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A BINOMIAL IDENTITY ON THE LEAST PRIME FACTOR OFAN INTEGERSAMUEL A. HAMBLETONAbstrat. An identity for binomial symbols modulo an odd positive integer
n relating to the least prime fator of n is proved. The identity is disussedwithin the ontext of Pell onis.1. IntrodutionMany results exist on identities relating to binomial oe�ients (

m
r

) modulo nwhere n is an odd positive integer [2℄. Granville [3℄ has given new results onerning
(

m
r

)

(mod pq) where p is prime, with a nie aount of known results. Perhaps themost well known identity on fatorials modulo n is Wilson's theorem, whih statesthat a positive integer n is prime if and only if (n − 1)! ≡ −1 (mod n). Granville[3℄ writes that Flek [2℄ has generalized Wilson's theorem to the statement that forall positive integers r less that the least prime divisor of n, n is prime if and only if
n−1−r
∏

j=0

(

r + j

r

)

≡ (−1)(
r+1

2 )
r−1
∏

j=1

(

r

j

)

(mod n).Similarly, we will onsider the residue modulo an odd positive integer n of a symbol
β(n, r) de�ned in terms of binomial oe�ients where, likewise, r is less than orequal to the least prime divisor p of n. We will brie�y disuss the ase r > p. Let
⌊a⌋ and ⌈a⌉ respetively denote the greatest integer A ≤ a, and the least integer
A ≥ a.Theorem 1.1. Let n be an odd positive integer, let r ≥ 2 be an integer, and let pbe the least prime divisor of n. De�ne α(n, r) to be the non-negative residue modulo
n of(1) β(n, r) = (−1)⌊

r

2
⌋

(n−1
2 − ⌈ r

2⌉
⌊ r
2⌋

)

−
(n−1

2

r

)

(−2)r.Then α(n, r) satis�es α(n, r) =

{

0 (mod n) if r < p
n/p (mod n) if r = p

.Eqn. (1) ours as the leading oe�ient of the di�erene modulo n of twopolynomials whih are important in the study of the a�ne genus zero urves knownas Pell onis examined in detail by Lemmermeyer [7, 8℄ and other authors [4, 5℄in relation to the analogy between these urves and ellipti urves. Let ∆ be theDate: July 28, 2011.2010 Mathematis Subjet Classi�ation. Primary 11A51, 11B65; Seondary 11B39, 11G20.Key words and phrases. Binomial symbols, fatorization, Pell Conis, Dikson polynomials.1
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2 S. HAMBLETONfundamental disriminant of a quadrati number �eld K = Q(
√
∆). Pell onis arethe urves

C : H2 −∆U
2 = 4,with group law(2) P1 + P2 =

(

H1H2 +∆U1U2

2
,
H1U2 +H2U1

2

)de�ned for points P1 = (H1,U1) and P2 = (H2,U2) over (Z/n), Z, Q, and algebrainumbers Q among various other rings R for whih the binary operation + of Eqn.(2) forms a group C(R) with identity (2, 0). See [7℄ for more on these urves.We de�ne the polynomials �n(H) by�1 = 1,�3 = H+ 1,�2j+3 = H�2j+1 −�2j−1,The origin of the polynomials �n(H) an be traed to D. H. Lehmer [6℄ who hasompared a Luas funtion to Sylvester polynomials Ψn(x, y) appearing in Bah-mann's [1℄ book. The polynomials Ψn(x, y) orrespond to the Gm(x) used byWilliams [10℄.�n(H) = G(n−1)/2(H)of Williams = Ψn(H, 1)of Sylvester aording to Lehmer.It has been shown [4, 5℄ that the zeros of the polynomials �n(H) are in one toone orrespondene with the H-oordinates of the non-trivial points P 6= (2, 0) oforder dividing n in the group C(Q), non-trivial points of the n-torsion subgroup
C(Q)[n]. One simply expresses theH-oordinate of n(H,U), meaning n−1 additions
(H,U) + (H,U) + . . . (H,U), as (H − 2)�n(H)2 + 2. In order to give a proof ofquadrati reiproity [5℄ using p-torsion on Pell onis where p is an odd prime, itwas demonstrated that �p(H) ≡ (H− 2)

p−1

2 (mod p).The leading oe�ient of the polynomial �n(H) − (H − 2)
n−1

2 evaluated modulo
n is the more general question whih we address. The polynomials �n are alsodisussed in the ontext of Dikson polynomials of the seond kind, En(x, a) =
∑⌊n/2⌋

j=0

(

n−j
j

)

(−a)jxn−2j . In partiular, the identity, p.32 of [9℄,�2n+1(H) = En(H, 1) + En−1(H, 1),allows writing, for odd n,�n(H) =

n−1

2
∑

r=0

(−1)⌊
r

2
⌋

(n−1
2 − ⌈ r

2⌉
⌊ r
2⌋

)

H
n−1

2
−r.This ompletes the disussion of the ontext of the identity for β(n, r).2. Proof of the main resultWe require the following equality whih holds for all positive integers a.(3) a

∏

j=1

(a+ j) = 2a
a−1
∏

j=0

(2j + 1).Eqn. (3) may be proved by reordering the produts in the numerator and denom-inator of ∏a
j=1

a+j
4j−2 , showing that this is equal to 1. The proof of Theorem 1.1 isas follows.



A BINOMIAL IDENTITY ON THE LEAST PRIME FACTOR OF AN INTEGER 3Proof. First assume that r < p. Let s = ⌊r/2⌋ and t = ⌈r/2⌉. Then
β(n, r) = (−1)s

(

n−1

2
− t

s

)

−

(

n−1

2

r

)

(−2)r,

=
( (−1)s

s!
−

(−2)r
∏t−1

j=0

(

n−1

2
− j
)

r!

)

t−1
∏

j=1

(n− 1

2
− s− j

)

,

=
( (−1)s

∏t

j=1
(s+ j)− (−2)r

∏t−1

j=0

(

n−1

2
− j
)

r!

)

t−1
∏

j=1

(n− 1

2
− s− j

)

,

=
( (−1)s

∏t

j=1
(s+ j)− (−1)r+t2s

∏t−1

j=0

(

1 + 2j − n
)

r!(−2)t−1

)

t−1
∏

j=1

(

1 + 2s+ 2j − n
)

,

=
(

∏t

j=1
(s+ j)− 2s

∏t−1

j=0

(

1 + 2j − n
)

r!

)

2−t+1(−1)r−1

t−1
∏

j=1

(

1 + 2s + 2j − n
)

,

α(n, p) ≡

(

∏t

j=1
(s+ j)− 2s

∏t−1

j=0

(

1 + 2j
)

r!

)

2−t+1(−1)r−1

t−1
∏

j=1

(

1 + 2s+ 2j
)

(mod n).Sine r is stritly less than p, the integers r! and n are relatively prime. By Eqn.(3), α(n, r) = 0. Now let r = p = 2s+ 1. Then
β(n, p) = (−1)s

(

n−1

2
− s− 1

s

)

+

(

n−1

2

p

)

2p,

=
( (−1)s

s!
+

2s
∏s

j=0

(

n− 1− 2j
)

p!

)

s
∏

j=1

(n− 1

2
− s− j

)

,

=
( (−1)s

s!
+

2s(n
p
− 1)

∏s−1

j=0

(

n− 1− 2j
)

(p− 1)!

)

s
∏

j=1

(n− 1

2
− s− j

)

,

=

∏s−1

j=0
(s+ j + 1) + 2s

(

n

p
− 1
)

∏s−1

j=0

(

−n+ 1 + 2j
)

(p− 1)!2s

s
∏

j=1

(

−n+ p+ 2j
)

,

α(n, p) ≡

(

s−1
∏

j=0

(s+ j + 1) +
(n

p
− 1
)

s
∏

j=1

(

s+ j
)

)

(p− 1)!−12−s

s
∏

j=1

(

p+ 2j
)

(mod n),

≡

n

p
(p− 1)!−12−s

s
∏

j=1

(

s+ j
)(

p+ 2j
)

(mod n),

≡

n

p
(p− 1)!−12−p+1

p−1
∏

j=1

(

p+ j
)

(mod n),

≡

n

p

p−1
∏

j=1

(2j)−1
(

p+ j
)

(mod n).Fermat's theorem shows that ∏p−1
j=1 (2j)

−1
(

p + j
)

≡ 1 (mod p). It follows that
α(n, p) = n

p . �We onlude by speulating as to the value of α(n, r) when r exeeds the leastprime divisor of n, within some bounds. The author has only tested the followingonjeture for n < 106.



4 S. HAMBLETONConjeture 2.1. Let p be the least prime divisor of an odd integer n and assumethat 2√n < 3p. If r is an integer bounded by p < r <
√
n then α(n, r) > 0.If Conjeture 2.1 holds and the least prime divisor p of n satis�es 2√n < 3p thenthe follow exponential algorithm will terminate.Algorithm 2.2. Let A = (a1, a2) and assume we wish to fator n. Set A =

(2, ⌊√n⌋). If α
(

n,
⌊

a1+a2

2

⌋)

= 0, Set A =
(⌊

a1+a2

2

⌋

, a2

), otherwise set A =
(

a1,
⌊

a1+a2

2
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