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CHARACTERIZATION OF UNIFORMLY CONVEX AND SMOOTH BANACH
SPACES BY USING CARLESON MEASURES IN BESSEL SETTINGS

JORGE J. BETANCOR, ALEJANDRO J. CASTRO, AND LOURDES RODRIGUEZ-MESA

ABSTRACT. In this paper we obtain new characterizations of the g-uniformly convex and smooth
Banach spaces by using Carleson measures. These measures are defined by Poisson integral
associated with Bessel operators and Banach valued BMO-functions. By the way we describe
g-uniformly convexity and smoothness of a Banach space in terms of the mapping properties of
the Lusin integral defined by the Poisson semigroup for Bessel operators.

1. INTRODUCTION

It is well-known that vector valued harmonic analysis and geometry of Banach spaces are closely
connected. Some geometric properties of a Banach space B are characterized by the boundedness
in B-valued LP or BMO spaces of some harmonic analysis operators (Riesz transforms, imaginary
powers, Littlewood-Paley g-functions, ...). These properties have also a description by using mar-
tingales transforms. The celebrated papers of Bourgain [12] and Burkholder [I3] concerning to
UMD (Unconditional Martingale Difference) spaces contain the first main results of this theory.
In the last years this area has a great activity. In [29] Xu studied the one side Littlewood-Paley
theory for Banach valued functions and he obtained new characterizations for the uniformly con-
vex and smooth Banach spaces. The results in [29] were generalized by Martinez, Torrea and Xu
[22] to the diffusion semigroup setting. Harmonic analysis operators associated with Bessel, Her-
mite, Laguerre and Ornstein-Uhlenbeck operators allow also to characterize UM D, convexity and
smoothness properties of Banach spaces (see [1I, [2], [7], [8], [9], [18], amongst others).

Recently, Ouyang and Xu [26] have studied the relationship between vector valued BMO func-
tions and the Carleson measures defined by their Poisson integrals. They obtained new charac-
terizations for those Banach spaces admitting an equivalent norm which is g-uniformly convex or
g-uniformly smooth.

In this paper we use the Poisson integrals associated with Bessel operators to define Carleson
measures that allow us to characterize (modulus renorming) ¢-uniformly convex and smooth Banach
space. We consider the Banach valued odd BMO functions on R. In [6] the scalar space of odd
BMO functions was described by using Carleson measures.

Assume that B is a Banach space. We say that a locally integrable function f : R — B has
bounded mean oscillation, written f € BMO(R,B), when

1
I#lmsros) = swp - [ 117() = filladz,
cr 1] Jp

where the supremum is taken over all bounded intervals I in R. Here f; = |—}| / ; f(x)dx, where

the integral is understood in the Bochner sense, and |I| denotes the length of I, for every bounded
interval I in R. By BMO,(R,B) we represent the space of the odd functions in BMO(R,B).
According to the well-known John-Nirenberg property we can see that a B-valued locally integrable
and odd function f onRisin BMO,(R,B) if, and only if, for some (equivalently, for any) 1 < p < oo,
there exists C' > 0 such that

1) CYIICE fzIIﬁdw)l/p <c,
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for every interval I = (a,b), 0 < a < b < oo, and

©) (& [wems) " <c

for each interval I = (0,b), 0 < b < co. Moreover, for every f € BMO,(R,B) and 1 < p
I fllBroms) =~ inf{C > 0,(l) and (2) hold}. As in the classical case if f € BMO(R,B), then

IS I (@)]ls/ (1 + 2?)de < oo.

In [24] Muckenhoupt and Stein developed the harmonic analysis theory in the ultraspherical and
Bessel settings. Taking as a starting point the ideas in [24] in the last years several authors have in-
vestigated boundedness properties of harmonic analysis operators associated with Bessel operators
(131, [, 5], [10], [111, [23]).

We consider, for every A > 0, the Bessel operator Ay = fx*)‘%x”‘%x”‘, z € (0,00), and the
Hankel transformation h) defined by

_ /0 V(o) [)dy, @ € (0,00),

for every f € L'(0,00) N L%(0,00). Here, J, denotes the Bessel function of the first kind and order
v. hy can be extended to L?(0,00) as an isometry of L%(0,00) where hy' = hy. If f € C2°(0,00),
the space of smooth functions with compact support, we have that

ha(BAF)(Y) = *ha() (), y € (0,00).
We define the operator A, as follows,
Axf = hay*ha(f)), | € DAy,
where the domain D(A,\) of A, is
D(Ay) = {f € L*(0,00) : y*ha(f) € L*(0,00)}.
Ay is a closed and positive operator. Note that Axf = Axf, f € C(0,00). In the sequel we refer
to Ay also by Aj.

By {P}}i~0 we represent the Poisson semigroup associated with Ay, or, in other words, the
semigroup of operators generated by —/A). According to [24, (16.4)] we can write, for every
f€LP(0,00), 1 <p< oo,

- /0 PMa.y)f(y)dy, .t € (0,00),

where

3) P)Ma,y) =

2A(zy)t (7 (sin )22 1

T 2+ 12 4 2zy(1 — cos 0)]A 1
{P}¢~0 is a contractive semigroup in LP(0, ), 1 < p < co. Since the kernel function P}(x,y) > 0,

x,y,t € (0,00), the operator P} is also a contraction in the Lebesgue-Bochner space Lp((O, ),_]B%),
for every 1 < p < oo and t > 0.

We say that a positive measure p on (0, 00) x (0, 00) is Carleson when there exists C' > 0 satisfying
pu(d x (0, |11))

]
for every bounded interval I in (0,00). It is well-known that the functions of bounded mean

oscillation on R™ can be characterized by using Carleson measures. In [6] the following result was
established.

<C,

Theorem ([6, Theorem 1.1]). Let A > 0. Assume that f is a locally integrable function in [0, 00). If
we define f, as the odd extension of f to R, then f, € BMO,(R) if and only if (1+22)~1 f € L*(0,0)
and the measure vy given by

2 dxdt

ds(e,) = [0 PN )|

is Carleson on (0,00) x (0, 00).
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We now recall the definitions of convexity and smoothness for a Banach space B. The modulus
of convexity dg and of smoothness pg are defined by

5 (e) = mq1_na+b

I :a,beB,|alz = bl =1,]la—blls =¢}, 0<e<2,

e Ja+ tblls + fla — 1]
a+tb|lg + ||la — tb||s
pB(t) = sup{ 3 :
We say that B is uniformly convex (respectively, uniformly smooth) when dg(g) > 0 (respectively,
lim;_,0 pp(t)/t = 0). Also, B is called g-uniformly convex, ¢ > 2 (respectively, g-uniformly smooth,
1 < ¢ < 2) when there exist C > 0 such that dg(e) > Ce?, 0 < & < 2 (respectively, pp(t) < Ct9,
t>0).

a,be€B,|la|p = ||b]ls =1}, ¢>0.

Pisier [27] proved that B has an equivalent norm that is g-uniformly convex (respectively, g-
uniformly smooth) if and only if B has martingale cotype ¢ (respectively, martingale type ¢). Xu
[29] established the corresponding characterization when the martingale type and cotype is replaced
by the Lusin type and cotype associated with the Poisson semigroup for the torus. The result of
Xu was extended to the diffusion semigroup setting in [22]. Similar properties have been obtained
in the Bessel ([7]) and Laguerre ([9]) contexts. Recently, Ouyang and Xu [26] characterized those
Banach spaces having an equivalent norm that is g-uniformly convex or smooth by using Carleson
measures and B-valued BMO functions, and lately Jiao [20] gave the martingale version of this
result.

In this paper we obtain new characterizations for g-uniformly convexity and smoothness of a
Banach space by using Carleson measures associated with the Bessel Poisson integrals P} (f) of f
belonging to BMO,(R,B).

The main results of this paper are the following ones.

Theorem 1.1. Let B be a Banach space, A > 1 and 2 < q < co. Then, the following statements
are equivalent.

(i) There exists C > 0 such that, for every f € BMO,(R,B), the measure duy defined by

dzdt
dlif(957t>: 160 (f) () 15—~
is Carleson on (0,00) x (0,00) and
” dadt
sup o / J 1R D@IESE < CllMaso, 5.5

where the supremum is taken over all bounded intervals I in (0, 00).

(it) B has an equivalent norm which is g-uniformly convez.

Theorem 1.2. Let B be a Banach space, A > 1 and 1 < ¢ < 2. Then, the following assertions are
equivalent.

(i) There exists C > 0 such that, for every odd B-valued function f, satisfying that (1+2%)~1f €
L'(R,B),

1M dadt
11 as0, 08 < Cowp s [ [ A PN @IS,
' r | Jo Jr t

where the supremum is taken over all bounded intervals I in (0, 00).

(it) B has an equivalent g-uniformly smooth norm.

Theorems and can be seen as versions of [26, Theorems 3.1 and 4.1], respectively.

In order to prove our theorems we need to obtain characterizations of the convexity and smooth-
ness for a Banach space by using certain area integrals involving the Poisson semigroup {P}¢o.

We define the following sets
I'(x) ={(y,t) e Rx (0,00) : [y — 2| <1}, z€R,
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and
Ii(z) ={(y,t) € (0,00) x (0,00) : |y —z| < t}, z€(0,00).
We extend the definition of the Poisson kernel P(x,%) given in to R x R, for every t > 0, as

foll
ollows Aloul 7 gyt
P/\(aj y) — |a:y| / (Sln ) do
B T o [(@—1y)2+12+22y(1 —cos )17

Note that, for every ¢t > 0,
(4> Pt)\(‘r7y) :Pt)\<_x7y) :Pt)\(xa _y>7 z,y €R.

We consider the Lusin integrals associated with the Poisson semigroup {P}};~o defined by
drdy )"
S (@) = ( [ lor ol t”) . TeR,
and
A q dtdy &
S1L(F)(a) = ( L. kRl t) L we(0,50),

where ¢ > 1 and f is a strongly B-valued measurable function defined on (0, 00) such that

< fW)lls
dy < oo.
/0 T+q2 05

It is not hard to see that
(5) SL(f)(@) < SU)(@) < 2Y1SL, (F)(@), @ € (0,00).

We denote by H!(R,B) the B-valued Hardy space. H!(R,B) is the subspace of H!(R,B) consti-
tuted by all those odd functions in H'(R,B). A strongly measurable B-valued function a defined on
R such that [, a(z)dz = 0 is called an oo-atom (respectively, a 2-atom) when there exists a bounded
interval I in R such that supp(a) C I and ||a||p®p) < 1/|I| (vespectively, ||a|z2®p) < 1/|1]'/?).
According to well-known atomic representations of the elements of H*(R,B) ([19], [2I, p. 34, 40])
we can see that a strongly measurable B-valued odd function f defined on R is in H}(R,B) if, and
only if, f = >272, Nja; in L'((0,00),B), where {\;}32, C C satisfies that 3°7%, [A;| < oo and
{a;}32, is a sequence of strongly measurable B-valued functions defined on (0, 00) such that, for
every j € N, a; is an oo-atom supported on (0, 00) or there exists § > 0 for which supp(a;) C [0, 5]
and ||a| Lo ((0,50),8) < 1/8. Also, we can characterize the elements of H}(R,B) similarly by using
2-atoms. By proceeding as in the proof of [I5, Theorem 2.1] we can show that a strongly measurable
B-valued odd function f defined on R is in H}(R,B) if, and only if, f = Z;il Ajaj in L'((0,00), B),
where {);}72; C C is such that 3272, [Aj| < oo, and {a;}32; is a sequence of strongly measurable
B-valued functions defined on (0, 00) such that, for every j € N, a; is an oo-atom supported on
(0,00) or a; = bjx(0,s,)/9;, for a certain b; € B, being ||b;|lz = 1 and J; > 0. Here, x(o,5) denotes
the characteristic function of (0,6), for every § > 0. The topology of H}(R,B) is defined by the
norms associated in the usual way with the above atomic representations.

In [7] the martingale type and cotype of a Banach space is characterized by using Littlewood-
Paley g-functions associated with the Poisson semigroup {P};~¢. In the next result we establish
the corresponding properties involving Lusin area integrals Sf\’ 4~ This proposition has interest in
itself and it is useful in the proof of Theorems [I.1] and

Proposition 1.3. Let B be a Banach space, A > 0 and 2 < g < co. Then, the following assertions
are equivalent.

(i) For some 1 < p < oo, there exists C > 0 such that
1S5+ (DL 0,00) < Cllf e (0,00),8)s [ € LF((0,00),B).
(i) For every 1 < p < oo, there exists C' > 0 such that
1S5 4+ (DL 0.00) < ClIf e (0.00).8): [ € LP((0,00),B).
(#7i) There exists C > 0 for which
1S5+ (Dllr0.00) < Clfllazmy, f€ H,(R,B).
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(iv) B has an equivalent g-uniformly convex norm.

(v) B*, the dual space of B, has an equivalent ¢'-uniformly smooth norm, where ¢ = q/(q—1).

This paper is organized as follows. In Section 2] we prove Proposition Proofs of Theorems|[I.]]
and [I.2] are presented in Sections [3] and [} respectively. In order to make Sections [3] and [4] more
legible we include in Section [5| (Appendix) the proofs of some auxiliary results that we need to show
Theorems [[.1] and .2

Throughout this paper by C' we always denote a positive constant that is not necessarily the
same in each occurrence. The duality pairing between a Banach space B and its dual B* will be
represented by (-, )pxp+ or simply (-, ).

Acknowledgements. The authors would like to thank Professor José Luis Torrea our always
helpful discussions with him about vector valued harmonic analysis.

2. PROOF OF PROPOSITION [[.3]

In order to proof Proposition we use [26], Lemma 4.2] where the convexity and smoothness
of a Banach space B is described in terms of the boundedness properties of the Lusin area integral
associated with the classical Poisson integral.

If f is a strongly measurable B-valued function defined in R such that [, || f(2)[|s/(142%)dz < oo,
and ¢ > 1 the ¢-Lusin area integral S9(f) is defined by

1/q
Sq(f)(af)=</r (_)||tatpt<f><y>||%dtdy> . weR

t2

where P;(f) represents the Poisson integral of f given as follows

Pt(f)(y)Z/RPt(y—z)f(z)dz, yeR, t>0.

As usual, we denote the Poisson kernel by
1t
T2+ 22’

We also consider the following partial Lusin integrals

Pi(z) = zeR, t>0.

1/q
dtd
S1(/) (@) = ( [ rEwi T) - we(0,00),
and
dtdy\ "
Si,loc(f)(m) = (/1“ () Htatpt(fX(az/2,2:r))(y)H]?g 12 > ’ HAES (0,00),
with ¢ > 1.

We prove Proposition [I.3] in two steps. Firstly, we establish that the LP-boundedness of S? is
equivalent to the LP-boundedness of S 4, for every 1 < p < cc.

Lemma 2.1. Let B be a Banach space, A > 0, 2 < g < 00, and 1 < p < oo. Then, the following
assertions are equivalent.

(1) S? is bounded from LP(R,B) into LP(R).
(i1) S% is bounded from LP(R,B) into LP(0,00).
(i3i) S is bounded from LP((0,00),B) into L?(0, c0).

q
+,loc

(iv) S3 . is bounded from LP((0,00),B) into LP(0,00).
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Proof. (i) = (ii). It is sufficient to note that S{(f)(z) < SU(f)(z), z € (0,00), for every
f € LP(R,B).

(#i) = (i). Let f € LP(R,B). We decompose [ as follows, f = f, + fe, where f,(z) = (f(z) —
f(=2))/2 and f.(z) = (f(z ) f(=x))/2, x € R. We have that

P = [ [Pl =9 = Py + 2lfuleddz, €, 1> 0
and
R0 = [ [Pty + Pl + 2L yER 10,
For every t > 0, the function ||t(?9tPt(f0)(y)||B is even. Then, S9(f,) is also an even function and
SU(fo)(w) < 2Y98L(fo)(|z]), = €R.

Hence, we get
1S (fo)ll Loy < 2P SL(fo)ll Lo(0,00)-
In a similar way we obtain

159(fe)llr @y < 2P 9SE(fe)ll o (0,00

The above inequalities allow us to show that (i7) implies (7).

(i1) < (4i1). We are going to see that there exists C' > 0 such that
(6) ISEC) = 8L 1oe(FlLr©,00) < CllflLrem). [ € LP(R,B).
Let f € LP(R,B). We can write
(o) e}
0 0

By applying Minkowski’s inequality we get

2x
ISLU) ~ 8 e F)(@)] < ( Ll ( [ P25 [ Pt<y—z>f<z>dz>
<A (Iflle) (@) + LI flls) (), = € (0,00),
where f(x) = f(—x), z € (0,00), and the operators J;, i = 1,2, are defined by

Tilg)w) = | 40Py — 2l e, oy 2200) 9(2)dz, 2 € (0,0),

(0,2/2)U(2z,00)

1

“atdy\ "
t2

B

and
To)@) = [ IR+ s (o, o 20 9V, € (0.00).

Our objective @ will be established when we prove that the operators J; and 7> are bounded from
L?(0,00) into itself.

First, we observe that

dtdy
10, " :/ 10,P, / / S S—
0Py = Moy o, 20) = [y, 1WA = T
oo oo dt dy
Y o e — / ;
0 Jja—yl (ly =2 +1)7+2 L. (Iy—ZIﬂLIJS—yI)qul r, . [y =2+ |z —y[)t?
C

z,z € (0,00),  # z.

T le =2
Here, I, , represents the interval (min{z, z}, max{z, z}). We also get

(®)

160 Py + =) <c /$+/°° dy < C e
W sy SO\ T ) e le g = @rae D70
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These estimates lead to, for i = 1,2,

[7i(9)] < C (Ho(lgl) + H(I9)) ,
where Hy and H, denote the Hardy type operators defined by

Holg)(x) = - /Oxg<y>dy, Hu(o)o) = | oog(yy’dy, z € (0,00).

xT

Since Hy and Ho, are bounded from LP(0, c0) into itself (see [23]), we conclude that J; and J» are
bounded from LP(0,00) into itself. Now the desired equivalence follows from ().

(#91) < (iv). This property will be proved when we show that there exists C' > 0 such that

9) 15% 10e () = 8% 4+ (DllLe0,00) < CllfllLe(0,00))s [ € LP((0,00),B).
We decompose the Bessel Poisson kernel as follows

2\ A [m/2 in0)22—1

P =20 | o) '
T o [(z—1y)?2++2zy(1 — cos )1
n 2\ (zy) Mt /7T (sing)?A—1 0
T Jape (@ —y)? + 2 + 22y(1 — cos O) M

(10) = t),\l(xay)+PtA,2(x7y)7 x7y7t€ (0700)

By applying Minkowski’s inequality we get

w

(11) 5% 10e(f) = Z (Il £1l2);

where

K1(g)() :/ t0: P (y, 2)||, s 9(2)dz, € (0,00),
( ( (0,2/2)U(22,00) H t t1 HL F+(x)dd) ( )

Ka(g)(z) = / Htat t,2 (y, 2 HLq (Pt (a), dtdy)g(z)dz, z € (0,00),
and

2x
K@) = [ P :2) = Py = Mo, ) 9=, 2 € 0,0,

Our objective is to see that ; is a bounded operator in L?(0, 00), for j = 1,2, 3.

According to [6, p. 481-482] we have that

A
12 0, P} <c— = te (0 .
( ) | t t,l(y7z)|— (|Z—y‘+t))‘+27 Y, %, E( 700)
Also, we get
A 2
13 Oy P, <Cor—r——+— te (0 .
( ) | t t,2(y7z)| — (Z+y+t)>‘+27 Y, =, E( ,OO)
By proceeding as in and we can see that
A
(14) ||tat t,1 y7 HLq F+ ), dfdy) < Cw, X,z € (0,00), T # z,
and
A 2
(15) Htatpt,Q(y»Z)||Lq(lﬂ+(z)’dzgy) < Cm, z,z € (0,00).

Then, we get that
IK1(9)] + [K2(g)| < C(Ho(lg]) + Hoo(lg]))-
Therefore, K1 and Ky are bounded from LP(0, c0) into itself.

Next, we deal with the most involved operator Ks. In order to do this we introduce the new
kernels

2 (y2) M / /2 §2r—1
P} =07 - do, y,z,te(0,00),
11(9:2) T o (y—2)2+t2+2yz(1 —cosf)r1 7 b2 (0, 00)
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and

2A(yz)M [/ 6271
A
Pt,1,2(y7z) = T /0 [(y )2+t2+y202})\+1 d97 ?J,Z’t € (0,00)

We can write

2x
/Cs(g)(x)|<//2 [0 1P (9, 2) = P (s 2 o, o, ey 19212

x

2x
A _ pX
+ /m/2 [0 PP 1 (v, 2) Pt,1,2(y,z)}HLq(m(x),d%) lg(2)|d=

2z
)\ — —
+ /1/2 ||t3t[Pt,1,2(y72) Pi(y Z)]HLQ(M(I)V%) lg(2)|dz, x € (0,00).
By arguing like in [0, p. 483-487], we deduce that, for each x € (0,00) and x/2 < z < 2z,

C z
o [[tD [P (y,2) — PtA,1,1(Z/,Z)]‘}Lq(m(z)?%) < < (1 + log |x—z|) ;

C 2
A A
<0 A
o ||ti[PY 1 (y.2) — P o(y, 2 HLq Ty (2), %gv) = (1 +log, |:rz|> ’

C
U ’|tat[Pt>,\1,2(ya z) — Py — Z)}HLq(FJr(w)’dtdy) < =

+2

There (in [6, p. 483-487]), the case ¢ = 2 is considered, but the same arguments are still valid for
2 < g < oo.

Hence, we have that

(16) 1KCs(g |<C//22<1+log+| 2 |)|g(z)|dz, 2 € (0,00).

2

We denote Cy = / (1 +log, T |> du. By using Jensen’s inequality we get
1

j2 U

Kalg) @) <C ( / w s (1ros ) |g<xu>du>

b1
SCCg_l/ ( +log . = “ |) |g(zuw)|Pdu, =z € (0,00).
1

/2 U
Then,
1K3(9)Lr(0,00) < CligllLro,00), 9 € LP(0,00).
Putting together the above estimations we obtain (9), and the proof of (iii) < (iv) is finished. O

In the following lemma we establish the endpoint result p = 1.

Lemma 2.2. Let B be a Banach space, A > 0 and 2 < g < co. Then, the following statements are
equivalent.

@ 157Nl < Cllfllares), f€H (R,B),

(i) 1S5 + (Dllzr©0.00) < Cllflymys [ € Hy(R,B).
Proof. (i) = (#i). We claim that the properties below are equivalent.

(@) 1SNl < Clflar ey, f € HYR,B).
(®) 1SL(H)llro,00) < ClfllHrRB), [ € H)(R,B).
(©) 159 1oe(DILr0,00) < Cllfllzpy, f € H,(R,B).

(d) 155 - (Nllzro,00) < CIflr )y, [ € Hy(R,B).
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This implies what we are looking for.

(a) < (b). This equivalence can be proved by proceeding as in the proof of (i) < (ii) of
Lemma 211

(b) & (c). Let f € H}(R,B). Since f is odd, Minkowski’s inequality implies that
1SL(N) (@) = S 1o (N @) < Ha(llfll) () + Ha (I flle)(2), € (0,00),

where

o)) = [ IR =) = Bl e, o, gy 9 € 020),

and
2z
Halo)(@) = | P2, ) 9N, € (0,00).
A straightforward manipulation leads to
2y 2yt (2% + y? + t2) )
0[Pz —y) — Pi(z+ <C +
i) e 01 < (g * ook s Rt PP
c =Y <C vz
T -y Ee)NEry)?+?) T -yl )Py
Vz
_CW7 Y, 2zt € (0,00).
Hence, by proceeding as in @ we obtain
dtdy 29/29—2
t0:[Py(2 —y) — Pe(z +y)]|* ————=dtdy
/r+(x) ry (2 (l2 —y| +1)59/2
24/2
m, 1'726(0,00), .’I;#Z
Then, we get
vz

|t0:[Pi(y — z) — Pe(y + z)]HLq(m(m)yd:#) <C x,z € (0,00), x # z.

|z — 2]3/2°

Therefore,
HHl(g)HLl(O,oo) < CHg”Ll(Opo)a ge Ll(0,00)
Moreover, according to , we have that

2x |g
s (g \<C/ x € (0,00),

and it follows that
[H2(9)l 21 0,00) < CllgllLr(0,00)s 9 € L'(0,00).
Hence, we conclude that

1SE(f) = S 10D 0.00) < ClIfll2((0.00).8) < Cll Sl ()

(¢) < (d). Let f € HY(R,B). By (1) we have to analyze the operators K;, j = 1,2,3. From
it follows that

A
z
K|l f dx<C/ / £(2)|sdzd
/ ' || HB 0,2/2)U(2x,00) Z‘)\+1H ( )HB

z/2 ZA 0o ZA 0o
< _ _ <
_C/O IIf(2)s /0 |x—z\)\+1dw+/22 |x72‘)\+1dm dz_C/O I f(2)|lsdz,

and from (|15) we deduce, in a similar way, that

/ T Kl ) (@)dz < © / 152 sd=.
0 0
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Finally, implies that

| kil <c [ w1 (14108 =) 15 ledeaa

/2 # |z — 2|

) 2z 1 )
<o [T [ (1 T log, ) etz <€ [ 17l
0 z/2 # |z — 2| 0

By combining the above estimates we get

155 10 (F) = SX 4+ (D2 0,00) < ClIf L1 ((0,00).8) < ClIf 113 .8

Thus (7) = (%) is established.
(i1) = (i). Let f € HY(R,B). We write f = f, + f., where

f=fon) g oy SO, oy

fo(x) = D)

It is clear that f,, fo € H'(R,B). Moreover | foll g m) < |If|mr®.p) and || fellmr@p) < | f1la @ 5)-
Assume that (i) holds. Since f, € H!(R,B), by using that (d) < (a), we get

(17) [15(f)llLr®) < Cllfollm@.B)-

We define H!(R,B) the space constituted by all those even functions in H'(R,B). We consider
the properties (a’'), (t'), (¢/) and (d') that are analogous to (a), (b), (¢) and (d), respectively, but
replacing H!(R,B) by H!(R,B). By proceeding as in the odd case we can see that (a’) < (V') and
(') < (d'). We are going to see that (V') < ().

Suppose that h € H}(R,B) and that h = 3772, Aja;, where, for each j € N, a; is a H'(R,B)-
atom, and {);}%2, C C is such that }>7° [\;] < oo. Then, h = >77°, A;(a; + a;)/2, being
a;(xz) = aj(—x), r € R, and j € N. We define b; and v, j € N, as follows

e b; =a; and y; = \;/2, provided that supp(a;) C [0, 00),

e b; = a; and ~; = \;/2, when supp(a;) C (—o0,0],

e if supp(a;) N (0,00) # @ and supp(a;) N (—00,0) # &, then b; = Xx(0,00)(a; + @;)/2 and

V= A

Thus, b; is a H'(R,B)-atom. Indeed, in the two first cases it is clear. Assume now that b; =
X(0,00)(@; + @;)/2 where supp(a;) N (0,00) # @, supp(a;) N (—00,0) # @, supp(a;) C [~a,f]
being 0 < a < f (similarly, 0 < # < «), and ||a;|[p~@®p) < 1/(8 + a). Then, supp(b;) C [0, 3],
1651 @) < llajllL=@p) <1/(B+a) <1/, and

1 8
/ bj(x)dr = 7/ a;(x)dr = 0.
R 2 —a
From now on we write h = Z]O‘;l 2v;g;, where g;(x) = b;(|z|)/2, = € R and j € N, and b; and
v, 7 € N, are those ones we have just defined.

We can write

. q 1/q
to, (/R Pi(y — 2)h(z)dz — //2 Py — Z)h(z)dz> dig@)
* B

"ty
t2y> , z € (0,00).
B

IS (0)(@) = ST oW (@)] < </ @

<23 |yl (/
j; Ty (x)

Assume that g is an even H' (R, B)-atom such that supp(g) C [—4, 8] with 8 > 0 and ||g|| L= (rp) <
1/25. We have that

2x
t0; (/R Pi(y — 2)g;(2)dz — //2 Py — Z)gj(Z)dZ>

B
/ Puly — 2)g(=)d= = / Py — 2) + Py + 2g(z)dz y R,
R 0
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For every x € (0,00), by using Minkowski’s inequality we get

</F+<w>

— (/ tO; </ Py — 2)g(z)dz —|—/ Py + z)g(z)dz)
Iy (z) (0,2/2)U(2z,00) 0

z/2
< X02(@) [ ORIy = Do, 20 ) o

2x

1
“atdy\ "
t2

toy </R Py — 2)g(z)dz — Py — z)g(z)dz)

z/2 B

1/
Catdy\ "
t2

B

+2

B
X @) [ ORI = 2) = P+ Dlla(r, o ) lo(2) o
| IO = D, o 200) o) sz
) z/2
X0 () [ ORI+ Dl a(r, ) ) )l

B
+ X (200 (@) / 40Py + 2) = Puly + Ol o, oy 2140 9 (2) 12

2

+f R+l 1 g 902

6
= #H(llgle)(x)-
i=1
Note that it is possible to introduce the factor t0,P;(y + ), because g is even and has zero mean.

Our goal is to see that, for a certain C' > 0 independent of g,

17 ([|glle)ll L2 (0,000 < C, i =1,...,6.
According to @ it follows that

2 (= X(0,26) (%)
#4(Jgle)(@) <Cxoam(@) [ L4, < X0y g 0, 00),
0 r—z B
and then
(18) #9821 (0,00) < C-
In a similar way leads to
(19) [1#4(llgll2) |l 21 (0,00) < C-
By using again and we obtain
> lg(z
5(Iol)w) + o)) < [ a2 e 0,00
x/2

Since the Hardy operator H,, is bounded from L!(0,00) into itself, we conclude that

B
(20) 169l 30 ) + 16 (8l) 20 < € [ ) oz <
In order to analyze #(||g||lg), j = 2,5, we claim that
(21) ||tat[Pt<in)—Pt<y+6)]”Lq(F+(z),%) §C|;L‘BZ|27 xe(O,oo), O<z<ﬁandx7éz

If holds we obtain

B 0 5
176119018 12000 + 1#69l15) | 2+ (0.00) <C / l9()lls / LS

3 |z — 2|

B
(22) <c / o)l 57— dz < C.

Note that the constants C' > 0 in (18)-(22) do not depend on g.

2p
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To justify we observe that

=2+ 2B+ 2) ( 1
™ (t+ 1y — =)+ (v + B)?)
2t + (y + B)* + |y — 2|
R, t > 0.
E+ly— PR E+ @+ p22) VI
Moreover, f 0 <y <ocoand 0 < 2 < 8, l[y — z| <y + 3, and

By +B) < p
(t+ly—2)?t+y+B)? ~ (t+ly—=)*

In a similar way we can see, for each 0 < y < oo and 0 < z < f3,

B B

Gty Cruth) ~ Etly—2F

Oi[Pi(y — 2z) — Pi(y + B)]

—2¢2

|0:[Pi(y — 2) = Pi(y + B)]| < C

0:[Pi(y +2) — Py + Bl < C

By proceeding as in we obtain .

Putting together all the above estimations we conclude that
155 (7) = 5% 10e (A2 (0.00) <CZ\%| < CZ:IA B

Hence,
[S%(h) — Si,loc(h)”Ll(O,oo) <C|h|| g (»,B)-
Thus, (b') < () is established.

Assume again that h € H}(R,B). We define H as the odd extension of i o, to R. It is clear
that H € H(R,B) and ||H|| g2 @®p) < C||h||m1(r,p)- Then, according to (i) we get

1S5 4+ (Ml L20,00) =NSK 4 (H)llL1(0,00) < CNH 1w 8y < CllPl 11 (m.5)-
Hence, we have that

(23) 1S1(f)llLr ) < Cllfella m,B)-
By combining and we conclude that
1S ()Izrw) < Clflla(.B)-

Thus the proof of this lemma is completed. |

The proof of Proposition [1.3]is now consequence of Lemmas [2.1] and 2.2] and [26, Lemma 4.2].

3. PROOF oF THEOREM [L.1]

3.1. Proof of (ii) = (i). Assume that B has an equivalent norm which is g-uniformly convex.

Let f € BMO,(R,B) and take I = (a,b) such that 0 < a < b < co. We denote by 21 the interval
(0,00) N (z1 — |I],xr + |I]) where 27 = (a + b)/2. We decompose f as follows:

IX(0,00) = (f = for)xar + (f = far)X(0,000\21 + for = f1 + f2 + fs.

We are going to show, for i = 1,2, 3,

|| dad 1/q
(24) (I | [raram@i ﬁt> < Ol fIsm0, w50

where the constant C' > 0 depends neither on I nor on f.
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Firstly, we prove for i = 1. Note that [IN(x —t,x +1t)| ~ ¢, when z € [ and 0 < ¢ < |I|.
We have that

1]
/ / 0P () [s 2% <c / / 0P () ey PO BT Ol g

] dadt
ZC/ // [t0: P} (f1) ()£ d= P
IN(z—t,xz+t)

d d
(25) <C//r (2) [t0: P (f1)(2)]|% o (fl)”%‘I(O-,oo)'

By using Proposition and John-Nirenberg’s inequality we get

! dadt\ "’ 1/4
(m/ [ r ) ”Bit> S IRAT

1 1/q
<¢ (g7 [ 1) = farltdz) < Clllmsio, e
21
On the other hand, from [24], (b), p. 86] we deduce that

1t9, P> (2, y)| <C [ Pz, y) + £3( )A/W (sin.6)* do
YIS t\ Y vy o (22 +y2? + 2 — 22y cos §) A 12

t
A
(26) <CF{(z,y) < Cm7 z,y,t € (0,00).
Then, we can write, for every € I and t > 0,
t
to, P <C e - d
[t0: Py (f2)(z)|lp < osonar BT (xiy)gﬂf(y) far|lsdy
t
<C Tl f(W) — farlledy

(0 oo)\2I 2+ (v —y)

|[| Z ok <2k|]| et ||f(y) — forrrpllBdy + || forrr — fzzma)
n(o

t
_Cm Z 27||f|\BMoD(1R,B) < CmeHBMOO(RB).
k=1

Hence,

Va 1/q
a ddt L
t0, P} <C| oy tq_ldt/d
<|I|/ /H WP (f2) (@)l —— t ‘[|q+1/0 I x I £l Baro, (=,B)

<C||fllBrMO,®.B)-

Finally, we show for i = 3. Observe that in the classical case (see [26]) this term does not
appear because the corresponding integral vanishes. First of all, we notice that

1 er ] xrr + |I|
< — dr < .
ferlls < o [ 15@llade < o lLmaro,

Then, in order to establish (| . for ¢ = 3 it is sufficient to show that

1) 11|
(27) ($|II—|:J|F1| / /|t6tP>‘ dxdt <c

where C' > 0 does not depend on 1.

By taking into account that [t3; P (z,y)| < CPMx,y), x,y,t € (0,00), (see (26))) we can write

—|—/ P(J:ydy) C’Zth.
32/

x/2

3z/2
tat/ Pz, y)dy

z/2
td, P} (1)(z)| <C (/ PNz, y)dy + )
0 x/2

According to [24, (b), p. 86] we have that,

P 22+1
(zy)™M x t t
(28) 1(z, 1) <C/ +t2]A+1dy—C(x2+t2)A+1 Sct—l-x’ z,t € (0,00),
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3x/2 (z A 2X+1
y)t T
(29) .13 t <C/ —|—t2})‘+1dy_ct2)‘j’ l‘,tE(0,00),
and
= (zy)*t A /°° v
J3(z,t) <C dy < Cx''t ——d
s =C | ey rapn WSO G e

o0 1 ™t t
30 <C *t/ ———dy<C <C . x,t e (0,00).
(30) = 302 (Y + A2 v= (x+ ML~ Tttt v (0,00)

We need also to estimate Jo in a different way. The classical Poisson kernel is introduced as
follows

2
= ZJQJ‘((E,t), x,t € (0,00).

Jj=1

3z/2
To(z) < t@/ Py(z — y)dy
xr

3x/2
/ IR (w,) ~ Rie )y + o, |
x x/2

/2

The function under the integral sign in Js; is decomposed as follows

t@t[Pt’\( ) Pt(l‘_ )] :PA(.’B,y)—Pt(J?—y)
4(xy) 3NN+ 1) (sin §)2*—1 2t3 1
-( [ Gorrre e o)
Pt)\l Y) — Pt( _y))+Pt),\2($7y)
(4 AN+ 1) /”/2 (sin §)2* 1 2 1
™ o ((x—9y)2+t2+2zy(1 — cosh))r 2 7 ((z —y)? + 12)2

B 4y MIAN+ 1) /” (sing)?A—1 40
T =2 (22 +y? + 12 — 22y cos )2

(31) x’y7t 6 (07 OO)?

where as above Pt’}l and P{}Q is defined in (10).

Firstly note that

‘(xy)kt?’ /Tr (s 0)> ™ df| < CP)(z,y)
x2 (@2 +y? +12 = 2zycosO)A 2| 625

32 <C(my—)’\t "o 92)‘_1d0<0i N
32) T (zy )22 /2(51’“) =t ,y,t € (0,00).

Since sin@ ~ @ and 2(1 — cosf) ~ 62, § € [0,7/2], by using the mean value theorem we obtain

Q(xy)/\t3)\(/\ +1) /ﬂ/2 (sin 0)2)\71 - ﬁ;
& o ((z—y)?2+1t2+2xy(1 —cosh)) 2 7 ((x—y)2+12)?
< 2(zy) MEA(N + 1) / Sm@)z,\q g2A—1 0
- 2412 4+ 22y(1 — cos 0)) M2

2(zy) 3AA + 1) / A1 1 B 1 "
m 0 ((z—y)2 4+ 2+ 2zy(1 —cos0))M2  ((z — y)? + 12 + zybh?) 2

L |2y A+ 1) /”/2 62271 -t L
" 0 (@ g+ PP T (@ )

N m/2 92A+1 13 /2 92>\+3
<
<C | (zy)'t /0 ((z—y)2+t2+xy02)/\+2d9+($y) t /0 ((m—y)2+t2+xy92)A+3d9

20N+ 1) / BV A= a2 e 1
)2 +12)2

t3
e R R (PR LR

™
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du + ————du
2\ A+2 _ 2 2\2 . =7 2\ +2
L+ ) (@@= + 0P Jy g )
1 [e’e) 22+1 1 1 [e%e] u2)\71
<Cot? d d
B (xy<<x—y>2+t2>/o (11 w2+ “+<<x—y>2+t2>21+d>%+t2/o (1 + a2 “)
(33)
t
<C—, uzy,te(0,00).
zy

<ct?

/ Vemorse 2l 1 /00 w21

xy((z 24+ ¢2)

We have used that [~ u?*~1/(1+u?)*2du = 1/(2A(A + 1)).

Finally, by proceeding in a similar way and using that [, u**~!/(1 + u?)*!du = 1/2X, we get

2(zy) MA /’T/Q (sin )22 —1 .t 1
o ((z—y)?2+ 1%+ 2zy(1 — cosh)) 1 T (x—y)?+1t2

[Py (z,y) — Pz —y)| =

™
_ 2@ /”/2 (sin @)1 — p2A—1 "
- T o ((—1y)2+2+2zy(1 — cosh)) 1
N 2( )At)\/ g2A-1 1 B 1 &
m 0 (z —y)2 +t2 4+ 2zy(1 — cos )M ((z — y)? + 2 + zyh?) !
n 2(zy) A

92)\+3

do
x —y)? 4+ 12 + 2yh?) 2

92)\ 1 t 1
dg — —
™ /0 ((z —y)? + 12 4 zyf?)> T (z—y)? +
/2
o ((

A ~/2 92/\+1 A+1
< t db t
<ol@t [ G @ |
1

Vaeowrme 21
+ +t2/ A+ o e )
/2 0 1 00 u2r-1
=« /0 O R P / e G
(34)
SC’i <1+10g(1+xy>), z,y,t € (0,00), x#uy.
zy (x—y)?

Putting together — we obtain

t (321 a? t
ng(ac,t)ng/ (1+log<1+)>dy§0, z,t € (0,00).
’ x y (z —y)? x

Moreover, we have that

3xz/2
10, / Pi(z — y)dy
/2

2 w2y
J272($,t) = = ; tat/o mdu =

SCt/ d—<Cf x,t € (0,00).

j2 u?
Hence, it follows that

t
(35) Ja(z,t) < C’;, z,t € (0,00).
We now prove . Suppose firstly |I| < z;. Then, since g > 2,
1)) 1] d dt q 1] zr+l11/2 4
o s [ ea [
G (719t Jo w—1/2 1
q
B S—e]
(501 —[Il/2)* ~

because [t0, P} (1)(z)| < Ct/z, z,t € (0,00) (see (28), (30) and (35)).
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Assume now that |I| > x;. From and (30) we deduce

x1+|f| /1/ dxdt /1 ot /errI dx _
dt <C, i=1,3.
|I|q+1 R Erap = T

Finally, from and ( it follows that

x1+|f| /" / ododt / / dt /°° (@A +1)q dt
— <
|1|q+1 Rolo === T/ (%) 7 )des¢C

Hence, (27) is established and the proof of (ii) = (4) is finished.
O

3.2. Proof of (i) = (ii). Assume that (i) holds. According to Proposition[L.3] in order to see that
B has an equivalent g-uniformly convex norm it is enough to prove that there exists C' > 0 such
that

(36) 153+ (Nlza0,00) < CllfllLaco,00) ) f € L((0,00),B).

Note firstly that is a finite dimensional inequality in the following sense: if holds when B
is replaced by E, where E is a finite dimensional subspace of B, with a constant C' > 0 independent
of E, then is also true for every f € LI((0,00),B) with the same constant C' > 0. This fact is a
consequence of the density of L4(0,00) ® B into L4((0,00),B). Recall that every f € L1(0,00) @ B
can be written as f =7, b; fj, where b; € B, f; € L9(0,00), j = 1,...,n, and n € N.

Let E be a subspace of B such that dimE < oco. Applying again Proposition instead of
proving for functions taking values in E, it is sufficient to show that

(37) 1% + (Dllcr0,00) < Cllflmzmy,  f € Ho(R,E),
being C' > 0 a constant independent of E. Moreover, holds provided that, for a certain C' > 0,
(38) 1SX (Dl Brro,00) < Cllfllzoe((0,00),8), [ € LZ((0,00), E),

where L2°((0,00),E) denotes the space of functions in L>((0,00),E) that have compact support.
To make easier the reading of this part, the proof of that implies (37) will be included in
Section [5| (see Proposition |5.1]).
Observe that can be written as follows
(39) Htatpt)\(f)(x + y)HBMO((O,oo),Lq(F(O),dZ#,]E)) < C||f||L°°((0,oo),]E)7 f € Lgo((o’ OO), E)
Inequality will be proved by using duality. Our objective is to show that, there exists C' > 0
such that for every f € L%°((0,00),E) and h € H! ((O, o), LY (1"(0)7 digy,E*))

(40) [t P (f)(x + y), hw,y, 1)] < Cllf 2o (0,000 ) 1Pl 1 (0,00, 20" (0 (0), 28 ) ) -

Recalling the atomic definition of H'! ((O7 o), LY (1"(0)7 digy,E*)), by density arguments it is suf-
ficient to prove for every f € L%°((0,00),E) and h € L ((O,oo),qu (I‘(O)7 di;”,E*)) N
H* ((0,00), L7 (T(0), %42, B ) ).

Let f € L((0,00),E) and h € LY ((O,oo),Lq' (F(O), d;g”’,E*)). We can write,

dtd
Y da

tatPt)‘ T h(z,y, (’“)th (x h(z,y,
( (N +y),h(z,y,t / /F(O)t +y), Wz, y, 1) =

= lim P x z
*NI%O/O /FN(0><t6Pt( )@ +y), h(z,y,t))

where, for every N € N, the truncated cone I'y(0) is defined by

(41) I'n(0) ={(y,t) eT(0) : 1/N <t < N}.

Note that the above limit exists because the integral is absolutely convergent. Indeed, for every
€ (0,00), S¥(f)(z) < 21/qu1\’+(f)(a:). Then, according to Proposition since dimE < oo, S

is bounded from L2((0,00),E) into L?(0,00). By applying Hélder’s inequality and by taking into

account that f and h have compact support we deduce that the integral under analysis is absolutely

dtd
Y dx,
t2




UNIFORMLY CONVEX AND SMOOTH SPACES AND CARLESON MEASURES IN BESSEL SETTINGS 17
convergent.

Interchanging the order of integration we get
o0

(42) 0PN f) (@ +y) h(z,y, 1)) = lim [ (f(2), Un(h)(2))dz,

N—o00 0
where, for each N € N,

dtd
~(h)(z —/ / t0: P} (x + y, 2)h(z, y, t)dx t2y’ z € (0,00).
I'n(0)

The interchange in the order of integration is justified because by using Holder’s inequality we

obtain
o0 o0
[ [ [ e vine.on
o Jo Jry
 dtdy
Y
<C fll Lo ((0,00),E) / ( Ih(z,y, )H]E* 2 )
supp(f) J/supp(h)

X (/ L0, PNz + y, 2 dtdy>
I'n(0)

<O fllzo=((0,00), ]E)Hh”Loo((O o0), L' (T(0), 444 E+))

1/q
dtdy
(43) ></ / (/ [t P (y, 2)|? 5 ) dxdz, N €N.
supp(f) J/supp(h) \/T'n(z)

Then, since supp(f) and supp(h) are compact, by using and we conclude that

[ /) (0PN 3,2l 1)
I'n(0)

For the incoming reasoning it is convenient to consider the operator
9+t PN (Un(9))(z + ).

In order to make this proof more legible the main properties of this operator will be shown in
Section [5| (Appendix 2).

dtd
5 Y dzdz

f(2)|

E*

/

dtd
(z)HEt—demdz <oo, NeN

E*

By interchanging the order of integration we can write, for each z,t € (0,00), y € R, and N € N,

tatPt/\("I’N(h))(x +y) =/ / ( )/ tatPtA(:E +y,2)s0s P (v + u, z)h(v,u,s)dvdzgudz
I'n(0

dsd
(44) - / B2 (o5 0)h 0, 0,8) B o = @ () 2,3, ),
I'n (0 S
where the kernel kg"t is given by
k;\)t(ny;u, v) = / toL P; (m +y,z )s@sPs’\(v +u,z)dz, wv,z,s,t€(0,00), u,y €R.
0

The interchange in the order of integration is justified because the integral is absolutely convergent.

Indeed, according to and (| . we have that
/ / / 10, P (w +y, )| |s0s P (v +u, 2)| |[A(v,u, 8)||E*
'~ (0)

/ ’
o tz? dsdu
<o Lo meas
0 (H.’IJ + y| - Z| + t))\+2 supp(h) ( I'n(0) 52

1/q
dsd
X (/ 505 PN (v + u, 2)|? 82u> dvdz < 00, z,t € (0,00), ye R, N e N.
I'n(0) s

dvd

In Section [5, Proposition we establish that the sequence of operators {®y} yen is uniformly
bounded from H' ((0, o0), LY (F(O), dﬁ‘jﬂ,ﬂ«:*)) into L ((o, o0), LY (F(O), d;gly,ﬂz*))
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We now return back to (| . Let N € N. We can write
o dydt
@) [T mEa =1 [ [T wrA .o e m)e) A
0

This equality can be shown by proceeding as in the proof of [6, Proposition 4.4] and by taking into
account the following facts:
o f e LX((0,00),E).
o (14+22)7'Wx(h) € L'((0,00), E*). Indeed, arguing as in it can be proved that ¥y (h) €
L>((0,00), E).
e Since condition (z) is assumed, if we define

] o dydt
i) =<3gg|f| | e inmi® ) . we(0,00),

where the supremum is taken over all bounded intervals I C (0, 00) such that x € I, then
CI(f) € L*(0,0).
o Oy(h) € L' ((0,00), L (F(O), d;gy,E*)) because h € H' ((o,oo),m’ (F(O), d;gy,E*))
(Proposition [5.2]).
By using Hoélder’s inequality and if follows that (see [6, Proposition 4.3])

/Ooo<f(2f), Un(h)(2))dz| <C /OOO CHA@)SL, (Un(h))(@)da

SCNCK(P Lo 0,000 15X - (¥ (R L1 (0,00)-

Finally, since () holds we get
[(t0: P () (@ +y), (@, y, 1)) < ClICH(f)l| Lo (0,50) lim sup 128 (W)l 1 (0,00, 1" (0(0), 2 52))
N—o00 t2
< C”foHBMOU(R,]E)”hHHl((O,W),LQ’(F(())A,%,IE*))’

being f, the odd extension of f to R.

Thus the proof of (i7) is completed.

4. PROOF OF THEOREM

4.1. Proof of (ii) = (i). Assume that (i3) holds. Let f be an odd B-valued function such that
S I Ee/ (1 + 22)dz < co. Tf

o dydt
bup \II/ /||t8tP>‘ Yl —— y = 00,

where the supremum is taken over all the bounded intervals I C (0, 00), we have nothing to prove.

Assume that "
I
d dt
s [ [l

According to [6, Propositions 4.3 and 4.4], for every g € Lgo((), o0) ® B*,

/ (@) g@de| =4 [ [T 002 (P)w). 0.8 ) ) 20
0 0 0
(46) < | GN@S L @ < CICHD 019 @200
being
’ I \ Sty
o) = (s [ [ 000" ) L se 0.,
and

1/q
S§Z+<g><x>=</F IR )B*dtdy> s (0,00)

t2
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Moreover, by using [29, Colloraries 2.6 and 3.2] and Proposition we deduce that

(47) ||S§,+(9)HL1(0,OO) <Cliglla:rp-), 9gE€ H,(R,B*).

Let I = (a,b), being 0 < a < b < co. By applying [I7, Lemma 2.3] and taking into account that
C.(I) ® B* = L?(1,B*) and (f — fr)r = 0, we obtain,

(1/ , \? 1
L i@ - nl dx) — s sw
| J; K M2 gerzirmn

H9HL2(1 B*) <1
Joe St

If g € C.(I) ®@B* it is clear that h = (g — gr)x1/2|I|"/? is a 2-atom in (0, oc) for H}(R,B*), because

)
supp(h) C I, hy =0 and
1/2
R de + — /||(m) i) fo
STV = e

V2
h gy <Y
Ibl1200005) <77 | [ lota

Hence, by applying and , we deduce

/I (@) - fr, 9(c))de

sup
gEC (I®B*
HQ”LQ(I B*) <1

1 i g — 91
(m / IIf(x)—fII?Bdw) SCIG D~ _ sup \211/2 priasn = CIAW=020)
g c 1(R,B*
lgll L2 (r ey <1

Suppose now that I = (0, 5), for some § > 0. By proceeding as before we get

Lo N i @)
(5 / ||f(x)||madm> - | @, G

HQHLZ((o,g),B*)Sl

and the same conclusion follows because h = gx(o )/ satisfies supp(h) C [0, 8] and ||h|| L2((0,00),+) <
1/p1/2.

Thus (7) is established.
g

4.2. Proof of (i) = (ii). Suppose that (i) holds. In order to see (i), according to Proposition [1.3]
[29, Colloraries 2.6 and 3.2] and .7 we prove that, for some C > 0,

(48) 15X (D La’ (0,00) < ClIgllLa ((0,00),8+)> 9 € LT ((0,00),B7).
Moreover, it is sufficient to see that, there exists C' > 0 such that
(49) 15X (DNl a" 0,00) < Cllgll Lo ((0,00),8%)> 9 € LT ((0,00),E7),

for every subspace E of B, being dimE < oo. Indeed, assume that holds and take g €
L9'((0,00), B*). By |17, Lemma 2.3|, we can write

155 Oz 0,000 = [t0: P (g) (x + y)||Lq’((o,oo)xr(o),mdx,ms*)

dtd
= sup / / (to P} (g)(x +y),G(z,y, t)}t—zydx
GeL?((0,00)xT(0), 4% dz B) r()
HGHLCI((O,OO)xr(o),%dx,m)Sl
o dtdy
- sup | o)+ 0), o) s
GeL((0,00)xI(0), 4% dz)@B [0 /T(0)

HG”Lq((o,oo)xr(o),%drydz,m) =1

Observe that in the last equality we have applied that L¢ ((O, oo) x I'(0), digy dx) ®B is a dense sub-
space of L? ((0, o0) x I'(0), d:gydx IEB) Fix € > 0. There exists G € L4 ((07 oo) x I'(0), digyd ) ®B,
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such that ||GHL{1((07OO)XF(O)7d:gydeB) <1 and

dtdy

(t0: P (9) (@ + y), Gla,y, 1) —5—dz| +

15X (@)l 2" (0,00) <
r(0)

being G = Z 10;Gj, a; € B, G; € L9 ((O,oo) x I'(0), d’igydx) j=1,...,nand n € N. If we

define E = span{a;}"_,, it is clear that

<t8tPt)\(g)(x + y)7 G(JZ, Y, t)>]B* xB :<t8tPt)\(g)(x + y)a G(JZ, Y, t))]E*X]E) HAES (07 00)7 (y’ t) € F(O)a

because every element of B* can be seen by restriction as an element of E*. Hence, by Hdélder’s
inequality and we conclude that

dtd
y dx

15Y (@)1 o (0,00) < (t0: P (9) (2 + 1), G, Y, 1))k x g
o Jro t

A
< [[t0 Py (g9) (= + Z/)HLq'((o,oo)xr(o),d%dx,E*)HG||Lq((o,oo)xr(o),d%dx,m) te
< Cllgll Lo ((0,00),8) T € < Cllgll Lo’ ((0,00),8%) T &

and this gives .

Let E be a finite dimensional subspace of B. In order to prove , by the equivalences shown
in Proposition [[33] we are going to see that there exists C' > 0, independent of E, such that

||Sf1\ (g)”Ll(Opo) < O||9||H3(R,E*), ge H(}(Rv E*).

dtd
Fix ¢ € H}(R,E*). We denote, for every N € N, Ex = L4 <FN(O),y E |, where the trun-
cated cone I'y(0) is defined in ([I). By invoking [I4, Corollary IIL.2.13] we have that E} =

LY (P(O), di‘f’,E*) and (L'((0,00),E%))" = L=((0,00), En).

It is clear that

t2

N—o00

1/4’
Y (g)(x) = lim (/F o [t0: P (9) (= + y)|If dtdy) , € (0,00).

Let m € N and N € N. Assume that G € L3°([0, 00), E*). Estimations (4, and lead to

1/q
m dtdy
/ (/ |tatP3<G><m+y>|E*t2> da
0 I'n(0)
1/q

m N A q
gc/ / / / GG sds) B g
0 —-NJ1/N supp(G) H.T + y| Z| + t) t
m N
JRINH g
0 —N J1/N supp N[0,2(m+N)] supp(G)N[2(m+N),00)

2  dtd v
z Y
X<||x+y|z+t>k+2”G(z)”E*d”) t2> "

1/q'

q/
+N))* 1 dtdy
<ClCl N */ / / < m +)/ dz —_— dx
1G = (0.0002) L 1 t) Jsupp(c) ¢

<COG|| Lo ((0,00),E%)

supp(G))],
where C' > 0 does not depend on G.

Hence, recalling the atomic representation of the elements of H} (R, E*) we deduce that t9; P\ (g) €

Lt ((O,m), LY (FN(O), di‘jy,E*)).
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According to [17, Lemma 2.3] we have that

drdy\ "
 dtdy
( [ oo+l )
I'n(0) Li(0.m)

m dtd
swp N[ [ 0PN g) o+ ). b ) T
0 JTn(0)

heL>((0,m),En)
17l Loo ((0,m) Ep) <1

Let h € L*((0,m), Ex) such that [|A]| L ((0,m),ey) < 1. By using Holder’s inequality and repeating

the above manipulations we can see that

/ / / (10PN + y, 2)9(2), bz, 5.8))| dz 2 d < oo
0o Jra()Jo t

Then, we can interchange the order of integration to write

[ word @m0l = [0 om @mE)d=
o Jrx( 0

where, as above,

dtd
N(H)(z —/ / t0, PNz + vy, 2)H(x,y, t)dx t2y7 z € (0, 00).
I'n (0)

According to (4)) and (26 we get

N () (@1) ||ENf// 0PN+ 3,2 (e )
I'n(0)
tdy
<C h dx
L] e el G

/ 1/q
m N N q
t dtd
§C/ / / ( 3 2) 2y dx < C, z € (0,00),
0 NJiyn\(z+yl—2)*+¢ t

where C' > 0 depends on m and N. Thus, this function is locally integrable.

dtd
y dzx

Suppose for a moment that there exists C' > 0 independent of E, m and N € N such that

Il dad
(50) sw s [ [ 1Py (o @IS < C.

where the supremum is taken over all the bounded intervals I C (0,00). Since (i) holds, by using
duality, leads to

/OOO<9(Z),‘I/N(X(oym)(a:)h)(z»dz

< Cligll e m )

(TN (X (0.m)(@)R)), | Br0, (R E)

< Cllgllzr® e

where C' depends neither on m, N € N nor on E.
We conclude, by taking m — oo, that

dtdy\ "

Y

(/ 160, P (g) (x + y) |2 2> < Cllgll (e
T'n(0)

L1(0,00)

where C' > 0 is independent of N € N, and by taking N — oo, it follows that

155 (911 (0,00) <CllgllH2 (r,E#)-

We now prove (50). Fix m, N € N and a bounded interval I C (0,00). We decompose H,,, =
X (0,m)h as follows

H,, = mXaIl + HmX(O,oo)\?I - H + H72n
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By proceeding as in and by using Proposition [5.2| we get

I dxdt I dxdt
o e @St - o [ /Méw ), 0,58

I Jo Jr t | t

1
‘ | H(I)N( m)”%q((o,oo),m(r(()),%m)) < Cm /2] ||Hm(z,x,t)\|]%Ndz < C”h”%“’((o,m),]EN) <C,
where C' > 0 does not depend on m and N. Here @ is defined as in .

On the other hand, for each xz,t € (

dsdu
[t0PM (U n (H2)) (2| < / / |k (z,0;u, v)|||h(v, u, S)H]E v.
(0,m)\2I JT n(0)
We claim that
t
(52) |k§\,t($7y;u’ v)| <C i v,x,5,t € (0,00), u,y € R.

|z +y| — |u+v|| + s+ )3’

Indeed, let v, z, s,t € (0,00) and u,y € R. Since {P{\}tzo is a semigroup of operators we have that

/000 Pt)‘(m,z)P (z,y)dz = H_s(x Y).

Then, we can write
k;\’t(x, Y;u, v) =ts0;0s / P{\(x + v, z)PS’\(z, u+v)dz = ts@tasPtﬁs(;v +y,u+v)

=ts0?PMx + y,u + V) r=t4s-
By [, in the bottom of the p. 280] it follows that (52)) holds.

From we deduce that, for every z,v,t € (0,00),

/4
dsdu rdsdu
[0 ol )5 < Wlmomen | [ w00 S
I'n(0) I'n (0) §

1/q ,
<Ct //OO dsdu /a <Ot (/ du )1/<1
B R (|2 —|u+v][+s+1¢)20+2 = e (|7 — |u+ o[+ [u] + £)20+1 :

In order to estimate the last integral we distinguish several cases. We have that

/°° du </|m gl du +/oo du
o (z—u—v[+ut+t)?t =)o (o—v[+£)27T " Ji, ) (=lo —v[+2u+ )20+
C
<————— z,u,t € (0,00),
(Jz —v| +1)%

and

/oo du _ /max{min{v,x—v},O} du
o ool +ut 0ot = Jy EETESIEE

v du T du e du
+ S rrorperil T 2¢'+1
max{min{v,z—v},0} (2u tv—x+ t) 1 v (.’L’ +v+ t) 1 z+v (2’[1, —rT—v+ t) 1
< ¢
" (lz ol + )2

Hence, we obtain

z,v,t € (0,00).

dsdu t
K2 (2, 00, 0) || (v, u, 8) || <C ,
/FN(O) st s? (Jz —v[+1)?

Finally, we deduce

1 dwdt 1 M v\’
53 —/ / t0 P (U (HZ, < C—/ /tq*1 / —— | dzdt <C,
(53) Il Jo Jr 40F (L (Hn)) ) s == t 1 Jo Jr (0,00)\21 |z — vl

where C' > 0 depends neither on m, N nor on I.

x,v,t € (0,00).
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By combining and we establish .

Thus the proof of this theorem is completed.

5. APPENDICES

In this section we show two results that have been very useful in the proof of Theorems [I.1] and
.2

5.1. Appendix 1. The following property was used in Subsection [3.2]
Proposition 5.1. Let B be a Banach space, A > 0 and 2 < g < co. Suppose that

(54) 155 (F)lBro,00) < CllfllLe((0,00)8)s [ € Le2((0,00),B).

Then,

(55) 1S5+ (Dllzr0,00) < Cllflzrz ), f € Ho(R,B).

Proof. According to to show it is sufficient to see that, for every f € H:(R,B),
(56) 1SSt 0,00) < Cl £l 1 (r,B)-

Let f € HY(R,B). We write f = Z;’;l Ajaj on (0,00) where, for every j € N, a; is an o-atom
and \; € C, being Z;’;l |Aj| < co. Here by o-atom we mean the class of atoms defined in the

introduction, as follows: a is an co-atom supported on (0,00) or a = bx(g,s)/J, for a certain b € B,
being ||b|lz = 1 and ¢ > 0.

We have that
00 o 0o
8t/ Py, 2)f(2)dz = Z /\j/ O PMy, 2)a;(2)dz, t€ (0,00), y €R.
0 = 0
This equality is justified because the serie

SN[ 10PA g2 ads
j=1 0

is uniformly convergent in y € R ant t € K, for every compact subset K C (0,00). Indeed, let K
be a compact subset of (0,00). By and we get
0:PMy,2)| <C, teK, yeR, z€(0,00).
Then, since a; is an o-atom, for every j € N, it follows that
> IA]’I/ 0P (y, 2)llaj (2)[[sdz < CY |\l < oo, tEK, yeR.
j=1 0 j=1

Hence, we can write

q 1/q
> dtdy
sin = [ Jerr | X xe | @] G
I(x) j=1 t
B
q 1/q
ol dtdy >
- [ Xnverr @] G <Y wistae. ce 0.0
T'(z) ||5=1 =1
B
In order to see it is sufficient to show that there exists C' > 0 such that
(57) 155 (a)llL1(0,00) < C,

for every o-atom a.

To prove we use a procedure employed by Journé ([2I, p. 49-51]). Let a be an o-atom
supported in the interval I = (20 — |1|/2, 20 + |I]/2) C (0,00) and |[|a|| 5 ((0,00),8) < 1/[I|. We de-
note again 21 = (2o —|I], zo+|I]) N (0, 00) and by J we represent the interval (zo—+|I|, zo + ||+ |2I]).
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By [16, Lemma 1.1 (b), p. 217] and we get

1

1211 Jar Si(a)(w)de \21]| |SY(a)(x) — S¥(a)er|dzx + |ST(a)or — SK(a)s| + Si(a)s

C + S{(a).

§C||S§(a)||BMO(o,oo)+S§( )g < Cllallze((0,00),B +5 (a)s |I|

Hence, since J C (0,00) \ 21 and |J| = |2]|,

1S3 (@)l L2 (0,00) —/ S3(a dw+/ S3(a)(z)dx < C + \2IIS§(G)J+/ Si(a)(z)dz
(0,00)\21 (0,00)\21

<C <1 + /(0700)\2[ Sf{(a)(as)d:v) .

By writing Py, 2) = P\ (y,2) + Py (3, 2), .2 € (0,00), y € B, where

PA (. 2) = 2212 /W/2 (sin 6)>> d
e ™ o [yl —2)? + ¢ +2lylz(1 — cos )}

it follows that

/ SY(a)(z)dx §/ / tatptf‘l(y,z)a(z)dz dx
(0,00)\21 (0,00)\2I [[J0 La(T(x), 43 B)
(o)
(58) —|—/ / tatPt)"g(%z)a(z)dz dx.
(0,00)\2I IIJ0 LQ(F(z),%,B)

According to and and using Minkowski’s inequality we have that
dx

/(0,00)\21 La(T(x), 4434 B)

> A
<2 IO e, ) s Iz
Z)\
<C —_— dzdr < ————dxdz
> /000\21/ +Z)‘+1||a(Z)H]BZI I/ /000\21 x—i—z/\‘H X

I/ (zo+|l|+z) +C(I)<;+W>)dZ<C

where C' > 0 does not depend on a. Here ¢(I) = 0, when zy < |I], and ¢(I) = 1, provided that
Zo > |I|

/ t('?tPtf‘Q(y, z)a(z)dz
0

We now deal with the integral involving P{}l in . Assume first that a = bx(o,s)/d, where
0 >0 and b € B such that ||b]|p = 1. By using Minkowski’s inequality and it follows that
dx

b oo
/ dz < I 5”153 /
oo Lo(r(o) 244.5) 2 o (ro 228

2 o0 s N C 5 \ 00 da
<= <Y _dr
_5/25 /o Htatpt’l(y’Z)HL"(F+(I),L§§”)dde Y /0 ’ /25 \x—zlz\ﬂdz <C,

where C' > 0 is independent of a.

oo 1
/ tatPtf‘l (y, 2)a(z)dz / t@tPtf‘l (y,z)dz
0 0
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Suppose now that [, a( ;a(z)dz = 0. By the fundamental theorem of calculus and Minkowski’s
inequality we can write

/ /tatpﬁl (y,2)a(z)dz
(0,00)\2T ’

I

B /(O o0)\21

/0 o LR (.2) 0P (0,20 ooty

dxr
La(T(=), % B)

[ 0P 0. 2) ~ 10.P (0,200 a2
I

dx
(F( ), d,td,y ]B)

(3' Ptl Y, )”Lq( (z) dfdy)du dzdx.
(0,00)\21
We are going to see that
(59) 8uPtA1(y7u)||Lq(I‘(a:) m)d’u, dzdr < C,
(0,00)\2I JI ’ 2
where C' > 0 does not depend on I.
We have that, for every u,t € (0,00) and y € R,
IN2|y| A1 /2 sin #)22—1
0:0u P (y,u) = " / 2 (2 ) sl
™ o [yl =u)?+1*+2[ylu(l — cos )]
AN Dyt /”/2 (sin §)2A 1 ”
™ o [yl =u)? + 2+ 2[ylu(l — cos O) A2

AN+ 1)(Jyluw)* /”/2 (sin 6)2~H(u —|y]) + [y|(1 = cosO)] )
0

4 [(Jyl = w)? + £2 + 2[y|u(1 — cos )] 2
8)\()\ + 1)()\ + 2)(|y|u))\t2 /71'/2 (sin 0)2)\—1[(u _ |y‘) + |y|(1 — cos 9)]
o |

df.
T (ly] — u)? + 2 + 2|y|u(l — cos §)|}3

Since sin# ~ 6 and 2(1 — cos §) ~ 6%, when 0 € [0,7/2], it follows that

1010 P (y, )

=C (A;\(y,u) + Bt’\(y,u)) , u,t€(0,00), yeR.
We analyze firstly A7 (y,u). Assume 0 < A < 1. We get
ly[*6* (Jy|u6*)*? C

<C < s 0< |yl <24,
[(Jy] = u)? + 12 + [y|uf?]*+1 [(Jy] = u)? + 12 + [ylud?]2 1 = ([Jy| — ul + )2 |
and
ly* ly|* c
<C < , 0<2u<|y|
[(Jy] = u)? + 12 + |y|ug?] 2+ [(Jyl = w)? + 22+ = ([ly[ — ul + )22
Hence,
w1

AMy,u) <C u,t € (0,00), y €R.

(lyl = ul +£)*+2

By proceeding as in we obtain

u)\—l

||tA?(y,u)||Lq(F(m)’d:#) < CHtA?(yau)lqu(r+(z)7dzgy) < CF — u|)\+1a u, T € (0,00).

Also notice that

[ w o
(O,0on21 1T = 20|M1 T I]A

< (v [ e wa [ e y
- o [l =P + @+ et o (0T = w7 + P+ 77



26 J.J. BETANCOR, A.J. CASTRO, AND L. RODRIGUEZ-MESA

and that |z —u| > |x — 2|/2 provided that u € I and « € (0,00) \ 2I. By combining these facts we

conclude
c dz z
)| o (1, 2 | dlr < = i/ / P de
(0,000\2T J T L (F( )s 12 ) |I| (0,00)\2T |$ _ z0|>\+1 I -
/‘ 2 C |1|/2[( S 0 2 »
2N — 20 dz = / Z20+w)" —z dw+/ 20 — (20 + w)dw
|I|)\+1 0 |I|>\+1 o 0 i1z 0
C [1]/2 \
60 S*/ whdw < C.
©0) <ppa ),

We have used that (a + b)® < a® 4+ b*, when a,b > 0and 0 < a < 1.

Suppose now A > 1. We have that

w/2 2 A—1
(Iyl = u)* + 12 + |y|ub? (Iyl = w)* + 12 + |y|ub?)?

lylo L
< df = CA t R.
C/ [(ly] = u)? + t2 4 |y|uh?]? CAi(y,u), ut€(0,00), y €

Then, by using what we have proved in the above case we get

1 z
(61) H /( . / / AN 050 1,

Finally, to treat the term B;'(y, u) we make the change of variables 0 = ¢+/(|y| — u)2 + t2//|y|u
and we obtain

dzdx < C.

C oo A1 c
B (v, ; de < , u,t€(0,00), y€R.
() < (Ilyl = “|+t)d/o (14 ¢2) +1/2 ¢ Iyl —ul+0)3" " (0,0), 1y

As above it follows that

(62)

/ 6B (5. 0) o ), sy | e < ©

(0,000\2I JT

Note that the constants C' in 7 and do not depend on I. Thus is shown.

Putting together all the estimations that we have just obtained, is proved and the proof of
this proposition is finished. O

5.2. Appendix 2. In this part we study in detail the operator ®, N € N, which appears in Sub-
sections [3.2] and [4.2] We prove that the sequence {®y}nen can be seen as a uniform (in a suitable
sense) family of vector valued Calderén-Zygmund operators. Consequently, the mapping properties
that we need for &, N € N, follow from the general theory ([28§]).

dydt
Let B be a Banach space, 1 < ¢ < coand N € N. Forevery h € L2° ((O, o0), L1 (FN(O), ?2,183))

we define

dsd
D (h)(z,y,t) / / (z,y; u,v)h(v,u, s)#dv, x,t € (0,00), y € R,
I'n(0) §

where
Bulegine) = [ OPN o+ 550 P20k w2z, st € (0.00), wy € R
0

In Subsection [3.2]it was proved that the integral defining ® (h)(z,y,t) is absolutely convergent for

dydt
every h € L ((0,00),Lq <FN(O),?2,IB%)>, x,t € (0,00), y € R and 2 < ¢ < oo. Notice that

this property is also true for 1 < ¢ < 2.

dtd
To simplify the notation we write in the sequel F¢ = L4 (F(O), —2y, B).
Yy



UNIFORMLY CONVEX AND SMOOTH SPACES AND CARLESON MEASURES IN BESSEL SETTINGS 27
Lemma 5.1. Let B be a Banach space, A >0 and 1 < g < co. Then, for every N € N, the operator

Dy is bounded from L1((0,00),F9) into itself. Moreover, there exists C > 0 such that, for every
N e N,

2N (9) I La((0,00)70) < CllgllLa((0,00). 70y, g € LI((0,00),F9).
Proof. Let N € N and g € L1((0,00),F9). Holder’s inequality implies that

dsau \¢
|(I)N( SC y7 | < / / ‘kst T, y;u, U)' Sgudv
I'n(0) $
> dsdu
x ( [ il o)™
0 JI'n(0) s

By it follows that

e dsd e t dsd e t
/ / k2 (2, 50, 0)| 82udv §C/ / i zdz 52u < C’/ ——mds < C.
o Jryo) 7 s royJo (z+s+t) s o (s+1)

Note that C' does not depend on N. Now leads to

o o dtdy
ex@Lomen <C [ | </ [ o) s
I'n(0) Jo 0o Jro)

q
< Cllgl Lo (0,00, 70

q
dv) , x,t€(0,00), y €R.

dsdu

) lg(o,u )l 5" do

O

In the next lemma we introduce, for every N € N, a family {K3 (, V) }o,0e(0,00), a£v Of bounded
operators in F?. We prove that Kﬁ,(m,v), xz,v € (0,00),  # v, satisfies the standard Calderén-
Zygmund conditions uniformly in V € N.

Lemma 5.2. Let B be a Banach space, A > 1 and 1 < g < oo. For every N € N, and z,v € (0, 00),
T # v, we define
N N dsdu
Ky (z,v)(h)(y,t) = kgi(2, y;u,v)h(u, s)——, heF.
ry(0) s
Then,

(a) K (z,v), N €N, is bounded from F9 into itself and there exists C > 0 such that for every
N e N and z,v € (0,00),  # v,

K ) ||ga <
KN (z,0)(h)|lre < o — 0|

(b) There exits C' > 0 such that, for every N € N,

||hH]Fq7 h € 9.

|21 — 23]

(B (21, 0) = Ky (2, 0)) (h)|[rs < lelhllm
being h € F? and |zq — v| > 2|z — xa|, x1, 22,v € (0,00).
(¢) There exits C' > 0 such that, for every N € N,
— U2
[ (. 00) — Ky w)) () < 122 e,

o1 — |2
being h € F? and |x — vy| > 2|v; — va, x,v1,v2 € (0,00).

Proof. (a) Note firstly that if h € F? we have that, for every N € N and v,z € (0,00), with = # v,

a/d 1/a
dsdu rdsdu dtdy
1Yol < | [ el ([ RGeS 5
r'(0) JT'n(0) & I (0) S

1/q

q/q
rdsdu dtd
<[ ([ wopuors L T
Ti(z) \JT(v) s t
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being C > 0 independent of N. Then, (a) is established when we prove that for a certain C' > 0

1/q

q/q
rdsdu dtdy C
oo ([ ([ wosuopr <9 sue() z#w
re@ \Jriw 52 t? |z — v

We write

k;;‘)t(O, y;u,0) = ts@rzPT):l (Y, u)),_, . + tsaTQPT):?(y,u)‘T:HS7 y,u,t, s € (0,00),

where P}, (y,u) and P2, (y, u) are given by (10). We have that

12X\ + 1) (yu) e [7/? sin §)2* 1
9P} (y,u) = — A+ 1)iyu) / 5 (2 ) weLL
™ o [y —u)?+7r2+2yu(l — cosh)]
L QDA+ 2) ()t /”/2 (sin §)2> 1 "
7r o [(y—uw)?+72+2yu(l — cosf)|M3

=L (y,u) + L5y u), 7y,u € (0,00).

It is clear that |£},(y,u)] < C|L}(y,u)l, ,y,u € (0,00). Moreover, by taking into account

that sinf ~ 6 and 2(1 — cosf) ~ 62, when 6 € [0,7/2], and making the change of variables
ly — u|? + r2¢/,/uy, we get

92)\—1 C
do <
2 2 yuf2)M2 T (ly —ul + )3’

1L (y, u)| < Cr(yu) /ﬂ/2 r,y,u € (0,00).
" N o ((y—u)

Then, since |y —u| +t+ s~ |z —v|+t+ s, when (y,t) € Ty (x) and (u, s) € I';(v), we obtain

q/q
rdsdu dtdy
/ / [$t02P () it T | g
i(@) \JT4(v) y t
’ 1/‘1

/g a/q
Sq
<C / a2 / s dsdu dtdy
() () (|7 =] +s+1)3%

’ 1/q

o 7' —1 a/q
C / 142 / srds dtdy
() o (z—vl+s+1)%

/ 1/q
> ds qa/q
¢ 2 / ——d > dtd
</F+<z> ( o (z—v|+s+ a1 Yy

([ ] o) < C (0,00), @ #
< — —dtdy < , x,v€ (0,00), TF£ 0.
0 Jyy-ai<e (|2 —v[+1)% |z — v

In a similar way we can get that

1/q

IN

IN

a/d a
s dsdu dtdy
|5t02 Po (Y, 1) =4t | < , x,v € (0,00), #wv.
/m(w) </F+<v> 2 el s t? |z — v

Q

Hence is established and (a) is proved.
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(b) By proceeding as above and using Minkowski’s inequality we can see that

1B (1, v) (h) = K (22, v) (h)]|zs

dsdu\ " datd e
rdsdu t
<[/ (1/ 2 @1, 5, 0) — K (2, 50, ) | 220 ) W ale
r(0) \Jr() s t
T2 7 dsdu o dtdy v
e R A e e R I
r©) \Jro) [J/= s t

dsd o/ dtd e
T2 ’ t
/ / (/ |azki\t(z7y;ua v)|q 32u> Y dz ||h||]Fq'
s s 12
1 r(0) r(0)

Hence, (b) is shown when we prove that

IN

@2 dsau\ " avay\ | |
" asau r, —x
o [ (] R V) <ozl
o r(0) \Jr(0) ’ 52 t2 |21 — v]?

for every 1, x2,v € (0,00) such that |x1 — v| > 2|z1 — 22|

From now on, we take into account that A > 1. Suppose that zi,z9,v € (0,00) such that
|z1 — v] > 2|zy — z2|. We can write

1/q

q/d
*2 " dsd dtd
/ / </ 0k (2, s 0, 0)|° S;‘) )
s s 12
o r(o) \Jr(0)
1/q

e ) a/d
(66) sc/ / (/ |0,k (0,5 u, 0)|” dsi“) ) g,
i S 12
o \Jree \Jriw

By keeping the notation in the proof of (a), straightforward manipulations lead to
0,02 PX (y,u) = — AT D) ur / " (sin 0 do
' T o [y —w)?+7r2+2yu(l — cos )|} 2
N 24N\ + 1)\ + 2) (yu)>r /”/2 (sin )2~ 1((y — u) + u(1 — cos 6))
T o [y —u)?2+ 72+ 2yu(l — cosf)|M3
N 8AZ(A + 1) (A + 2) (yu)*turd /”/2 (sin )21
T o [y —w)?2+7r2+2yu(l — cos )3
CIBAA+ DA +2)(A + 3) (yu) r® /”/2 (sin )2~ ((y — u) + u(l — cos f))
o [y —u)?+ 7?2+ 2yu(l — cos )|} 4
:[’i\,l,l(y’ u) + /33,1,2(% u) + ‘Ci\,2,1(ya u) + ﬁi‘,2,2(?!au)7 r,y,u € (0,00).

de

do

do

™

If we define

/2
A = (yu A
ET,?)(y?u) - (y ) /0 [(y o u)

we have the following relations,

hd ‘C?,l,2(y7 u) <C (E;\,l,l(yﬂ u) + 57/},3(?47 u)) , Thy,ue (07 00)7

i ‘67)"\,2,1(yau) S Cﬁﬁ,l,l(yvu)v my,u S (0700)7

b Ei\,2,2(ya u) < C (ﬁi,l,l(ya ’U,) + ‘Ci,S(ya u)) s Yy, u e (Oa OO)
Therefore, it is sufficient to analyze £$7171(y, u) and £72\73(y,u), r,y,u € (0,00).

(sin )21
do 0
2+ 172 4+ 2yu(l — cosB)A 2 oy, u € (0,00),

Now we can see

C C
£?+t,3(y, u) <

< b)
(y—ul+s+0" = (z—v]+s+0)1

(y’t) € FJr(Z)v (uvs) € F+(’U).



30 J.J. BETANCOR, A.J. CASTRO, AND L. RODRIGUEZ-MESA

Moreover, we have that

1
|z —v|(|z — v+ s+ t)3

'Ci\th,l,l(y»u) <C Y2 |Z - U|a (y’t) € F+(Z), (uvs) € F+(7}),

and, since A > 1,

c <C(yu)! m i d
- t
s+t,1,1(y’u) <C(yu)" " u(s + )/0 [(y — )2+ (s + )2 + yud?P+2
u(s+t) <C |lu—yl+y < C
(ly—ul+s+1)¢ = " (ly—u[+s+1)° = (2 —v[+s+1)*

< C
“lz—v|(]z —v| + s+ 1)

y < |Z - ’U|, (y?t) € F+(z)7 (U,S) € F+(U)'

The same computations made in the proof of (a) give us

a/d a
rdsdu dtdy C
/ / |st8y33P;\71(y, )|r 5+t| 9 2 S - 12 v,Z € (0,00)
I'y(2) \JT4(v) s? t |z — v

Similarly we can obtain

dsau """ dtd e C
rdsdu tdy
|5t0y 07 Po (y, ) p—s 4] — < —3, v,2€(0,00).
/m(z) </F+<v> vt el g 2 |z —vf?

Hence, we conclude that

dsdu\ " dtd e c
/ / |8yk?t(0vyau70)|q/ Szu Ty < IR v,z € (0,00)
Iy(2) \JT4(v) ’ s t |z — vl

From it follows that

- a/d 1a
L] (] oo ) d) =
1 ) \J/r() ’ K t

for each z1,29,v € (0,00) such that |z1 — v| > 2|z — x4

Thus, is shown and the proof of (b) is completed.
(¢) The proof of (c) is essentially the same one of (b). O

We now obtain a representation of the operator @ as a vector valued integral operator, for every
N eN.

Lemma 5.3. Let B be a Banach space, A > 0, 1 < q < co and N € N. We denote by K;},(x,v),
z,v € (0,00), x # v, the operator introduced in Lemma . Then,
(67)

= /000 KN (z,v)(g(v)dv, a.e. x ¢ supp(g), g € L(0,00) ® (Lq(F( ), didy) ®IB3>

where if g € L ((0,00),F9) we represent

o for every v € (0,00), g(v)(y,t) = g(v,y,t), (y,t) € '(0),
o for every x € (0,00), ®n(g)(x)(u,s) = Pn(9)(x,u,s), (u,s) € T(0).

The integral in @ is understood in the F1-Bochner sense.

Proof. 1t is sufficient to show the result when B has finite dimension.
Let g € L°((0,00),F?). We are going to see that, for almost all x ¢ supp(g),

(68) / /FN(O) (x,y;u,v)g(v,u, ) deudv = (/ KX (z,0) ))dv) (x,y,1),
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in the sense of equality in F9. Note that the F?-Bochner integral in the right hand side is absolutely
convergent for every = ¢ supp(g). Indeed, according to Lemma (a), we get

| 13 o) g0 endto <C lotle. ,,
0 supp(9) |z — v
dv
<C|lgll L= ((0,00),F9) —— <00, ¢ supp(g).
supp(g) |x - U‘

In order to show it is enough to see that, for every H € (L((0,00),F9))" and z ¢ supp(g)
d d
(69) (H(x,y,t / / (:L‘ y;u,v)g(v, u, s) Sl (H, / KX (z,v)(g(v))dv).
I'n(0)

Let H € (L9((0,00),F?))" and x ¢ supp(g). By [14, Corollary I1I1.2.13], (L9((0,00),F9))" =
L9 ((0,00), (F2)*), where (F9)* = L7 (I‘(O), dif}y,lﬁﬁ*) Hence, there exists h € L9 ((0,00), (F9)*)
such that

(H,G) = /Ooo<h(x),G(a:))(]Fq)*Xqux7 G e L7((0, 0), F).

Hence, we can write

H(zy.1). / / B (g, 0)g (0, u, 5) 0 )
0 I'n(0) S

b i dsd dtd
[ R0, 5 a5 e
o JroyJo Jrywo s t

Moreover, well-known properties of the Bochner integrals lead us to

(. / K3 (2, 0) (g(v))dv) = /M<HKN<x o)(g(0)))dv

/ / / / k;\t (z,y;u,v){(h(z,y,t), g(v,u, )>dsdu dtdyd dv.
T'(0) JT'x(0)

To obtain we only need to show that the last integral is absolutely convergent. For this purpose
we apply Holder’s inequality and as follows

RO e dsdu
Ll el loteus)l: =
0 0 r(0) JTx(0) S
 dsdu , dtd v
sdu y
(// // 2 (2,50, 0) (e 9, ) 2 d)
r(0) I'n (0) s
o0 o0 dsdu  dtdy \°
(/[ ] / R4y, ) oo, ) g v Y
r(0) I'n(0) s t

((0,00),Fa) < o0.

dtdy
||h(x7y,t)\|13*t—2dxdv

<C|Pl Lo (0,00, (Fa)~
The proof is finished. O
By using Lemmas and [5.3] and as a consequence of the theory of vector valued Calderén-

Zygmund operators (see [28]) we obtain the following result that we used in the proof of Theorems|L.1]
and

Proposition 5.2. Let B be a Banach space, A > 1,1 < q < co. Then, for each N € N, the operator
Oy can be extended

(a) to LP((0,00),F9) as a bounded operator from LP((0,00),F?) into itself, for every 1 < p < oo;
(b) to H((0,00),F%) as a bounded operator from H'((0,00),F?) into L'((0,00),F?).

Moreover, for every 1 < p < oo there exists Cp, > 0 such that

12N ()| Lr((0.00).F9) < CpllgllLr(0,00)F0), g € LP((0,00), F?),
and there exists C1 > 0 such that

195 (9121 ((0,00)F) < Cillgllri((0,00).50), 9 € H'((0,00),F),
for every N € N.
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