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Abstract

A balanced pair in a finite ordered set P = (V,≤) is a pair (x, y) of elements of V
such that the proportion of linear extensions of P that put x before y is in the real
interval [1/3, 2/3].
We prove that every finiteN -free ordered set which is not totally ordered has a balanced
pair.
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1 Introduction

Throughout, P = (V,≤) denotes a finite ordered set, that is a finite set V and a binary
relation ≤ on V which is reflexive, antisymmetric and transitive. A linear extension of
P = (V,≤) is a linear ordering � of V which extends ≤, i.e. such that x � y whenever
x ≤ y.

For a pair (x, y) of elements of V we denote by P(x ≺ y) the proportion of linear extensions
of P that put x before y. Call a pair (x, y) of elements of V a balanced pair in P = (V,≤)
if P(x ≺ y) is in the real interval [1/3, 2/3]. The 1/3-2/3 Conjecture states that every finite
ordered set which is not totally ordered has a balanced pair. If true, then the ordered set
consisting of the disjoint sum of a two element chain and a one element chain would show
that the result is best possible. The 1/3-2/3 Conjecture first appeared in a paper of Kislitsyn
[6]. It was also formulated independently by Fredman in about 1975 and again by Linial [7].

The 1/3-2/3 Conjecture is known to be true for ordered sets with a nontrivial automor-
phism [5], for ordered sets of width two [7], for semiorders [2], for bipartite ordered sets [10],
for 5-thin posets [4], and for 6-thin posets [8]. See [3] for a survey.

The purpose of this paper is to prove that the 1/3-2/3 Conjecture is true for N -free
ordered sets.
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Let P = (V,≤) be an ordered set. For x, y ∈ V we say that x and y are comparable if
x ≤ y or y ≤ x; otherwise we say that x and y are incomparable. A set of pairwise incompa-
rable elements is called an antichain. A chain is a totally ordered set.
Define D(x) := {y ∈ V : y < x} and U(x) := {y ∈ V : x < y}.

A pair (a, b) of elements of V is said to be chain dominated if the following holds in P :

D(a) ⊆ D(b) and {b} ∪ U(b) \ U(a) is a chain.

A pair (a, b) is said to be good if it is chain dominated and P(a ≺ b) ≤ 1
2
. Notice that a

good pair is necessarily a pair of incomparable elements. Our first result is this.

Theorem 1. If one of P and its dual has a good pair, then P has a balanced pair.

The proof of Theorem 1 is similar to the proof of Theorem 2 of [7] stating that the
1/3-2/3 Conjecture is true for finite ordered sets of width two (these being the ordered sets
covered by two chains). We will prove that a finite N -free ordered set which is not a chain
has a good pair.

For x, y ∈ V we say that y is an upper cover of x or that x is a lower cover of y if
x < y and there is no element z ∈ V such that x < z < y. A subset {a, b, c, d} of V is
an N in P if b is an upper cover of a and c, d is an upper cover of c and if these are the
only comparabilities between the elements a, b, c, d. The ordered set P is N -free if it does
not contain an N . Notice that every finite ordered set can be embedded into a finite N -free
ordered set (see for example [9]). It was proved in [1] that the number of (unlabeled) N -free
ordered sets is

2n log
2
(n)+o(n log

2
(n)).

Our second result is this.

Theorem 2. Let P be a finite N-free ordered set, then P has a good pair. Hence, P satisfies

the 1/3− 2/3 Conjecture.

2 Proof of Theorem 1

We recall that an incomparable pair (x, y) of elements critical if U(y) ⊆ U(x) and D(x) ⊆
D(y).

Lemma 1. Suppose (x, y) is a critical pair in P and consider any linear extension of P in

which y < x. Then the linear order obtained by swapping the positions of y and x is also a

linear extension of P . Hence, P(x ≺ y) ≥ 1
2
.

Proof. Let L be a linear extension that puts y before x and let z such that y ≺ z ≺ x in L.
Then z is incomparable with both x and y since (x, y) is a critical pair of P . Therefore, the
linear order L′ obtained by swapping x and y, that is L′ puts x before y, is a linear extension
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of P . Then map L 7→ L′ from the set of linear extensions that put y before x into the set of
linear extensions that put x before y is clearly one-to-one. Hence, P(y ≺ x) ≤ P(x ≺ y) and
therefore P(x ≺ y) ≥ 1

2
.

We now turn to the proof of Theorem 1.

Proof. Let (a, b) be a good pair in P . If U(b) \ U(a) = ∅, then U(b) ⊆ U(a) and hence
(a, b) is a critical pair. Therefore P(a ≺ b) ≥ 1

2
(see Lemma 1). Since P(a ≺ b) ≤ 1

2
we

infer that P(a ≺ b) = 1
2
and we are done. So we may assume without loss of generality

that U(b) \ U(a) 6= ∅. Hence, U(b) \ U(a) is a chain, say {b} ∪ U(b) \ U(a) is the chain
b = b1 < · · · < bn. We prove the theorem by contradiction. Then

P(a ≺ b1) <
1

3
.

Define now the following quantities

q1 = P(a ≺ b1),

qj = P(bj−1 ≺ a ≺ bj)(2 ≤ j ≤ n),

qn+1 = P(bn ≺ a).

The following lemma appeared in [7]. We now adapt its proof to our situation.

Lemma. The real numbers qj (1 ≤ j ≤ n+ 1) satisfy:

(i) 0 ≤ qn+1 ≤ · · · ≤ q1 ≤
1
3
,

(ii)
∑n+1

j=1 qj = 1.

Proof. Since q1, · · · , qn+1 is a probability distribution, all we have to show is that
qn+1 ≤ · · · ≤ q1. To show this we exhibit a one-to-one mapping from the event whose proba-
bility is qj+1 into the event with probability qj (1 ≤ j ≤ n). Notice that in a linear extension
for which bj ≺ a ≺ bj+1 every element z between bj and a is incomparable to both bj and
a. Indeed, such an element z cannot be comparable to bj because otherwise bj < z in P but
the only element above bj is bj+1 which is above a in the linear extension. Now z cannot
be comparable to a as well because otherwise z < a in P and hence z < b = b1 < bj (by
assumption we have that D(a) ⊆ D(b)). The mapping from those linear extensions in which
bj ≺ a ≺ bj+1 to those in which bj−1 ≺ a ≺ bj is obtained by swapping the positions of a and
bj . This mapping clearly is well defined and one-to-one.

Theorem 1 can be proved now: let r be defined by

r−1∑

j=1

qj ≤
1

2
<

r∑

j=1

qj

Since
∑r−1

j=1 qj = P(a ≺ br−1) ≤
1
2
, it follows that

∑r−1
j=1 qj <

1
3
. Similarly

∑r

j=1 qj = P(a ≺ br)

must be > 2
3
. Therefore qr >

1
3
, but this contradicts 1

3
> q1 ≥ qr.
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3 Proof of Theorem 2

Let P = (V,≤) be a finite ordered set which is not a chain. If P has a minimum element
p0, then p0 will be the minimum element in every linear extension of the poset. Therefore,
nothing will change if p0 is deleted from the ordered set. So we may assume without loss of
generality that P has at least two distinct minimal elements a and b.

Next we suppose that P is N -free. We start by stating some useful properties of N -free
ordered sets.

Lemma 2. Let P = (V,≤) be an N-free ordered set. If x, y ∈ V have a common upper

cover, then x and y have the same upper covers. Dually, if x, y ∈ V have a common lower

cover, then x and y have the same lower covers.

Proof. Trivial.

Let P = (V,≤) be an ordered set. An element m ∈ V is called minimal if for all x ∈ V
comparable to m we have x ≥ m. We denote by Min(P ) the set of all minimal elements of
P . We recall that the decomposition of P into levels is the sequence P0, · · · , Pl, · · · defined
by induction by the formula

Pl := Min(P − ∪{Pl′ : l
′ < l}).

In particular, P0 = Min(P ).

Lemma 3. Let P = (V,≤) be an N-free ordered set and let P0, · · · , Ph be the sequence of

its levels. Then for every x ∈ V , there exists i ≤ h such that all upper covers of x are in Pi.

Proof. If x has at most one upper cover, then the conclusion of the lemma holds. So we may
assume that x has at least two distinct upper covers x1 and x2 belonging to two distinct
levels. Let j < k such that x1 ∈ Pj and x2 ∈ Pk. Then x2 has a lower cover x3 ∈ Pk−1.
We claim that {x, x1, x2, x3} is an N in P contradicting our assumption that P is N -free.
Indeed, since x1 and x2 are upper covers of x we infer that they must be incomparable.
Moreover, x1 and x3 are incomparable because otherwise x1 < x3 < x2 (notice that x3 < x1

is not possible since j ≤ k − 1) which contradicts our assumption that x2 is an upper cover
of x. Similarly we have that x and x3 are incomparable proving our claim. The proof of the
lemma is now complete.

Corollary 1. Let P be an N-free ordered set and let P0, · · · , Ph be the sequence of its levels.

Let 0 ≤ i ≤ h such that i is the largest with the property that Pi contains two distinct

elements with the same set of lower covers. Then for every x ∈ Pi we have that U(x) ∪ {x}
is a chain. Hence, P has a good pair.

Proof. Let x ∈ Pi such that U(x) 6= ∅ and suppose that U(x) is not a chain. There is then an
element y ∈ U(x)∪{x} having at least two distinct upper covers, say y1, y2. From Lemma 3
we deduce that y1 and y2 are in the same level Pj with i < j. Because P is N -free it follows
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from Lemma 2 that y1 and y2 have the same set of lower covers. This contradicts our choice
of i.
Pick any two distinct elements a, b ∈ Pi. If U(a) and U(b) are chains, then both (a, b) and
(b, a) are good in P . Otherwise, one of U(a) and U(b) is empty, say U(a) = ∅, in which case
(a, b) is good in P .
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