the plurisubhar-

monic envelopes of functions continuous up to the boundary are continuous up to the

boundary.

Corollary 2. Let Ω be a smooth bounded pseudoconvex Reinhardt domain in C2. Then the enve-

lope Eϕ is continuous on Ω for all functions ϕ ∈ C(Ω).
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A point p ∈ ∂Ω is said to be strongly regular if there exists a function u ∈ PSH(Ω) ∩
C(Ω) so that u(p) = 0 and u(z) < 0 for every z ∈ Ω\{p}.

A domain Ω is B-regular if for any function f ∈ C(∂Ω) there exists a function u ∈
PSH(Ω) ∩ C(Ω) so that its restriction u|∂Ω to ∂Ω is f . Sibony [Sib87, Sib91] showed that a

hyperconvex domain is B-regular if and only if every boundary point is strongly regular.

The bidisk is an example of a c-regular domain that is not B-regular as the boundary

contains analytic disks. It turns out that, for smooth bounded pseudoconvex c-regular

domains, this is the only obstruction for B-regularity. The precise statement is as follows.

Proposition 1. Let Ω be a smooth bounded pseudoconvex domain in C
n. Then the following

statements are equivalent:

i) Ω is B-regular,

ii) ∂Ω is strongly regular,

iii) ∂Ω is c-regular and ∂Ω has no analytic disks.

iv) The set of strongly regular points is a closed subset of ∂Ω and ∂Ω has no analytic disks.

EXAMPLES

For simplicity we construct examples in C3. However, by a simple modification one can

obtain examples in Cn for n ≥ 3.

Our first example shows that Theorem 4 is not true in C
3. We will construct a smooth

bounded convex domain Ω1 ⊂ C3 that is not c-regular, yet the set of strongly regular

points of Ω1 is closed in ∂Ω1. But first we need a lemma.

Given a bounded domain Ω ⊂ Cn and a point z ∈ Ω, we denote by J c
z = J c

z (Ω) the

family of all positive Borel measures µ ∈ C∗(Ω) such that u(z) ≤
∫

u dµ for every u in

the set PSHc(Ω) of all continuous functions on Ω which are plurisubharmonic on Ω. In

view of [Göğ05, Lemma 2.4], Jz ⊂ Ĵz ⊂ J c
z .

Lemma 1. Let Ω be a smooth bounded domain in Cn, z ∈ Ω be a point and f : D → Ω be a

mapping which is holomorphic in an open neighborhood of the closure of the unit disk D so that

f (0) = z. Then µ f ∈ J c
z .

Proof. Let u ∈ PSHc(Ω). By [FW89, Theorem 1] (Sibony [Sib87, Théorème 2.2] proved

this result earlier in case of pseudoconvex domains) there are smooth plurisubharmonic

functions uj on neighborhoods of Ω that approximate u uniformly on Ω. Clearly uj(z) ≤∫
uj dµ f for every j. Letting j → ∞ we get u(z) ≤

∫
u dµ f . Thus, µ f ∈ J c

z . �

Example 1. We are going to construct a bounded domain Ω1 ⊂ C3 with smooth boundary

such that
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a. the domain Ω1 is convex,

b. the set of strongly regular points of Ω1 is closed,

c. there exists a point in ∂Ω1 which is not c-regular.

Let ψ be a non-negative smooth convex function on [0, ∞) such that

i. ψ = 0 on [0, 1]

ii. ψ′
> 0 and ψ′′

> 0 on (1, ∞) and ψ′(t) > 1 for t ≥
√

2

iii. ψ(2) = 3.

Furthermore, let us define

r(z1, z2, z3) = 2Re(z3) + ψ(|z1|2) + ψ(|z2|2) + ψ(|z3|2) + |z3|2(12 + a + |z2|2).

By Sard’s Theorem we can choose a > 0 sufficiently small that the domain

Ω = {(z1, z2, z3) ∈ C
3 : r(z1, z2, z3) < 0}

is smooth and bounded. Analysis of the eigenvalues of the Hessian of the function (x2
3 +

y2
3)(12 + a + x2

2 + y2
2) shows that |z3|2(12 + a + |z2|2) is convex for |z2| < 2. Then Ω is a

smooth bounded convex domain in C3 and the set

Γ =

{
(z1, z2, z3) ∈ C

3 : |z1| ≤
1

2
, |z2| ≤

1

2
, z3 = 0

}
⊂ ∂Ω.

Let Lr(z; X) denote the Levi form of r at z ∈ bΩ applied to the complex tangential vector

X. It is easy to see that there exist disks in the boundary in z1-direction through any point

(z1, z2, z3) ∈ ∂Ω where |z1| < 1. This means that Lr(z; e1) = 0 for e1 = (1, 0, 0) and

z = (z1, z2, z3) ∈ ∂Ω such that |z1| < 1 and z3 6= 0. Let

W =
(

0, 1 + z3(12 + a + |z2|2),−z2|z3|2
)

.

Then W is a complex tangential direction at z ∈ ∂Ω near Γ that is perpendicular to e1. One

can calculate that

Lr(z, W) =|z3|2
(∣∣∣1 + z3(12 + a + |z2|2)

∣∣∣
2
− 2Re

(
z2

2z3(1 + z3(12 + a + |z2|2))
))

+ |z3|2
(
|z2|2|z3|2(12 + a + |z2|2)

)

=|z3|2(1 + O(|z3|)) for z near Γ.

Then there exists a neighborhood U of Γ such that Lr(z, W) > 0 for z ∈ U \ Γ1 where

Γ1 = {(z1, z2, z3) ∈ C
3 : z3 = 0}. Therefore, we showed that there are only analytic disks,

one dimensional complex manifolds, in ∂Ω through (z1, z2, z3) ∈ (U ∩ ∂Ω) \ Γ1 such that

|z1| < 1.
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One can check that r is strongly plurisubharmonic at (z1, z2, z3) if |z1| > 1 and z3 6= 0.

The fact that there is a disk (given by ξ → (eiθ , ξ, 0) ⊂ Γ1 for |ξ| < 1 and θ ∈ R) in ∂Ω in

z2-direction through (eiθ , 0, 0) implies that set of strongly regular points in the boundary

of Ω is not closed (one can approximate (1, 0, 0) by a sequence {ηj} ⊂ ∂Ω where the norm

of the first component of ηj is strictly larger than 1 and the last component is nonzero).

So we need to modify the domain further to make sure that strongly regular points in the

boundary are closed. Using Sard’s Theorem, again if necessary, we can choose a small

δ > 0 and a smooth, even, convex, and non-decreasing function λ : R → [0, ∞) such that

i. λ(t) = 0 for |t| ≤ δ and min{λ′(t), λ′′(t)} > 0 for t > δ,

ii. min{λ(|z1|2 + |z2|2 + |z3|2) : (z1, z2, z3) ∈ C3 \ U} > −min{r(z) : z ∈ Ω}.

iii. Ω1 = {(z1, z2, z3) ∈ C3 : r(z1, z2, z3) + λ(|z1|2 + |z2|2 + |z3|2) < 0} is a smooth

bounded convex domain in C
3.

We note that Ω1 ⊂ U ∩ Ω and the set of weakly pseudoconvex points of Ω1 is

∂Ω1 ∩ {(z1, z2, z3) ∈ C
3 : |z1|2 + |z2|2 + |z3|2 ≤ δ}.

A point in the boundary of a bounded convex domain in C
n is strongly regular if and only

if there are no analytic disks in the boundary through the point (see [FS98, Proposition

3.2]). Since there is no analytic disk in {(z1, z2, z3) ∈ C3 : |z1|2 + |z2|2 + |z3|2 = δ} we

conclude that the set of strongly regular points of Ω1 is

∂Ω1 \ {(z1, z2, z3) ∈ C
3 : |z1|2 + |z2|2 + |z3|2 < δ}.

Hence it is closed. However, Ω1 is not c-regular. To see this, first notice that there exists a

disk in the boundary of Ω1 with center p = (0, 0, 0) in the z2-direction. For example, we

can take the analytic disk defined by the map f (ζ) = (0, δζ, 0). Let pj = (0, 0, wj) where

wj = −1

j
+ i

√
2j − 12 − a

j2(12 + a)
.

One can check that {pj} ⊂ ∂Ω1 is a sequence converging to p and, by our construction,

any analytic disk through pj is in the z1-direction. Let ϕ ∈ C(Ω1) be a function so that ϕ

depends on z2 only, −1 ≤ ϕ ≤ 0, ϕ(p) = 0, and ϕ(z1, z2, z3) = −1 when |z2| = δ. Hence

µ f (ϕ) = −1 and by Lemma 1 the measure µ f ∈ J c
z .

Claim: If µj ∈ Jpj
then µj is supported on the disk through pj in z1-direction.

Proof of Claim: This can be seen as follows: Ω1 is convex and the transversal direction to

each disk through pj is strongly pseudoconvex. Then there exist linear functionals Lj such

that Lj < 0 on Ω1\{(z1, 0, wj) ∈ C
3 : z1 ∈ C} and Lj = 0 on {(z1, 0, wj) ∈ C

3 : z1 ∈ C}.
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Hence every Jensen measure of pj is supported on the disk through pj. This finishes the

proof of the claim.

In view of the observation above limj→∞ µj(ϕ) = limj→∞ ϕ(pj) = 0. Thus µj does not

converge to µ f . From [Göğ05, Corollary 4.4] it follows that p is not c-regular.

Next we would like to give an example that shows that Theorem 5 is not true in C3.

First we need the following proposition whose proof is essentially contained in [HM] in

the proof of Proposition 6.17. We give a proof here for the convenience of the reader.

Proposition 2. Let Ω be a smooth bounded convex domain in Rn. Then Ω has a defining function

that is strictly convex on Ω.

Proof. Let σ be a smooth convex defining function for Ω. We denote the Hessian for a

function r applied to a vector W = (w1, . . . , wn) ∈ Rn at the point p by Hr(p; W). Let us

define

ρ(x) = ασ(x) + σ2(x) + h(x)σ2(x)

where α and h(x) to be determined later. In the following computation W(g) denotes the

sum ∑
n
j=1 wj∂g/∂xj. Then

Hρ(p, W) =
(

α + 2σ(p) + 2σ(p)h(p)
)

Hσ(p, W) +
(

2 + 2h(p)
)
|W(h)(p)|2

+ σ2(p)Hh(p, W) + 4σ(p)W(h)(p)W(σ)(p)

≥
(

α + 2σ(p)(1 + h(p))
)

Hσ(p, W) + 2
(

h(p)− 1
)
|W(h)(p)|2

+ σ2(p)
(

Hh(p, W)− |W(h)(p)|2
)

.

We used Cauchy-Schwarz inequality on the second line above. Let h(x) = 1 + β ∑
n
j=1 x2

j .

Since Ω is bounded there exists C > 0 such that

Hh(p, W)− |W(h)(p)| ≥ (1 − βC)
n

∑
j=1

|wj|2 for p ∈ Ω.

Then we can choose 0 < β <
1

2C and α > 0 so that α + 2σ(p) + 2σ(p)h(p) > 0 for p ∈ Ω.

Then we have

Hρ(p, W) ≥ 1

2
σ2(p)

n

∑
j=1

|wj|2 for p ∈ Ω.

Therefore, ρ is strictly convex on Ω. �

Remark 1. Observation of the proof above shows that a similar statement is true for pseu-

doconvex domains with plurisubharmonic defining functions. That is, if a smooth bounded
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pseudoconvex domain Ω in Cn has a plurisubharmonic defining function then it also has

a defining function that is strictly plurisubharmonic on Ω.

Example 2. In this example we will construct a smooth bounded complete Reinhardt pseu-

doconvex domain in C3 that is not c-regular. Hence Theorem 5 is not true in C3.

Let H1 = {(x, y) ∈ R2 : −1 < x, y < 1} and H2 be a smooth bounded convex domain

that is obtained by smoothing out the corners of H1 so that {(x, y) ∈ R2 : x = 1, 0 ≤ y ≤
1/2} ⊂ ∂H2. Since H2 is convex it has a convex defining function. Then by Proposition 2

we can choose a defining function ρ for H2 that is strictly convex on H2. Let us define

Ω =
{
(z1, z2, z3) ∈ C

3 : |z3|2 + ρ(|z1|2, |z2|2) < 0
}

.

Then Ω is a smooth bounded complete Reinhardt domain in C3. One can show that Ω is

pseudoconvex and has a disk

∆ = {(1, ζ/2, 0) : ζ ∈ C, |ζ| < 1}

in the boundary centered at p = (1, 0, 0) yet all the points on the boundary which be-

long to the set R = {(z1, z2, z3) ∈ C3 : z3 6= 0} are strongly pseudoconvex. Then the

set of strongly regular points contains the set ∂Ω ∩ R (strongly pseudoconvex points are

strongly regular) yet p is not strongly regular. Hence the set of strongly regular points in

∂Ω is not closed in ∂Ω. Therefore, Theorem 3 implies that Ω is not c-regular.

PROOFS

Proof of Proposition 1. i) and ii) are equivalent by Sibony’s results [Sib87, Sib91]. It is clear

that ii) implies iii) and iii) implies iv) by Theorem 3. So we only need to prove that iv)

implies ii). Assume that the set of strongly regular points is closed, ∂Ω has no analytic

disks, and there exists p ∈ ∂Ω that is not strongly regular. Then the Levi form of Ω

degenerates at p. Since the set of strongly regular points is not dense in the boundary

the Levi form degenerates on an open set U (in the relative topology) in the boundary of

Ω. Then there exists a relatively open set V ⊂ U in the boundary where the Levi form

is of constant rank. This implies that V is locally foliated by complex manifolds (see, for

example, [Fre74]). We reach a contradiction. Therefore, ∂Ω is strongly regular. �

The following observation will be needed in the proof of Theorem 4.

Lemma 2. Let ∆ be the unit disk in C, Ω ⊂ C2 be a bounded domain, and W be a regular

bounded domain in C such that 0 ∈ ∂W, Ω ⊂ ∆ × W, and p = (0, 0) ∈ ∂Ω. If µ ∈ Ĵp, then

Suppµ ⊂ ∆ × {0}.
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Proof. Since W is regular there exists a subharmonic function u such that u(0) = 0 and

u < 0 on W \ {0}. Let U(z1, z2) = u(z2). Then U is a plurisubharmonic function on

∆ × W such that U(z, 0) = 0 for z ∈ ∆ and U < 0 on Ω \ (∆ × {0}). This implies that

Suppµ ⊂ ∆ × {0}. �

Proof of Theorem 4. One direction follows from Theorem 3. For the other direction assume

that strongly regular points are closed. If all points in the boundary are strongly regular,

then the boundary is B-regular. This clearly implies that Ω is c-regular.

Suppose that the set of strongly regular points does not cover the whole boundary. Let

p be a boundary point that is not strongly regular. By the localization result in [Göğ08] it

is enough to prove that there exists an open ball U containing p such that p is c-regular in

Ω1 = Ω ∩ U. Since Ω ⊂ C2 and the set of strongly regular points is closed, the Levi form

is of constant rank in a neighborhood of p in the boundary. Then we can choose U so that

U ∩ ∂Ω is foliated by complex disks.

Using a holomorphic linear change of coordinates we may assume that p is the origin,

the disk ∆ containing p sits in the first coordinate, and positive y2-axis is the outward

normal to the boundary on ∆. Then there exist r, θ > 0 so that ∆ × {0} ⊂ Ω1 ⊂ C × W

where W = {z ∈ C : |z| < r, |Arg(z) + π/2| < θ}. Since W is regular Lemma 2 applies

and all Jensen measures of p on Ω1 are supported on ∆ × {0}. Let µ ∈ Ĵp be a measure in

Ω1 and {qj} be a sequence in Ω1 that converges to p. Since an open neighborhood (in ∂Ω1)

of p is foliated by analytic disks the foliation can be parametrized. That is, there exists a

smooth mapping F : ∆ × (−1, 1) → ∂Ω1 such that F is a diffeomorphism onto its image,

F(z, 0) = z on ∆, and F is holomorphic in z (see, for example, Theorem 1.1 and Theorem

2.14 in [Fre74]). Let η be the outward normal vector (0, i) to the boundary of Ω1 on the

disk ∆. Then there exists a number a > 0 so that the function G(z, s, t) = F(z, s) + tη

maps H = ∆ × (−a, a) × (−a, 0] into Ω1. For any α ∈ ∆ let

Gα,β(z, s, t) = G

(
βz + α

1 + αβz
, s, t

)
for (z, s, t) ∈ H.

There exist points (αj, sj, tj) ∈ H such that tj < 0 and G(αj, sj, tj) = qj for all j, and sj → 0

and tj → 0 as j → ∞. We consider µ as a measure on ∆ × {0} × {0} ⊂ H. Let us choose

numbers 0 < β j < 1 such that β j → 1 and the functions

gj(z, s, t) = Gαj,βj
(z, sj, tj), z ∈ ∆

map H into Ω1. Let µj = (gj)∗µ (here (gj)∗ denotes the push forward by gj). Since the

sequence of functions {G(z, sj, tj)} converges to G(z, 0, 0) uniformly on ∆, the sequence

of measures {µj} converges weak-∗ to µ as j → ∞. Notice that the measures µj are
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supported in Ω1. Moreover for every j we have
∫

ϕ dµj =
∫

ϕ ◦ gj dµ

for every ϕ ∈ C(Ω1). If u ∈ PSHb(Ω), then

u ◦ gj(0, sj, tj) = u(qj) ≤
∫

u ◦ gj dµ =
∫

u∗ dµj

for every j ≥ 1. Hence the measure µj ∈ Jqj
. This completes the proof of Theorem 4. �

Proof of Theorem 5. Let us assume that Ω ⊂ C2 is a smooth bounded pseudoconvex Rein-

hardt domain, θ1
zw(t) = (eitz, w), and θ2

zw(t) = (z, eitw). Then d
dt θ1

zw(t) = (ieitz, 0) and
d
dt θ2

zw(t) = (0, ieitw). Assume that p ∈ ∂Ω and there exists an analytic disk ∆ in the

boundary of Ω through the point p.

First suppose that p is away from coordinate axes. Replacing ∆ by a smaller disk if nec-

essary we may assume that ∆ is away from the coordinate axes as well. Then d
dt θ1

zw and
d
dt θ2

zw span C2 on ∆. The fact that ∆ is two real dimensional and that the rotations around z

and w axes add at least one more dimension imply that there is an open set in the bound-

ary around p that is foliated by analytic disks. We recall that pseudoconvex Reinhardt

domains are convexifiable away from the coordinate axes and strongly regular points of a

convex domain are precisely the ones with no disks through them in the boundary. Then

the set of points in ∂Ω (away from the coordinate axes) that are not strongly regular is a

relatively open set.

Now let us assume that p is a boundary point on the coordinate axes. By open mapping

property of holomorphic functions in one variable there are no nontrivial analytic disks

on the intersection of the boundary with the coordinate axes. Hence if there is a disk

through p then we can rotate the disk as in the previous case to show that there are disks

in a neighborhood of p. So without loss of generality assume that p = (q, 0) is in the

boundary of Ω and there is no analytic disk in the boundary of Ω passing through (q, 0).

Then there is a smooth subharmonic function φ on the disk ∆(|q|) ⊂ C centered at the

origin and radius |q| such that φ(q) = 0 and φ < 0 on ∆(|q|) \ {q}. Let ψ(z, w) = φ(z).

Then ψ(z, w) < 0 when |z| < |q|. However, since there is no analytic disk through p and

Ω is smooth Reinhardt the condition (z, w) ∈ Ω \ {p} implies that |z| < |q|. Hence, the

function ψ peaks at the point p.

Therefore, we showed that the set of strongly regular points in ∂Ω is closed and Theo-

rem 4 implies that Ω is c-regular. �



CONTINUITY OF PLURISUBHARMONIC ENVELOPES IN C2 11

FURTHER REMARKS

(1) We note that pseudoconvexity is necessary in Proposition 1. Let B(p, r) denote the

ball centered at p with radius r. Now let p1 = (0, 0) and p2 = (2, 0). By smoothing

the domain B(p1, 2) \ B(p2, 1) ⊂ C2 we can obtain a smooth bounded c-regular

domain Ω such that for every z ∈ ∂B(p2, 1) ∩ B(p1, 2) ∩ ∂Ω there are disks in Ω

passing through z. Hence Ω is not B-regular and there are no analytic disks in the

boundary.

(2) Whether the cross product of c-regular domains is c-regular is still an open prob-

lem. However, the cross product of two B-regular domains is c-regular. That is,

if U ⊂ Cn and V ⊂ Cm are bounded B-regular domains then U × V is c-regular.

To see this let p = (z0, w0) ∈ ∂(U × V). If z0 ∈ ∂U and w0 ∈ ∂V, then there are

functions u ∈ PSH(U) ∩ C(U), v ∈ PSH(V) ∩ C(V) so that u(z0) = 0, v(w0) = 0,

u(z) < 0 for z ∈ U \ {z0}, v(w) < 0 for w ∈ V \ {w0}. Then clearly the function

ρ(z, w) = u(z) + v(w) is a plurisubharmonic peak function on U × V for (z0, w0)

and the point (z0, w0) is strongly regular. So let us assume without loss of gener-

ality that z0 ∈ ∂U and w0 ∈ V. Let µ ∈ J c
p (U × V). We claim that the support

of µ belongs to the set S = {(z0, w) : w ∈ V}. Suppose this is not the case. This

means that there is a compact set K ⊂ U so that z0 6∈ K and µ(K × V) > c for some

c > 0. Let u ≤ 0 be a plurisubharmonic peak function on U for z0 as above. Let

r(z, w) = u(z) for z ∈ U, w ∈ V. Then for any w ∈ V we have

0 = r(z0, w) = u(z0) ≤
∫

K
r dµ ≤ c max

K
r < 0.

The contradiction proves the claim that Suppµ ⊂ S. Thus µ = δz0 × ν for some

probability measure ν on V. One can show that ν ∈ J c
w0
(V). In fact, if v ∈

PSHc(V), then let us consider the function v0(z, w) = v(w) defined on the product

U × V. One sees that

v(w0) = v0(z0, w0) ≤
∫

v0 dµ =
∫

v dν.

By [Göğ05, Corollary 4.4] we have J c
z (V) = Jz(V), hence, we see that the measure

µ ∈ Jp(U × V). Thus Jp(U × V) = J c
p (U × V), and again by [Göğ05, Corollary

4.4] the point p is c-regular.

(3) Let U ⊂ Cn and V ⊂ Cm be domains. Then the set of strongly regular points

in ∂(U × V) is closed if and only if the strongly regular points in ∂U and ∂V are

closed. Suppose the strongly regular points in ∂U and ∂V are closed. If (pj, qj) ∈
∂(U × V) are strongly regular and converging to (p, q), then clearly p and q are
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strongly regular points in ∂U and ∂V respectively. Let u(z) and v(w) be the plurisub-

harmonic peak functions in U and V for p and q respectively. The function s(z, w) =

u(z) + v(w) is clearly a plurisubharmonic function on U × V so that s(p, q) = 0,

s(z, w) < 0 when (z, w) 6= (p, q). Thus, the strongly regular points in ∂(U × V) are

closed.

To prove the other direction assume that the strongly regular points in ∂(U ×
V) are closed and without loss of generality assume that {pj} is a sequence of

strongly regular points in ∂U that converges to a point p. If q is a strongly regular

point in the boundary of V, then (pj, q) are strongly regular points in ∂(U × V)

that converges to (p, q). Let ϕ ≤ 0 be a plurisubharmonic function on U × V so

that ϕ(p, q) = 0, ϕ(p′, q′) < 0 when (p′, q′) 6= (p, q). Then u(z) = ϕ(z, q) is a

plurisubharmonic function on U that peaks at p. Hence the set of strongly regular

points in ∂U is closed. In a similar way one can show this for ∂V.

(4) P. Matheos in his thesis [Mat97] constructed a smooth bounded pseudoconvex

complete Hartogs domain in C2 that has no analytic disk in the boundary and

yet not B-regular. Hence by Proposition 1 this domain is not c-regular and there is

no analog of Theorem 5 for Hartogs domains.
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