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Abstract

Let f be a differentiable function on the real line, and let P ∈ GC
f =

all points not on the graph of f . We say that the illumination index of P ,

denoted by If (P ), is k if there are k distinct tangents to the graph of f

which pass through P . In section 2 we prove results about the illumination

index of f with f ′′(x) ≥ 0 on ℜ. In particular, suppose that y = L1(x) and

y = L2(x) are distinct oblique asymptotes of f and let P = (s, t) ∈ GC
f .

If max (L1(s), L2(s)) < t < f(s), then If (P ) = 2. If L1(s) 6= L2(s) and

min (L1(s), L2(s)) < t ≤ max (L1(s), L2(s)), then If (P ) = 1.

Finally, if t ≤ min (L1(s), L2(s)), then If (P ) = 0. We also show that

any point below the graph of a convex rational function or exponential
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polynomial must have illumination index equal to 2. In section 3 we also

prove results about the illumination index of polynomials.

2000 Mathematics Subject Classification: 26A06
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1 Introduction

Let f be a differentiable function on the real line, ℜ, and let P be any point

not on the graph of f . We say that the illumination index of P , denoted by

If (P ), equals the non–negative integer, k, if there are k distinct tangents to

the graph of f which pass through P . We allow the possibility that k = ∞.

In [1] we proved some results about If (P ) and also about illumination by odd

order Taylor Polynomials in general. In this paper we focus just on illumination

by tangent lines. In particular, in section 1 we prove several theorems about

If (P ) for functions with a non–negative second derivative on ℜ. An example

was given in [1] where f ′′(x) ≥ 0 on ℜ, but where there are points below the

graph of f whose illumination index equals 0. In this paper we strengthen these

results for functions, f , with f ′′(x) ≥ 0 on ℜ. First, we prove(Theorem 2.1)

that if f has oblique asymptotes L1and L2, then the illumination index equals 2

for any point below the graph of f , but above both L1 and L2. For points lying

between L1 and L2, the illumination index equals 1, while for any point below

both L1 and L2, the illumination index equals 0. Similar results(Theorem 2.2)

are proven when f has one oblique asymptote. In ([1]) we proved that if the

second derivative of f is bounded below by a positive number on the entire real
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line, and if P is any point below the graph of f , then the illumination index

of P equals 2. We strengthen this result in Theorem 2.3 by proving that if

lim
|x|→∞

(xf ′′(x)) 6= 0, then the illumination index of any point below the graph

of f equals 2. We also show(Propositions 2.1 and 2.2) that any point below

the graph of a convex rational function or exponential polynomial must have

illumination index equal to 2. Finally in section 3 we prove several results about

the illumination index for polynomials.

Notation 1 ℜ = real numbers. Given any function, y = f(x) defined on ℜ,

we let

Gf = (x, f(x)) : x ∈ ℜ,

the graph of f , and

GC
f = (x, y) : x ∈ ℜ, y 6= f(x),

all points in the xy plane not on the graph of f .

y = Tc(x) = f(c) + f ′(c)(x− c)

denotes the tangent line to f at (c, f(c)).

For s ∈ ℜ, we let

I1 = (−∞, s), I2 = (s,∞).

Definition 1.1 Let f be a differentiable function on the real line, and let P ∈

3



GC
f . We say that the illumination index of P , denoted by If (P ), equals the

non–negative integer k, if there are k distinct tangents to the graph of f which

pass through P .

Remark 1.1 In the definition above, one could allow for points, P ∈ Gf . How-

ever, we prefer to just define If (P ) for P ∈ GC
f . Also, if there are k distinct

tangents to the graph of f which pass through P, and if at least one of the tan-

gent lines is tangent to the graph of f at more than one point, we still count the

illumination index as k. One could, of course, define If (P ) so as to count the

number of points at which T is tangent to the graph of f .

Before stating and proving our main results, it is useful to define the following

function: If f is a differentiable function on ℜ and s ∈ ℜ, let

gs(c) = f(c) + (s− c)f ′(c) = Tc(s).

Then

Tc0(s) = t ⇐⇒ gs(c0) = t. (1.1)

That is, the tangent line at (c0, f(c0)) passes thru P = (s, t) if and only if

gs(c0) = t.

Remark 1.2 We find it convenient to use the notation gs(c) rather than Tc(s)

since we want to keep s fixed while allowing c to vary.
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2 Functions with Non–negative Second Deriva-

tive

In this section we prove some results about the illumination index for functions,

f , with f ′′(x) ≥ 0 on ℜ. We do not assume continuity of f ′′, but the existence

of f ′′ on ℜ implies that gs is differentiable on ℜ. First we need the following

result about multiple tangent lines, which is a tangent line which is tangent to

the graph of f at more than one point.

Lemma 2.1 If f ′′(x) ≥ 0 on ℜ and f is not linear on any subinterval of ℜ,

then f has no multiple tangent lines.

Proof. Suppose that f has a multiple tangent line, T , which is tangent at

(a, f(a)) and at (b, f(b)) for some a 6= b. Then
p(b)− p(a)

b− a
= p′(a) = p′(b).

Since f ′′(x) ≥ 0 on ℜ, p′(a) ≤ p′(x) ≤ p′(b) for any x ∈ [a, b]. Thus p′(x) is

constant on [a, b], which implies that f is linear on [a, b].

For functions, f , with f ′′(x) ≥ 0 on ℜ, part (i) of the following lemma shows

that gs has one local extremum, a local maximum when c = s. Part (ii) shows

that if ci < cj are any two roots of gs− t, then there are two possibilities: Either

the tangents to f at (ci, f (ci)) and at (cj , f (cj)) are distinct, or f is linear on

the closed interval [ci, cj ].

Lemma 2.2 (i) If f ′′(x) ≥ 0 on ℜ, then for any given s ∈ ℜ, gs(c) is non–

decreasing on I1 and non–increasing on I2.

(ii) For given t ∈ ℜ, there are two possibilities for the number of solutions
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of the equation gs(c) = t in Ij , j = 1, 2.

(A) gs(c) = t has at most one solution in Ij , or

(B) gs(c) = t for all c in some interval, I, contained in Ij. In that case

f(x) = mx+ b for all x ∈ I, which implies that Tc(x) = f(x) for

c, x ∈ I. In addition, gs(c) = f(s) if s ∈ I.

Proof. (i) Since g′s(c) = (s− c)f ′′(c), g′s(c) is

{

≥ 0, c < s

≤ 0, c > s

}

(ii) By part (i), gs(c) = t has at most one solution in Ij , or gs(c) = t

for all c in some interval, I, contained in Ij . If gs(c) is constant on I, then

g′s(c) = 0, c ∈ I, which implies that (s− c)f ′′(c) = 0, c ∈ I. Thus f ′′(x) = 0 for

x ∈ I, x 6= s, which implies that f is linear on I. That implies that Tc(x) = f(x)

for c, x ∈ I. If s ∈ I, then gs(c) = Tc(s) = f(s).

The following lemma was proved in [1] with the assumption that f ′′ is con-

tinuous, non–negative, and has finitely many zeros in ℜ. We have need for a

somewhat stronger version here.

Lemma 2.3 Suppose that f ′′(x) ≥ 0 on ℜ. Then at most two distinct tangent

lines to f can pass through any given point P in the plane.

Proof. The details follow exactly as in the proof of ([1], Lemma 2) using the

following facts: Suppose that T1 and T2 are distinct tangent lines which are

tangent to f at (c1, f (c1)) and (c2, f (c2)), respectively. Then T1 and T2 are not

parallel and if (u, v) = intersection point of T1 and T2, then c1 < u < c2. We

leave the rest of the details to the reader.
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Definition 2.1 A line with equation y = L(x) is said to be an oblique asymptote

of f if lim
x→−∞

(f(x)− L(x)) = 0 and/or lim
x→∞

(f(x) − L(x)) = 0.

Lemma 2.4 Suppose that f ′′(x) ≥ 0 on ℜ, and let s ∈ ℜ.

(i) If lim
x→∞

(f(x)− L(x)) = 0 for some linear function, L, then

lim
c→∞

gs(c) = L(s)

(ii) If lim
x→−∞

(f(x)− L(x)) = 0 for some linear function, L, then

lim
c→−∞

gs(c) = L(s)

Proof. We prove (i). Assume first that L = 0–that is, lim
x→∞

f(x) = 0. Choose

any h > 0 and partition [s,∞) into infinitely many subintervals, [xk−1, xk], of

constant width h. Since f is convex,

f(xk)− f(xk−1)

h
≤ f ′(xk) ≤

f(xk+1)− f(xk)

h
.

Since f(xk)− f(xk−1)→ 0 and f(xk+1)− f(xk)→ 0 as k →∞, f ′(xk)→ 0 as

k →∞ by the Squeeze Theorem. Since h is arbitrary, that proves that

lim
x→∞

f ′(x) = 0. (2.1)

Now
d

dc
(f(c)− cf ′(c)) = −cf ′′(c) ≤ 0 for c > 0, which implies that f(c) −

cf ′(c) is non–increasing for c > 0. Since f is convex and lim
x→∞

f(x) = 0, f must

be eventually positive and non–increasing, which implies that f ′(c) ≤ 0 for large

c. Thus f(c) − cf ′(c) is eventually positive and non–increasing, which implies

that f(c)− cf ′(c) is bounded and monotonic on [0,∞). Using the integral form
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of Taylor’s Remainder formula, we have f(s)− Tc(s) =

c
∫

s

(t− s)f ′′(t)dt, which

implies that

f(s)− gs(c) =

c
∫

s

(t− s)f ′′(t)dt. (2.2)

Let s = 0 and use integration by parts with u = t and dv = f ′′(t)dt to obtain
c
∫

0

tf ′′(t)dt = [tf ′(t)]
c

0−

c
∫

0

f ′(t)dt = cf ′(c)−f(c)+f(0). Since f(c)− cf ′(c)+

f(0) is bounded and monotonic on [0,∞), the improper integral

∞
∫

0

tf ′′(t)dt

converges. Let G(u) = L {tf ′′(t)} (u) =

∞
∫

0

e−uttf ′′(t)dt, where L denotes the

Laplace Transform. Then G(0) =

∞
∫

0

tf ′′(t)dt. Using well known formulas

for the Laplace Transform, with F (s) = L(f), L (tf ′′(t)) = −
d

du
L (f ′′(t)) =

−
d

du

(

u2L(f)− uf(0)− f ′(0)
)

= −u2F ′(s)−2uF (s)−f(0), which implies that

G(0) = f(0). Hence
∞
∫

0

tf ′′(t)dt = f(0). (2.3)

Since

c
∫

0

tf ′′(t)dt = f(0) − g0(c) by (2.2), lim
c→∞

(f(0)− g0(c)) = f(0) by (2.3),

which implies that lim
c→∞

g0(c) = 0. Now

lim
c→∞

gs(c) = s lim
c→∞

f ′(c) + lim
c→∞

(f(c)− cf ′(c)) = s(0) + lim
c→∞

g0(c) = 0.

That proves (i) when L(x) = 0. Now assume that lim
x→∞

(f(x) − L(x)) = 0 and

let w(x) = f(x) − L(x). Then lim
x→∞

w(x) = 0 and T̄c = Tc − L = tangent line

to w at (c, w(c)). By what we just proved, lim
c→∞

T̄c(s) = 0, which implies that
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lim
c→∞

(Tc(s)− L(s)) = 0.

We now prove some theorems about the illumination index of functions con-

vex on the real line. For any convex function, f , it is trivial that if P = (s, t)

lies above the graph of f , then If (P ) = 0. Thus we do not bother stating that

case in any of the theorems below.

Theorem 2.1 Suppose that f ′′(x) ≥ 0 on ℜ and that y = L1(x) and y = L2(x)

are distinct oblique asymptotes of f . Let P = (s, t) ∈ GC
f be given.

(i) If max (L1(s), L2(s)) < t < f(s), then If (P ) = 2.

(ii) If L1(s) 6= L2(s) and min (L1(s), L2(s)) < t ≤ max (L1(s), L2(s)), then

If (P ) = 1.

(iii) If t ≤ min (L1(s), L2(s)), then If (P ) = 0.

Proof. Without loss of generality we can assume that lim
x→−∞

(f(x)−L1(x)) = 0

and lim
x→∞

(f(x) − L2(x)) = 0. Then by Lemma 2.4, lim
c→−∞

gs(c) = L1(s) and

lim
c→∞

gs(c) = L2(s). We prove the theorem for the case when L1(s) ≤ L2(s), the

proof when L2(s) ≤ L1(s) being similar. Thus we have

lim
c→−∞

gs(c) = min (L1(s), L2(s)) = L1(s),

lim
c→∞

gs(c) = max (L1(s), L2(s)) = L2(s).

To prove (i): lim
c→−∞

gs(c) = L1(s) < t, gs(s) = f(s) > t, and lim
c→∞

gs(c) =

L2(s) < t. That implies that gs − t has at least two real roots, c1 ∈ I1 and

c2 ∈ I2, by the Intermediate Value Theorem. Note that gs(s) = f(s) 6= t, so

that c = s is not a root of gs − t. Either c1 is the only root of gs − t in I1, or
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gs(c) = t for all c in some interval, I, contained in I1 by Lemma 2.2(ii). In the

latter case, Tc(x) = f(x) for all c, x ∈ I, so that there is only one tangent line

for all c ∈ I. In either case, that yields one tangent line from I1 which passes

thru P . The same holds for I2 by Lemma 2.2(ii).Thus there are precisely two

distinct tangent lines to f which pass thru P , which implies that If (P ) = 2.

To prove (ii): It follows easily, as in the proof of Lemma 2.4, that L2(s) ≤

f(s), which implies that t < f(s) since (s, t) ∈ GC
f . Thus gs(s) 6= t, so again

c = s is not a root of gs−t. Note also that gs(c) 6= t for any c ∈ I2 since gs is non–

increasing on (s,∞), t ≤ L2(s), and lim
c→∞

gs(c) = L2(s). Since lim
c→−∞

gs(c) =

L1(s) < t and gs(s) = f(s) > t, gs − t has at least one real root, c0 ∈ I1.

Either c0 is the only root of gs − t in I1, or gs(c) = t for all c in some interval,

I, contained in I1 by Lemma 2.2(ii). In the latter case, Tc(x) = f(x) for all

c, x ∈ I, so that there is only one tangent line for all c ∈ I. In either case,

that yields one tangent line from I1 which passes thru P , which implies that

If (P ) = 1.

To prove (iii): If t < L1(s), then it follows easily that gs(c) = t has no

solution. If t = L1(s) and gs(c) = t, then gs(c) = t for all c ∈ I = (−∞, k)

for some k < s. Arguing as in the proof of Lemma 2.2(ii), it follows easily that

f(x) = L1(x) for all x ∈ I , which implies that gs(c) = f(s) and thus f(s) = t,

which contradicts the assumption that (s, t) ∈ GC
f . Hence If (P ) = 0.

Example 1 Let f(x) = x tan−1 x. Then f ′′(x) =
2

(1 + x2)
2 > 0 on ℜ, and

y = ±
π

2
x − 1are distinct oblique asymptotes of f . Thus Theorem 2.1 applies
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with L1(x) = −
π

2
x− 1and L2(x) =

π

2
x− 1.

min (L1(s), L2(s)) =















π

2
s− 1 if s < 0

−
π

2
s− 1 if s ≥ 0

max (L1(s), L2(s)) =















−
π

2
s− 1 if s < 0

π

2
s− 1 if s ≥ 0

Let P = (s, t). If s < 0 and −
π

2
s − 1 < t < s tan−1 s, or s ≥ 0 and

π

2
s− 1 < t < s tan−1 s, then If (P ) = 2.

If s < 0 and
π

2
s − 1 < t ≤ −

π

2
s − 1, or s > 0 and −

π

2
s− 1 < t ≤

π

2
s − 1,

then If (P ) = 1.

Finally, if s < 0 and t ≤
π

2
s−1, or s ≥ 0 and t ≤ −

π

2
s−1, then If (P ) = 0.

Before proving our next result, we need the following lemma.

Lemma 2.5 Suppose that f ′′(x) ≥ 0 for |x| > b, where b is a positive real

number. Let gs(c) = f(c) + (s− c)f ′(c) for given s ∈ ℜ.

(i) If lim
x→−∞

(xf ′′(x)) = A, where −∞ ≤ A < 0, then lim
c→−∞

gs(c) = −∞

(ii) If lim
x→∞

(xf ′′(x)) = A, where 0 < A ≤ ∞, then lim
c→∞

gs(c) = −∞

Remark 2.1 A weaker version of this lemma was given in ([1], Lemma 1)

where it was assumed that f ′′(x) ≥ m > 0 for |x| > b, where m and b are

positive real numbers.

Proof. We prove (ii), the proof of (i) being similar. Let {xk} ⊂ (b,∞) be

any sequence with xk → ∞. Suppose that lim
k→∞

f ′′ (xk) = m > 0. Then
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lim
k→∞

[(s− xk)f
′′ (xk)] = −∞ 6= 0. Second, suppose that lim

k→∞
f ′′ (xk) = 0.

Then lim
k→∞

[(s− xk)f
′′ (xk)] = − lim

k→∞
[xkf

′′ (xk)] 6= 0 by (ii). Hence lim
x→∞

[(s− x)f ′′(x)] 6=

0, which implies that lim
c→∞

g′s(c) = lim
c→∞

[(s− c)f ′′(c)] 6= 0. Since f ′′(x) ≥ 0 for

x > b, gs(c) is eventually decreasing. Since lim
c→∞

g′s(c) 6= 0, it follows that

lim
c→∞

gs(c) = −∞.

The following theorem is similar to Theorem 2.1 for the case when f has

only one oblique asymptote.

Theorem 2.2 Suppose that f ′′(x) ≥ 0 on ℜ and that one of the following two

conditions holds, where L is a linear function.

lim
x→−∞

(xf ′′(x)) = A, where −∞ ≤ A < 0 and lim
x→∞

(f(x) − L(x)) = 0,

or lim
x→−∞

(f(x) − L(x)) = 0 and lim
x→∞

(xf ′′(x)) = A, where 0 < A ≤ ∞. Let

P = (s, t) ∈ GC
f be given.

(i) If L(s) < t < f(s), then If (P ) = 2

(ii) If t ≤ L(s), then If (P ) = 1

Proof. We prove the case when lim
x→−∞

(xf ′′(x)) = A, −∞ ≤ A < 0 and

lim
x→∞

(f(x)−L(x)) = 0, the proof of the other case being similar. By Lemma 2.5,

lim
c→−∞

gs(c) = −∞, and by Lemma 2.4, lim
c→∞

gs(c) = L(s). If L(s) < t < f(s),

then lim
c→−∞

gs(c) < t, gs(s) = f(s) > t, and lim
c→∞

gs(c) < t. That implies that

gs− t has at least two real roots, c1 ∈ I1 and c2 ∈ I2, by the Intermediate Value

Theorem. Arguing exactly as in the proof of Theorem 2.1, part (i), it follows

that exactly two tangent lines pass thru P , which implies that If (P ) = 2. That

proves (i). It follows easily, as in the proof of Lemma 2.4, that L(s) ≤ f(s). If
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t ≤ L(s), then lim
c→−∞

gs(c) < t and gs(s) = f(s) > t implies that gs − t has at

least one real root, c0 ∈ I1. Arguing exactly as in the proof of Theorem 2.1,

part (ii), it follows that If (P ) = 1.

Remark 2.2 It is possible to prove Theorem 2.2 with slightly weaker hypotheses.

However, we believe, but have not been able to prove, that the conclusion of

Theorem 2.2 holds with only the assumption that f has one oblique asymptote.

Example 2 Let f(x) = ex. Then lim
x→−∞

f(x) = 0 and lim
x→∞

(xf ′′(x)) 6= 0, so

that Theorem 2.2 applies with L(x) = 0. Hence,if P = (s, t) with 0 < t < es,

then If (P ) = 2. If P = (s, t) with t ≤ 0, then If (P ) = 1.

Theorem 2.3 Suppose that f ′′(x) ≥ 0 on ℜ and that lim
x→−∞

(xf ′′(x)) = A,

where −∞ ≤ A < 0 and lim
x→∞

(xf ′′(x)) = A, where 0 < A ≤ ∞. Then

If (P ) = 2 for any point P = (s, t) below the graph of f .

Proof. The proof follows from Lemma 2.5 as in the proof of Theorem 2.2 and

we omit the details.

We now apply Theorem 2.3 to show that any point below the graph

of a convex rational function or exponential polynomial must have illumination

index equal to 2.

Proposition 2.1 Let R be a rational function defined on ℜ with R′′ ≥ 0 on

ℜ. Then IR(P ) = 2 for any point P below the graph of R.

Proof. Write R(x) =
p(x)

q(x)
, where p and q are polynomials of degree m and n

respectively. If n ≥ m, then R has a horizontal asymptote and thus R′′ cannot
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be non–negative on ℜ. Thus we have n < m. If m = n + 1, then R has one

oblique asymptote, L, which implies that lim
x→±∞

(R(x)−L(x)) = 0 and again R′′

would not be non–negative on ℜ. Thus m− n− 1 6= 0. Also, since R is defined

on ℜ, n must be even. Let p(x) =
m
∑

k=0

akx
k, q(x) =

n
∑

k=0

bkx
k, am 6= 0 6= bn.

Then R′ =
qp′ − pq′

q2
⇒

R′′ =
q2p′′ − pqq′′ − 2p′q′q + 2p (q′)

2

q3
, which implies that

(

n
∑

k=0

bkx
k

)3

R′′(x) =

(

n
∑

k=0

bkx
k

)2 ( m
∑

k=2

k(k − 1)akx
k−2

)

−

(

m
∑

k=0

akx
k

)(

n
∑

k=0

bkx
k

)(

n
∑

k=2

k(k − 1)bkx
k−2

)

−2

(

m
∑

k=1

kakx
k−1

)(

n
∑

k=1

kbkx
k−1

)(

n
∑

k=0

bkx
k

)

+2

(

m
∑

k=0

akx
k

)(

n
∑

k=1

kbkx
k−1

)2

=

(m− n) (m− n− 1)amb2nx
2n+m−2 + · · · .

If 2n + m − 2 ≤ 3n, then m ≤ n + 2, which implies that m = n + 2

since m > n and m 6= n + 1. If 2n + m − 2 > 3n, then 2n + m − 2 − 3n =

m − n − 2 must be even since R′′ ≥ 0 as |x| → ∞. In either case, m is also

even. Since m > n and m is even, it follows that m − n − 1 > 0. Since

R′′ ≥ 0 as |x| → ∞, (m− n) (m− n− 1)
am

bn
> 0. Thus lim

x→−∞
[xR′′(x)] =

lim
x→−∞

(m− n) (m− n− 1) amb2nx
2n+m−1 + · · ·

b3nx
3n + · · ·

=

lim
x→−∞

(m− n) (m− n− 1)am
bn

xm−n−1 = −∞ and
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lim
x→∞

[xR′′(x)] = lim
x→∞

(m− n) (m− n− 1)am
bn

xm−n−1 = ∞. By Theorem

2.3, IR(P ) = 2 for any point P below the graph of R.

Proposition 2.2 Suppose that p and q are polynomials of degree m and n re-

spectively, and let f(x) = p(x)eq(x). Suppose that f ′′ ≥ 0 on ℜ. Then If (P ) = 2

for any point P below the graph of f .

Proof. Let p(x) =
m
∑

k=0

akx
k, q(x) =

n
∑

k=0

bkx
k, am 6= 0 6= bn. Now we must have

bn > 0 since if bn < 0, then lim
|x|→∞

f(x) = 0. That would imply that f ′′ � 0 on

ℜ. A simple computation gives

f ′′ = (p (q′)
2
+ 2p′q′ + pq′′ + p′′)eq

and

p (q′)
2
+ 2p′q′ + pq′′ + p′′ =

(

m
∑

k=0

akx
k

)(

n
∑

k=1

kbkx
k−1

)2

+ 2

(

m
∑

k=1

kakx
k−1

)(

n
∑

k=1

kbkx
k−1

)

+

(

m
∑

k=0

akx
k

)(

n
∑

k=2

k(k − 1)bkx
k−2

)

+

(

m
∑

k=2

k(k − 1)akx
k−2

)

=

n2amb2nx
2n+m−2 + · · ·+ 2mnambnx

n+m−2 + · · ·+

n(n− 1)ambnx
n+m−2 + · · ·+m(m− 1)amxm−2 + · · ·

f ′′ ≥ 0 on ℜ implies that p (q′)2 + 2p′q′ + pq′′ + p′′ ≥ 0 on ℜ ⇒ 2n +

m − 2 is even and am > 0. Thus 2n + m − 1 is odd and lim
x→−∞

[xf ′′(x)] =

15



n2amb2n lim
x→−∞

x2n+m−1 = −∞. Similarly, lim
x→∞

[xf ′′(x)] = ∞. By Theorem

2.3, If (P ) = 2 for any point P below the graph of f .

3 Polynomials

We now prove some results about the illumination index for polynomials with

real coefficients. As earlier, for given differentiable f , we let gs(c) = f(c) + (s−

c)f ′(c). We also let πn = polynomials of degree ≤ n.

Remark 3.1 If one or more of the tangent lines which pass thru P is a multiple

tangent line, then the illumination index of P = (s, t) could be strictly smaller

than the number of real roots of gs(c)−t. This will need to be taken into account

for some of the proofs below.

The following lemma holds for more than just the polynomials, but we just

consider that case in this section.

Lemma 3.1 Let f be a polynomial and let s ∈ ℜ be given. Then the local

extrema of gs(c) occur at precisely the following values of c.

(i) c = s if (s, f(s)) is not an inflection point of f

(ii) c = d 6= s if (d, f(d)) is an inflection point of f

Proof. It is easy to show that

g(k)s (c) = (s− c)f (k+1)(c)− (k − 1)f (k)(c), k ≥ 1.

16



To prove (i): First, suppose that f ′′(s) 6= 0. Then gs(s) is a local extremum

of gs(c) since then g′s(s) = 0 and g′′s (s) = −f ′′(s) 6= 0. Now suppose that

f (k)(s) = 0 for k = 2, ...,m − 1 and f (m)(s) 6= 0,m ≥ 3. Then m is even since

(s, f(s)) is not an inflection point of f . g
(k)
s (s) = −(k− 1)f (k)(s), which implies

that g
(k)
s (s) = 0 for k = 2, ...,m − 1 and g

(m)
s (s) 6= 0. Hence gs(s) is a local

extremum of gs(c) since m is even. That proves (i).

To prove (ii): Suppose that (d, f(d)) is an inflection point of f, d 6= s. Sup-

pose that f (k)(d) = 0 for k = 2, ...,m−1 and f (m)(d) 6= 0, m ≥ 3. Thenm is odd

since (d, f(d)) is an inflection point of f . Since g
(k)
s (d) = 0 for k = 1, ...,m− 2

and g
(m−1)
s (d) = (s− d)f (m)(d)− (k − 1)f (m−1)(d) = (s− d)f (m)(d) 6= 0, gs(d)

is a local extremum of gs(c) since m− 1 is even. That proves (ii).

Suppose that f(x) =
n
∑

k=0

akx
k. Then a simple computation yields

gs(c)−t = −(n−1)anc
n+

n−1
∑

k=1

[s(k + 1)ak+1 − (k − 1)ak] c
k+a0+sa1−t, n ≥ 2.

(3.1)

Remark 3.2 By (3.1) it follows immediately that if n ≥ 3 is odd, then If (P ) ≥

1 for any P ∈ GC
f .

Lemma 3.2 Let f(x) =
n
∑

k=0

akx
k, an 6= 0 and let s ∈ ℜ.

(i) If n ≥ 3 and odd, then

lim
c→−∞

gs(c) = [sgn(an)]∞ and lim
c→∞

gs(c) = [−sgn(an)]∞

(ii) If n is even, then

lim
c→−∞

gs(c) = [−sgn(an)]∞ and lim
c→∞

gs(c) = [−sgn(an)]∞

17



Proof. The proof follows immediately from (3.1).

Our first theorem in this section is about cubic polynomials. We shall prove

some more results below for the case when n is odd.

Theorem 3.1 Let f be a cubic polynomial. Then for any k = 1, 2, 3 there exists

P ∈ GC
f such that If (P ) = k.

Proof. Suppose, without loss of generality, that f(x) =
3
∑

k=0

akx
k with a3 > 0.

Then f has exactly one inflection point, (d, f(d)). Choose any s 6= d. Then

gs(c) has two exactly local extrema, gs(c1) and gs(c2), by Lemma 3.1, part (ii).

Since lim
c→−∞

gs(c) = ∞ and lim
c→∞

gs(c) = −∞ by Lemma 3.2, we may assume

that gs(c1) equals the local maximum and gs(c2) equals the local minimum,

with c1 < c2. If t < g(c2) or t > g(c1), then the horizontal line y = t intersects

the graph of gs in one point, which implies that If (P ) = 1. If g(c2) < t <

g(c1), then the horizontal line y = t intersects the graph of gs in three points,

(di, gs (di)) , i = 1, 2, or 3. Then If (P ) = 3 since a cubic polynomial cannot have

any multiple tangent lines. Finally, the horizontal lines y = g(c1) and y = g(c2)

intersect the graph of gs in two points, which yields a point, P = (s, t), such that

If (P ) = 2. One could also use the fact that gd(c) has one local extremum(by

Lemma 3.1, part (i)) to obtain a point, P = (s, t), such that If (P ) = 2.

The following example shows that Theorem 3.1 does not hold in general for

n odd, n ≥ 5.

Example 3 Let f(x) = xn, n ≥ 5 and odd. Then for any s ∈ ℜ, gs(c)−t = cn+

(s−c)ncn−1−t = −(n−1)cn+nscn−1−t and gs(−c)−t = (n−1)cn+nscn−1−t.

18



We consider the following six cases.

Case 1: s, t > 0. Then gs(c) − t has 2 sign changes and gs(−c) − t has 1

sign change, which implies that gs(c)− t has at most 3 distinct real roots.

Case 2: s > 0, t < 0. Then gs(c)− t has 1 sign change and gs(−c)− t has 0

sign changes, which implies that gs(c)− t has at most 1 real root.

Case 3: s < 0, t > 0. Then gs(c) − t has 0 sign changes and gs(−c)− t has

1 sign change, which implies that gs(c)− t has at most 1 real root.

Case 4: s, t < 0. Then gs(c)− t has 1 sign change and gs(−c)− t has 2 sign

changes, which implies that gs(c)− t has at most 3 distinct real roots.

Case 5: s = 0. Then gs(c)− t = −(n− 1)cn − t, which has 1 real root.

Case 6: t = 0. Then gs(c)−t = −(n−1)c
n+nscn−1 = cn−1 [−(n− 1)c+ ns]

has 2 distinct real roots.

Hence for any point P ∈ GC
f , If (P ) ≤ 3

The example above shows that there are odd polynomials of any degree such

that If (P ) ≤ 3 for all P ∈ GC
f . Our next result is a positive result about the

illumination index of all odd polynomials.

Theorem 3.2 Suppose that f is a polynomial of degree n ≥ 5, n odd. Then

there exists P ∈ GC
f such that If (P ) = 3.

Proof. Since n is odd, f ′′ must have at least one real root where it changes sign.

Hence f has at least one inflection point, (d, f(d)). Choose any s 6= d. Arguing

as in the proof of Theorem 3.1 above,gs(c) has two exactly local extrema, gs(c1)

and gs(c2), by Lemma 3.1, part (ii), and we may assume that gs(c1) equals the
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local maximum and gs(c2) equals the local minimum, with c1 < c2. However, it

is possible that f has multiple tangent lines. Suppose that for each t, g(c2) < t <

g(c1), y = t intersects the graph of gs in the three distinct points (di, gs (di)),

i = 1, 2, 3, and the tangent lines at (di, gs (di)) and at (dj , gs (dj)) are identical

for some i 6= j. Then f would have infinitely many multiple tangent lines since

the (di, gs (di)) change with t. But a polynomial can only have finitely many

multiple tangent lines(that is not difficult to prove), and thus we can choose

t, g(c2) < t < g(c1), such that (di, gs (di)) yield three distinct tangent lines to

f , which yields If (P ) = 3.

Theorem 3.3 Suppose that f is a polynomial of degree n ≥ 2, n even. Then

there exist points P1, P2 ∈ GC
f such that If (P1) = 0 and If (P1) = 2.

Proof. Since n is even, for any s ∈ ℜ, lim
c→−∞

gs(c) = −∞ and lim
c→∞

gs(c) = −∞,

or lim
c→−∞

gs(c) = ∞ and lim
c→∞

gs(c) = ∞ by Lemma 3.2. Thus there must be

values of t such that the horizontal line y = t does not intersect the graph of

gs, which implies that If (P ) = 0 for P = (s, t). Now suppose that f ′′ ≥ 0

on ℜ. Then If (P ) = 2 for any point P below the graph of f by Proposition

2.1. If f ′′ � 0 on ℜ, then f has at least one inflection point, (d, f(d)), which

implies that gs has at least one local extremum. Again, since lim
c→−∞

gs(c) = −∞

and lim
c→∞

gs(c) = −∞, or lim
c→−∞

gs(c) = ∞ and lim
c→∞

gs(c) = ∞, there must be

values of t such that the horizontal line y = t intersects the graph of gs in

precisely two points,(di, gs (di)), i = 1, 2. In addition, one can choose t so that

the tangent lines to the graph of f at (di, f (di)), i = 1, 2 are distinct, which

yields If (P ) = 2.
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4 Theta Illumination Index

Let θ be a given angle with 0 ≤ θ ≤
π

2
. We call Lθ a theta line at P if Lθ

makes an angle, θ, with the graph of f at P . Here the angle between two lines

in a plane is defined to be 0, if the lines are parallel, or the smaller angle having

as sides the half-lines starting from the intersection point of the lines and lying

on those two lines, if the lines are not parallel.

Definition 4.1 Let f(x) be a differentiable function on the real line and let

P ∈ GC
f . Let θ be a given angle with 0 ≤ θ ≤

π

2
. We say that the θ illumination

index of P , denoted by If,θ(P ), is k if there are k distinct theta lines to the

graph of f which pass through P . In particular, we use If,N (P ) to denote the

π

2
illumination index of P . In that case, of course, Lθ is a normal line to the

graph of f .

Unlike the case with illumination by tangent lines, where it is clearly possible

that no tangent line passes thru a given point P ∈ GC
f , this cannot happen with

normal lines.

Theorem 4.1 For any differentiable f defined on ℜ and any point P ∈ GC
f ,

If,N (P ) ≥ 1

Proof. Given P = (s, t), let S = set of circles centered at P which also intersect

Gf , and let C0 be the circle in S with the smallest radius. Then C0 is tangent

to Gf at some point (c0, f(c0)). The line
←−−−−−−−−−→
(s, t) (c0, f(c0)) is then a normal line

passing thru P .
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Remark 4.1 Alternatively, one could also look at the distance from P to Gf–

the minimal distance is obtained at (c0, f(c0)) with
←−−−−−−−→
P (c0, f(c0)) perpendicular

to the tangent at (c0, f(c0)).

We believe that Theorem 4.1 holds for theta lines in general, but have not

been able to prove it.

Conjecture 1 For any differentiable f defined on ℜ, any given 0 ≤ θ ≤
π

2
,

and any point P ∈ GC
f , If,θ(P ) ≥ 1.
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