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Hidden Hodge symmetries and Hodge correlators

A.B. Goncharov

To Don Zagier for his 60-th birthday

1 Hidden Hodge symmetries

There is a well known parallel between Hodge and étale theories, still incomplete and
rather mysterious:

l-adic Étale Theory Hodge Theory

Category of l-adic Abelian category MHR

Galois modules of real mixed Hodge strucrures
Galois group Hodge Galois group GHod :=

Gal(Q/Q) Galois group of the category MHR

Gal(Q/Q) acts on H∗et(X,Ql), H∗(X(C),R) has a functorial
where X is a variety over Q real mixed Hodge structure

étale site ??

Gal(Q/Q) acts on the étale site, and thus ??
on categories of étale sheaves on X , e.g. ??
on the category of l-adic perverse sheaves ??

Gal(Q/Q)-equivariant perverse sheaves Saito’s Hodge sheaves

The current absense of the “Hodge site” was emphasized by A.A. Beilinson [B].

The Hodge Galois group. A weight n pure real Hodge structure is a real vector space
H together with a decreasing filtration F •HC on its complexification satisfying

HC = ⊕p+q=nF
pHC ∩ F qHC.

A real Hodge structure is a direct sum of pure ones. The category PHR real Hodge
structures is equivalent to the category of representations of the real algebraic group C∗

C/R.
The group of complex points of C∗

C/R is C∗×C∗; the complex conjugation interchanges the
factors.

A real mixed Hodge structure is given by a real vector space H equipped with the
weight filtration W•H and the Hodge filtration F •HC of its complexification, such that
the Hodge filtration induces on grWn H a weight n real Hodge structure. The category
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MHR of real mixed Hodge structures is an abelian rigid tensor category. There is a fiber
functor to the category of real vector spaces

ωHod : MHR −→ VectR, H −→ ⊕ngr
W
n H.

The Hodge Galois group is a real algebraic group given by automorphisms of the fiber
functor:

GH := Aut⊗ωHod.

The fiber functor provides a canonical equivalence of categories

ωHod : MHR

∼
−→ GHod −modules.

The Hodge Galois group is a semidirect product of the unipotent radical UHod and C∗
C/R:

0 −→ UHod −→ GHod −→ C
∗
C/R −→ 0, C

∗
C/R →֒ GHod. (1)

The projection GHod→C
∗
C/R is provided by the inclusion of the category of real Hodge

structurs to the category of mixed real Hodge structures. The splitting s : Gm → GHod is
provided by the functor ωHod.

The complexified Lie algebra of UHod has canonical generators Gp,q, p, q ≥ 1, satisfying
the only relation Gp,q = −Gq,p, defined in [G1]. For the subcategory of Hodge-Tate
structures they were defined in [L]. Unlike similar but different Deligne’s generators [D],
they behave nicely in families. So to define an action of the group GHod one needs to have
an action of the subgroup C∗

C/R and, in addition to this, an action of a single operator

G :=
∑

p,q≥1

Gp,q.

The twistor Galois group. Denote by C∗ the real algebraic group with the group of
complex points C∗. The extension induced from (1) by the diagonal embedding C∗ ⊂ C∗

C/R

is the twistor Galois group. It is a semidirect product of the groups UHod and C∗.

0 −→ UHod −→ GT
←−
−→ C

∗ −→ 0. (2)

It is not difficult to prove

Lemma 1.1 The category of representations of GT is equivalent to the category of mixed
twistor structures defined by Simpson [Si2].

We suggest the following fills the ??-marks in the dictionary related the Hodge and
Galois. Below X is a smooth projective complex algebraic variety.

Conjecture 1.2 There exists a functorial homotopy action of the twistor Galois group
GT by A∞-equivalences of an A∞-enhancement of the derived category of perverse sheaves
on X such that the category of equivariant objects is equivalent to Saito’s category real
mixed Hodge sheaves.1

1We want to have a natural construction of the action first, and get Saito’s category real mixed Hodge

sheaves as a consequence, not the other way around.
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Denote by Db
sm(X) the category of smooth complexes of sheaves on X , i.e. complexes

of sheaves on X whose cohomology are local systems.

Theorem 1.3 There exists a functorial for pull-backs homotopy action of the twistor
Galois group GT by A∞-equivalences of an A∞-enhancement of the category Db

sm(X).

The action of the subgroup C∗ is not algebraic. It arises from Simpson’s action of C∗

on semisimple local systems [Si1]. The action of the Lie algebra of the unipotent radical
UHod is determined by a collection of numbers, which we call the Hodge correlators for
semisimple local systems. Our construction uses the theory of harmonic bundles [Si1].
The Hodge correlators can be interpreted as correlators for a certain Feynman integral.
This Feynman integral is probably responsible for the “Hodge site”.

For the trivial local system the construction was carried out in [G2]. A more general
construction for curves, involving the constant sheaves and delta-functions, was carried
out in [G1].

In the case when X is the universal modular curve, the Hodge correlators contain the
special values L(f, n) of weight k ≥ 2 modular forms for GL2(Q) outside of the critical
strip – it turns out that the simplest Hodge correlators in this case coincide with the
Rankin-Selberg integrals for the non-critical special values L(f, k + n), n ≥ 0 – the case
k = 2, n = 0 is discussed in detail in [G1].

2 Hodge correlators for local systems

2.1 An action of GT on the “ minimal model”of Dsm(X).

Tensor products of irreducible local systems are semisimple local systems. The category
of harmonic bundles HarX is the graded category whose objects are semi-simple local
systems on X and their shifts, and morphisms are given by graded vector spaces

Hom•HarX
(V1, V2) := H•(X, V ∨1 ⊗ V2). (3)

Here is our main result.

Theorem 2.1 There is a homotopy action of the twistor Galois group GT by A∞-equivalences
of the graded category HarX , such that the action of the subgroup C

∗ is given by Simpson’s
action of C∗ on semi-simple local systems.

This immediately implies Theorem 1.3. Indeed, given a small A∞-categoryA, there is a
functorial constraction of the triangulated envelope Tr(A) of A, the smallest triangulated
category containing A. Since Db

sm(X) is generated as a triangulated category by semi-
simple local systems, the category Tr(HarX) is equivalent to Db

sm(X) as a triangulated
category, and thus is an A∞-enhancement of the latter. On the other hand, the action of
the group GT from Theorem 2.1 extends by functoriality to the action on Tr(HarX).

Below we recall what are A∞-equivalences of DG categories and then define the cor-
responding data in our case.
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2.2 A∞-equivalences of DG categories

The Hochshild cohomology of a small dg-category A. Let A be a small dg cate-
gory. Consider a bicomplex whose n-th column is

∏

[Xi]

Hom
(

A(X0, X1)[1]⊗A(X1, X2)[1]⊗ . . .⊗A(Xn−1, Xn)[1],A(X0, Xn)[1]
)

, (4)

where the product is over isomorphism classes [Xi] of objects of the category A. The
vertical differential d1 in the bicomplex is given by the differential on the tensor product
of complexes. The horisontal one d2 is the degree 1 map provided by the composition

A(Xi, Xi+1)⊗A(Xi+1, Xi+2) −→ A(Xi, Xi+2).

Let HC∗(A) be the total complex of this bicomplex. Its cohomology are the Hochshild
cohomology HH∗(A) of A. Let FunA∞

(A,A) be the space of A∞-functors from A to
itself. Lemma 2.2 can serve as a definition of A∞-functors considered modulo homotopy
equivalence.

Lemma 2.2 One has
H0FunA∞

(A,A) = HH0(A). (5)

Indeed, a cocycle in HC0(A) is the same thing as an A∞-functor. Coboundaries corre-
sponds to the homotopic to zero functors.

The cyclic homology of a small rigid dg-category A. Let (α0 ⊗ ...⊗ αm)C be the
projection of α0 ⊗ ...⊗ αm to the coinvariants of the cyclic shift. So, if α := degα,

(α0 ⊗ ...⊗ αm)C = (−1)αm(α0+...+αm−1)(α1 ⊗ ...⊗ αm ⊗ α0)C.

We assign to A a bicomplex whose n-th column is
∏

[Xi]

(

A(X0, X1)[1]⊗ . . .⊗A(Xn−1, Xn)[1]⊗A(Xn, X0)[1]
)

C
.

The differentials are induced by the differentials and the composition maps on Hom’s.
The cyclic homology complex CC∗(A) of A is the total complex of this bicomplex. Its
homology are the cyclic homology of A.

Assume that there are functorial pairings

A(X, Y )[1]⊗A(Y,X)[1] −→ H∗.

Then there is a morphism of complexes

HC∗(A)∗ −→ CC∗(A)⊗H. (6)

For the category of harmonic bundles HarX there is such a pairing with

H := H2n(X)[−2].

It provides a map

ϕ : Hom
(

H0(CC∗(HarX)⊗H,C
)

−→ HH0(HarX)
(5)
= H0FunA∞

(HarX ,HarX). (7)
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2.3 The Hodge correlators

Theorem 2.3 a) There is a linear map, the Hodge correlator map

CorHarX : H0(CC∗(HarX)⊗H) −→ C. (8)

Combining it with (7), we get a cohomology class

HHarX := ϕ(CorHarX) ∈ H0FunA∞
(HarX ,HarX). (9)

b) There is a homotopy action of the twistor Galois group GT by A∞-autoequivalences
of the category HarX such that

• Its restriction to the subgroup C∗ is the Simpson action [Si1] on the category HarX .

• Its restriction to the Lie algebra LieUHod is given by a Lie algebra map

HHarX : LHod −→ H0FunA∞
(HarX ,HarX), (10)

uniquely determined by the condition that HHarX(G) = HHarX .

c) The action of the group GT is functorial with respect to the pull backs.

2.4 Construction.

To define the Hodge correlator map (8), we define a collection of degree zero maps

CorHodX :
(

H•(X, V ∗0 ⊗ V1)[1]⊗ . . .⊗H•(X, V ∗m ⊗ V0)[1]
)

C
⊗H −→ C. (11)

The definition depends on some choices, like harmonic representatatives of cohomology
classes. We prove that it is well defined on HC0, i.e. its resctriction to cycles is indepen-
dent of the choices, and coboundaries are mapped to zero.

We picture an element in the sourse of the map (11) by a polygon P , see Fig 1,
whose vertices are the objects Vi, and the oriented sides ViVi+1 are graded vector space
Ext∗(Vi, Vi+1)(1).

1

0

2 3

4

5

V V

V

VV

V

Figure 1: A decorated plane trivalent tree; Vi are harmonic bundles.
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Green currents for harmonic bundles. Let V be a harmonic bundle on X . Then
there is a Doulbeaut bicomplex (A•(X, V );D′, D′′) where the differentials D′, D′′ are pro-
vided by the complex structure on X and the harmonic metric on V . It satisfies the
D′, D′′-lemma.

Choose a splitting of the corresponding de Rham complex A•(X, V ) into an arbitrary
subspace Har•(X, V ) isomorphically projecting onto the cohomology H•(X, V ) (”har-
monic forms”) and its orthogonal complement. If V = CX , we choose a ∈ X and take the
δ-function δa at the point a ∈ X as a representative of the fundamental class.

Let δ∆ be the Schwarz kernel of the identity map V → V given by the δ-function of
the diagonal, and PHar the Schwarz kernel of the projector onto the space Har•(X, V ),
realized by an (n, n)-form on X × X . Choose a basis {αi} in Har•(X, V ). Denote by
{α∨i } the dual basis. Then we have

PHar =
∑

α∨i ⊗ αi,

∫

X

αi ∧ α∨j = δij .

Let pi : X ×X → X be the projections onto the factors.

Definition 2.4 A Green current G(V ; x, y) is a p∗1V
∗ ⊗ p∗2V -valued current on X ×X,

G(V ; x, y) ∈ D2n−2(X ×X, p∗1V
∗ ⊗ p∗2V ), n = dimCX,

which satisfies the differential equation

(2πi)−1D′′D′G(V ; x, y) = δ∆ − PHar. (12)

The two currents on the right hand side of (12) represent the same cohomology class, so
the equation has a solution by the D′′D′-lemma.

Remark. The Green current depends on the choice of the “harmonic forms”. So if
V = C, it depends on the choise of the base point a. Solutions of equation (12) are well
defined modulo ImD′′ + ImD′ +Har•(X, V ).

Construction of the Hodge correlators. Trees. Take a plane trivalent tree T dual
to a triangulation of the polygon P , see Fig 1. The complement to T in the polygon P
is a union of connected domains parametrized by the vertices of P , and thus decorated
by the harmonic bundles Vi. Each edge E of the tree T is shared by two domains. The
corresponding harmonic bundles are denoted VE− and VE+. If E is an external edge, we
assume that VE− is before VE+ for the clockwise orientation.

Given an internal vertex v of the tree T , there are three domains sharing the vertex.
We denote the corresponding harmonic bundles by Vi, Vj, Vk, where the cyclic order of the
bundles agrees with the clockwise orientation. There is a natural trace map

Trv : V
∗
i ⊗ Vj ⊗ V ∗j ⊗ Vk ⊗ V ∗k ⊗ Vi =−→ C. (13)

It is invariant under the cyclic shift.
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Decorations. For every edge E of T , choose a graded splitting of the de Rham complex

A•(X, V ∗E− ⊗ VE+) = Har•(X, V ∗E− ⊗ VE+)
⊕

Har•(X, V ∗E− ⊗ VE+)
⊥.

Then a decomposable class in
(

⊗m
i=0H

∗(X, V •i ⊗Vi+1)[1]
)

C
has a harmonic representative

W =
(

α0,1 ⊗ α1,2 ⊗ . . .⊗ αm,0

)

C
.

We are going to assign to W a top degree current κ(W ) on

X{internal vertices of T }. (14)

Each external edge E of the tree T is decorated by an element

αE ∈ Har•(X, V ∗E− ⊗ VE+).

Put the current αE to the copy of X assigned to the internal vertex of the edge E, and
pull it back to (14) using the projection pαE

of the latter to the X . Abusing notation, we
denote the pull back by αE. It is a form on (14) with values in the bundle p∗αE

(V ∗E−⊗VE+)

Green currents. We assign to each internal edge E of the tree T a Green current

G(V ∗E− ⊗ VE+; x−, x+). (15)

The order of (x−, x+) agrees with the one of (V ∗E−, VE+) as on Fig 2: the cyclic order
of (V ∗E−, x−, VE+, x+) agrees with the clockwise orientation. The Green current (15) is
symmetric:

G(V ∗E− ⊗ VE+; x−, x+) = G(V ∗E+ ⊗ VE−; x+, x−). (16)

So it does not depend on the choice of orientation of the edge E.

x x

V

V

E

E

E

+

+

Figure 2: Decorations of the Green current assigned to an edge E.

The map ξ. There is a degree zero map

ξ : A•(X, V0)[−1]⊗ . . .⊗A•(X, Vm)[−1] −→ A•(X, V0 ⊗ ...⊗ Vm)[−1]; (17)
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ϕ0 ⊗ . . .⊗ ϕm 7−→ Sym{0,...,m}

(

ϕ0 ∧DCϕ1 ∧ . . . ∧DCϕm

)

. (18)

The graded symmetrization in (18) is defined via isomorphisms Vσ(0) ⊗ ... ⊗ Vσ(m) →
V0⊗...⊗Vm, where σ is a permutation of {0, ..., m}. It is essential that degDCϕ = degϕ+1.

An outline of the construction. We apply the operator ξ to the product of the Green
currents assigned to the internal edges of T . Then we multiply on (14) the obtained local
system valued current with the one provided by the decoration W , with an appropriate
sign. Applying the product of the trace maps (13) over the internal vertices of T , we
get a top degree scalar current on (14). Integrating it we get a number assigned to T .
Taking the sum over all plane trivalent trees T decorated by W , we get a complex number
CorHarX(W ⊗H). Altogether, we get the map (8). One checks that its degree is zero. The
signs in this definition are defined the same way as in [G2].

Theorem 2.5 The maps (11) give rise to a well defined Hodge correlator map (8).
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