The $1 / 3-2 / 3$ conjecture for N-free ordered sets

Imed Zaguia
Dept of Mathematics \& Computer Science, Royal Military College of Canada
P.O.Box 17000, Station Forces, K7K 7B4 Kingston, Ontario, Canada
imed.zaguia@rmc.ca

July 29, 2011

Abstract

A balanced pair in a finite ordered set $P=(V, \leq)$ is a pair (x, y) of elements of V such that the proportion of linear extensions of P that put x before y is in the real interval $[1 / 3,2 / 3]$. We prove that every finite N-free ordered set which is not totally ordered has a balanced pair.

Keywords: Ordered set, Linear extension, N-free, Balanced pair, 1/3-2/3 Conjecture. AMS subject classification (2000): 06A05, 06A06, 06A07

1 Introduction

Throughout, $P=(V, \leq)$ denotes a finite ordered set, that is a finite set V and a binary relation \leq on V which is reflexive, antisymmetric and transitive. A linear extension of $P=(V, \leq)$ is a linear ordering \preceq of V which extends \leq, i.e. such that $x \preceq y$ whenever $x \leq y$.

For a pair (x, y) of elements of V we denote by $\mathbb{P}(x \prec y)$ the proportion of linear extensions of P that put x before y. Call a pair (x, y) of elements of V a balanced pair in $P=(V, \leq)$ if $\mathbb{P}(x \prec y)$ is in the real interval $[1 / 3,2 / 3]$. The $1 / 3-2 / 3$ Conjecture states that every finite ordered set which is not totally ordered has a balanced pair. If true, then the ordered set consisting of the disjoint sum of a two element chain and a one element chain would show that the result is best possible. The $1 / 3-2 / 3$ Conjecture first appeared in a paper of Kislitsyn [6]. It was also formulated independently by Fredman in about 1975 and again by Linial [7].

The 1/3-2/3 Conjecture is known to be true for ordered sets with a nontrivial automorphism [5], for ordered sets of width two [7], for semiorders [2], for bipartite ordered sets [10], for 5 -thin posets [4] and for 6 -thin posets [8]. See [3] for a survey.

The purpose of this paper is to prove that the $1 / 3-2 / 3$ Conjecture is true for N-free ordered sets.

Let $P=(V, \leq)$ be an ordered set. For $x, y \in V$ we say that x and y are comparable if $x \leq y$ or $y \leq x$; otherwise we say that x and y are incomparable. A set of pairwise incomparable elements is called an antichain. A chain is a totally ordered set.
Define $D(x):=\{y \in V: y<x\}$ and $U(x):=\{y \in V: x<y\}$.
A pair (a, b) of elements of V is said to be chain dominated if the following holds in P :

$$
D(a) \subseteq D(b) \text { and }\{b\} \cup U(b) \backslash U(a) \text { is a chain. }
$$

A pair (a, b) is said to be good if it is chain dominated and $\mathbb{P}(a \prec b) \leq \frac{1}{2}$. Notice that a good pair is necessarily a pair of incomparable elements. Our first result is this.

Theorem 1. If one of P and its dual has a good pair, then P has a balanced pair.
The proof of Theorem 1 is similar to the proof of Theorem 2 of [7] stating that the $1 / 3-2 / 3$ Conjecture is true for finite ordered sets of width two (these being the ordered sets covered by two chains). We will prove that a finite N-free ordered set which is not a chain has a good pair.

For $x, y \in V$ we say that y is an upper cover of x or that x is a lower cover of y if $x<y$ and there is no element $z \in V$ such that $x<z<y$. A subset $\{a, b, c, d\}$ of V is an N in P if b is an upper cover of a and c, d is an upper cover of c and if these are the only comparabilities between the elements a, b, c, d. The ordered set P is N-free if it does not contain an N. Notice that every finite ordered set can be embedded into a finite N-free ordered set (see for example [9]). It was proved in [1] that the number of (unlabeled) N-free ordered sets is

$$
2^{n \log _{2}(n)+o\left(n \log _{2}(n)\right)} .
$$

Our second result is this.
Theorem 2. Let P be a finite N-free ordered set, then P has a good pair. Hence, P satisfies the $1 / 3-2 / 3$ Conjecture.

2 Proof of Theorem 1

We recall that an incomparable pair (x, y) of elements critical if $U(y) \subseteq U(x)$ and $D(x) \subseteq$ $D(y)$.

Lemma 1. Suppose (x, y) is a critical pair in P and consider any linear extension of P in which $y<x$. Then the linear order obtained by swapping the positions of y and x is also a linear extension of P. Hence, $\mathbb{P}(x \prec y) \geq \frac{1}{2}$.

Proof. Let L be a linear extension that puts y before x and let z such that $y \prec z \prec x$ in L. Then z is incomparable with both x and y since (x, y) is a critical pair of P. Therefore, the linear order L^{\prime} obtained by swapping x and y, that is L^{\prime} puts x before y, is a linear extension
of P. Then map $L \mapsto L^{\prime}$ from the set of linear extensions that put y before x into the set of linear extensions that put x before y is clearly one-to-one. Hence, $\mathbb{P}(y \prec x) \leq \mathbb{P}(x \prec y)$ and therefore $\mathbb{P}(x \prec y) \geq \frac{1}{2}$.

We now turn to the proof of Theorem 1 .
Proof. Let (a, b) be a good pair in P. If $U(b) \backslash U(a)=\emptyset$, then $U(b) \subseteq U(a)$ and hence (a, b) is a critical pair. Therefore $\mathbb{P}(a \prec b) \geq \frac{1}{2}$ (see Lemma $\left.\mathbb{1}\right)$. Since $\mathbb{P}(a \prec b) \leq \frac{1}{2}$ we infer that $\mathbb{P}(a \prec b)=\frac{1}{2}$ and we are done. So we may assume without loss of generality that $U(b) \backslash U(a) \neq \emptyset$. Hence, $U(b) \backslash U(a)$ is a chain, say $\{b\} \cup U(b) \backslash U(a)$ is the chain $b=b_{1}<\cdots<b_{n}$. We prove the theorem by contradiction. Then

$$
\mathbb{P}\left(a \prec b_{1}\right)<\frac{1}{3} .
$$

Define now the following quantities

$$
\begin{aligned}
q_{1} & =\mathbb{P}\left(a \prec b_{1}\right), \\
q_{j} & =\mathbb{P}\left(b_{j-1} \prec a \prec b_{j}\right)(2 \leq j \leq n), \\
q_{n+1} & =\mathbb{P}\left(b_{n} \prec a\right) .
\end{aligned}
$$

The following lemma appeared in [7. We now adapt its proof to our situation.
Lemma. The real numbers $q_{j}(1 \leq j \leq n+1)$ satisfy:
(i) $0 \leq q_{n+1} \leq \cdots \leq q_{1} \leq \frac{1}{3}$,
(ii) $\sum_{j=1}^{n+1} q_{j}=1$.

Proof. Since q_{1}, \cdots, q_{n+1} is a probability distribution, all we have to show is that $q_{n+1} \leq \cdots \leq q_{1}$. To show this we exhibit a one-to-one mapping from the event whose probability is q_{j+1} into the event with probability $q_{j}(1 \leq j \leq n)$. Notice that in a linear extension for which $b_{j} \prec a \prec b_{j+1}$ every element z between b_{j} and a is incomparable to both b_{j} and a. Indeed, such an element z cannot be comparable to b_{j} because otherwise $b_{j}<z$ in P but the only element above b_{j} is b_{j+1} which is above a in the linear extension. Now z cannot be comparable to a as well because otherwise $z<a$ in P and hence $z<b=b_{1}<b_{j}$ (by assumption we have that $D(a) \subseteq D(b))$. The mapping from those linear extensions in which $b_{j} \prec a \prec b_{j+1}$ to those in which $b_{j-1} \prec a \prec b_{j}$ is obtained by swapping the positions of a and b_{j}. This mapping clearly is well defined and one-to-one.

Theorem 1 can be proved now: let r be defined by

$$
\sum_{j=1}^{r-1} q_{j} \leq \frac{1}{2}<\sum_{j=1}^{r} q_{j}
$$

Since $\sum_{j=1}^{r-1} q_{j}=\mathbb{P}\left(a \prec b_{r-1}\right) \leq \frac{1}{2}$, it follows that $\sum_{j=1}^{r-1} q_{j}<\frac{1}{3}$. Similarly $\sum_{j=1}^{r} q_{j}=\mathbb{P}\left(a \prec b_{r}\right)$ must be $>\frac{2}{3}$. Therefore $q_{r}>\frac{1}{3}$, but this contradicts $\frac{1}{3}>q_{1} \geq q_{r}$.

3 Proof of Theorem 2

Let $P=(V, \leq)$ be a finite ordered set which is not a chain. If P has a minimum element p_{0}, then p_{0} will be the minimum element in every linear extension of the poset. Therefore, nothing will change if p_{0} is deleted from the ordered set. So we may assume without loss of generality that P has at least two distinct minimal elements a and b.

Next we suppose that P is N-free. We start by stating some useful properties of N-free ordered sets.

Lemma 2. Let $P=(V, \leq)$ be an N-free ordered set. If $x, y \in V$ have a common upper cover, then x and y have the same upper covers. Dually, if $x, y \in V$ have a common lower cover, then x and y have the same lower covers.

Proof. Trivial.
Let $P=(V, \leq)$ be an ordered set. An element $m \in V$ is called minimal if for all $x \in V$ comparable to m we have $x \geq m$. We denote by $\operatorname{Min}(P)$ the set of all minimal elements of P. We recall that the decomposition of P into levels is the sequence $P_{0}, \cdots, P_{l}, \cdots$ defined by induction by the formula

$$
P_{l}:=\operatorname{Min}\left(P-\cup\left\{P_{l^{\prime}}: l^{\prime}<l\right\}\right) .
$$

In particular, $P_{0}=\operatorname{Min}(P)$.
Lemma 3. Let $P=(V, \leq)$ be an N-free ordered set and let P_{0}, \cdots, P_{h} be the sequence of its levels. Then for every $x \in V$, there exists $i \leq h$ such that all upper covers of x are in P_{i}.

Proof. If x has at most one upper cover, then the conclusion of the lemma holds. So we may assume that x has at least two distinct upper covers x_{1} and x_{2} belonging to two distinct levels. Let $j<k$ such that $x_{1} \in P_{j}$ and $x_{2} \in P_{k}$. Then x_{2} has a lower cover $x_{3} \in P_{k-1}$. We claim that $\left\{x, x_{1}, x_{2}, x_{3}\right\}$ is an N in P contradicting our assumption that P is N-free. Indeed, since x_{1} and x_{2} are upper covers of x we infer that they must be incomparable. Moreover, x_{1} and x_{3} are incomparable because otherwise $x_{1}<x_{3}<x_{2}$ (notice that $x_{3}<x_{1}$ is not possible since $j \leq k-1$) which contradicts our assumption that x_{2} is an upper cover of x. Similarly we have that x and x_{3} are incomparable proving our claim. The proof of the lemma is now complete.

Corollary 1. Let P be an N-free ordered set and let P_{0}, \cdots, P_{h} be the sequence of its levels. Let $0 \leq i \leq h$ such that i is the largest with the property that P_{i} contains two distinct elements with the same set of lower covers. Then for every $x \in P_{i}$ we have that $U(x) \cup\{x\}$ is a chain. Hence, P has a good pair.

Proof. Let $x \in P_{i}$ such that $U(x) \neq \emptyset$ and suppose that $U(x)$ is not a chain. There is then an element $y \in U(x) \cup\{x\}$ having at least two distinct upper covers, say y_{1}, y_{2}. From Lemma 3 we deduce that y_{1} and y_{2} are in the same level P_{j} with $i<j$. Because P is N-free it follows
from Lemma 2 that y_{1} and y_{2} have the same set of lower covers. This contradicts our choice of i.
Pick any two distinct elements $a, b \in P_{i}$. If $U(a)$ and $U(b)$ are chains, then both (a, b) and (b, a) are good in P. Otherwise, one of $U(a)$ and $U(b)$ is empty, say $U(a)=\emptyset$, in which case (a, b) is good in P.

References

[1] Bayoumi I. Bayoumi, M. El-Zahar and Soheir M. Khamis, Asymptotic enumeration of N-free partial orders, Order 6 (1989), 219-225.
[2] G. Brightwell, Semiorders and the $1 / 3-2 / 3$ conjecture, Order 5 (1989), 369-380.
[3] G. Brightwell, Balanced pairs in Partial orders, Discrte Mathematics 201 (1999), 25-52.
[4] G. Brightwell and C. D. Wright, The $1 / 3-2 / 3$ conjecture for 5 -thin posets, SIAM. J. Discrte Mathematics 5 (1992), 467-474.
[5] B. Ganter, G. Hafner and W. Poguntke, On linear extensions of ordered sets with a symmetry, Special issue: ordered sets (Oberwolfach, 1985). Discrete Math. 63 (1987), 153-156.
[6] S. S. Kislitsyn, Finite partially ordered sets and their associated set of permutations. Matematicheskiye Zametki. 4 (1968), 511-518.
[7] N. Linial, The information theoretic bound is good for merging. SIAM J. Comput. 13 (1984), 795-801.
[8] Peczarski, Marcin, The gold partition conjecture for 6-thin posets. Order 25 (2008), 91103
[9] M. Pouzet and N. Zaguia, N-free extensions of posets. Note on a theorem of P. A. Grillet, Contrib. Discrete Math. 1 (2006), 80-87.(electronic).
[10] W. T. Trotter, W. G. Gehrlein, P. C. Fishburn, Balance theorems for height-2 posets. Order 9 (1992), 43-53.

