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1 Introduction

Roth’s theorem says that a subset of N of a positive density contains an arithmetic
progression of length 3. H. Furstenberg has proved that this theorem is equivalent

to the following assertion: for any invertible measure-preserving transformation T

of a probability space (X, µ) and any set A of a positive measure it holds

lim inf
N

1

N

N
∑

i=1

µ(A ∩ T iA ∩ T 2iA) > 0.

Furstenberg also gave an ergodic proof of this fact (see [1]). In 2002 J.-P. Thouvenot
communicated me an interesting modification of this proof using an observation from

[2] (see also a joining proof of Marcus’ theorem on multiple mixing for horocycle
flows [3]) . Sometimes I included his short proof in my talks replacing a joining by

an operator. Now I present this topic here (section 2) adding old remarks-proofs
connected with Furstenberg’s theorems on multiple progression average mixing for
weakly mixing transformations (section 3).

2 Thouvenot’s proof of Furstenberg’s version of Roth’s theorem

Let f, g, h ∈ L∞(X, µ). From any sequence Nk′ we choose a subsequence Nk such
that for an operator J : L2 → L2 ⊗ L2 the equality

〈Jf, g ⊗ h〉L2⊗L2
= lim

k

1

Nk

Nk
∑

i=1

∫

fT igT 2ih dµ
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holds for any f, g, h ∈ L∞(X, µ). The definition of J is correct, this follows from the
ergodicity of T :

lim
k

1

Nk

Nk
∑

i=1

∫

T igT 2ih dµ = lim
k

1

Nk

Nk
∑

i=1

∫

gT ih dµ =
∫

fdµ
∫

gdµ.

We see that (T ⊗ T 2)J = J . So (T ⊗ T 2)Jf = Jf . But a (T ⊗ T 2)-invariant
function belongs to L2(K ⊗ K, µ ⊗ µ), where K is a compact factor algebra ( =

Kronecker algebra generated by all proper functions of T ). Indeed, we must only
to remark that a restriction of T (and T 2 as well) onto L2(K, µ)⊥, say T ′, has the
property T ′i →w 0 (T ′ has continuous spectrum), hence, (T ⊗ T 2)F = F implies

F ∈ L2(K, µ)⊗ L2(K, µ).
Denoting P for the orthogonal projection L2(µ) → L2(K, µ) we obtain

〈Jf, g ⊗ h〉 = 〈Jf, Pg ⊗ Ph〉 = lim
k

1

Nk

Nk
∑

i=1

∫

f T iPg T 2iPh dµ =

= lim
k

1

Nk

Nk
∑

i=1

∫

Pf T iPg T 2iPh dµ.

Let f = g = h = χA, µ(A) > 0. A closure of {T iPf} is a compact set, for any ε > 0
there is L such that for any n and for at least one of i = n+ 1, n+ 2 . . . , n+ L we

get
‖T iPf − Pf‖L2

< ε.

Thus, for a sufficiently small ε′ > 0 we have

lim inf
N

1

N

N
∑

i=1

µ(A ∩ T iA ∩ T 2iA) ≥
1

L

(∫

(PχA)
3 dµ − ε′

)

> 0.

3 Remarks to Furstenberg’s theorems on weakly mixing transforma-
tions

Furstenberg [1] proved the following theorem: If T is weakly mixing, then

1

N

N
∑

i=1

m
∏

p=1

T pifp →L2

m
∏

p=1

∫

fp dµ (N → ∞) (2, m)
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holds for any collection of fi ∈ L∞. Let f, g, h ∈ L∞(X, µ) and T be weakly mixing,
let us show

1

N

N
∑

i=1

∫

fT igT 2ih →
∫

fdµ
∫

gdµ
∫

hdµ, (1, 2)

1

N

N
∑

i=1

T ifT 2igT 3ih →L2

∫

fdµ
∫

gdµ
∫

hdµ. (2, 3)

Proof of (1,2). We define a joining

ν(f ⊗ g ⊗ h) = lim
k

1

Nk

Nk
∑

i=1

∫

fT igT 2ih.

We have (I ⊗ T ⊗ T 2)ν = ν, but T ⊗ T 2 is ergodic.

ν(f ⊗ g ⊗ h) = ν



f ⊗





1

N

N
∑

i=1

T ig ⊗ T 2ih







 =

ν(f ⊗ 1⊗ 1)
∫

gdµ
∫

hdµ =
∫

fdµ
∫

gdµ
∫

hdµ.

(1) is proved. Here we can use also that Id and an ergodic transformation S = T⊗T 2

are disjoint, so our joining has to be a direct product of its projections, see [2], [3].
Proof of (2,3). We define a joining η setting

η(f ⊗ g ⊗ h⊗ f ′ ⊗ g′ ⊗ h′) = lim
k

1

N2
k

∫ Nk
∑

i=1

T if T 2ig T 3ih
Nk
∑

j=1

T jf ′ T 2jg′ T 3jh′ dµ.

From the above definition it follows an invariance

η = (I ⊗ I ⊗ I ⊗ T ⊗ T 2 ⊗ T 3)η,

but T ⊗ T 2 ⊗ T 3 is ergodic. Again our joining will be a product: η = µ3 ⊗ µ3. Here

we have made use of (1,2): the projections of η are equal to µ3, indeed

η(f ⊗ g ⊗ h⊗ 1⊗ 1⊗ 1) = lim
N

1

N

N
∑

i=1

∫

T if T 2ig T 3ih dµ =

= lim
N

1

N

N
∑

i=1

∫

f T ig T 2ih dµ =
∫

fdµ
∫

gdµ
∫

h dµ.
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Let
∫

fdµ = 0, then

lim
k

‖
1

Nk

Nk
∑

i=1

T ifT 2igT 3ih‖2L2
= η(f ⊗ g ⊗ h⊗ f ⊗ g ⊗ h) = 0. (2′, 3)

To prove (2,3) we have to say only that for any sequence Nk′ one can choose a
subsequence Nk for which (2’,3) holds.

Now let’s remark that (2,3) implies

1

N

N
∑

i=1

∫

f0T
if1 T

2if2 T
3if3 dµ →

3
∏

p=0

∫

fp dµ (N → ∞). (1, 3)

From (1-3) we deduce as above

1

N

N
∑

i=1

T if1 T
2if2 T

3if3 T
4if4 →L2

4
∏

p=1

∫

fp dµ, (2, 4)

and so on: (2,m) implies (1, m), from (1,m) we get

1

N

N
∑

i=1

m+1
∏

p=1

T pifp →L2

m+1
∏

p=1

∫

fp dµ (2, m+ 1)

as N → ∞.
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