Hidden Hodge symmetries and Hodge correlators

A.B. Goncharov
To Don Zagier for his 60-th birthday

1 Hidden Hodge symmetries

There is a well known parallel between Hodge and étale theories, still incomplete and rather mysterious:

l-adic Étale Theory	Hodge Theory
Category of l-adic	Abelian category $\mathcal{M} \mathcal{H}_{\mathbb{R}}$
Galois modules	of real mixed Hodge strucrures

The current absense of the "Hodge site" was emphasized by A.A. Beilinson [B].

The Hodge Galois group. A weight n pure real Hodge structure is a real vector space H together with a decreasing filtration $F^{\bullet} H_{\mathbb{C}}$ on its complexification satisfying

$$
H_{\mathbb{C}}=\oplus_{p+q=n} F^{p} H_{\mathbb{C}} \cap \overline{F^{q}} H_{\mathbb{C}} .
$$

A real Hodge structure is a direct sum of pure ones. The category $\mathcal{P} \mathcal{H}_{\mathbb{R}}$ real Hodge structures is equivalent to the category of representations of the real algebraic group $\mathbb{C}_{\mathbb{C} / \mathbb{R}}^{*}$. The group of complex points of $\mathbb{C}_{\mathbb{C} / \mathbb{R}}^{*}$ is $\mathbb{C}^{*} \times \mathbb{C}^{*}$; the complex conjugation interchanges the factors.

A real mixed Hodge structure is given by a real vector space H equipped with the weight filtration $W_{\bullet} H$ and the Hodge filtration $F^{\bullet} H_{\mathbb{C}}$ of its complexification, such that the Hodge filtration induces on $\operatorname{gr}_{n}^{W} H$ a weight n real Hodge structure. The category
$\mathcal{M} \mathcal{H}_{\mathbb{R}}$ of real mixed Hodge structures is an abelian rigid tensor category. There is a fiber functor to the category of real vector spaces

$$
\omega_{\mathrm{Hod}}: \mathcal{M} \mathcal{H}_{\mathbb{R}} \longrightarrow \text { Vect }_{\mathbb{R}}, \quad H \longrightarrow \oplus_{n} \operatorname{gr}_{n}^{W} H
$$

The Hodge Galois group is a real algebraic group given by automorphisms of the fiber functor:

$$
G_{\mathrm{H}}:=\mathrm{Aut}^{\otimes} \omega_{\mathrm{Hod}} .
$$

The fiber functor provides a canonical equivalence of categories

$$
\omega_{\text {Hod }}: \mathcal{M} \mathcal{H}_{\mathbb{R}} \xrightarrow{\sim} G_{\text {Hod }}-\text { modules. }
$$

The Hodge Galois group is a semidirect product of the unipotent radical $U_{\text {Hod }}$ and $\mathbb{C}_{\mathbb{C} / \mathbb{R}}^{*}$:

$$
\begin{equation*}
0 \longrightarrow U_{\text {Hod }} \longrightarrow G_{\text {Hod }} \longrightarrow \mathbb{C}_{\mathbb{C} / \mathbb{R}}^{*} \longrightarrow 0, \quad \mathbb{C}_{\mathbb{C} / \mathbb{R}}^{*} \hookrightarrow G_{\text {Hod }} \tag{1}
\end{equation*}
$$

The projection $G_{\text {Hod }} \rightarrow \mathbb{C}^{*} \mathbb{C} / \mathbb{R}$ is provided by the inclusion of the category of real Hodge structurs to the category of mixed real Hodge structures. The splitting $s: \mathbb{G}_{m} \rightarrow G_{\text {Hod }}$ is provided by the functor $\omega_{\text {Hod }}$.

The complexified Lie algebra of $U_{\text {Hod }}$ has canonical generators $G_{p, q}, p, q \geq 1$, satisfying the only relation $\bar{G}_{p, q}=-G_{q, p}$, defined in G1]. For the subcategory of Hodge-Tate structures they were defined in [L]. Unlike similar but different Deligne's generators [D], they behave nicely in families. So to define an action of the group $G_{\text {Hod }}$ one needs to have an action of the subgroup $\mathbb{C}_{\mathbb{C} / \mathbb{R}}^{*}$ and, in addition to this, an action of a single operator

$$
G:=\sum_{p, q \geq 1} G_{p, q}
$$

The twistor Galois group. Denote by \mathbb{C}^{*} the real algebraic group with the group of complex points \mathbb{C}^{*}. The extension induced from (11) by the diagonal embedding $\mathbb{C}^{*} \subset \mathbb{C}_{\mathbb{C} / \mathbb{R}}^{*}$ is the twistor Galois group. It is a semidirect product of the groups U_{Hod} and \mathbb{C}^{*}.

$$
\begin{equation*}
0 \longrightarrow U_{\mathrm{Hod}} \longrightarrow G_{\mathrm{T}} \leftrightarrows \mathbb{C}^{*} \longrightarrow 0 \tag{2}
\end{equation*}
$$

It is not difficult to prove
Lemma 1.1 The category of representations of G_{T} is equivalent to the category of mixed twistor structures defined by Simpson [Si2].

We suggest the following fills the ??-marks in the dictionary related the Hodge and Galois. Below X is a smooth projective complex algebraic variety.

Conjecture 1.2 There exists a functorial homotopy action of the twistor Galois group G_{T} by A_{∞}-equivalences of an A_{∞}-enhancement of the derived category of perverse sheaves on X such that the category of equivariant objects is equivalent to Saito's category real mixed Hodge sheaves 1

[^0]Denote by $D_{\mathrm{sm}}^{b}(X)$ the category of smooth complexes of sheaves on X, i.e. complexes of sheaves on X whose cohomology are local systems.

Theorem 1.3 There exists a functorial for pull-backs homotopy action of the twistor Galois group G_{T} by A_{∞}-equivalences of an A_{∞}-enhancement of the category $D_{\mathrm{sm}}^{b}(X)$.

The action of the subgroup \mathbb{C}^{*} is not algebraic. It arises from Simpson's action of \mathbb{C}^{*} on semisimple local systems [Si1]. The action of the Lie algebra of the unipotent radical $U_{\text {Hod }}$ is determined by a collection of numbers, which we call the Hodge correlators for semisimple local systems. Our construction uses the theory of harmonic bundles Si1. The Hodge correlators can be interpreted as correlators for a certain Feynman integral. This Feynman integral is probably responsible for the "Hodge site".

For the trivial local system the construction was carried out in [G2]. A more general construction for curves, involving the constant sheaves and delta-functions, was carried out in [G1.

In the case when X is the universal modular curve, the Hodge correlators contain the special values $L(f, n)$ of weight $k \geq 2$ modular forms for $G L_{2}(\mathbb{Q})$ outside of the critical strip - it turns out that the simplest Hodge correlators in this case coincide with the Rankin-Selberg integrals for the non-critical special values $L(f, k+n), n \geq 0$ - the case $k=2, n=0$ is discussed in detail in G1.

2 Hodge correlators for local systems

2.1 An action of G_{T} on the " minimal model" of $\mathcal{D}_{\mathrm{sm}}(X)$.

Tensor products of irreducible local systems are semisimple local systems. The category of harmonic bundles Har_{X} is the graded category whose objects are semi-simple local systems on X and their shifts, and morphisms are given by graded vector spaces

$$
\begin{equation*}
\operatorname{Hom}_{\operatorname{Har}_{X}}^{\bullet}\left(V_{1}, V_{2}\right):=H^{\bullet}\left(X, V_{1}^{\vee} \otimes V_{2}\right) \tag{3}
\end{equation*}
$$

Here is our main result.
Theorem 2.1 There is a homotopy action of the twistor Galois group G_{T} by A_{∞}-equivalences of the graded category Har_{X}, such that the action of the subgroup \mathbb{C}^{*} is given by Simpson's action of \mathbb{C}^{*} on semi-simple local systems.

This immediately implies Theorem 1.3. Indeed, given a small A_{∞}-category \mathcal{A}, there is a functorial constraction of the triangulated envelope $\operatorname{Tr}(\mathcal{A})$ of \mathcal{A}, the smallest triangulated category containing \mathcal{A}. Since $\mathcal{D}_{\mathrm{sm}}^{b}(X)$ is generated as a triangulated category by semisimple local systems, the category $\operatorname{Tr}\left(\operatorname{Har}_{X}\right)$ is equivalent to $\mathcal{D}_{\mathrm{sm}}^{b}(X)$ as a triangulated category, and thus is an A_{∞}-enhancement of the latter. On the other hand, the action of the group G_{T} from Theorem 2.1 extends by functoriality to the action on $\operatorname{Tr}\left(\operatorname{Har}_{X}\right)$.

Below we recall what are A_{∞}-equivalences of DG categories and then define the corresponding data in our case.

$2.2 A_{\infty}$-equivalences of DG categories

The Hochshild cohomology of a small dg-category \mathcal{A}. Let \mathcal{A} be a small dg category. Consider a bicomplex whose n-th column is

$$
\begin{equation*}
\prod_{\left[X_{i}\right]} \operatorname{Hom}\left(\mathcal{A}\left(X_{0}, X_{1}\right)[1] \otimes \mathcal{A}\left(X_{1}, X_{2}\right)[1] \otimes \ldots \otimes \mathcal{A}\left(X_{n-1}, X_{n}\right)[1], \mathcal{A}\left(X_{0}, X_{n}\right)[1]\right) \tag{4}
\end{equation*}
$$

where the product is over isomorphism classes $\left[X_{i}\right]$ of objects of the category \mathcal{A}. The vertical differential d_{1} in the bicomplex is given by the differential on the tensor product of complexes. The horisontal one d_{2} is the degree 1 map provided by the composition

$$
\mathcal{A}\left(X_{i}, X_{i+1}\right) \otimes \mathcal{A}\left(X_{i+1}, X_{i+2}\right) \longrightarrow \mathcal{A}\left(X_{i}, X_{i+2}\right)
$$

Let $\mathrm{HC}^{*}(\mathcal{A})$ be the total complex of this bicomplex. Its cohomology are the Hochshild cohomology $\mathrm{HH}^{*}(\mathcal{A})$ of \mathcal{A}. Let $\operatorname{Fun}_{A_{\infty}}(\mathcal{A}, \mathcal{A})$ be the space of A_{∞}-functors from \mathcal{A} to itself. Lemma 2.2 can serve as a definition of A_{∞}-functors considered modulo homotopy equivalence.
Lemma 2.2 One has

$$
\begin{equation*}
H^{0} \operatorname{Fun}_{A_{\infty}}(\mathcal{A}, \mathcal{A})=\operatorname{HH}^{0}(\mathcal{A}) \tag{5}
\end{equation*}
$$

Indeed, a cocycle in $\operatorname{HC}^{0}(\mathcal{A})$ is the same thing as an A_{∞}-functor. Coboundaries corresponds to the homotopic to zero functors.

The cyclic homology of a small rigid dg-category \mathcal{A}. Let $\left(\alpha_{0} \otimes \ldots \otimes \alpha_{m}\right)_{\mathcal{C}}$ be the projection of $\alpha_{0} \otimes \ldots \otimes \alpha_{m}$ to the coinvariants of the cyclic shift. So, if $\bar{\alpha}:=\operatorname{deg} \alpha$,

$$
\left(\alpha_{0} \otimes \ldots \otimes \alpha_{m}\right)_{\mathcal{C}}=(-1)^{\bar{\alpha}_{m}\left(\bar{\alpha}_{0}+\ldots+\bar{\alpha}_{m-1}\right)}\left(\alpha_{1} \otimes \ldots \otimes \alpha_{m} \otimes \alpha_{0}\right)_{\mathcal{C}}
$$

We assign to \mathcal{A} a bicomplex whose n-th column is

$$
\prod_{\left[X_{i}\right]}\left(\mathcal{A}\left(X_{0}, X_{1}\right)[1] \otimes \ldots \otimes \mathcal{A}\left(X_{n-1}, X_{n}\right)[1] \otimes \mathcal{A}\left(X_{n}, X_{0}\right)[1]\right)_{\mathcal{C}}
$$

The differentials are induced by the differentials and the composition maps on Hom's. The cyclic homology complex $\mathrm{CC}_{*}(\mathcal{A})$ of \mathcal{A} is the total complex of this bicomplex. Its homology are the cyclic homology of \mathcal{A}.

Assume that there are functorial pairings

$$
\mathcal{A}(X, Y)[1] \otimes \mathcal{A}(Y, X)[1] \longrightarrow \mathcal{H}^{*}
$$

Then there is a morphism of complexes

$$
\begin{equation*}
\mathrm{HC}^{*}(\mathcal{A})^{*} \longrightarrow \mathrm{CC}_{*}(\mathcal{A}) \otimes \mathcal{H} \tag{6}
\end{equation*}
$$

For the category of harmonic bundles Har_{X} there is such a pairing with

$$
\mathcal{H}:=H_{2 n}(X)[-2] .
$$

It provides a map

$$
\begin{equation*}
\varphi: \operatorname{Hom}\left(H_{0}\left(\mathrm{CC}_{*}\left(\operatorname{Har}_{X}\right) \otimes \mathcal{H}, \mathbb{C}\right) \longrightarrow \operatorname{HH}^{0}\left(\operatorname{Har}_{X}\right) \stackrel{(5)}{=} H^{0} \operatorname{Fun}_{A_{\infty}}\left(\operatorname{Har}_{X}, \operatorname{Har}_{X}\right)\right. \tag{7}
\end{equation*}
$$

2.3 The Hodge correlators

Theorem 2.3 a) There is a linear map, the Hodge correlator map

$$
\begin{equation*}
\operatorname{Cor}_{\text {Harx }_{X}}: H_{0}\left(\mathrm{CC}_{*}\left(\operatorname{Har}_{X}\right) \otimes \mathcal{H}\right) \longrightarrow \mathbb{C} \tag{8}
\end{equation*}
$$

Combining it with (7), we get a cohomology class

$$
\begin{equation*}
\mathbf{H}_{\text {HarX }}:=\varphi\left(\operatorname{Cor}_{\text {Har }_{X}}\right) \in H^{0} \operatorname{Fun}_{A_{\infty}}\left(\operatorname{Har}_{X}, \operatorname{Har}_{X}\right) . \tag{9}
\end{equation*}
$$

b) There is a homotopy action of the twistor Galois group G_{T} by A_{∞}-autoequivalences of the category Har_{X} such that

- Its restriction to the subgroup \mathbb{C}^{*} is the Simpson action [Si1] on the category Har_{X}.
- Its restriction to the Lie algebra $\mathrm{Lie}_{\mathrm{Hod}}$ is given by a Lie algebra map

$$
\begin{equation*}
\mathbb{H}_{\text {HarX }}: \mathrm{L}_{\mathrm{Hod}} \longrightarrow \mathrm{H}^{0} \operatorname{Fun}_{A_{\infty}}\left(\operatorname{Har}_{X}, \operatorname{Har}_{X}\right) \tag{10}
\end{equation*}
$$

uniquely determined by the condition that $\mathbb{H}_{\text {Har }_{X}}(G)=\mathbf{H}_{\text {Harx }_{x}}$.
c) The action of the group G_{T} is functorial with respect to the pull backs.

2.4 Construction.

To define the Hodge correlator map (8), we define a collection of degree zero maps

$$
\begin{equation*}
\operatorname{Cor}_{\mathrm{Hod}}:\left(H^{\bullet}\left(X, V_{0}^{*} \otimes V_{1}\right)[1] \otimes \ldots \otimes H^{\bullet}\left(X, V_{m}^{*} \otimes V_{0}\right)[1]\right)_{\mathcal{C}} \otimes \mathcal{H} \longrightarrow \mathbb{C} \tag{11}
\end{equation*}
$$

The definition depends on some choices, like harmonic representatatives of cohomology classes. We prove that it is well defined on $H C^{0}$, i.e. its resctriction to cycles is independent of the choices, and coboundaries are mapped to zero.

We picture an element in the sourse of the map (11) by a polygon P, see Fig 1 , whose vertices are the objects V_{i}, and the oriented sides $V_{i} V_{i+1}$ are graded vector space $\operatorname{Ext}^{*}\left(V_{i}, V_{i+1}\right)(1)$.

Figure 1: A decorated plane trivalent tree; V_{i} are harmonic bundles.

Green currents for harmonic bundles. Let V be a harmonic bundle on X. Then there is a Doulbeaut bicomplex $\left(\mathcal{A}^{\bullet}(X, V) ; D^{\prime}, D^{\prime \prime}\right)$ where the differentials $D^{\prime}, D^{\prime \prime}$ are provided by the complex structure on X and the harmonic metric on V. It satisfies the $D^{\prime}, D^{\prime \prime}$-lemma.

Choose a splitting of the corresponding de Rham complex $\mathcal{A}^{\bullet}(X, V)$ into an arbitrary subspace $\mathcal{H a r}^{\bullet}(X, V)$ isomorphically projecting onto the cohomology $H^{\bullet}(X, V)$ ("harmonic forms") and its orthogonal complement. If $V=\mathbb{C}_{X}$, we choose $a \in X$ and take the δ-function δ_{a} at the point $a \in X$ as a representative of the fundamental class.

Let δ_{Δ} be the Schwarz kernel of the identity map $V \rightarrow V$ given by the δ-function of the diagonal, and $P_{\text {Har }}$ the Schwarz kernel of the projector onto the space $\operatorname{Har}^{\bullet}(X, V)$, realized by an (n, n)-form on $X \times X$. Choose a basis $\left\{\alpha_{i}\right\}$ in $\mathcal{H a r}^{\bullet}(X, V)$. Denote by $\left\{\alpha_{i}^{\vee}\right\}$ the dual basis. Then we have

$$
P_{\mathrm{Har}}=\sum \alpha_{i}^{\vee} \otimes \alpha_{i}, \quad \int_{X} \alpha_{i} \wedge \alpha_{j}^{\vee}=\delta_{i j}
$$

Let $p_{i}: X \times X \rightarrow X$ be the projections onto the factors.
Definition 2.4 A Green current $G(V ; x, y)$ is a $p_{1}^{*} V^{*} \otimes p_{2}^{*} V$-valued current on $X \times X$,

$$
G(V ; x, y) \in \mathcal{D}^{2 n-2}\left(X \times X, p_{1}^{*} V^{*} \otimes p_{2}^{*} V\right), \quad n=\operatorname{dim}_{\mathbb{C}} X
$$

which satisfies the differential equation

$$
\begin{equation*}
(2 \pi i)^{-1} D^{\prime \prime} D^{\prime} G(V ; x, y)=\delta_{\Delta}-P_{\mathrm{Har}} . \tag{12}
\end{equation*}
$$

The two currents on the right hand side of (12) represent the same cohomology class, so the equation has a solution by the $D^{\prime \prime} D^{\prime}$-lemma.

Remark. The Green current depends on the choice of the "harmonic forms". So if $V=\mathbb{C}$, it depends on the choise of the base point a. Solutions of equation (12) are well defined modulo $\operatorname{Im} D^{\prime \prime}+\operatorname{Im} D^{\prime}+\mathcal{H a r}^{\bullet}(X, V)$.

Construction of the Hodge correlators. Trees. Take a plane trivalent tree T dual to a triangulation of the polygon P, see Fig [1. The complement to T in the polygon P is a union of connected domains parametrized by the vertices of P, and thus decorated by the harmonic bundles V_{i}. Each edge E of the tree T is shared by two domains. The corresponding harmonic bundles are denoted V_{E-} and V_{E+}. If E is an external edge, we assume that V_{E-} is before V_{E+} for the clockwise orientation.

Given an internal vertex v of the tree T, there are three domains sharing the vertex. We denote the corresponding harmonic bundles by V_{i}, V_{j}, V_{k}, where the cyclic order of the bundles agrees with the clockwise orientation. There is a natural trace map

$$
\begin{equation*}
\operatorname{Tr}_{v}: V_{i}^{*} \otimes V_{j} \otimes V_{j}^{*} \otimes V_{k} \otimes V_{k}^{*} \otimes V_{i}=\longrightarrow \mathbb{C} \tag{13}
\end{equation*}
$$

It is invariant under the cyclic shift.

Decorations. For every edge E of T, choose a graded splitting of the de Rham complex

$$
\mathcal{A}^{\bullet}\left(X, V_{E-}^{*} \otimes V_{E+}\right)=\mathcal{H a r} \cdot\left(X, V_{E-}^{*} \otimes V_{E+}\right) \bigoplus \mathcal{H a r} \bullet\left(X, V_{E-}^{*} \otimes V_{E+}\right)^{\perp}
$$

Then a decomposable class in $\left(\otimes_{i=0}^{m} H^{*}\left(X, V_{i}^{\bullet} \otimes V_{i+1}\right)[1]\right)_{\mathcal{C}}$ has a harmonic representative

$$
W=\left(\alpha_{0,1} \otimes \alpha_{1,2} \otimes \ldots \otimes \alpha_{m, 0}\right)_{\mathcal{C}}
$$

We are going to assign to W a top degree current $\kappa(W)$ on

$$
\begin{equation*}
X^{\{\text {internal vertices of } T\}} . \tag{14}
\end{equation*}
$$

Each external edge E of the tree T is decorated by an element

$$
\alpha_{E} \in \mathcal{H a r}{ }^{\bullet}\left(X, V_{E-}^{*} \otimes V_{E+}\right) .
$$

Put the current α_{E} to the copy of X assigned to the internal vertex of the edge E, and pull it back to (14) using the projection $p_{\alpha_{E}}$ of the latter to the X. Abusing notation, we denote the pull back by α_{E}. It is a form on (14) with values in the bundle $p_{\alpha_{E}}^{*}\left(V_{E-}^{*} \otimes V_{E+}\right)$

Green currents. We assign to each internal edge E of the tree T a Green current

$$
\begin{equation*}
G\left(V_{E-}^{*} \otimes V_{E+} ; x_{-}, x_{+}\right) . \tag{15}
\end{equation*}
$$

The order of $\left(x_{-}, x_{+}\right)$agrees with the one of $\left(V_{E-}^{*}, V_{E+}\right)$ as on Fig 2; the cyclic order of $\left(V_{E-}^{*}, x_{-}, V_{E+}, x_{+}\right)$agrees with the clockwise orientation. The Green current (15) is symmetric:

$$
\begin{equation*}
G\left(V_{E-}^{*} \otimes V_{E+} ; x_{-}, x_{+}\right)=G\left(V_{E+}^{*} \otimes V_{E-} ; x_{+}, x_{-}\right) . \tag{16}
\end{equation*}
$$

So it does not depend on the choice of orientation of the edge E.

Figure 2: Decorations of the Green current assigned to an edge E.

The map ξ. There is a degree zero map

$$
\begin{equation*}
\xi: \mathcal{A}^{\bullet}\left(X, V_{0}\right)[-1] \otimes \ldots \otimes \mathcal{A}^{\bullet}\left(X, V_{m}\right)[-1] \longrightarrow \mathcal{A}^{\bullet}\left(X, V_{0} \otimes \ldots \otimes V_{m}\right)[-1] ; \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\varphi_{0} \otimes \ldots \otimes \varphi_{m} \longmapsto \operatorname{Sym}_{\{0, \ldots, m\}}\left(\varphi_{0} \wedge D^{\mathbb{C}} \varphi_{1} \wedge \ldots \wedge D^{\mathbb{C}} \varphi_{m}\right) \tag{18}
\end{equation*}
$$

The graded symmetrization in (18) is defined via isomorphisms $V_{\sigma(0)} \otimes \ldots \otimes V_{\sigma(m)} \rightarrow$ $V_{0} \otimes \ldots \otimes V_{m}$, where σ is a permutation of $\{0, \ldots, m\}$. It is essential that $\operatorname{deg} D^{\mathbb{C}} \varphi=\operatorname{deg} \varphi+1$.

An outline of the construction. We apply the operator ξ to the product of the Green currents assigned to the internal edges of T. Then we multiply on (14) the obtained local system valued current with the one provided by the decoration W, with an appropriate sign. Applying the product of the trace maps (13) over the internal vertices of T, we get a top degree scalar current on (14). Integrating it we get a number assigned to T. Taking the sum over all plane trivalent trees T decorated by W, we get a complex number $\operatorname{Cor}_{\text {arrx }_{x}}(W \otimes \mathcal{H})$. Altogether, we get the map (8). One checks that its degree is zero. The signs in this definition are defined the same way as in [G2].

Theorem 2.5 The maps (11) give rise to a well defined Hodge correlator map (8).

Acknowledgments. I am grateful to Alexander Beilinson and Maxim Kontsevich for their interest to this project and useful discussions. This work was supported by the NSF grant DMS-1059129, MPI (Bonn) and IHES.

References

[B] Beilinson A.A.: Height pairings between algebraic cycles. K-theory, arithmetic and geometry (Moscow, 1984-1986), 1-25, Lecture Notes in Math., 1289, Springer, Berlin, 1987.
[B2] Beilinson A.A.: Higher regulators of modular curves. Contemp. Math. 55, 1-34 (1986).
[D] Deligne P.: Structures des Hodges mixte réeles. Proc. Symp. in Pure Math, vol. 55, (1994), part 1, 509-516.
[G1] Goncharov A.B.: Hodge correlators, arXiv:0803.0297.
[G2] Goncharov A.B.: Hodge correlators II, Mosc. Math. J. 10 (2010), no. 1, 139188, arXiv:0807.4855.
[L] Levin A. Variations of \mathbb{R}-Hodge-Tate structures. Preprint MPI-2001.
[Si1] Simpson C.: Higgs bundles and local systems. Inst. Hautes tudes Sci. Publ. Math. No. 75 (1992), 595
[Si2] Simpson C.: Mixed twistor structures.

[^0]: ${ }^{1}$ We want to have a natural construction of the action first, and get Saito's category real mixed Hodge sheaves as a consequence, not the other way around.

