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Abstract

The relativistic Fokker-Planck equation, in which the speed of light c appears as a parameter, is considered. It
is shown that in the limit c → ∞ its solutions converge in L1 to solutions of the non-relativistic Fokker-Planck
equation, uniformly in compact intervals of time. Moreover in the case of spatially homogeneous solutions,
and provided the temperature of the thermal bath is sufficiently small, exponential trend to equilibrium in
L1 is established. The dependence of the rate of convergence on the speed of light is estimated. Finally, it
is proved that exponential convergence to equilibrium for all temperatures holds in a weighted L2 norm.
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1. Introduction

The Fokker-Planck equation is a widely used model to describe the dynamics of particles undergoing
diffusion and friction in a surrounding fluid in thermal equilibrium [12]. For non-relativistic particles with
mass m > 0, and in suitable physical units, the Fokker-Planck equation is given by

∂tf + p · ∇xf = ∆pf +
θ

m
∇p · (pf), θ =

1

kT
. (1)

Here f = f(t, x, p) ≥ 0 is the one-particle distribution function in phase space; the independent variables
are the time t ≥ 0, the position x ∈ R

3 and the momentum p ∈ R
3 of the particles. In the definition

of the dimensional constant θ, T is the temperature of the thermal bath and k is Boltzmann’s constant.
The equilibrium state of (1) is given by the Maxwellian distribution, M = exp(−θ|p|2/(2m)), up to a
multiplicative constant that is fixed by the total mass of the system (which is a conserved quantity).

In this paper we consider a relativistic generalization of (1) first introduced in [8] by stochastic calculus
methods and re-discovered later in [1] by a different argument (see [9] for a review on the relativistic theory
of diffusion, as well as the recent paper [11]). In the same physical units used to write (1), the relativistic
Fokker-Planck equation is given by

∂tf +mc
p

p0
· ∇xf = ∂pi

[
Dij∂pjf +

θ

m
pif

]
, (2)

where

Dij =
mc

p0

(
δij +

pipj

m2c2

)
, p0 =

√
m2c2 + |p|2,

with m denoting the rest mass of the particles and c the speed of light. The equilibrium state of (2) is given

by the Jüttner distribution J = e−θcp0

, again up to a multiplicative constant.
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The purpose of this paper is twofold. First we prove that (1) is indeed the correct Newtonian limit of (2);
in particular we show that, as c → ∞, solutions of (2) converge in L1 to solutions of (1). This provides
a further justification of (2) as a meaningful relativistic generalization of (1). Our second goal is to study
the trend to equilibrium for solutions of the relativistic Fokker-Planck equation. The latter problem has
already been considered in [6], where it was shown that solutions of (2) confined in a torus (i.e., x ∈ T

3)
converge exponentially fast in time in the L1 norm to the Jüttner equilibrium, provided the temperature of the

thermal bath is sufficiently small. In this paper we study the trend to equilibrium for spatially homogeneous
solutions of (2). The assumption of spatial homogeneity allows us to derive more accurate estimates on
the convergence rate. Moreover it will be shown that, at least within the class of spatially homogeneous
solutions, the small temperature assumption made in [6] can be (partially) dispensed of. However in order
to achieve this we have to leave the natural L1 framework and prove exponential convergence in a weighted
L2 norm.

The Newtonian limit problem is studied in Section 2; the analysis of the trend to equilibrium is carried
out in Section 3.

2. Newtonian limit

The main purpose of this section is to prove the following theorem.

Theorem 1. Let 0 < f, fc ∈ C1((0,∞) × R
6) be solutions of, respectively, eq. (1) and eq. (2) with initial

data 0 ≤ f in, f in
c . Assume that f in

c (x, p) = 0, for |x| > R(c), and R(c) growing at most linearly as c → ∞.

Assume in addition that

Γω,γ [fin] :=

∫

R6

[
(1 + |p|ω)|∇xf

in
c |2 + (1 + |p|γ)|∇pf

in
c |2
]
dp dx < ∞, (3)

for γ > 7 and ω > 9. Then ‖f in
c − f in‖L1 → 0 ⇒ ‖fc(t) − f(t)‖L1 → 0, as c → ∞, uniformly on compact

intervals of time.

Throughout the paper we work with smooth solutions of (1) and (2) to avoid technical difficulties.
Moreover the compact support assumption on f in

c in the x variable can be removed by adding suitable
powers of |x| inside the integral (3) (which would also allow to treat the general dimension case). We prefer
to sacrifice the generality of the assumptions for the benefit of a shorter and less technical proof.

Remark about the notation: In the following, A . B means that there exists a non-decreasing
function of time (possibly a constant) C(t), independent of c > 1, such that A ≤ C(t)B. Since we are only
interested in the limiting behavior as c → ∞, the assumption c > 1 is not a restriction.

Before proving Theorem 1, we show that the solution of the relativistic Fokker-Planck equation inherits
the bound (3) on the initial data.

Lemma 2. If (3) holds, then Γω,γ [f ] < ∞, for all γ, ω ≥ 0 and t > 0.

Proof. Let u = ∇xf . We compute

∂t

∫

R6

|p|ω|u|2dp dx =− 2

∫

R6

|p|ωDij∂piu · ∂pju dp dx+ β(3 − γ)

∫

R6

|p|ω|u|2dp dx

+ γ

∫

R6

∂pj (|p|ω−2piD
ij)|u|2dp dx.

Since piD
ij = (mc)−1pjp0, we have ∂pj (|p|ω−2piD

ij) . 1 + |p|ω. Therefore

∂t

∫

R6

|p|ω|u|2dp dx .

∫

R6

(1 + |p|ω)|u|2dp dx.

The bound on the integral of |p|ω|u|2 follows. The estimation for the integral of |p|γ |∇pf |2 is similar,
although the calculations are more involved. We omit the details.
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Proof of Theorem 1. The difference δf = (f − fc) is a smooth solution of

∂tδf + p · ∇xδf − θ

m
∇p · (pδf)−∆pδf = gc , (4)

where

gc = ∆pfc − ∂pi

(
Dij∂pjfc

)
+

[
mc

p0
− 1

]
p · ∇xfc.

We can write down the solution of (4) using the fundamental solution of the operator in the left hand side:

δf(t, x, p) =

∫

R6

F(t, x, p, y, w)δf(0, y, w) dw dy +

∫ t

0

∫

R6

F(t− s, x, p, y, w)gc(s, y, w) dw dy ds,

where F is given for instance on [10, Eq. (2.5)]. The proof of the properties of F that we use below can also
be found in [10]. In the second term we integrate by parts once in the variable w and obtain

δf =

∫

R6

F(t, x, p, y, w)δf(0, y, w) dw dy −
∫ t

0

∫

R6

∇wF(t− s, x, p, y, w) ·X(fc)(s, y, w) dw dy ds

+

∫ t

0

∫

R6

F(t− s, x, p, y, w)
[mc

w0
− 1
]
w · ∇yfc(s, y, w) dw dy ds, (5)

where X is the vector field X i = ∂wi
−Dij∂wj

. It is easy to show that

|X(fc)| . c−2|w|2|∇wfc|,
∣∣∣mc

w0
− 1
∣∣∣ . |w|2

c2
.

Using this in (5) we obtain

‖δfc(t)‖L1 .

∫

R6

(∫

R6

F(t, x, p, y, w) dp dx

)
|δf(0, w)| dw dy

+
1

c2

∫ t

0

∫

R6

|w|3|∇yfc|
(∫

R6

F(t− s, x, p, y, w) dp dx

)
dw dy ds

+
1

c2

∫ t

0

∫

R6

|w|2|∇wfc|
(∫

R6

|∇wF|(t− s, x, p, y, w) dp dx

)
dw dy ds.

Estimating the integrals in the variables (x, p) we obtain

‖δf(t)‖L1 . ‖δf(0)‖L1 +
1

c2

∫ t

0

∫

R6

|w|3|∇yfc| dw dy ds+
1

c2

∫ t

0

1√
t− s

∫

R6

|w|2|∇wfc| dw dy ds. (6)

By the finite propagation speed property of the relativistic Fokker-Planck equation proved in [1], and the
assumption that f in

c = 0 for |x| > R, the solution of (2) satisfies fc = 0 for |x| ≥ R+ ct. Whence
∫

R6

|w|2|∇wfc| dw dy ≤
∫

|x|.c

∫

|w|<1

|∇wfc| dw dy +

∫

|x|.c

∫

|w|≥1

|w|2|∇wfc| dw dy

. c3/2



(∫

R6

|∇wfc|2dw dy

)1/2

+

(∫

|w|≥1

|w|4−γdw

)1/2(∫

R6

|w|γ |∇wfc|2dw dy

)1/2



and for γ > 7 the integral in the left hand side is O(c3/2). By exactly the same argument

∫

R6

|w|3|∇yfc| dw dy . c3/2



(∫

R6

|∇yfc|2dw dy

)1/2

+

(∫

|w|≥1

|w|6−ωdw

)1/2 (∫

R6

|w|ω |∇yfc|2dw dy

)1/2



and for ω > 9 the integral in the left hand side is O(c3/2). Using these estimates in (6) we get

‖δf(t)‖L1 . ‖δf(0)‖L1 +O(1/
√
c)

and the theorem follows.
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3. Trend to equilibrium

In this section we restrict to spatially homogeneous solutions of (2). Moreover for the analysis of the
trend to equilibrium it is more convenient to rewrite the relativistic Fokker-Planck equation in terms of
h = f/J. We obtain

∂th = ∂pi

[
mc

p0

(
δij +

pipj

m2c2

)
∂pjh

]
− θ

m
p · ∇ph, or equivalently, ∂th = ∆(g)

p h+Wh, (7)

where the Riemannian metric g and the vector field W are given by

gij =
1

mc

(
p0δij −

pipj
p0

)
, Wh = W i∂pih, W i = − 1

m

(
θ +

1

2p0c

)
pi (8)

and ∆
(g)
p denotes the Laplace-Beltrami operator of the metric g. Note that Wi = gijW

j = ∂pi log u, where
u denotes the function

u =
e−θcp0

√
det g

=

√
mc

p0
e−θcp0

. (9)

Let

dµθ = Z−1e−θcp0

dp, Z =

∫

R3

e−θcp0

dp, (10)

so that dµθ is a probability measure. The reason to emphasize the dependence of the measure µ on the
parameter θ will become clear soon. In the following we denote by h a solution of (7) normalized to a
probability density measure:

‖h‖L1(dµθ) =

∫

R3

h dµθ = 1.

This normalization can always be achieved by rescaling the solution. The entropy functional and the entropy
dissipation functional are defined by

D[h] =

∫

R3

h logh dµθ, I[h] =

∫

R3

g(∂ph, ∂p log h) dµθ,

and the following entropy identity holds:

d

dt
D[h](t) = −I[h](t). (11)

A solution of (7) is said to converge to equilibrium in the entropic sense if D[h] → 0 = D[1] as t → ∞, and
with exponential rate if D[h] = O(e−λt), as t → ∞, for some λ > 0. A sufficient condition for exponential
decay of the entropy is the validity of the following logarithmic Sobolev inequality:

∫

R3

h log h dµθ ≤ α

∫

R3

g(∂ph, ∂p log h) dµθ, for some α > 0 (12)

and for all sufficiently smooth probability densities measure h (not necessarily solutions of (7)). In fact
using (12) in (11) we obtain

d

dt
D[h] ≤ − 1

α
D[h] ⇒ D[h] . exp(−t/α).

The Ciszár-Kullback inequality, ‖h − 1‖L1(dµθ) ≤
√
2D, see [7], implies that h converges to equilibrium in

L1(dµθ) with exponential rate (2α)−1, or equivalently, the solution of (7) satisfies

‖f(t)− JM‖L1(dp) . e−t/(2α), (13)

where JM denotes the Jüttner equilibrium with mass M = ‖f‖L1(dx). Clearly, (13) provides the most natural
notion of convergence to equilibrium for solutions to the relativistic Fokker-Planck equation.

Thus the question of exponential trend to equilibrium in L1 has been reduced to prove that (12) holds.
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Theorem 3. The logarithmic Sobolev inequality (12) holds for θ > θ0 = 7
2mc2 , for a constant α given by

1

2α
=





P(mc) = 2θmc2−7
2mc2 , if θ0 < θ ≤ 4

mc2 ,

P
(

2
13θmc2 + mc

13

√
4θ2m2c4 − 39

)
, if θ > 4

mc2 ,

where P(x) is the rational function

P(x) =
2θcx3 − 13x2 + 2θm2c3x−m2c2

4mcx3
.

Proof. The proof is carried out by using the Bakry-Emery curvature bound condition [3, 4] which states

that (12) holds provided the tensor R̃ic = Ric−∇2
p log u — called the Bakry-Emery-Ricci tensor — satisfies

R̃ic ≥ 1
2αg. In the definition of R̃ic, Ric is the Ricci tensor of g, while u is the function (9). In our case the

Bakry-Emery-Ricci tensor reads

R̃icij = − 1

4(p0)2
(1 + 4cθ(p0))δij +

6θc(p0)3 − 12(p0)2 + 2θm2c3p0 −m2c2

4mc(p0)3
gij .

Now we use

g(X,X) =
p0

mc

(
|X |2 − (p ·X)2

(p0)2

)
≥ mc

p0
|X |2, for all X ∈ R

3

and so

R̃ic(X,X) ≥
[

1

4mc(p0)3
(
2θc(p0)3 − 13(p0)2 + 2θm2c3p0 −m2c2

)]
g(X,X).

The function on square brackets is P(p0). It is easy to show that min{P(p0), p0 ≥ mc} is strictly positive if
and only if θ > θ0. The value of (2α)−1 is obtained by looking for the minimum of P on [mc,∞).

The condition θ > θ0 means that the previous result holds only for small temperatures of the thermal
bath, since θ ∼ T−1. To prove exponential decay of the entropy for all temperatures one needs to find a
substitute for the Bakry-Emery curvature bound condition used in the proof of Theorem 3. Although there
are several criteria in the literature for the validity of logarithmic Sobolev inequalities, we were unable to find
one that applies in our situation. Thus we proceed by a different approach. Since the following argument is
independent of the dimension, we consider (7) with p ∈ R

N . Let us consider, instead of the entropy D[h],
the new functional L[h] = ‖h‖2L2(dµθ)

. Computing the time derivative of L[h− 1] we obtain

d

dt
L[h− 1](t) = −2

∫

RN

g(∂ph, ∂ph) dµθ.

Thus L[h− 1] decays exponentially, i.e., h → 1 in L2(dµθ) exponentially fast, if we show that the following
Poincaré inequality ∫

RN

(h− 1)2dµθ ≤ λ

∫

RN

g(∂ph, ∂ph) dµθ, for some λ > 0, (14)

holds for all sufficiently smooth probability densities measure h. The validity of the Poincaré inequality (14)
is equivalent to the existence of a spectral gap for the operator in the right hand side of (7), which will now
be established by applying a criterion due to Wang, see [13]. To adhere with the notation in [13], let us
rewrite (7) in the form

∂th = aij∂pi∂pjh+ bj∂pjh, t > 0, p ∈ R
N , (15)

where

aij =
mc√

m2c2 + |p|2

(
δij +

pipj

m2c2

)
, bj =

(
Npj

mc
√
m2c2 + |p|2

− θ

m
pj

)
.
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For r > 0 define

γ(r) = sup
|p|=r

r[Tr(a(p)) + p · b(p)]
aijpipj

− 1

r
, C(r) =

∫ r

1

γ(s)ds, α(r) = inf
|p|=r

aijpipj
r2

.

Then by [13, Th.3.1], the spectral gap for the operator in the right hand side of (15) is strictly positive
provided there exists a function y ∈ C([1,∞)) such that supt≥1 Gy(t) < ∞, where

Gy(t) =
1

y(t)

∫ t

1

e−C(r)

∫ ∞

r

eC(s) y(s)

α(s)
ds dr.

Theorem 4. The Poincaré inequality (14) holds for all θ > 0.

Proof. For eq. (15) the function G(t) is given by

Gy(t) =
mc

y(t)

∫ t

1

eθc
√
m2c2+r2

rN−1
√
m2c2 + r2

∫ ∞

r

e−θc
√
m2c2+s2sN−1y(s) ds dr.

Let β < θc and pick y(t) = eβt

tN−1 . After straightforward estimates we obtain

Gy(t) ≤
mc

θc− β
eθc(

√
m2c2+1−1) t

N−1

eβt

∫ t

1

eβr

rN
dr

︸ ︷︷ ︸
F (t)

.

Since limt→∞ F (t) = 0, the result by Wang applies and the theorem is proved.

Note: While this paper was being written, we have been informed by J. Angst that he was also able to
prove the Poincaré inequality (14) and therefore the exponential convergence to equilibrium in L2(dµθ) for
solutions of (7). The proof by Angst [2] employs a criterion for the existence of a spectral gap to elliptic
operators established in [5].
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