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Hardy Spaces H
p
L(R

n) Associated to Operators Satisfying

k-Davies-Gaffney Estimates

Jun Cao and Dachun Yang ∗

Abstract Let L be a one to one operator of type ω having a bounded H∞ functional

calculus and satisfying the k-Davies-Gaffney estimates with k ∈ N. In this paper, the

authors introduce the Hardy space Hp
L(R

n) with p ∈ (0, 1] associated to L in terms

of square functions defined via {e−t2kL}t>0 and establish their molecular and general-

ized square function characterizations. Typical examples of such operators include the

2k-order divergence form homogeneous elliptic operator L1 with complex bounded mea-

surable coefficients and the 2k-order Schrödinger type operator L2 ≡ (−∆)k+V k, where

∆ is the Laplacian and 0 ≤ V ∈ Lk
loc

(Rn). Moreover, as applications, for i ∈ {1, 2}, the
authors prove that the associated Riesz transform ∇k(L

−1/2
i ) is bounded from Hp

Li
(Rn)

to Hp(Rn) for p ∈ (n/(n + k), 1] and establish the Riesz transform characterizations

of Hp
L1
(Rn) for p ∈ (rn/(n + kr), 1] if {e−tL1}t>0 satisfies the Lr − L2 k-off-diagonal

estimates with r ∈ (1, 2]. These results when k ≡ 1 and L ≡ L1 are known.

1 Introduction

The Hardy spaces, as a suitable substitute of Lebesgue spaces Lp(Rn), play an important
role in various fields of analysis and partial differential equations. It is well known that
the Hardy spaces Hp(Rn) are essentially related to the Laplacian operator ∆ ≡∑n

j=1
∂2

∂x2j
,

which have been intensively studied; see, for example, [42, 23, 15, 43, 41, 25] and the
references therein.

In recent years, the study of Hardy spaces associated to different differential operators
inspires great interests; see, for example, [4, 7, 8, 12, 19, 20, 18, 21, 22, 28, 30, 31, 32] and
their references. In particular, in [4], when the operator L satisfies a pointwise Poisson
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upper bound, Auscher, McIntosh and Duong introduced the Hardy space H1
L(R

n) associ-
ated to L in terms of area integral functions. Later, in [19, 20], Duong and Yan introduced
the BMO-type space BMOL(R

n) associated to such an L and proved the dual space of
H1
L(R

n) is BMOL∗(Rn), where L∗ denotes the adjoint operator of L in L2(Rn). Yan [46]
further generalized these results to the Hardy space Hp

L(R
n) with p ∈ (0, 1] close to 1 and

its dual space. Also, the Orlicz-Hardy space and its dual space associated to such an L
were studied in [38, 35].

Auscher and Russ [8] studied the Hardy space H1
L on strongly Lipschitz domains as-

sociated with a second order divergence form elliptic operator L whose heat kernels have
the Gaussian upper bounds and regularity. Very recently, Auscher, McIntosh and Russ [7]
treated the Hardy space H1 associated with the Hodge Laplacian on a Riemannian mani-
fold with doubling measure; Hofmann–Mayboroda in [30, 31] and Hofmann–Mayboroda–
McIntosh in [32] introduced the Hardy and Sobolev spaces associated to a second order
divergence form elliptic operator L on R

n with bounded measurable complex coefficients
and these operators may not have the pointwise heat kernel bounds, while a theory of
the Orlicz-Hardy space and its dual space associated to L was independently developed
in [36, 37].

Moreover, a theory of Hardy spaces associated to the Schrödinger operators −∆+V was
well developed, where the nonnegative potential V satisfies the reverse Hölder inequality;
see, for example, Dziubański and Zienkiewicz [21, 22] and Yang and Zhou [48] and their
references. More generally, for nonnegative self-adjoint operators L satisfying the Davies-
Gaffney estimates, Hofmann et al. [28] introduced a new Hardy space H1

L(R
n), which was

extended to the Orlicz-Hardy space by Jiang and Yang [34]. Recently, the Hardy space
H1

(−∆)2+V 2(R
n) associated to the Schrödinger type operators (−∆)2+V 2 was also studied

in [12].

From now on, in what follows of this paper, we always let L be a one to one operator
of type ω having a bounded H∞ functional calculus and satisfying the k-Davies-Gaffney
estimates with k ∈ N (see (2.6) below). Motivated by [32, 28], in this paper, we introduce
the Hardy space Hp

L(R
n) with p ∈ (0, 1] associated to L in terms of the square function

defined via {e−t2kL}t>0 (see (4.1) below) and establish their molecular and generalized
square function characterizations. Typical examples of such operators include the 2k-
order divergence form homogeneous elliptic operator L1 with complex bounded measurable
coefficients and the 2k-order Schrödinger type operator L2 ≡ (−∆)k + V k, where ∆ is
the Laplacian and 0 ≤ V ∈ Lkloc(R

n). Moreover, as applications, for i ∈ {1, 2}, we

prove that the associated Riesz transform ∇k(L
−1/2
i ) is bounded from Hp

Li
(Rn) to Hp(Rn)

for p ∈ (n/(n + k), 1] and establish the Riesz transform characterizations of Hp
L1
(Rn)

for p ∈ (rn/(n + kr), 1] if {e−tL1}t>0 satisfies the Lr − L2 k-off-diagonal estimates with
r ∈ (1, 2] (see Definition 6.1 below for the definition). These results when k ≡ 1 and L ≡ L1

were already obtained recently by Hofmann-Mayboroda [30, 31], Jiang-Yang [36, 34], and
Hofmann-Mayboroda-McIntosh [32].

A new ingredient appearing in this paper is the introduction of the k-Davies-Gaffney
estimates with k ∈ N, which is naturally satisfied by 2k-order Schrödinger operators
(−∆)k + V k. Via the perturbation technique (see, for example, [10, 11]) and some ideas
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from the proof of [16, Lemma 2], and using the elliptic condition, we further show that
the semigroup {e−tL1}t>0 also satisfies the k-Davies-Gaffney estimates.

Another new observation of this paper is that the nonnegative self-adjoint property of
operators in [28, 34] can be weakened into the assumption that L has a bounded H∞

functional calculus. We point out that when this manuscript was in preparation, we
learned from Anh and Li [1] that this was also observed by Duong and Li [17].

The paper is organized as follows. In Section 2, we first recall some results on the H∞

functional calculus and describe some assumptions on operators considered in this paper.
In particular, we introduce the notion of k-Davies-Gaffney estimates with k ∈ N in (2.6)
below. Some examples satisfying these assumptions are also given in this section.

Let L be an operator satisfying assumptions in Section 2. In Section 3, using some
ideas from [28, 30, 31, 32], we establish some off-diagonal estimates for some families of
operators related to L. More precisely, we show that if {e−tL}t>0 satisfies the k-Davies-
Gaffney estimates, then the family {(zL)me−zL}z∈S0

ℓ(π/2−ω)
of operators for anym ∈ N∪{0}

also satisfies the k-Davies-Gaffney estimates in z (see Lemma 3.1), the k-Davies-Gaffney
estimates are stable under compositions (see Lemma 3.2) and the family {ψ(tL)f(L)}t>0

of operators satisfies the k-Davies-Gaffney estimates of order σ (see (3.7) below for the
definition), where ψ belongs to the decaying function class Ψσ,τ (S

0
µ) as in (2.2) below

(see Lemma 3.3 below). Let L1 be the 2k-order divergence form homogeneous elliptic
operator with complex bounded measurable coefficients and L2 the 2k-order Schrödinger
type operator. In this section, we also prove that the semigroup {e−tL1}t>0 and the
family {

√
t∇ke−tLi}t>0 of operators for i ∈ {1, 2} satisfy the k-Davies-Gaffney estimates,

respectively, in Propositions 3.1 and 3.2.

In Definition 4.1 of Section 4, we first introduce the Hardy spaceHp
L(R

n) for p ∈ (0, 1] in

terms of the square function SL defined via {e−t2kL}t>0 and, in Definition 4.3, the molecu-
lar Hardy space Hp

L,mol,M (Rn) with M ∈ (n(1/p− 1/2)/(2k),∞). Then, by using Lemma

3.1, we prove that for each (Hp
L, ǫ, M)-molecule m, ‖SL(m)‖Lp(Rn) is uniformly bounded

(see (4.6) below), which together with a boundedness criteria from [32] (see also Lemma
4.1 below) implies that Hp

L,mol,M (Rn) ⊂ Hp
L(R

n). On the other hand, using the atomic

decomposition of the tent space T p(Rn+1
+ ) and the k-Davies-Gaffney estimate, we obtain

that the operator πM,L in (4.15) maps any T p(Rn+1
+ )-atom into an (Hp

L, ǫ, M)-molecule
up to a harmless positive constant multiple in Lemma 4.2 below. Then, by a Calderón
reproducing formula, we establish a molecular decomposition of Hp

L(R
n) which yields an-

other inclusion Hp
L(R

n) ⊂ Hp
L,mol,M (Rn). Thus, we obtain the molecular characterization

of Hp
L(R

n) in Theorem 4.1 below.

Section 5 is devoted to the generalized square function characterization of Hp
L(R

n). Mo-
tivated by [32], we first introduce the generalized square function Hardy space Hp

ψ,L(R
n)

for p ∈ (0, 1] and some ψ ∈ Ψσ,τ (S
0
µ) in Definition 5.1 below. Then, for any ψ ∈ Ψσ,τ (S

0
µ)

and all f ∈ H∞(S0
µ) (see (2.1) for the definition), we introduce the operators Qψ,L, πψ,L

and their composition Qf (see (5.1), (5.4) and (5.5) for their definitions). Using the k-
Davies-Gaffney estimates of order σ for {ψ(tL)f(L)}t>0 in Lemma 3.3 below, we prove
that the operator Qf is bounded on the tent space T p(Rn+1

+ ) (see Lemma 5.2), Qψ,L is
bounded from Hp

L(R
n) to T p(Rn+1

+ ) and πψ,L is bounded from T p(Rn+1
+ ) to Hp

L(R
n) for
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some ψ (see Lemma 5.3 below). Combining these boundedness and using a Calderón repro-
ducing formula in (5.14), we then obtain the generalized square function characterization
of Hp

L(R
n) in Theorem 5.1, which is used in obtaining the Riesz transform characterization

of Hp
L1
(Rn) in Section 6. For all α ∈ (0, ∞), let Lα be the fractional power with exponent

α of L and the Hardy space Hp
Lα(R

n) be defined as in (5.3) below via the square function
SLα as in (5.2). As another application of Theorem 5.1, we then obtain in Corollary 5.1
that Hp

Lα(R
n) = Hp

L(R
n) with equivalent norms, in particular, Hp

(−∆)k
(Rn) = Hp(Rn)

with equivalent norms for all k ∈ N, where Hp(Rn) is the classical Hardy space in [42, 23].

Finally, in Section 6, we concentrate on the behavior of the Riesz transforms ∇kL
−1/2
i

on Hp
Li
(Rn) for i ∈ {1, 2}. By the gradient estimates of the semigroup {e−tLi}t>0

in Proposition 3.2 and the composition rule of k-Davies-Gaffney estimates in Lemma

3.2, we first show that the two families of operators, {∇kL
−1/2
i (I − e−tLi)M}t>0 and

{∇kL
−1/2
i (tLie

−tLi)M}t>0 for all M ∈ N, satisfy some estimates similar to the k-Davies-
Gaffney estimates of order M (see Lemma 6.1 below). Then, using these estimates, we
prove that for each (Hp

Li
, ǫ, M)-molecule m with p ∈ (n/(n+ k), 1] and

M ∈ (n(1/p − 1/2)/(2k), ∞),

∇k(L
−1/2
i )(m) is a classical Hp(Rn)-molecule up to a harmless constant multiple, which

further implies that Riesz transforms ∇k(L
−1/2
i ) are bounded from Hp

Li
(Rn) to the clas-

sical Hardy space Hp(Rn) in Theorem 6.1 below. In the remaining part of this section,
motivated by [32], by assuming that the semigroup {e−tL1}t>0 satisfies the Lr − L2 k-off-
diagonal estimates for r ∈ (1, 2], we then establish the Riesz transform characterization
of Hp

L1
(Rn). To this end, we first show in Lemma 6.2 below that {tL1e

−tL1}t>0 also sat-

isfy the Lr − L2 k-off-diagonal estimates. We then recall some known results concerning
the homogeneous Triebel-Lizorkin space Ḟαp,q(R

n) and their atomic characterizations from

[44, 27, 13] and [45, Proposition 4.3]. Let Ẇ k,2(Rn) be the homogenous Sobolev space of
order k. With the help of these results, we show that if f ∈ Ẇ k,2(Rn) ∩ Ḣk,p(Rn) when
p ∈ (0, 1], then its atomic decomposition converges in both Ẇ k,2(Rn) and Ḣk,p(Rn) (see
Lemma 6.3 below). Moreover, by the Lr−L2 k-off-diagonal estimates for {tL1e

−tL1}t>0, we
prove that for each Hk,p(Rn)-atom b, S1

√
L1(b) is uniformly bounded on Lp(Rn) (see (6.13)

below), which, together with the generalized square function characterization of Hp
L1
(Rn)

in Theorem 5.1 and Lemma 6.3, shows that S1
√
L1 is bounded from the Hardy-Sobolev

space Ḣk,p(Rn) to Lp(Rn). This combined with the boundedness of Riesz transforms on
Hp
L1
(Rn) in Theorem 6.1 yields the Riesz transform characterization of Hp

L1
(Rn) in The-

orem 6.2 below. We point out in the proof of the estimate (6.13), we use the embedding
result (6.15) below on the homogeneous Triebel-Lizorkin space from [44] and another key
fact from [6, Theorem 1.1] that ‖

√
L1f‖L2(Rn) . ‖∇kf‖L2(Rn). The latter fact may not

be true for L2; see Remark 6.1 below. Thus, it seems that one needs some new ideas to
obtain the Riesz characterization of Hp

L2
(Rn).

We now make some conventions on the notation. Throughout the whole paper, we

always let N ≡ {1, 2, · · · } and Z+ ≡ N ∪ {0}. Denote the differential operator ∂|α|

∂x
α1
1 ···∂x

α1
1

simply by ∂α, where α ≡ (α1, · · · , αn) and |α| ≡ α1+· · ·+αn. We also denote the 2k-order
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divergence form homogenous elliptic operator with complex bounded measurable coefficients
(−1)k

∑
|α|=|β|=k ∂

α(aα,β∂
β) by L1 and the 2k-order Schrödinger type operator (−∆)k+V k

by L2. We use C to denote a positive constant, that is independent of the main parameters
involved but whose value may differ from line to line, and C(α, · · · ) to denote a positive
constant depending on the parameters α, · · · . Constants with subscripts, such as C0, do
not change in different occurrences. If f ≤ Cg, we then write f . g; and if f . g . f ,
we then write f ∼ g. For all x ∈ R

n and r ∈ (0,∞), let B(x, r) ≡ {y ∈ R
n : |x− y| < r}.

Also, for any set E ∈ R
n, we use E∁ to denote R

n \ E and χE the characteristic function
of E.

2 Preliminaries

We first collect some basic results on the theory of H∞ functional calculus, developed
by McIntosh in [39], that we need in the sequel. For more details and further references
about functional calculus, we refer the reader to [2, 26, 39] and the references therein.

For θ ∈ [0, π), the open and closed sectors, S0
θ and Sθ, of angle θ in the complex plane

C are defined as follows:

S0
θ ≡ {z ∈ C \ {0} : | arg z| < θ}

and
Sθ ≡ {z ∈ C \ {0} : | arg z| ≤ θ} ∪ {0} .

Let ω ∈ [0, π). A closed operator T in L2(Rn) is called of type ω, if the spectrum of T ,
σ(T ), is contained in Sω, and for each θ ∈ (ω, π), there exists a nonnegative constant C
such that for all z ∈ C \ Sθ, ‖(T − zI)−1‖L(L2(Rn)) ≤ C|z|−1, where and in what follows,
‖S‖L(H) denotes the operator norm of the linear operator S on the normed linear space
H.

For µ ∈ [0, π) and σ, τ ∈ (0, ∞), we need the following spaces of functions:

H(S0
µ) ≡

{
f : f is holomorphic on S0

µ

}
,

H∞(S0
µ) ≡

{
f ∈ H(S0

µ) : ‖f‖L∞(S0
µ)
<∞

}
(2.1)

and

Ψσ,τ (S
0
µ) ≡

{
f ∈ H(S0

µ) : |f(ξ)| ≤ C inf{|ξ|σ , |ξ|−τ} for all ξ ∈ S0
µ

}
.(2.2)

It is known that every one to one operator T of type ω in L2(Rn) has a unique holo-
morphic functional calculus which is consistent with the usual definition of polynomials of
operators; see, for example, [39]. More precisely, let T be a one to one operator of type ω,
with ω ∈ [0, π), µ ∈ (ω, π), σ, τ ∈ (0, ∞), and f ∈ Ψσ,τ (S

0
µ). The function of the operator

T , f(T ) can be defined by the H∞ functional calculus in the following way,

f(T ) ≡ 1

2πi

∫

γ
(ξI − T )−1f(ξ) dξ,(2.3)
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where γ ≡ {reiν : ∞ > r > 0} ∪ {re−iν : 0 < r < ∞}, ν ∈ (ω, µ), is a curve consisting
of two rays parameterized anti-clockwise. It is well known that the above definition is
independent of the choice of ν ∈ (ω, µ) and the integral in (2.3) is absolutely convergence
in L(L2(Rn)) (see [39, 26]).

In what follows, we always assume ω ∈ [0, π/2). Then, it follows from [26, Proposition
7.1.1] that for every operator T of type ω in L2(Rn), −T generates a holomorphic C0-
semigroup {e−zL}z∈S0

π/2−ω
on the open sector S0

π/2−ω such that ‖e−zL‖L(L2(Rn)) ≤ 1 for all

z ∈ S0
π/2−ω and, moreover, every nonnegative self-adjoint operator is of type 0.

Let Ψ(S0
µ) ≡ ∪σ,τ>0Ψσ,τ (S

0
µ). By the relationship between the associated semigroup

and the resolvent of T , for all f ∈ Ψ(S0
µ), f(T ) can further be represented as

f(T ) ≡
∫

Γ+

e−zT η+(z) dz +

∫

Γ−

e−zT η−(z) dz,(2.4)

where

η±(z) ≡
1

2πi

∫

γ±
eξzf(ξ) dξ, z ∈ Γ±,(2.5)

Γ± ≡ R
+e±i(π/2−θ), γ± ≡ R

+e±iν and 0 ≤ ω < θ < ν < µ < π/2. Here and in what
follows, R+ ≡ (0,∞).

It is well known that the above holomorphic functional calculus defined on Ψ(S0
µ) can be

extended to H∞(S0
µ) via a limit process (see [39]). Recall that for µ ∈ (0, π), the operator

T is said to have a bounded H∞(S0
µ) functional calculus in the Hilbert space H, if there

exists a positive constant C such that for all ψ ∈ H∞(S0
µ), ‖ψ(T )‖L(H) ≤ C‖ψ‖L∞(S0

µ)
and

T is called to have a bounded H∞ functional calculus in the Hilbert space H if there exists
µ ∈ (0, π) such that T has a bounded H∞(S0

µ) functional calculus.
Now, we describe our assumptions of operators L considered in this paper. Throughout

the whole paper, we always assume that L satisfies the following assumptions:

(A1) The operator L is a one to one operator of type ω in L2(Rn) with ω ∈ [0, π/2);

(A2) The operator L has a bounded H∞ functional calculus in L2(Rn);

(A3) Let k ∈ N. The operator L generates a holomorphic semigroup {e−tL}t>0 which
satisfies the k-Davies-Gaffney estimate, namely, there exist positive constants C̃
and C1 such that for all closed sets E and F in R

n, t ∈ (0, ∞) and f ∈ L2(Rn)
supported in E,

‖e−tLf‖L2(F ) ≤ C̃ exp

{
− [dist(E, F )]2k/(2k−1)

C1t1/(2k−1)

}
‖f‖L2(E),(2.6)

where and in what follows, dist(E, F ) ≡ infx∈E, y∈F |x − y| is the distance between
E and F .

Remark 2.1. We point out that when k = 1, the k-Davies-Gaffney estimate is usually
called the Davies-Gaffney estimate (or the L2 off-diagonal estimate or just the Gaffney
estimate); see, for example, [30, 31, 28, 34, 32].
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Let k ∈ N. Examples of operators, satisfying the above assumptions (A1), (A2) and
(A3), include the following 2k-order divergence form homogeneous elliptic operator:

L1 ≡ (−1)k
∑

|α|=|β|=k

∂α(aα,β∂
β)

with complex bounded measurable coefficients aα,β for all multi-indices α, β and the 2k-
order Schrödinger type operator L2 ≡ (−∆)k+V k with 0 ≤ V ∈ Lkloc (R

n). More precisely,
let W k,2(Rn) be the Sobolev space of order k endowed with the norm

‖ · ‖W k,2(Rn) ≡
∑

0≤|α|≤k

‖∂α(·)‖L2(Rn).

Denote by a the sesquilinear form given by

a(f, g) ≡
∫

Rn

∑

|α|=|β|=k

aα,β(x)∂
βf(x)∂αg(x) dx(2.7)

with domainD(a) ≡W k,2(Rn). We further assume that a satisfies the ellipticity condition,
that is, there exist positive constants 0 < λ ≤ Λ <∞ such that

‖aα,β‖L∞(Rn) ≤ Λ for all α, β with |α| = k = |β|(2.8)

and

ℜa(f, f) ≥ λ ‖∇kf‖2L2(Rn) for all f ∈W k,2(Rn),(2.9)

where and in what follows, ℜz for any z ∈ C denotes the real part of z. The 2k-order
divergence form homogeneous elliptic operator L1 with complex bounded measurable co-
efficients is then defined to be the operator associated to the form a.

Let ω ∈ [0, π/2]. Recall that an operator T in the Hilbert space H is called m-ω-
accretive if

(i) the range of the operator T + I, R(T + I), is dense in H;

(ii) for all u ∈ D(T ), | arg(Tu, u)| ≤ ω,

where D(T ) denotes the domain of T and arg(Tu, u) the argument of (Tu, u). It is known
by [26, Proposition 7.1.1] that every closed m-ω-accretive operator is of type ω (see [26,
p. 173]).

From [6], it follows that L1 is closed and maximal accretive (see [26, p. 327] for the
definition), which further yields that R(L1 + I) is dense in L2(Rn); see, for example [26,
Proposition C.7.2]. Moreover, by the ellipticity condition (2.8) and (2.9), we obtain that
for all f ∈W k,2(Rn),

|tan (arg(L1f, f))| =
∣∣∣∣
ℑ(L1f, f)

ℜ(L1f, f)

∣∣∣∣ ≤
Λ

λ
,
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where and in what follows, ℑz for any z ∈ C denotes the imaginary part of z. Thus,
| arg(L1f, f)| ≤ arctan Λ

λ , which together with the fact that R(L1 + I) is dense in L2(Rn)
shows that L1 is an m-arctan Λ

λ -accretive operator in L2(Rn) with the angle arctan Λ
λ ∈

[π/4, π/2). Thus, L1 is an operator of type arctan Λ
λ .

Now, we show that L1 is one to one. Let N(L1) ≡ {f ∈ D(L1) : L1f = 0} be the null
space of L1. For any fixed f ∈ N(L1), by the elliptic condition (2.8) and (2.9), we have

∫

Rn

∣∣∣∇kf(x)
∣∣∣
2
dx ∼ |(L1f, f)| = 0,(2.10)

which implies that ∇kf = 0 almost everywhere in R
n. In what follows, denote by C∞

c (Rn)
the space of all C∞ functions with compact support in R

n. For all f ∈ W k,2(Rn), by the
density of C∞

c (Rn) in W k,2(Rn), there exists a sequence {fj}j∈N of functions in C∞
c (Rn)

such that limj→∞ fj = f in W k,2(Rn). Denote the Fourier transform and the inverse

Fourier transform of f , respectively, by f̂ and f̌ . If f ∈ N(L1), by (2.10), the fact that
fj ∈ C∞

c (Rn), the multiplication formula of Fourier transform and Plancherel’s theorem
(see, for example, [24, Theorem 2.2.14]), we have that for all ϕ ∈ C∞

c (Rn),

0 = (∇kf, ϕ̂) = lim
j→∞

(∇kfj, ϕ̂) = lim
j→∞

(−1)k(fj, ∇kϕ̂) = lim
j→∞

(−1)k(f̂j , (∇kϕ̂)̌)

= lim
j→∞

ik(f̂j, (·)kϕ(·)) = ik(f̂ , (·)kϕ(·)),

which implies that supp f̂ ⊂ {0}. By [24, Corollary 2.4.2], we have that f is a polynomial,
which, together with the fact that f ∈ L2(Rn), implies that f = 0. Hence, N(L1) = {0}
and L1 is one to one.

Since L1 is maximal accretive, from [2], it follows that L1 has a bounded holomorphic
functional calculus. Finally, in Proposition 3.1 below, we will show that the semigroup
{e−tL1}t>0 satisfies the k-Davies-Gaffney estimate. Thus, the 2k-order divergence form
homogenous elliptic operator L1 with complex bounded measurable coefficients satisfies the
assumptions (A1), (A2) and (A3).

Let k ∈ N, ∆ ≡∑n
j=1

∂2

∂x2j
be the Laplace operator and 0 ≤ V ∈ Lkloc (Rn). The 2k-order

Schrödinger type operator L2 ≡ (−∆)k + V k is the associated operator of the following
sesquilinear form

b(f, g) ≡
∫

Rn

∇kf(x)∇kg(x) dx+

∫

Rn

[V (x)]kf(x)g(x) dx(2.11)

with domain D(b) ≡ {f ∈ W k,2(Rn) :
∫
Rn

[V (x)]k|f(x)|2 dx < ∞} which is also dense in
L2(Rn), since C∞

c (Rn) ⊂ D(b).

It is easy to see that the 2k-order Schrödinger type operator L2 is a nonnegative self-
adjoint operator. From [26], it follows that L2 is m-0-accretive. Thus, by [26, Proposition
7.1.1], L2 is a one to one operator of type 0. Therefore, L2 has a bounded H∞ functional
calculus. Moreover, by [9], the semigroup {e−tL2}t>0 satisfies a Gaussian type estimate,
that is, the integral kernel e−tL2(x, y) of e−tL2 has the property that there exist positive
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constant C2 and C3 such that for all t ∈ (0, ∞) and x, y ∈ R
n,

|e−tL2(x, y)| ≤ C2t
−n/(2k) exp

{
−C3

|x− y|2k/(2k−1)

t1/(2k−1)

}
,(2.12)

which implies that the semigroup {e−tL2}t>0 satisfies the k-Davies-Gaffney estimate im-
mediately. Thus, the 2k-order schrödinger type operator L2 also satisfies the assumptions
(A1), (A2) and (A3).

3 k-Davies-Gaffney estimates

In this section, we prove some properties about the k-Davies-Gaffney estimates. We
point out that when k = 1 and L is a non-negative self-adjoint operator or a second order
divergence form elliptic operator with complex bounded measurable coefficients, these
properties are already well known; see, for example, [5, 30, 31, 28, 34, 32].

Let θ ∈ [0, π/2) and E, F be two closed sets in R
n. A family {T (z)}z∈S0

θ
of operators

is called to satisfies the k-Davies-Gaffney estimate in z if there exist positive constants C4

and C5 such that for all f ∈ L2(Rn) supported in E and z ∈ S0
θ ,

‖T (z)f‖L2(F ) ≤ C5 exp

{
− [dist(E, F )]2k/(2k−1)

C4|z|1/(2k−1)

}
‖f‖L2(E).(3.1)

For any operator satisfying the assumptions (A1), (A2) and (A3) in Section 2, we have
the following property.

Lemma 3.1. Assume that the operator L defined in L2(Rn) satisfies the assumptions (A1),
(A2) and (A3) in Section 2. Then for all ℓ ∈ (0, 1), m ∈ Z+, the family of operators,
{(zL)me−zL}z∈S0

ℓ(π2 −ω)
, satisfy the k-Davies-Gaffney estimate in z, (3.1), with positive

constants C4 and C5 depending only on m, ℓ, n, k, ω, C̃ and C1.

Proof. We prove this lemma by using some ideas from [28]. Since L is of type ω, we know
that the semigroup {e−tL}t>0 can be extended to a holomorphic semigroup {e−zL}z∈S0

π/2−ω
.

Thus, for all z ∈ S0
π/2−ω, closed sets E, F ⊂ R

n and f, g ∈ L2(Rn) supported respectively

in E and F , the function G(z): z 7−→ (e−zLf, g) is holomorphic on S0
π/2−ω. Moreover, G

satisfies the following properties:

(i) there exists a nonnegative constant C such that for all z ∈ S0
π/2−ω,

|G(z)| ≤ C‖f‖L2(E)‖g‖L2(F ),

(ii) there exist nonnegative constants C and C1 such that for all t ∈ (0, ∞),

|G(t)| ≤ C exp

{
− [dist(E, F )]2k/(2k−1)

C1t1/(2k−1)

}
‖f‖L2(E)‖g‖L2(F ).
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In [40, Lemma 6.18], letting ψ ≡ π/2 − ω, a ≡ C‖f‖L2(E)‖g‖L2(F ), β ≡ 0, b ≡
1
C1

[dist(E, F )]2k/(2k−1), r ≡ t and α ≡ 1
2k−1 , we then obtain that for any z ≡ reiθ ∈

S0
ℓ(π/2−ω),

|F (z)| . exp

{
− [dist(E, F )]2k/(2k−1)

2(2k − 1)C1r1/(2k−1)
sin(π/2 − ω − |θ|)

}
‖f‖L2(E)‖g‖L2(F )(3.2)

. exp

{
− [dist(E, F )]2k/(2k−1)

C4r1/(2k−1)

}
‖f‖L2(E)‖g‖L2(F ),

where C4 ≡ 2C1(2k−1)
sin((1−ℓ)(π

2
−ω)) . From the analytic property of semigroups and the Cauchy

integral formula, it follows that for all m ∈ N and z ∈ S0
ℓ(π

2
−ω)

(zL)me−zL = (−z)m m!

2πi

∫

|ξ−z|=η|z|
e−ξL

dξ

(ξ − z)m+1
,(3.3)

where η ∈ (0, sin((1 − ℓ)(π/2 − ω))). Thus, for any z ∈ S0
ℓ(π

2
−ω), the ball B(z, η|z|) ⊂

S0
π/2−ω. Combining (3.2) and (3.3), by Minkowski’s inequality, we obtain

∥∥(zL)me−zLf
∥∥
L2(F )

. |z|m
∫

|ξ−z|=η|z|

∣∣∣∣
1

(ξ − z)m+1

∣∣∣∣
∥∥∥e−ξLf

∥∥∥
L2(F )

|dξ|

. exp

{
− [dist(E, F )]2k/(2k−1)

C4|z|1/(2k−1)

}
‖f‖L2(E),

which implies that {(zL)me−zL}S0
ℓ(π2 −ω)

satisfies the k-Davies-Gaffney estimate in z. This

finishes the proof of Lemma 3.1.

Lemma 3.2. Let {At}t>0, {Bs}s>0 be two families of linear operators, C6 and C7 two
positive constants. Assume that for all closed sets E, F ⊂ R

n, f ∈ L2(Rn) supported in
E and t > 0, the following estimates hold:

‖Atf‖L2(F ) ≤ C6 exp

{
− [dist(E, F )]2k/(2k−1)

C7t1/(2k−1)

}
‖f‖L2(E),(3.4)

and

‖Bsf‖L2(F ) ≤ C6 exp

{
− [dist(E, F )]2k/(2k−1)

C7s1/(2k−1)

}
‖f‖L2(E).(3.5)

Then, there exists a positive constant C such that for all t, s > 0, all closed sets E, F ⊂ R
n

and f ∈ L2(Rn) supported in E,

‖AtBsf‖L2(F ) ≤ C exp

{
− [dist(E, F )]2k/(2k−1)

C̃7(max{t, s})1/(2k−1)

}
‖f‖L2(E),(3.6)

where C̃7 ≡ C72
2k/(2k−1).
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Proof. If dist(E, F ) = 0, then (3.6) is a simple corollary of (3.4) and (3.5). Now, we assume
that dist(E, F ) > 0. As in [29], let ρ ≡ dist(E, F ) and G ≡ {x ∈ R

n : dist(x, F ) < ρ/2}.
Denote by G the closure of G. It is clear that dist(E, G) ≥ ρ/2. Moreover, by (3.4) and
(3.5), we have

‖At(χGBsf)‖L2(F ) ≤ ‖At(χGBsf)‖L2(Rn) . ‖Bsf‖L2(G)

. exp

{
− [dist(E, G)]2k/(2k−1)

C7s1/(2k−1)

}
‖f‖L2(E)

∼ exp

{
− [dist(E, F )]2k/(2k−1)

C722k/(2k−1)s1/(2k−1)

}
‖f‖L2(E).

Let C̃7 ≡ C72
2k/(2k−1). Similarly, by (3.4) and (3.5), we obtain

‖At(χRn\GBsf)‖L2(F ) . exp

{
− [dist(Rn \G, F )]2k/(2k−1)

C7t1/(2k−1)

}
‖Bsf‖L2(E)

. exp

{
− [dist(E, F )]2k/(2k−1)

C̃7t1/(2k−1)

}
‖f‖L2(E).

Combining the above estimates, we have

‖AtBsf‖L2(F )

≤ ‖At(χGBsf)‖L2(F ) + ‖At(χRn\GBsf)‖L2(F )

.

[
exp

{
− [dist(E, F )]2k/(2k−1)

C̃7s1/(2k−1)

}
+ exp

{
− [dist(E, F )]2k/(2k−1)

C̃7t1/(2k−1)

}]
‖f‖L2(E)

. exp

{
− [dist(E, F )]2k/(2k−1)

C̃7max{t, s}1/(2k−1)

}
‖f‖L2(E),

which completes the proof of Lemma 3.2.

Let σ ∈ [0,∞). As in [32], a family {Tt}t>0 of operators is called to satisfy the k-
Davies-Gaffney estimate of order σ, if there exists a positive constant C8, depending on
σ, such that for all closed sets E, F ⊂ R

n, g ∈ L2(Rn) supported in E and t ∈ (0, ∞),

‖Ttg‖L2(F ) ≤ C8 min

{
1,

t

[dist(E, F )]2k

}σ
‖g‖L2(E).(3.7)

Lemma 3.3. Let µ ∈ (ω, π/2), ψ ∈ Ψσ, τ (S
0
µ) for some σ ∈ (0, ∞), τ ∈ (1, ∞), and

f ∈ H∞(S0
µ). Then the family {ψ(tL)f(L)}t>0 of operators satisfy the k-Davies-Gaffney

estimate of order σ, (3.7), with the positive constant C8 controlled by ‖f‖L∞(S0
µ)
.
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Proof. For any fixed ψ ∈ Ψσ,τ (S
0
µ) ⊂ Ψ(S0

µ) and f ∈ H∞(S0
µ), by (2.4) and (2.5), we have

ψ(tL)f(L) =

∫

Γ+

e−zLη+(z) dz +

∫

Γ−

e−zLη−(z) dz,(3.8)

where Γ± ≡ R
+e±i(π/2−θ) and for all z ∈ Γ±,

η±(z) =
1

2πi

∫

γ±

eξzψ(tξ)f(ξ) dξ,

γ± ≡ R
+e±iν and 0 ≤ ω < θ < ν < µ < π/2. It was proved in [32, (2.32)] that for all

z ∈ Γ±,

|η±(z)| .
‖f‖L∞(S0

µ)

t
min

{
1,

(
t

|z|

)σ+1
}
.(3.9)

Thus, by (3.8) and Minkowski’s inequality, we have that for all g ∈ L2(Rn) supported
in E,

‖ψ(tL)f(L)g‖L2(F ) ≤
∫

Γ+

∥∥e−zLg
∥∥
L2(F )

|η+(z)| |dz| +
∫

Γ−

∥∥e−zLg
∥∥
L2(F )

|η−(z)| |dz|

≡ J+ + J−.

Since π/2− θ < π/2− ω, there exists a positive number ℓ ∈ (0, 1) such that π/2− θ <
ℓ(π/2 − ω), which immediately yields that S0

π/2−θ ⊂ S0
ℓ(π/2−ω). Thus, by Lemma 3.1, the

family {e−zL}z∈S0
π/2−θ

satisfy the k-Davies-Gaffney estimate in z, which, together with

(3.9), implies that

J± . ‖g‖L2(E)

∫

Γ±

exp

{
− [dist(E, F )]2k/(2k−1)

C4|z|1/(2k−1)

}
|η±(z)| |dz|

. ‖f‖L∞(S0
µ)
‖g‖L2(E)

∫

Γ±

exp

{
− [dist(E, F )]2k/(2k−1)

C4|z|1/(2k−1)

}
min

{
1,

(
t

|z|

)σ+1
}

1

t
|dz|

.

[∫

{z∈Γ±: |z|≤t}
exp

{
− [dist(E, F )]2k/(2k−1)

C4|z|1/(2k−1)

}
min

{
1,

(
t

|z|

)σ+1
}

1

t
|dz|

+

∫

{z∈Γ±: |z|>t}
· · ·
]
‖f‖L∞(S0

µ)
‖g‖L2(E) ≡ [O1 +O2] ‖f‖L∞(S0

µ)
‖g‖L2(E).

We estimate O1 by

O1 .

∫

{z∈Γ±: |z|≤t}
exp

{
− [dist(E, F )]2k/(2k−1)

C4|z|1/(2k−1)

}
1

t
|dz|

. exp

{
− [dist(E, F )]2k/(2k−1)

C4|t|1/(2k−1)

}
.
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On the other hand, O2 can be written into

O2 .

∫

{z∈Γ±: |z|>t}
exp

{
− [dist(E, F )]2k/(2k−1)

C4|z|1/(2k−1)

}(
t

|z|

)σ+1 1

t
|dz|.

If t ≥ [dist(E, F )]2k, in this case, we trivially have

O2 .

∫

{z∈Γ±: |z|>t}

(
t

|z|

)σ+1 1

t
|dz| ∼ 1.

If t < [dist(E, F )]2k, by choosing N ∈ [σ, ∞), we obtain

O2 .

∫

{z∈Γ±: t<|z|≤[dist(E,F )]2k}

(
|z|

[dist(E, F )]2k

)N (
t

|z|

)σ+1 1

t
|dz|

+

∫

{z∈Γ±: |z|>[dist(E, F )]2k}

(
t

|z|

)σ+1 1

t
|dz|

.

(
t

[dist(E, F )]2k

)N
+

(
t

[dist(E, F )]2k

)σ
∼
(

t

[dist(E, F )]2k

)σ
.

Combining the estimates of O1 and O2, we obtain that {ψ(tL)f(L)}t>0 satisfies the k-
Davies-Gaffney estimate of order σ.

Now, we turn to some properties of the operators L1 and L2 given in Section 2. First,
we introduce the definition of the Legendre transform. Let h be a real valued function
defined on [0, ∞). The Legendre transform h♯ of h is defined by setting, for all s ∈ R,

h♯(s) ≡ sup
t≥0

{st− h(t)}.(3.10)

We have the following proposition about the operator L1.

Proposition 3.1. Let L1 be the 2k-order divergence form homogeneous elliptic operator
defined as in Section 2. Then, the semigroup {e−tL1}t>0 satisfies the k-Davies-Gaffney
estimate.

Proof. We prove Proposition 3.1 by borrowing some ideas from [10, 11, 16]. In [11, Theo-
rem 1.2], letting (Ω, U , µ, d) be the usual Euclidean space Rn, endowed with the Lebesgue
measure dx and the Euclidean distant d, and with the set class U being the set of all
Lebesgue measurable sets, and also letting A ≡ {φ ∈ C∞(Rn)∩L∞(Rn) : ‖Dαφ‖L∞(Rn) ≤
1, 1 ≤ |α| ≤ k}, p ≡ q ≡ 2, α ≡ β ≡ γ = 0, r ≡ t1/(2k), h(x) ≡ x2k/(2k−1) for all x ∈ [0, ∞)
and R ≡ e−tL1 , we then obtain the following two equivalent statements:

(i) There exists a positive constant C(k), depending on k, such that for all φ ∈ A,
ρ ∈ [0, ∞) and t ∈ (0,∞),

‖e−ρφe−tL1eρφ‖L(L2(Rn)) ≤ eC(k)h♯(ρt1/(2k)),(3.11)
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where, by (3.10),

h♯(ρt1/(2k)) ≡ sup
s≥0

{
ρt1/(2k)s− s2k/(2k−1)

}
=

[
(2k − 1)2k−1

(2k)2k

]
ρ2kt;

(ii) There exists a positive constant C1 such that for all the closed sets E and F of Rn

and t ∈ (0,∞),

∥∥χEe−tL1χF
∥∥
L(L2(Rn))

≤ exp

(
−dist(E, F )

C1t1/(2k)

)2k/(2k−1)

.(3.12)

Recall that in this case, by [16, Lemma 4], d(E, F ) defined in [11, (1.4)] is equivalent
to infx∈E,y∈F |x − y| and, moreover, C(k) in [11, Theorem 1.2(ii)] is assumed to be 1.
However, by the change of variables, we easily see that the above equivalent statements
are simply corollary of the equivalence of (ii) and (iii) of Theorem 1.2 in [11].

Notice that by the density of the simple functions in L2(Rn), (3.12) is equivalent to
the k-Davies-Gaffney estimate. Thus, to prove that the semigroup {e−tL1}t>0 satisfies the
k-Davies-Gaffney estimate, by the equivalence of (i) and (ii), it suffices to prove (3.11).

To this end, let a be the sesquilinear form as in (2.7) associated with L1. Recall that
its twisted form is defined by setting, for all ρ ∈ [0, ∞), φ ∈ A and f, g ∈W k,2(Rn),

aρφ(f, g) ≡ a(eρφf, e−ρφg),

which, together with the Leibniz formula, further yields that there exist positive constant
C(α, γ) and C(β, γ̃) with |α| = |β| = k, 0 < γ ≤ α and 0 < γ̃ ≤ β,

aρφ(f, f) =
∑

|α|=|β|=k

∫

Rn

aα,β(x)∂
α(eρφf)(x)∂β(e−ρφf)(x) dx

=
∑

|α|=|β|=k

∫

Rn

aα,β(x)







∑

0<γ≤α

C(α, γ)∂γeρφ(x)∂α−γf(x) + eρφ(x)∂αf(x)




+


 ∑

0<γ̃≤β

C(β, γ̃)∂γ̃e−ρφ(x)∂β−γ̃f(x) + e−ρφ(x)∂βf(x)





 dx

=
∑

|α|=|β|=k

∫

Rn

aα,β(x)

×






 ∑

0<γ≤α,0<γ̃≤β

C(α, γ)C(β, γ̃)∂γeρφ(x)∂α−γf(x)∂γ̃e−ρφ(x)∂β−γ̃f(x)




+


e−ρφ(x)∂βf(x)

∑

0<γ≤α

C(α, γ)∂γeρφ(x)∂α−γf(x)
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+


eρφ(x)∂αf(x)

∑

0<γ̃≤β

C(β, γ̃)∂γ̃e−ρφ(x)∂β−γ̃f(x)





 dx+ a(f, f).

Let C(α, 0) ≡ 1 ≡ C(β, 0) and C̃(k) ≡ Λ
∑

|α|=|β|=k[
∑

0≤γ≤α,0≤γ̃≤β C(α, γ)C(β, γ̃)], where
Λ is as in (2.8). By this estimate, φ ∈ A, (2.8) and Hölder’s inequality, we further have

|aρ,φ(f, f)− a(f, f)|

≤ Λ
∑

|α|=|β|=k

∫

Rn





∑

0≤γ≤α,0≤γ̃≤β

C(α, γ)C(β, γ̃)
∣∣∣ρ|γ|∂α−γf(x)ρ|γ̃|∂β−γ̃f(x)

∣∣∣



 dx

≤ Λ
∑

|α|=|β|=k

∑

0≤γ≤α,0≤γ̃≤β

C(α, γ)C(β, γ̃)

{∫

Rn

∣∣∣ρ|γ|∂α−γf(x)
∣∣∣
2
dx

}1/2

×
{∫

Rn

∣∣∣ρ|γ̃|∂β−γ̃f(x)
∣∣∣
2
dx

}1/2

≡ Λ
∑

|α|=|β|=k

∑

0≤γ≤α,0≤γ̃≤β

C(α, γ)C(β, γ̃) I1 × I2.

Applying Plancherel’s theorem, (2.9) and Young’s inequality with ǫ ∈ (0, λ

4C̃(k)
), we obtain

that there exists a positive constant C(ǫ) such that for all λ̃ ∈ (C(ǫ)C̃(k), ∞),

(I1)
2 ≤

∫

Rn

[
ρ|γ||ξ|k−|γ|

∣∣∣f̂(ξ)
∣∣∣
]2
dξ ≤

∫

Rn

[
C(ǫ)ρ2k + ǫ|ξ|2k

] ∣∣∣f̂(ξ)
∣∣∣
2
dξ

≤ C(ǫ)ρ2k‖f‖2L2(Rn) + ǫ‖∇kf‖2L2(Rn) ≤ C(ǫ)ρ2k‖f‖2L2(Rn) +
ǫ

λ
ℜa(f, f),

which, together with a similar estimate for I2, shows that

|aρφ(f, f)− a(f, f)| ≤ 1

4
ℜa(f, f) + λ̃ρ2k‖f‖2L2(Rn).(3.13)

Denote by Lρφ(= e−ρφL1e
ρφ) the operator associated with aρφ. Let ft ≡ e−tLρφf . By

(3.13), we have

d

dt
‖ft‖2L2(Rn) = −(Lρφft, ft)− (ft, Lρφft) = −2ℜaρφ(ft, ft)

= 2 [ℜ (a(ft, ft)− aρφ(ft, ft))−ℜa(ft, ft)]
≤ 2|aρφ(ft, ft)− a(ft, ft)| − 2ℜa(ft, ft)

≤ 1

2
ℜa(ft, ft) + 2λ̃ρ2k‖ft‖2L2(Rn) − 2ℜa(ft, ft) ≤ 2λ̃ρ2k‖ft‖2L2(Rn).

Thus,

‖ft‖2L2(Rn) = ‖e−tLρφf‖2L2(Rn) ≤ exp{2λ̃ρ2kt}‖f‖2L2(Rn)

≤ exp
{
2C(k)h♯(ρt1/(2k))

}
‖f‖2L2(Rn).
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That is, (3.11) holds. Therefore, {e−tL1}t>0 satisfies the k-Davies-Gaffney estimate, which
completes the proof of Proposition 3.1.

Remark 3.1. In the proof of Proposition 3.1, we obtain the estimate (3.11) by following
the proof of [16, Lemma 2]. The same method should also work for the proof of [10,
Proposition 3.1]. Notice that the scaling method mentioned in the last two lines of [10,
p. 143] may not be valid to be used to remove the factor e(αw+ǫ)t appearing in the proof
of [10, Proposition 3.1], as the authors claimed therein.

We also have the following gradient estimate for L1 and L2.

Proposition 3.2. Let k ∈ N, L1 be the 2k-order divergence form elliptic operator and L2

the 2k-order Schrödinger type operator defined as in Section 2. Then, {
√
t∇ke−tLi}t>0 for

i ∈ {1, 2} satisfy the k-Davies-Gaffney estimate.

Proof. For any Hilbert space H, let (·, ·)H be the inner product of H. By Hölder’s inequal-
ity and the fact that {tLie−tLi}t>0 and {e−tLi}t>0 satisfy the k-Davies-Gaffney estimate
which are deduced respectively from Proposition 3.1 and Lemma 3.1, we have that for all
closed sets E, F ⊂ R

n, f ∈ L2(Rn) supported in E, and t ∈ (0, ∞),

∥∥∥
√
t∇ke−tLif

∥∥∥
2

L2(F )
.
∣∣∣
(
tLie

−tLif, e−tLif
)
L2(F )

∣∣∣

.
∥∥tLie−tLif

∥∥
L2(F )

∥∥e−tLif
∥∥
L2(F )

.

(
exp

{
− [dist(E, F )]2k/(2k−1)

C1t1/(2k−1)

})2

‖f‖2L2(E),

which implies that {
√
t∇ke−tLi}t>0 also satisfies the k-Davies-Gaffney estimate. This

finishes the proof of Proposition 3.2.

4 Molecular characterizations of H
p
L(R

n)

Assume that the operator L satisfies the assumptions (A1), (A2) and (A3) in Section 2.
In this section, we introduce the Hardy space Hp

L(R
n) in means of the L-adapted square

function and characterize these Hardy spaces by the molecular decomposition. First, we
recall some notions.

Let Γ(x) ≡ {(y, t) ∈ R
n × (0, ∞) : |x − y| < t} be the cone with vertex x ∈ R

n. For
all f ∈ L2(Rn) and x ∈ R

n, the L-adapted square function SLf is defined by

SLf(x) ≡
{∫∫

Γ(x)
|t2kLe−t2kLf(y)|2dy dt

tn+1

}1/2

.(4.1)

Definition 4.1. Let p ∈ (0, 1] and L satisfy the assumptions (A1), (A2) and (A3) in
Section 2. A function f ∈ L2(Rn) is said to be in H

p
L(R

n) if SLf ∈ Lp(Rn); moreover,
define ‖f‖Hp

L(R
n) ≡ ‖SLf‖Lp(Rn). The Hardy space Hp

L(R
n) is then defined to be the

completion of Hp
L(R

n) with respect to the quasi-norm ‖ · ‖Hp
L(R

n).
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Remark 4.1. Since both the 2k-order divergence form homogenous elliptic operator L1

with complex bounded measurable coefficients and the 2k-order Schrödinger type operator
L2 satisfy the assumptions (A1), (A2) and (A3), we then define the Hardy spaces Hp

L1
(Rn)

and Hp
L2
(Rn), respectively, associated to L1 and L2 as in Definition 4.1. In particular,

when k = 1, Hp
L1
(Rn) is just the Hardy spaceHp

−div(A∇)
(Rn) associated to the second order

divergence form elliptic operator −div(A∇) with complex bounded measurable coefficients
in [30, 31, 32, 36] and H1

L2
(Rn) appears in [21, 22, 28, 48]; when k = 2, H1

L2
(Rn) was also

studied in [12].

In what follows, a cube always means a closed cube whose sides are parallel to the
coordinate axes. Let Q ⊂ R

n be a cube with the side length l(Q). For i ∈ Z+, denote by
Si(Q) the dyadic annuli based on Q, namely,

S0(Q) ≡ Q and Si(Q) ≡ 2iQ \ (2i−1Q) for i ∈ N,(4.2)

where 2iQ is the cube with the same center as Q and the side length 2il(Q).

Definition 4.2. Let p ∈ (0, 1], ǫ ∈ (0, ∞), M ∈ N and L satisfy the assumptions (A1),
(A2) and (A3) in Section 2. A function m ∈ L2(Rn) is called an (Hp

L, ǫ, M)-molecule if
there exists a cube Q ⊂ R

n such that

(i) for each ℓ ∈ {1, · · · , M}, m belongs to the range of Lℓ in L2(Rn);

(ii) for all i ∈ Z+ and ℓ ∈ {0, 1, · · · , M},
∥∥∥∥
(
[l(Q)]−2kL−1

)ℓ
m

∥∥∥∥
L2(Si(Q))

≤ [2il(Q)]n(
1
2
− 1
p
)2−iǫ.(4.3)

Assume that {mj}∞j=0 is a sequence of (Hp
L, ǫ, M)-molecules and {λj}∞j=0 ∈ lp. For

any f ∈ L2(Rn), if f =
∑∞

j=0 λjmj in L2(Rn), then
∑∞

j=0 λjmj is called a molecular
(Hp

L, 2, ǫ, M)-representation of f .

We now introduce the notion of a molecular Hardy space Hp
L,mol,M (Rn) generated by

(Hp
L, ǫ, M)-molecules.

Definition 4.3. Let p ∈ (0, 1], ǫ ∈ (0, ∞), M ∈ N and L satisfy the assumptions (A1),
(A2) and (A3) in Section 2. The molecular Hardy space Hp

L,mol,M (Rn) is defined to be the
completion of the space

H
p
L,mol,M (Rn) ≡ {f : f has a molecular (Hp

L, 2, ǫ, M)− representation}

with respect to the quasi-norm

‖f‖Hp
L,mol,M (Rn) ≡ inf








∞∑

j=0

|λj|p



1/p

: f =

∞∑

j=0

λjmj is a molecular
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(Hp
L, 2, ǫ, M)− representation

}
,

where the infimum is taken over all the molecular (Hp
L, 2, ǫ, M)-representations of f as

above.

Now, we establish the molecular characterization of the Hardy space Hp
L(R

n).

Theorem 4.1. Let p ∈ (0, 1], ǫ ∈ (0, ∞), L satisfy the assumptions (A1), (A2) and (A3)
in Section 2 and M ∈ N such that M > n

2k (
1
p − 1

2 ). Then, Hp
L(R

n) = Hp
L,mol,M (Rn) with

equivalent norms.

To prove Theorem 4.1, by Definitions 4.1 and 4.3, it suffices to prove that

H
p
L(R

n) = H
p
L,mol,M (Rn), M >

n

2k

(
1

p
− 1

2

)
,(4.4)

with equivalent norms. We divide this proof into two parts: (i) Hp
L,mol,M (Rn) ⊂ H

p
L(R

n);

(ii) Hp
L(R

n) ⊂ H
p
L,mol,M (Rn).

To prove the inclusion H
p
L,mol,M (Rn) ⊂ H

p
L(R

n), we need the following key lemma
which is just [32, Lemma 3.8]. Recall that a nonnegative sublinear operator T means that
T is sublinear and Tf ≥ 0 for all f in the domain of T .

Lemma 4.1. Let p ∈ (0, 1], M ∈ N and T be a linear operator, or a nonnegative sublinear
operator, which is of weak type (2, 2), that is, there exists a positive constant C such that
for all η ∈ (0, ∞) and f ∈ L2(Rn),

|{x ∈ R
n : |Tf(x)| > η}| ≤ Cη−2‖f‖2L2(Rn).

Assume further that there exists a positive constant C such that for all (Hp
L, ǫ, M)-

molecules m, ‖Tm‖Lp(Rn) ≤ C. Then the operator T is bounded from Hp
L,mol,M (Rn)

to Lp(Rn).

Proof of Theorem 4.1: the inclusion H
p
L,mol,M (Rn) ⊂ H

p
L(R

n). Recall that L is a one to
one operator of type ω having a bounded H∞ functional calculus. For all x ∈ R

n, ψ ∈
Ψ(S0

µ) defined as in Section 2, set ψt(x) ≡ ψ(tx) for all t ∈ (0,∞). The quadratic norm
‖g‖T,ψ, associated with the operator L in L2(Rn) and ψ, is defined by

‖g‖T,ψ ≡
{∫ ∞

0
‖ψt(T )g‖2L2(Rn)

dt

t

}1/2

for all g ∈ [L2(Rn)]T,ψ which is a subspace of L2(Rn) such that the above integral is
finite. Since L has a bounded H∞ functional calculus on L2(Rn), it follows from [2] that
[L2(Rn)]T,ψ = L2(Rn) and for all g ∈ L2(Rn),

‖g‖T,ψ . ‖g‖L2(Rn).(4.5)
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By Fubini’s theorem, we have that ‖SLg‖L2(Rn) ∼ ‖g‖T,ψ0 , where ψ0(z) ≡ ze−z ∈ Ψ(S0
µ)

for all µ ∈ (0, π/2). Thus, SL is bounded on L2(Rn). By Lemma 4.1, to prove the
inclusion H

p
L,mol,M (Rn) ⊂ H

p
L(R

n), it suffices to prove that for all (Hp
L, ǫ, M)-molecules

m with M > n
2k (

1
p − 1

2),

‖SLm‖Lp(Rn) . 1.(4.6)

Let Q be the cube associated with m as in Definition 4.2. Let j0 ∈ N be such that 2j0−1 <√
n ≤ 2j0 . By Minkowski’s inequality, Hölder’s inequality and the L2(Rn)-boundedness of

SL, we have

‖SLm‖Lp(Rn) ≤ ‖SLm‖Lp(2j0+4Q) +

∞∑

j=j0+5

‖SLm‖Lp(Sj(Q))

. ‖m‖L2(Rn)|2j0+4Q|
1
p
− 1

2 +
∞∑

j=j0+5

‖SLm‖L2(Sj(Q))|Sj(Q)|
1
p
− 1

2 .

For ‖m‖L2(Rn), by Minkowski’s inequality and the size condition (4.3) of m, we have

‖m‖L2(Rn) ≤
∞∑

j=0

‖m‖L2(Sj(Q)) ≤
∞∑

j=0

[2j l(Q)]
n( 1

2
− 1
p
)
2−jǫ . [l(Q)]

n( 1
2
− 1
p
)
.(4.7)

For j ∈ {j0 + 5, · · · }, let Ij ≡ ‖SLm‖L2(Sj(Q)). Then,

(Ij)
2 =

∫

Sj(Q)
|SLm|2 dx =

∫

Sj(Q)

∫ ∞

0

∫

|y−x|<t
|t2kLe−t2kLm(y)|2 dy dt

tn+1
dx

=

∫

Sj(Q)

∫ 2θ(j−5)l(Q)

0

∫

|y−x|<t
|t2kLe−t2kLm(y)|2 dy dt

tn+1
dx

+

∫

Sj(Q)

∫ ∞

2θ(j−5)l(Q)

∫

|y−x|<t
· · · ≡ Bj +Dj ,

where θ ∈ (0, 1) is determined later.
For Dj , let b ≡ L−Mm. By Fubini’s theorem, Lemma 3.1 and the size condition (4.3)

of m, we have

Dj =

∫

Sj(Q)

∫ ∞

2θ(j−5)l(Q)

∫

|y−x|<t

∣∣∣t2kLe−t2kLLMb(y)
∣∣∣
2 dy dt

tn+1
dx

=

∫

Sj(Q)

∫ ∞

2θ(j−5)l(Q)

∫

|y−x|<t

∣∣∣t2k(M+1)LM+1e−t
2kLb(y)

∣∣∣
2 dy dt

tn+1+4kM
dx

.

∫ ∞

2θ(j−5)l(Q)

∥∥∥t2k(M+1)LM+1e−t
2kLb

∥∥∥
2

L2(Rn)

dt

t4kM+1
.

∫ ∞

2θ(j−5)l(Q)
‖b‖2L2(Rn)

dt

t4kM+1

∼ ‖b‖2L2(Rn)

[
2θ(j−5)l(Q)

]−4kM
∼
[

∞∑

i=0

‖b‖2L2(Si(Q))

] [
2θ(j−5)l(Q)

]−4kM
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. [l(Q)]
4kM+2n( 1

2
− 1
p
)
[
2θ(j−5)l(Q)

]−4kM
∼ 2

−j[4kMθ+n(1− 2
p
)] [

2j l(Q)
]n(1− 2

p
)
.

Recall that M > n
2k (1/p − 1/2). Letting θ be sufficiently close to 1 such that α0 ≡

2kMθ − n(1/p − 1/2) > 0, we then obtain

Dj . 2−2jα0 |Sj(Q)|1−
2
p .(4.8)

To estimate Bj , let S̃j(Q) ≡ 2j+j0+1Q \ (2j−j0−2Q) and Ŝj(Q) ≡ 2j+j0+2Q \ (2j−j0−3Q).
By Fubini’s theorem, we have

Bj .

∫ 2θ(j−5)l(Q)

0

∫

S̃j(Q)

∣∣∣t2kLe−t2kLm(y)
∣∣∣
2 dy dt

t

.

∫ 2θ(j−5)l(Q)

0

∫

S̃j(Q)

∣∣∣t2kLe−t2kL
(
χ2j−j0−3Qm

)
(y)
∣∣∣
2 dy dt

t

+

∫ 2θ(j−5)l(Q)

0

∫

S̃j(Q)

∣∣∣t2kLe−t2kL
(
χŜj(Q)m

)
(y)
∣∣∣
2 dy dt

t

+

∫ 2θ(j−5)l(Q)

0

∫

S̃j(Q)

∣∣∣t2kLe−t2kL
(
χRn\2j+j0+2Qm

)
(y)
∣∣∣
2 dy dt

t
≡ Bj,1 + Bj,2 + Bj,3.

By the k-Davies-Gaffney estimate, (4.7) and choosing α ∈ (2n(1/p− 1/2)/(1− θ), ∞), we
obtain

Bj,1 + Bj,3 .

∫ 2θ(j−5)l(Q)

0
exp

{
−C̃

[
2j l(Q)

t

]2k/(2k−1)
}
‖m‖2L2(Rn)

dt

t

. ‖m‖2L2(Rn)

∫ 2θ(j−5)l(Q)

0

[
t

2j l(Q)

]α dt

t
∼ [l(Q)]2n(

1
2
− 1
p
)
[
2θ(j−5)−j

]α
,

where C̃ denotes a positive constant. Let α1 ≡ (1 − θ)α/2 − n(1/p − 1/2). Then α1 > 0
and we have

Bj,1 + Bj,3 .
[
2j l(Q)

]2n(1/2−1/p)
2−2jα1 .(4.9)

Finally, by (4.5) and the size condition (4.3) of m, we obtain

Bj,2 . ‖m‖2
L2(Ŝj(Q))

.
j+j0+2∑

ℓ=j−j0−2

‖m‖2L2(Sℓ(Q)) . 2−2jǫ
[
2j l(Q)

]2n(1/2−1/p)
,(4.10)

which, together with (4.8) and (4.9), shows that there exists a positive constant α2 ≡
min{α0, α1, ǫ} such that for all j ∈ {j0 + 5, · · · },

Ij . [2j l(Q)]n(1/2−1/p)2−jα2 ∼ |Sj(Q)|1/2−1/p2−jα2 .(4.11)
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Combining (4.7) and (4.11), we have

‖SLm‖Lp(Rn) . [l(Q)]n(
1
2
− 1
p
) |2j0+4Q|

1
p
− 1

2 +
∞∑

j=j0+5

2−jα2 . 1,(4.12)

from which we deduce (4.6). Thus, the inclusion H
p
L,mol,M (Rn) ⊂ H

p
L(R

n) holds, which
completes the proof of part one of Theorem 4.1.

Now, we prove the inclusion H
p
L(R

n) ⊂ H
p
L,mol,M (Rn). To this end, we need use some

results concerning the tent space from [14]. Let F be a function on R
n+1
+ ≡ R

n × (0,∞).
The A-functional of F is defined by setting, for all x ∈ R

n,

A(F )(x) ≡
{∫∫

Γ(x)
|F (y, t)|2 dy dt

tn+1

} 1
2

.

For p ∈ (0, ∞), the tent space T p(Rn+1
+ ) is defined by

T p(Rn+1
+ ) ≡

{
F : R

n+1
+ → C : ‖F‖T p(Rn+1

+ ) ≡ ‖A(F )‖Lp(Rn) <∞
}
.

For any cube Q, denote by RQ ≡ Q × (0, l(Q)) the Carleson box of Q. A measurable
function A on R

n+1
+ is called a T p(Rn+1

+ )-atom associated with Q with p ∈ (0, 1], if A
satisfies the following properties:

suppA ⊂ RQ(4.13)

and

{∫∫

RQ

|A(x, t)|2 dx dt
t

}1/2

≤ |Q|
1
2
− 1
p .(4.14)

For the tent space T p(Rn+1
+ ) with p ∈ (0, 1], we have the following atomic decomposition

from [14] (see also [32, Proposition 3.25]).

Theorem 4.2 ([14]). Let p ∈ (0, 1]. For all F ∈ T p(Rn+1
+ ), there exist a numerical

sequence {λj}∞j=0 and a sequence {Aj}∞j=0 of T p(Rn+1
+ )-atoms such that for almost every

(x, t) ∈ R
n+1
+ ,

F (x, t) =
∞∑

j=0

λjAj(x, t).

Moreover,
∞∑

j=0

|λj|p ∼ ‖F‖p
T p(Rn+1

+ )
,

where the implicit equivalent positive constants depend only on the dimension n. Finally,
if F ∈ T p(Rn+1

+ ) ∩ T 2(Rn+1
+ ), then the decomposition also converges in T 2(Rn+1

+ ).
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Let M ∈ N. For all F ∈ T 2(Rn+1
+ ), define the operator πM,L by setting, for all x ∈ R

n,

(4.15) πM,LF (x) ≡
∫ ∞

0

(
t2kL

)M+1
e−t

2kLF (x, t)
dt

t
.

For this operator, we have the following useful lemma on its properties.

Lemma 4.2. LetM ∈ N, p ∈ (0, 1], ǫ ∈ (0, ∞) and the operator L satisfy the assumptions
(A1), (A2) and (A3) in Section 2. Let πM,L be as in (4.15). Then

(i) The operator πM,L is bounded from T 2(Rn+1
+ ) to L2(Rn);

(ii) For any T p(Rn+1
+ )-atom A, πM,LA is an (Hp

L, ǫ, M)-molecule up to a harmless pos-
itive constant multiple.

(iii) If M ∈ (n(1/p − 1/2)/(2k), ∞), then the operator πM,L is bounded from the tent
space T p(Rn+1

+ ) to the molecular Hardy space Hp
L,mol,M (Rn).

Proof. We first show (i). Let L∗ be the adjoint operator of L in L2(Rn). Observe that
L∗ also satisfies the assumptions (A1), (A2) and (A3) in Section 2. By Fubini’s theorem,
Hölder’s inequality and the quadratic estimate (4.5) with L replaced by L∗, we have that
for all F ∈ T 2(Rn+1

+ ) and g ∈ L2(Rn),

|(πM,LF, g)| =
∣∣∣∣
∫

Rn

∫ ∞

0

(
t2kL

)M+1
e−t

2kLF (x, t)g(x)
dt

t
dx

∣∣∣∣

=

∣∣∣∣
∫ ∞

0

∫

Rn

F (x, t)(t2kL∗)
M+1

e−t2kL∗g(x) dx
dt

t

∣∣∣∣

.

{∫ ∞

0

∫

Rn

|F (x, t)|2 dx dt
t

}1/2

×
{∫ ∞

0

∫

Rn

∣∣∣∣
(
t2kL∗

)M+1
e−t

2kL∗
g(x)

∣∣∣∣
2

dx
dt

t

}1/2

. ‖F‖T 2(Rn+1
+ )‖g‖L2(Rn),

which further implies that the operator πM,L is bounded from T 2(Rn+1
+ ) to L2(Rn). Thus,

(i) holds.
To prove (ii), let A be a T p(Rn+1

+ )-atom A associated with the cube Q. From (4.15), it
follows that for all ℓ ∈ {0, · · · , M} and x ∈ R

n,

πM,LA(x) =

∫ ∞

0

(
t2kL

)M+1
e−t

2kLA(x, t)
dt

t
(4.16)

= Lℓ
∫ ∞

0
t2k(M+1)LM+1−ℓe−t

2kLA(x, t)
dt

t
.

Observe that
∫ ∞

0
t2k(M+1)LM+1−ℓe−t

2kLA(x, t)
dt

t
=

∫ ∞

0
t2k(M+1)

(
L1− ℓ

M+1

)M+1
e−t

2kLA(x, t)
dt

t
,
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which belongs to L2(Rn) via a dual argument similar to that used in the proof of (i). This,
combined with (4.16), implies that πM,L(A) satisfies Definition 4.2(i).

For all x ∈ R
n, letting

b(x) ≡
∫ ∞

0
t2k(M+1)Le−t

2kLA(x, t)
dt

t
,

we then have πM,LA(x) = LMb(x). For all g ∈ L2(Rn), by Hölder’s inequality, (4.13),
(4.14) and the quadratic estimate (4.5) with L replaced by L∗, we obtain

∣∣∣∣
∫

Rn

(
[l(Q)]2kL

)ℓ
b(x)g(x) dx

∣∣∣∣(4.17)

=

∣∣∣∣
∫

Rn

{∫ ∞

0
[l(Q)]2kℓ Lℓ+1t2k(M+1)e−t

2kLA(x, t)
dt

t

}
g(x) dx

∣∣∣∣

= [l(Q)]2kℓ

∣∣∣∣∣

∫∫

RQ

A(x, t)(L∗)ℓ+1t2k(M+1)e−t2kL∗g(x)
dx dt

t

∣∣∣∣∣

. [l(Q)]2kl

[∫∫

RQ

|A(x, t)|2 dx dt
t

]1/2

×
[∫∫

RQ

∣∣∣(L∗)ℓ+1t2k(M+1)e−t2kL∗g(x)
∣∣∣
2 dx dt

t

]1/2

. [l(Q)]n(1/2−1/p)+2kM

{∫∫

RQ

∣∣∣(t2kL∗)ℓ+1e−t
2kL∗

g(x)
∣∣∣
2 dx dt

t

}1/2

. [l(Q)]n(1/2−1/p)+2kM‖g‖L2(Rn),

which further implies that for all ℓ ∈ {0, · · · , M},
∥∥∥∥
(
[l(Q)]2kL

)ℓ
b

∥∥∥∥
L2(2Q)

. [l(Q)]2kM |Q|
1
2
− 1
p .

Thus, by this, we obtain that for all ℓ̃ ∈ {0, · · · , M} and j ∈ {0, 1},
∥∥∥∥
(
[l(Q)]−2kL−1

)ℓ̃
(πM,LA)

∥∥∥∥
L2(Sj(Q))

(4.18)

=

∥∥∥∥
(
[l(Q)]−2kL−1

)ℓ̃
LMb

∥∥∥∥
L2(Sj(Q))

.
∥∥∥
(
[l(Q)]2k(M−ℓ̃)LM−ℓ̃

)
b
∥∥∥
L2(2(Q))

|l(Q)|−2kM . [l(Q)]n(1/2−1/p),

which is desired.
Moreover, for all ℓ̃ ∈ {0, · · · , M} and j ∈ {2, 3, · · · }, letting g ∈ L2(Rn) with supp g ⊂

Sj(Q), choosing α ∈ (n(1/p − 1/2)(2 − 1/k), ∞) and using Lemma 3.1, similarly to the
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estimate for (4.17), we have

∣∣∣∣
∫

Rn

(
[l(Q)]2kL

)ℓ
b(x)g(x) dx

∣∣∣∣

. [l(Q)]n(1/2−1/p)+2kM

{∫ l(Q)

0

∫

Q

∣∣∣(t2kL∗)ℓ+1e−t
2kL∗

g(x)
∣∣∣
2 dx dt

t

}1/2

. [l(Q)]n(1/2−1/p)+2kM

[∫ l(Q)

0
exp

{
−C

[
dist(Q, Sj(Q))

t

]2k/(2k−1)
}
dt

t

]1/2

×‖g‖L2(Sj(Q))

. [l(Q)]n(1/2−1/p)+2kM2−jkα/(2k−1)‖g‖L2(Sj(Q)),

which further implies that for all ℓ̃ ∈ {0, · · · , M} and j ∈ {2, 3, · · · },
∥∥∥∥
(
[l(Q)]−2kL−1

)ℓ̃
(πM,LA)

∥∥∥∥
L2(Sj(Q))

(4.19)

≤
∥∥∥∥
(
[l(Q)]−2kL−1

)ℓ̃
LMb

∥∥∥∥
L2(Sj(Q))

.
∥∥∥
(
[l(Q)]2k(M−ℓ̃)LM−ℓ̃

)
b
∥∥∥
L2(Sj(Q))

|l(Q)|−2kM

. [2j l(Q)]n(1/2−1/p)2−j[kα/(2k−1)−n(1/p−1/2)] ∼ [2j l(Q)]n(1/2−1/p)2−jǫ,

where ǫ ≡ kα/(2k − 1)− n(1/p − 1/2) ∈ (0,∞).

Combining (4.18) and (4.19), we know that πM,LA satisfies Definition 4.2(ii) up to
a harmless positive constant multiple. Thus, πM,LA is an (Hp

L, ǫ, M)-molecule up to a
harmless positive constant multiple, which completes the proof of (ii).

To show (iii), by density, we only need show that for all F ∈ T p(Rn+1
+ ) ∩ T 2(Rn+1

+ ),

‖πM,LF‖Hp
L,mol,M (Rn) . ‖F‖T p(Rn+1

+ ) .

To this end, by Theorem 4.2, there exist a sequence {Ai}∞i=0 of T p(Rn+1
+ )-atoms and

{λi}∞i=0 ∈ lp such that F =
∑∞

i=0 λiAi in both pointwise and T 2(Rn+1
+ ), and

(
∞∑

i=0

|λi|p
)1/p

∼ ‖F‖T p(Rn+1
+ ) .

By (i) of this lemma, we know that

πM,LF =

∞∑

i=0

λiπM,LAi
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in L2(Rn), which, combined with (ii) of this lemma, shows that
∑∞

i=0 λiπM,LAi is a molec-
ular (Hp

L, 2, ǫ, M)-representation of πM,LF . Thus, πM,LF ∈ Hp
L,mol,M (Rn) and

‖πM,LF‖Hp
L,mol,M (Rn) .

{
∞∑

i=0

|λi|p
}1/p

∼ ‖F‖T p(Rn+1
+ ) ,

which completes the proof of (iii) and hence Lemma 4.2.

Proof of Theorem 4.1: the inclusion H
p
L(R

n) ⊂ H
p
L,mol,M (Rn). For all f ∈ H

p
L(R

n), t ∈
(0, ∞) and x ∈ R

n, let

F (x, t) ≡ t2kLe−t
2kLf(x).(4.20)

By SLf ∈ Lp(Rn) and f ∈ L2(Rn) together with the fact that SL is bounded on L2(Rn),
we know that F ∈ T p(Rn+1

+ ) ∩ T 2(Rn+1
+ ). Moreover, by the H∞ functional calculus in

L2(Rn), we have the following Calderón reproducing formula that for all g ∈ L2(Rn),

g = C9

∫ ∞

0
(t2kL)M+2e−2t2kLg

dt

t
,

where C9 is a positive constant such that C9

∫∞
0 t2k(M+2)e−2t2k dt

t = 1. Thus, for all
f ∈ H

p
L(R

n), if letting F be as in (4.20), then f = C9πM,LF and, by Lemma 4.2(iii) and
its proof, we further know that f ∈ H

p
L,mol,M (Rn) and ‖f‖pHL,mol,M

(Rn) . ‖f‖Hp
L(R

n).

Therefore, Hp
L(R

n) ⊂ H
p
L,mol,M (Rn), which completes the proof Theorem 4.1.

5 Generalized square function characterizations of H
p
L(R

n)

This section is devoted to the generalized square function characterization of Hp
L(R

n).
We first introduce the notion of the Hardy space Hp

ψ,L(R
n) defined via the generalized

square function. Let ω ∈ [0, π/2), α ∈ (0, ∞), β ∈ (n(1/p − 1/2)/(2k), ∞) and ψ ∈
Ψα,β(S

0
µ) with µ ∈ (ω, π/2). For all f ∈ L2(Rn) and (x, t) ∈ R

n+1
+ , define the operator

Qψ,Lf by,

Qψ,Lf(x, t) ≡ ψ(t2kL)f(x).(5.1)

Definition 5.1. Let p ∈ (0, 1], ω ∈ [0, π/2), L be the operator of type ω satisfying the
assumptions (A1), (A2) and (A3) in Section 2, α ∈ (0, ∞), β ∈ (n(1/p − 1/2)/(2k), ∞),
µ ∈ (ω, π/2) and ψ ∈ Ψα,β(S

0
µ). The generalized square function Hardy space Hp

ψ,L(R
n) is

defined to be the completion of the space

H
p
ψ,L(R

n) ≡
{
f ∈ L2(Rn) : Qψ,Lf ∈ T p(Rn+1

+ )
}

with respect to the quasi-norm ‖f‖Hp
ψ,L(R

n) ≡ ‖Qψ,Lf‖T p(Rn+1
+ ).

The following theorem, which establishes the generalized square function characteriza-
tion of Hp

L(R
n), is the main result of this section.
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Theorem 5.1. Let p ∈ (0, 1], ω ∈ [0, π/2), L be the operator of type ω satisfying the
assumptions (A1), (A2) and (A3) in Section 2, α ∈ (0, ∞), β ∈ (n(1/p − 1/2)/(2k), ∞),
µ ∈ (ω, π/2) and ψ ∈ Ψα,β(S

0
µ). Then the Hardy space Hp

L(R
n) = Hp

ψ,L(R
n) with equiva-

lent norms.

Before proving Theorem 5.1, we first give an application of this theorem. Let α ∈ (0, ∞)
and Lα be the fractional power with exponent α of L defined by the H∞ functional calculus
in L2(Rn) (see, for example, [39, 26]). More precisely, choose m ∈ N such that m > α.
Then, zα(1 + z)−m ∈ Ψα,m−α(S

0
µ) for all µ ∈ [0, π/2) and Lα is defined by setting

Lα ≡ (zα)(L) ≡ (1 + L)m
(

zα

(1 + z)m

)
(L).

For more details about Lα, we refer the reader to [39, 26] and the references therein.

Assume that −Lα generates a bounded holomorphic semigroup {e−tLα}t>0. From [26,
Example 3.4.6], it follows that this is true when α ∈ (0, 1], and in this case, {e−tLα}t>0

is called the subordinated semigroup (see [26, p. 80] for more details). For all f ∈ L2(Rn),
define the Lα-adapted square function SLα by setting, for all x ∈ R

n,

SLαf(x) ≡
{∫∫

Γ(x)

∣∣∣t2kαLαe−t2kαLαf(y)
∣∣∣
2 dy dt

tn+1

}1/2

.(5.2)

For p ∈ (0, 1], we also define the Hardy space Hp
Lα(R

n) associated to Lα to be the
completion of the set

H
p
Lα(R

n) ≡
{
f ∈ L2(Rn) : ‖SLαf‖Lp(Rn) <∞

}
(5.3)

with respect to the quasi-norm ‖f‖Hp
Lα

(Rn) ≡ ‖SLαf‖Lp(Rn) .
With the help of Theorem 5.1, we immediately obtain the following interesting corollary.

Corollary 5.1. Let p ∈ (0, 1] and L satisfy the assumptions (A1), (A2) and (A3). Assume
further that when α ∈ (1, ∞), −Lα generates a bounded holomorphic semigroup. Then,
for all α ∈ (0, ∞), the Hardy spaces Hp

Lα(R
n) = Hp

L(R
n) with equivalent norms.

Proof. Let ω ∈ [0, π/2). Recall that L is an operator of type ω. For all α ∈ (0, ∞),
µ ∈ (ω, π/2) and ξ ∈ S0

µ, set ψ(ξ) ≡ ξαe−ξ
α
. Then, for all β ∈ (n(1/p − 1/2)/(2k), ∞),

ψ ∈ Ψα,β(S
0
µ) and hence, by Theorem 5.1, we have that for all f ∈ L2(Rn),

‖f‖Hp
Lα

(Rn) = ‖SLαf‖Lp(Rn) = ‖Qψ,Lf‖T p(Rn+1
+ ) = ‖f‖Hp

ψ,L(R
n) ∼ ‖f‖Hp

L(R
n),

which together with the density of L2(Rn) in Hp
L(R

n) and Hp
Lα(R

n) shows that Hp
L(R

n) =
Hp
Lα(R

n) with equivalent norms. This finishes the proof of Corollary 5.1.

Let ω ∈ [0, π/2) be as in Section 2 and µ ∈ (ω, π/2). To prove Theorem 5.1, we
introduce two operators as follows:
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(i) For all F ∈ T 2(Rn+1
+ ) and ψ ∈ Ψ(S0

µ), the operator πψ,L is defined by setting, for all
x ∈ R

n,

πψ,LF (x) ≡
∫ ∞

0
ψ(t2kL)F (x, t)

dt

t
;(5.4)

(ii) For all ψ, ψ̃ ∈ Ψ(S0
µ), f ∈ H∞(S0

µ) and F ∈ T 2(Rn+1
+ ), the operator Qf is defined

by setting, for all x ∈ R
n and s ∈ (0, ∞),

QfF (x, s) ≡ Qψ,L ◦ f(L) ◦ π
ψ̃,L

F (x, s)(5.5)

=

∫ ∞

0
ψ(s2kL)f(L)ψ̃(t2kL)F (x, t)

dt

t
,

where the operator Qψ,L is defined as in (5.1).

Observe that by (4.5), Qψ,L is bounded from L2(Rn) to T 2(Rn+1
+ ) and so is Qψ,L∗ .

By Fubini’s theorem and Hölder’s inequality, we have that for all F ∈ T 2(Rn+1
+ ) and

g ∈ L2(Rn),

∫

Rn

πψ,LF (x)g(x) dx =

∫

Rn

∫ ∞

0
ψ(t2kL)F (x, t)

dt

t
g(x) dx

=

∫ ∞

0

∫

Rn

F (x, t)Qψ,L∗(g)(x) dx
dt

t
.

Thus, Qψ,L∗ is the adjoint operator of πψ,L, which, together with the above observation,

shows that πψ,L is bounded from T 2(Rn+1
+ ) to L2(Rn). From these facts and (5.5) together

with that L has a boundedH∞ functional calculus in L2(Rn), it follows that Qf is bounded
on T 2(Rn+1

+ ).

Let σ1, σ2, τ1, τ2 ∈ (0, ∞). Assume that ψ ∈ Ψσ1,τ1(S
0
µ) and ψ̃ ∈ Ψσ2,τ2(S

0
µ). We

now consider the operator ψ(s2kL)f(L)ψ̃(t2kL) in (5.5). Let a ∈ (0, min{σ1, τ2}) and
b ∈ (0, min{σ2, τ1}). For s, t ∈ (0, ∞), when s ≤ t, we write

ψ(s2kL)f(L)ψ̃(t2kL) =

(
s2k

t2k

)a (
s2kL

)−a
ψ(s2kL)f(L)

(
t2kL

)a
ψ̃(t2kL)(5.6)

≡
(
s2k

t2k

)a
Ts2k,t2k ,

while when s > t, we write

ψ(s2kL)f(L)ψ̃(t2kL) =

(
t2k

s2k

)b (
s2kL

)b
ψ(s2kL)f(L)

(
t2kL

)−b
ψ̃(t2kL)(5.7)

≡
(
t2k

s2k

)b
Ts2k,t2k .

Then, we have the following useful estimate on {Ts, t}s,t>0.
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Lemma 5.1. Let k ∈ N be as in (2.6), σ1, σ2, τ1, τ2 ∈ (0, ∞), ω ∈ [0, π/2), µ ∈
(ω, π/2), ψ ∈ Ψσ1,τ1(S

0
µ), ψ̃ ∈ Ψσ2,τ2(S

0
µ), a ∈ (0, min{σ1, τ2}) and b ∈ (0, min{σ2, τ1}).

Let f ∈ H∞(S0
µ). Let {Ts, t}s,t>0 be as in (5.6) and (5.7) with s2k and t2k replaced,

respectively, by s and t. Then, there exists a positive constant C such that for all M ∈
(0, min{σ2 + a, τ1 + b}), s, t ∈ (0, ∞), closed sets E, F ⊂ R

n and g ∈ L2(Rn) supported
in E,

‖Ts,tg‖L2(F ) ≤ C‖f‖L∞(Rn)min

{
1,

max{t, s}
[dist(E, F )]2k

}M
‖g‖L2(E).(5.8)

Proof. We prove this lemma by considering two cases. If s ≤ t, since a ∈ (0, min{σ1, τ2}),
we have that for all ξ ∈ S0

µ,

∣∣(sξ)−a ψ(sξ)f(ξ)
∣∣ . |sξ|σ1−a

1 + |sξ|σ1+τ1 ‖f‖L∞(Rn) . 1

and
∣∣∣(tξ)a ψ̃(tξ)

∣∣∣ . |tξ|σ2+a
1 + |tξ|σ2+τ2 ,

which, together with Lemma 3.3 with ψ and f therein respectively replaced by (tξ)aψ̃(tξ)
and (sξ)−aψ(sξ)f(ξ), implies that the family {Ts,t}s≤t of operators satisfy the k-Davies-
Gaffney estimate of order σ2 + a in t.

Similarly, if s > t, since b ∈ (0, min{σ2, τ1}), we obtain that for all ξ ∈ S0
µ,

∣∣∣f(ξ) (tξ)−b ψ̃(tξ)
∣∣∣ ≤ |tξ|σ2−b

1 + |tξ|σ2+τ2 ‖f‖L∞(Rn) . 1

and
∣∣∣(sξ)b ψ(sξ)

∣∣∣ ≤ |sξ|τ1+b
1 + |sξ|σ1+τ1 ,

which, together with Lemma 3.3 with ψ and f therein respectively replaced by (sξ)bψ(sξ)
and f(ξ)(tξ)−bψ̃(tξ), implies that the family {Ts,t}s>t of operators satisfy the k-Davies-
Gaffney estimate of order τ1 + b in s.

Thus, for allM ∈ (0, min{σ2+a, τ1+b}), we immediately obtain (5.8), which completes
the proof of Lemma 5.1.

Lemma 5.2. Let p ∈ (0, 1], L be the operator of type ω satisfying the assumptions (A1),
(A2) and (A3) in Section 2, α ∈ (0, ∞), β ∈ (n(1/p − 1/2)/(2k), ∞), ω ∈ [0, π/2),
µ ∈ (ω, π/2), ψ ∈ Ψα,β(S

0
µ) and ψ̃ ∈ Ψβ,α(S

0
µ). Then the operator Qf originally defined in

(5.5) on T 2(Rn+1
+ ) can be continuously extended to a bounded linear operator on T p(Rn+1

+ ).
Moreover, there exists a positive constant C such that for all F ∈ T p(Rn+1

+ ) and f ∈
H∞(S0

µ),
∥∥∥QfF

∥∥∥
T p(Rn+1

+ )
≤ C‖f‖L∞(S0

µ)
‖F‖T p(Rn+1

+ ).(5.9)
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Proof. By the density of T 2(Rn+1
+ ) ∩ T p(Rn+1

+ ) in T p(Rn+1
+ ) (see [14]), it suffices to prove

(5.9) for all F ∈ T 2(Rn+1
+ ) ∩ T p(Rn+1

+ ). To this end, by borrowing some idea from the
proof of Theorem 1.1 in [47], we only need show that for all T p(Rn+1

+ )-atoms A,
∥∥∥QfA

∥∥∥
T p(Rn+1

+ )
. ‖f‖L∞(S0

µ)
.(5.10)

Indeed, if (5.10) holds, then from Theorem 4.2 and the T 2(Rn+1
+ )-boundedness of QfA,

it follows that for any F ∈ T 2(Rn+1
+ ) ∩ T p(Rn+1

+ ), there exist a sequence {Aj}∞j=0 of

T p(Rn+1
+ )-atoms and {λj}∞j=0 ∈ lp such that F ≡ ∑∞

j=0 λjAj with the sum converges in

both pointwise and T 2(Rn+1
+ ), and {

∑∞
j=0 |λj |p}1/p ∼ ‖F‖T p(Rn+1

+ ). We claim that for
dxdt
t -almost every (x, t) ∈ R

n+1
+ ,

∣∣∣∣∣∣
Qf




∞∑

j=0

λjAj



∣∣∣∣∣∣
≤

∞∑

j=0

∣∣∣λjQfAj(x, t)
∣∣∣ .(5.11)

Assume this claim for the moment. By (5.11) and p ∈ (0, 1] together with the monotonicity
of lp, we have

∥∥∥QfF
∥∥∥
T p(Rn+1

+ )
≤





∞∑

j=0

|λj |p‖QfAj‖pT p(Rn+1
+ )





1/p

≤ sup
j∈Z+

{
‖Qf (Aj)‖T p(Rn+1

+ )

}




∞∑

j=0

|λj |p




1/p

. ‖f‖L∞(S0
µ)





∞∑

j=0

|λj |p




1/p

∼ ‖f‖L∞(S0
µ)
‖F‖T p(Rn+1

+ ).

That is, Qf is bounded on T p(Rn+1
+ ). To show the claim (5.11), for simplicity of the

notation, let dµ(x, t) ≡ dx dt
t for all (x, t) ∈ R

n+1
+ . By the T 2(Rn+1

+ )-boundedness of Qf

and the T 2(Rn+1
+ )-convergence of F =

∑∞
j=0 λjAj , we obtain that for any η ∈ (0, ∞),

lim
N→∞

µ

({
x ∈ R

n :

∣∣∣∣∣Q
f

(
∞∑

i=N+1

λjAj

)∣∣∣∣∣ > η

})
. lim

N→∞

1

η2

∥∥∥∥∥

∞∑

i=N+1

λjAj

∥∥∥∥∥

2

T 2(Rn+1
+ )

= 0.

This, combined with the Riesz theorem, implies that there exists a subsequence


Q

f




∞∑

j=Nℓ+1

λjAj






l∈N

of {Qf (
∑∞

j=N+1 λjAj)}N∈N such that for µ-almost every (x, t) ∈ R
n+1
+ ,

lim
ℓ→∞

Qf




∞∑

j=Nℓ+1

λjAj


 (x, t) = 0,
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where {Nℓ}ℓ∈N ⊂ N and limℓ→∞Nℓ = ∞. Therefore, for µ-almost every (x, t) ∈ R
n+1
+ and

all ℓ ∈ N,

∣∣∣∣∣∣
Qf




∞∑

j=0

λjAj


 (x, t)

∣∣∣∣∣∣
≤

Nℓ∑

j=0

∣∣∣λjQfAj(x, t)
∣∣∣+

∣∣∣∣∣∣
Qf




∞∑

j=Nℓ+1

λjAj


 (x, t)

∣∣∣∣∣∣
,

which, together with letting ℓ→ ∞, shows the claim (5.11).

To finish the proof of Lemma 5.2, we still need prove (5.10). By the homogeneity of
the norm ‖ · ‖T p(Rn+1

+ ), without loss of generality, we may assume that ‖f‖L∞(S0
µ)

= 1. Let

Q be the cube associated with the T p(Rn+1
+ )-atom A and RQ ≡ Q× (0, l(Q)), where l(Q)

denotes the side length of Q. For all i ∈ N, set 2iRQ ≡ 2iQ × (0, 2il(Q)) ⊂ R
n+1
+ and

Si(RQ) ≡ 2iRQ \ (2i−1RQ).

For i = 1, by Hölder’s inequality and the T 2(Rn+1
+ )-boundedness of Qf and the size

condition (4.14) of T p(Rn+1
+ )-atoms, we have

∥∥∥χ2RQQ
fA
∥∥∥
T p(Rn+1

+ )
=
∥∥∥A(χ2RQQ

fA)
∥∥∥
Lp(Rn)

(5.12)

≤
∥∥∥A(χ2RQQ

fA)
∥∥∥
L2(Rn)

∣∣2(
√
n+ 2)Q

∣∣1/p−1/2

.

{∫∫

RQ

|A(x, t)|2 dx dt
t

}1/2

|Q|1/p−1/2 . 1.

For i ≥ 2, using Hölder’s inequality and Fubini’s theorem, we then obtain

∥∥∥χSi(RQ)Q
fA
∥∥∥
T p(Rn+1

+ )

=
∥∥∥A(χSi(RQ)Q

fA)
∥∥∥
Lp(Rn)

.
∥∥∥A(χSi(RQ)Q

fA)
∥∥∥
L2(Rn)

∣∣2i(2 +
√
n)Q

∣∣ 1p− 1
2

∼





[∫ 2i−1l(Q)

0

∫

Rn

χSi(RQ)(x, s)
∣∣∣QfA(x, s)

∣∣∣
2 dx ds

s

]1/2

+

[∫ 2il(Q)

2i−1l(Q)

∫

Rn

· · ·
]1/2


∣∣2iQ

∣∣ 1p− 1
2 ≡ {I + O}

∣∣2iQ
∣∣ 1p− 1

2 .

To estimate O, from (5.5), Minkowski’s inequality, Fubini’s inequality, Lemma 5.1 and
Hölder’s inequality, we deduce that

O ∼
{∫ 2il(Q)

2i−1l(Q)

∫

Rn

χSi(RQ)(x, s)
∣∣∣QfA(x, s)

∣∣∣
2
dx

ds

s

}1/2

∼
{∫ 2il(Q)

2i−1l(Q)

∫

Rn

χSj(RQ)(x, s)

∣∣∣∣
∫ ∞

0
ψ(s2kL)f(L)ψ̃(t2kL)A(x, t)

dt

t

∣∣∣∣
2

dx
ds

s

}1/2
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∼





∫ 2il(Q)

2i−1l(Q)

∫

Rn

χSi(RQ)(x, s)

∣∣∣∣∣

∫ ∞

0

(
t

s

)2kb

Ts2k ,t2kA(x, t)
dt

t

∣∣∣∣∣

2

dx
ds

s





1/2

.

∫ ∞

0

[
t

2il(Q)

]2kb [∫ 2il(Q)

2i−1l(Q)

∫

Rn

∣∣Ts2k,t2kA(x, t)
∣∣2 χSi(RQ)(x, s) dx

ds

s

]1/2
dt

t

.

∫ l(Q)

0

[
t

2il(Q)

]2kb
‖A(·, t)‖L2(Rn)

dt

t

.

{∫ l(Q)

0
‖A(·, t)‖2L2(Rn)

dt

t

}1/2{∫ l(Q)

0

[
t

2il(Q)

]4kb dt
t

}1/2

. 2−2ikb|Q|1/2−1/p ∼ 2−i[2kb−n(1/p−1/2)]|2iQ|1/2−1/p ∼ 2−iγ1 |2iQ|1/2−1/p,

where b ∈ (n(1/p − 1/2)/(2k), β) and γ1 ≡ 2kb− n(1/p − 1/2) > 0.

Let a ∈ (0, α). To estimate I, by Fubini’s theorem and Minkowski’s inequality, we write

I ∼
{∫ 2i−1l(Q)

0

∫

Rn

χSi(RQ)(x, s)
∣∣∣QfA(x, s)

∣∣∣
2
dx

ds

s

}1/2

∼
{∫ 2i−1l(Q)

0

∫

Rn

χSi(RQ)(x, s)

∣∣∣∣
∫ ∞

0
ψ(s2kL)f(L)ψ̃(t2kL)A(x, t)

dt

t

∣∣∣∣
2

dx
ds

s

}1/2

∼
{∫ 2i−1l(Q)

0

∫

Rn

χSi(RQ)(x, s)

∣∣∣∣∣

∫ ∞

0
min

{(s
t

)2ka
,

(
t

s

)2kb
}

×Ts2k,t2kA(x, t)
dt

t

∣∣∣∣∣

2

dx
ds

s





1/2

.

∫ l(Q)

0

{∫ t

0

∫

Rn

(s
t

)4ka ∣∣Ts2k ,t2kA(x, t)
∣∣2 χSi(RQ)(x, s) dx

ds

s

}1/2
dt

t

+

∫ l(Q)

0

{∫ 2i−1l(Q)

t

∫

Rn

(
t

s

)4kb ∣∣Ts2k,t2kA(x, t)
∣∣2 χSi(RQ)(x, s) dx

ds

s

}1/2
dt

t

≡ I1 + I2.

Let M ∈ (n(1/p− 1/2)/(2k), min{α+ b, β+ a}). It follows from Lemma 5.1 and Hölder’s
inequality that

I1 .

∫ l(Q)

0

[∫ t

0

(s
t

)4ka{ t2k

[dist(RQ, Si(RQ))]2k

}2M

‖A(·, t)‖2L2(Rn)

ds

s

]1/2
dt

t

.

∫ l(Q)

0

[∫ t

0

(s
t

)4ka{ t2k

[2il(Q)]2k

}2M

‖A(·, t)‖2L2(Rn)

ds

s

]1/2
dt

t
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∼ 1

[2il(Q)]2kM

∫ l(Q)

0
‖A(·, t)‖L2(Rn) t

2kM

[∫ t

0

(s
t

)4ka ds
s

]1/2
dt

t

.
1

[2il(Q)]2kM

{∫∫

RQ

|A(x, t)|2 dx dt
t

}1/2{∫ l(Q)

0
t4kM

dt

t

}1/2

∼ 2−2ikM

{∫∫

RQ

|A(x, t)|2 dx dt
t

}1/2

. 2−i[2kM−n(1/p−1/2)]|2iQ|1/p−1/2

∼ 2−iγ2 |2iQ|1/p−1/2,

where γ2 ≡ 2kM − n(1/p − 1/2) > 0.
For I2, via some similar calculations to the estimate of I1, we obtain

I2 .

∫ l(Q)

0

[∫ 2il(Q)

t

(
t

s

)4kb{ s2k

[2il(Q)]2k

}2M
ds

s

]1/2
‖A(·, t)‖L2(Rn)

dt

t

.

∫ l(Q)

0

{[
t

2il(Q)

]2kb
+

[
t

2il(Q)

]2kM}
‖A(·, t)‖L2(Rn)

dt

t

.

{∫∫

RQ

|A(x, t)|2 dx dt
t

}1/2{∫ l(Q)

0

([
t

2il(Q)

]4kb
+

[
t

2il(Q)

]4kM) dt

t

}1/2

.
(
2−2ikb + 2−2ikM

)
|Q|1/2−1/p ∼

(
2−iγ1 + 2−iγ2

) ∣∣2iQ
∣∣1/2−1/p

.

Combining the estimates of I1 and I2, we obtain

O .
(
2−iγ1 + 2−iγ2

)
|2iQ|1/2−1/p.(5.13)

By (5.12) and (5.13), we have

∥∥∥QfA
∥∥∥
p

T p(Rn+1
+ )

.
∥∥∥χ2RQQ

fA
∥∥∥
p

T p(Rn+1
+ )

+
∞∑

i=2

∥∥∥χSi(RQ)Q
fA
∥∥∥
p

T p(Rn+1
+ )

. 1 +

∞∑

i=2

(
2−iγ1p + 2−iγ2p

)
. 1.

Thus, (5.10) holds, which completes the proof of Lemma 5.2.

As an application of Lemma 5.2, we obtain the following boundedness of Qψ,L and πψ,L.

Lemma 5.3. Let p ∈ (0, 1], ω ∈ [0, π/2), L be the operator of type ω satisfying the
assumptions (A1), (A2) and (A3) in Section 2, α ∈ (0, ∞), β ∈ (n(1/p − 1/2)/(2k), ∞)
and µ ∈ (ω, π/2). Then

(i) the operator Qψ,L, originally defined on L2(Rn) as in (5.1) with ψ ∈ Ψα,β(S
0
µ), can

be extended to a bounded linear operator from Hp
L(R

n) to T p(Rn+1
+ ),
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(ii) the operator πψ,L, originally defined on T 2(Rn+1
+ ) as in (5.4) with ψ ∈ Ψβ,α(S

0
µ), can

be extended to a bounded linear operator from T p(Rn+1
+ ) to Hp

L(R
n).

Proof. The proof of Lemma 5.3 is quite similar to that of [32, Proposition 4.9]. For the
convenience of the reader, we present the details. We first recall a Calderón reproducing
formula from [32, (4.12)]. For all ψ ∈ Ψ(S0

µ), there exists a function ψ̃ ∈ Ψ(S0
µ) such that

∫ ∞

0
ψ(t)ψ̃(t)

dt

t
= 1.

Moreover, we have

πψ,L ◦Q
ψ̃,L

= π
ψ̃,L

◦Qψ,L = I in L2(Rn).(5.14)

In particular, let ψ0(z) ≡ ze−z for all z ∈ S0
µ. We then choose ψ̃0(z) ≡ C(M)zMe−z for

all z ∈ S0
µ such that ψ̃0 ∈ ΨM,N(S

0
µ) for any N ∈ (0, ∞), where M is the smallest positive

integer larger than n(1/p− 1/2)/(2k) and C(M)
∫∞
0 tMe−2t dt = 1.

By Definition 5.1 and (5.1), we have that for all f ∈ Hp
L(R

n) ∩ L2(Rn),

‖Qψ0,Lf‖T p(Rn+1
+ ) = ‖f‖Hp

L(R
n),

which implies that Qψ0,L is bounded from Hp
L(R

n) to T p(Rn+1
+ ). For all ψ ∈ Ψα,β(S

0
µ), by

this, together with the Calderón reproducing formula (5.14) and Lemma 5.2 with f ≡ 1
therein, we obtain that for all f ∈ Hp

L(R
n),

‖Qψ,Lf‖T p(Rn+1
+ ) ∼

∥∥∥Qψ,L ◦ π
ψ̃0,L

◦Qψ0,Lf
∥∥∥
T p(Rn+1

+ )
. ‖Qψ0,Lf‖T p(Rn+1

+ )

∼ ‖f‖Hp
L(R

n).

That is, Qψ,L is bounded from Hp
L(R

n) to T p(Rn+1
+ ), which completes the proof of (i).

On the other hand, for all ψ ∈ Ψβ,α(S
0
µ), since ψ0 ∈ Ψ1,β(S

0
µ), it follows from Lemma

5.2 with f ≡ 1 therein that for all F ∈ T p(Rn+1
+ ) ∩ T 2(Rn+1

+ ),

‖πψ,LF‖Hp
L(R

n) = ‖Qψ0,L ◦ πψ,LF‖T p(Rn+1
+ ) . ‖F‖T p(Rn+1

+ ),

which shows that πψ,L is bounded from T p(Rn+1
+ ) to Hp

L(R
n). This finishes the proof of

(ii) and hence Lemma 5.3.

Proof of Theorem 5.1. By Definitions 4.1 and 5.1, to show Theorem 5.1, it suffices to prove
that Hp

L(R
n) = H

p
ψ,L(R

n) with equivalent norms.

The inclusion H
p
L(R

n) ⊂ H
p
ψ,L(R

n) is an easy consequence of the boundedness of Qψ,L

from Hp
L(R

n) to T p(Rn+1
+ ), which is true by Lemma 5.3(i). We now prove H

p
ψ,L(R

n) ⊂
H
p
L(R

n). Let ψ0(z) ≡ zez for all z ∈ S0
µ. Observe that for any ψ ∈ Ψα,β(S

0
µ), we can choose

ψ̃(z) ≡ C̃(M)zMe−z for all z ∈ S0
µ such that (5.14) holds, where C̃(M) is a constant such
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that C̃(M)
∫∞
0 tM−1e−tψ(t) dt = 1. By (5.14), Lemma 5.2 with f ≡ 1 therein, and Lemma

5.3(i), we obtain that for all f ∈ H
p
ψ,L(R

n),

‖f‖Hp
L(R

n) = ‖Qψ0,Lf‖T p(Rn+1
+ ) = ‖Qψ0,L ◦ π

ψ̃,L
◦Qψ,Lf‖T p(Rn+1

+ )

. ‖Qψ,Lf‖T p(Rn+1
+ ) ∼ ‖f‖Hp

ψ,L(R
n),

which implies that Hp
ψ,L(R

n) ⊂ H
p
L(R

n). This finishes the proof of Theorem 5.1.

6 Riesz transforms on H
p
Li(R

n) for i ∈ {1, 2}
In this section, for the 2k-order divergence form homogeneous elliptic operator L1 with

complex bounded measurable coefficients and the 2k-order Schrödinger type operator L2,
we consider the behavior of their Riesz transforms ∇kLi

−1/2 on the Hardy space Hp
Li
(Rn),

respectively for i ∈ {1, 2}. First, we study the boundedness of ∇kLi
−1/2 on Hp

Li
(Rn) for

i ∈ {1, 2}. To this end, we need the following useful estimates.

Lemma 6.1. Let p ∈ (0, 1], M , k ∈ N, L1 be the 2k-order divergence form homoge-
nous elliptic operator with complex bounded measurable coefficients and L2 the 2k-order
Schrödinger type operator. Then, there exists a positive constant C such that for all
i ∈ {1, 2}, closed sets E, F in R

n with dist(E, F ) > 0, f ∈ L2(Rn) supported in E and
t ∈ (0, ∞),

∥∥∥∇kLi
−1/2

(
I − e−tLi

)M
f
∥∥∥
L2(F )

≤ C

(
t

[dist(E, F )]2k

)M
‖f‖L2(E)(6.1)

and

∥∥∥∇kLi
−1/2

(
tLie

−tLi
)M

f
∥∥∥
L2(F )

≤ C

(
t

[dist(E, F )]2k

)M
‖f‖L2(E).(6.2)

Proof. We prove this lemma by borrowing some ideas from [29]. Let i ∈ {1, 2}. From
[6, Theorem 1.1] and [40, Theorem 8.1], we deduce that ∇kLi

−1/2 is bounded on L2(Rn).
Thus, it suffices to prove Lemma 6.1 in the case that t < [dist(E, F )]2k. By the H∞

functional calculus in L2(Rn), we obtain that for all f ∈ L2(Rn),

Li
−1/2f =

1

2
√
π

∫ ∞

0
e−sLis−1/2f ds,(6.3)

which together with the change of variables yields that

∇kLi
−1/2

(
I − e−tLi

)M
f

=
1

2
√
π

∫ ∞

0
∇ke−sLi

(
I − e−tLi

)M
f
ds√
s

=

√
M + 2

2
√
π

∫ ∞

0
∇ke−(M+2)sLi

(
I − e−tLi

)M
f
ds√
s
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=

√
M + 2

2
√
π

∫ t

0

√
s∇ke−(M+2)sLi



M∑

j=0

(
M

j

)
(−1)je−jtLi


 f ds

s

+

√
M + 2

2
√
π

∫ ∞

t

√
s∇ke−(M+2)sLi

(
I − e−tLi

)M
f
ds

s
≡ I + O,

where
(M
j

)
denotes the binomial coefficient.

To estimate I, we write

I =

√
M + 2

2
√
π

∫ t

0

√
s∇ke−sLie−(M+1)sLif

ds

s

+

M∑

j=1

√
M + 2

2
√
π

(
M

j

)
(−1)j

∫ t

0
∇ke−jtLie−(M+2)sLif

ds√
s
≡ I0 +

M∑

j=1

Ij .

For I0, it follows from Minkowski’s inequality, Propositions 3.1 and 3.2, Lemma 3.2 and
the assumption t < [dist(E, F )]2k that

‖I0‖L2(F ) .

∫ t

0

∥∥∥
√
s∇ke−sLie−(M+1)sLif

∥∥∥
L2(F )

ds

s

.

∫ t

0
exp

{
− C̃ [dist(E, F )]2k/(2k−1)

s1/(2k−1)

}
‖f‖L2(E)

ds

s

. exp

{
− C̃1 [dist(E, F )]

2k/(2k−1)

t1/(2k−1)

}

×
∫ t

0
exp

{
− C̃2 [dist(E, F )]

2k/(2k−1)

s1/(2k−1)

}
ds

s
‖f‖L2(E)

. exp

{
− C̃1 [dist(E, F )]

2k/(2k−1)

t1/(2k−1)

}
t

[dist(E, F )]2k
‖f‖L2(E)

.

(
t

[dist(E, F )]2k

)M
‖f‖L2(E),

where C̃, C̃1, C̃2 are positive constants such that C̃1 + C̃2 = C̃.
For each Ij , j ≥ 1, by Lemma 3.2 and Propositions 3.1 and 3.2, we have

‖Ij‖L2(F ) .
1√
t

∫ t

0

∥∥∥
(√

jt∇ke−jtLi
)
◦
(
e−(M+2)sLi

)
f
∥∥∥
L2(F )

ds√
s

.
1√
t
‖f‖L2(E)

∫ t

0
exp

{
− C̃ [dist(E, F )]2k/(2k−1)

t1/(2k−1)

}
ds√
s

.

(
t

[dist(E, F )]2k

)M
‖f‖L2(E),
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which together with the estimate of I0 implies that

‖I‖L2(F ) .

(
t

[dist(E, F )]2k

)M
‖f‖L2(E),(6.4)

where and in what follows, C̃ always denotes a positive constant. We now estimate O by
writing

O ∼
∫ ∞

t

√
s∇ke−sLie−MsLi

(
I − e−tLi

)M
e−sLif

ds

s

∼
∫ ∞

t

(√
s∇ke−sLi

)
◦
(
e−sLi − e−(s+t)Li

)M
◦
(
e−sLi

)
f
ds

s
.

Using the analytic property of semigroups and Lemma 3.1, we have that for all g ∈ L2(Rn)
supported in the closed set E and t < s,

∥∥∥
[
e−sLi − e−(s+t)Li

]
g
∥∥∥
L2(F )

=

∥∥∥∥−
∫ t

0

∂

∂r

(
e−(s+r)Li

)
g dr

∥∥∥∥
L2(F )

.

∫ t

0

∥∥∥(s+ r)Lie
−(s+r)Lig

∥∥∥
L2(F )

dr

s+ r

.

∫ t

0
exp

{
− C̃ [dist(E, F )]2k/(2k−1)

s1/(2k−1)

}
dr

s+ r
‖g‖L2(E)

.
t

s
exp

{
− C̃ [dist(E, F )]2k/(2k−1)

s1/(2k−1)

}
‖g‖L2(E).

Thus,

∥∥∥s
t

[
e−sLi − e−(s+t)Li

]
g
∥∥∥
L2(F )

. exp

{
− C̃ [dist(E, F )]2k/(2k−1)

s1/(2k−1)

}
‖g‖L2(E),(6.5)

Therefore, by Minkowski’s inequality, (6.5), Lemma 3.2, Propositions 3.1 and 3.2, and the
change of variables, we obtain

‖O‖L2(F ) .

∫ ∞

t

∥∥∥∥
(√

s∇ke−sLi
)
◦
(s
t

[
e−sLi − e−(s+t)Li

])M
◦
(
e−sLi

)
f

∥∥∥∥
L2(F )

×
(
t

s

)M ds

s

. ‖f‖L2(E)

∫ ∞

t

(
t

s

)M
exp

{
− C̃ [dist(E, F )]2k/(2k−1)

s1/(2k−1)

}
ds

s

.

(
[dist(E, F )]2k

t

)−M

‖f‖L2(E).
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Combining this estimate with (6.4), we have

∥∥∥∇kLi
−1/2

(
I − e−tLi

)M
f
∥∥∥
L2(F )

.

(
[dist(E, F )]2k

t

)−M

‖f‖L2(E),

that is, (6.1) holds.
Now, we prove (6.2). Using (6.3) and the change of variables, we have that

∇kLi
−1/2

(
tLie

−tLi
)M

f =
1

2
√
π

∫ ∞

0
∇ke−sLi

(
tLie

−tLi
)M

f
ds√
s

∼
∫ ∞

0
∇ke−(M+1)sLi

(
tLie

−tLi
)M

f
ds√
s

∼
∫ t

0
∇ke−(M+1)sLi

(
tLie

−tLi
)M

f
ds√
s
+

∫ ∞

t
· · · ≡ B +D.

An application of the analytic property of semigroups, Propositions 3.1 and 3.2, and
Lemmas 3.1 and 3.2 yields that

‖B‖L2(F )

.
1√
t

∫ t

0

∥∥∥∥∥

(√
t

2
∇ke−

t
2
Li

)
◦
(
e−(M+1)sLi

)
◦
(
t

2
Lie

− t
2
Li

)
◦
(
tLie

−tLi
)M−1

f

∥∥∥∥∥
L2(F )

ds√
s

.
1√
t

∫ t

0
exp

{
− C̃ [dist(E, F )]2k/(2k−1)

t1/(2k−1)

}
‖f‖L2(E)

ds√
s

. exp

{
− C̃ [dist(E, F )]2k/(2k−1)

t1/(2k−1)

}
‖f‖L2(E) .

(
t

[dist(E, F )]2k

)M
‖f‖L2(E),

where C is a positive constant.
For the estimate of D, similarly to the estimate for B, we write

D =

∫ ∞

t

(√
s∇ke−sLi

)
◦
(
t

s

)M
◦
[
sLie

−(s+t)Li
]M

f
ds

s

and we estimate sLie
−(s+t)Lif by

∥∥∥sLie−(s+t)Lif
∥∥∥
L2(F )

=

∥∥∥∥
s

t
e−sLi

∫ t

0

∂

∂r

(
rLie

−rLi
)
f dr

∥∥∥∥
L2(F )

.

∥∥∥∥
s

t
e−sLi

∫ t

0

[
Lie

−rLif − rLi
2e−rLif

]
dr

∥∥∥∥
L2(F )

.

∥∥∥∥
s

t
e−sLi

∫ t

0
Lie

−rLif dr

∥∥∥∥
L2(F )

+

∥∥∥∥
s

t
e−sLi

∫ t

0
rLi

2e−rLif dr

∥∥∥∥
L2(F )

≡ V1 +V2.
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By Minkowski’s inequality, Lemma 3.1 and r < t < s, we obtain

V1 .
s

t

∫ t

0

∥∥∥Lie−(s+r)Li(f)
∥∥∥
L2(F )

dr .
s

t

∫ t

0
exp

{
− C̃ [dist(E, F )]2k/(2k−1)

(s+ r)1/(2k−1)

}
‖f‖L2(E)

dr

s

. exp

{
− C̃ [dist(E, F )]2k/(2k−1)

s1/(2k−1)

}
‖f‖L2(E).

Similarly, we have that

V2 .
s

t

∫ t

0

∥∥∥[(r + s)Li]
2 e−(r+s)Lif

∥∥∥
L2(F )

dr

r + s

.
s

t
‖f‖L2(E)

∫ t

0
exp

{
− C̃ [dist(E, F )]2k/(2k−1)

(r + s)1/(2k−1)

}
dr

r + s

. exp

{
− C̃ [dist(E, F )]2k/(2k−1)

s1/(2k−1)

}
‖f‖L2(E),

which together with the estimate of V1 shows that the family {sLie−(s+t)Li}t>0 of operators
satisfies the k-Davies-Gaffney estimate in s. Thus, using Minkowski’s inequality, Lemmas
3.1 and 3.2, Propositions 3.1 and 3.2, and the change of variables, we obtain

‖D‖L2(F ) .

∫ ∞

t

∥∥∥∥∥
(√

s∇ke−sLi
)
◦
(
t

s

)M
◦
(
sLie

−(s+t)Li
)M

f

∥∥∥∥∥
L2(F )

ds

s

. ‖f‖L2(E)

∫ ∞

t

(
t

s

)M
exp

{
− C̃ [dist(E, F )]2k/(2k−1)

s1/(2k−1)

}
ds

s

.

(
t

[dist(E, F )]2k

)M
‖f‖L2(E).

Combining the estimates for B and D, we obtain that

∥∥∥∇kLi
−1/2

(
tLie

−tLi
)M

f
∥∥∥
L2(F )

.

(
t

[dist(E, F )]2k

)M
‖f‖L2(E),

which shows that (6.2) also holds. This finishes the proof of Lemma 6.1.

With the help of Lemma 6.1, we show that the Riesz transform ∇k(L
−1/2
i ) is bounded

from Hp
L(R

n) to the classical Hardy space Hp(Rn), which when p = 1, i = 2 and k = 1
was first obtained in [28].

Theorem 6.1. Let k ∈ N, p ∈ (n/(n+k), 1], L1 be the 2k-order divergence form homoge-
neous elliptic operator with complex bounded measurable coefficients and L2 the 2k-order

Schrödinger type operator. Then, for all i ∈ {1, 2}, the Riesz transform ∇k(L
−1/2
i ) is

bounded from Hp
Li
(Rn) to the classical Hardy space Hp(Rn).
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Proof. Let i ∈ {1, 2}. We first claim that to prove Theorem 6.1, it suffices to show

that ∇k(L
−1/2
i ) maps each (Hp

Li
, ǫ, M)-molecule m as in Definition 4.2 with ǫ > 0 and

M > n(1/p−1/2)/(2k) into a classical Hp(Rn)-molecule in [43] up to a harmless constant
multiple.

Indeed, assume this claim for the moment. For any f ∈ H
p
Li
(Rn), by Theorem 4.1,

there exist {λj}∞j=0 ∈ lp and a sequence {mj}∞j=0 of (Hp
Li
, ǫ, M)-molecules such that

f =
∑∞

j=0 λjmj is a molecular (Hp
L, 2, ǫ, M)-representation of f and

‖f‖Hp
Li

(Rn) ∼




∞∑

j=0

|λj|p



1/p

.

Moreover, from the L2(Rn)-boundedness of ∇k(L
−1/2
i ) and the fact that f =

∑∞
j=0 λjmj

holds in L2(Rn), it follows that

∇k(L
−1/2
i )f = ∇k(L

−1/2
i )




∞∑

j=0

λjmj


 =

∞∑

j=0

λj∇k(L
−1/2
i )mj(6.6)

in L2(Rn) and hence in the space S ′(Rn) of Schwartz distributions, which, together with

the above claim, implies that (6.6) is a classical molecular decomposition of ∇k(L
−1/2
i )f

in Hp(Rn). Thus, by the molecular characterization of Hp(Rn) in [43], we further obtain
that

∥∥∥∇k(L
−1/2
i )f

∥∥∥
Hp(Rn)

.




∞∑

j=0

|λj|p



1/p

∼ ‖f‖Hp
Li

(Rn),

which, combined with a density argument, then shows that ∇k(L
−1/2
i ) is bounded from

Hp
Li
(Rn) to Hp(Rn).

Let m be an (Hp
Li
, ǫ, M)-molecule associated with the cube Q as in Definition 4.2

with ǫ > 0 and M > n(1/p − 1/2)/(2k). To prove the above claim, we need prove that

∇k(L
−1/2
i )m is a classical Hp(Rn)-molecule in [43] up to a harmless constant multiple. To

this end, we only need show that ∇k(L
−1/2
i )m is a following defined Hp(Rn)-molecule in

[33, 32], from which it follows that it is also a classical molecule in [43]. In what follows,
for any γ ∈ R, we denote by ⌊γ⌋ the maximal integer not more than γ. Let p ∈ (0, 1] and
Q be a cube in R

n. A function m̃ ∈ L2(Rn) is called an Hp(Rn)-molecule associated to Q
if there exists a positive constant ǫ ∈ (0, ∞) such that

(i) for all j ∈ Z+,

‖m̃‖L2(Sj(Q)) .
[
2j l(Q)

]n(1/p−1/2)
2−jǫ;(6.7)

(ii) there exists a non-negative integer M ∈ Z+ with M ≥ ⌊n(1/p− 1)⌋ such that for all
multi-indices α with 0 ≤ |α| ≤M ,

∫

Rn

xαm̃(x) dx = 0.(6.8)
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We first prove that ∇k(L
−1/2
i )m satisfies (6.7). For all j ∈ {0, 1, 2}, by the L2(Rn)-

boundedness of ∇k(Li
−1/2) and (4.7), we have

∥∥∥∇k(Li
−1/2)m

∥∥∥
L2(Sj(Q))

.
∥∥∥∇k(Li

−1/2)m
∥∥∥
L2(Rn)

. ‖m‖L2(Rn) . |Q|1/2−1/p.(6.9)

When j > 2, we write

∥∥∥∇k(Li
−1/2)m

∥∥∥
L2(Sj(Q))

≤
∥∥∥∥∇

k(Li
−1/2)

(
I − e−[l(Q)]2kLi

)M
m

∥∥∥∥
L2(Sj(Q))

+

∥∥∥∥∇
k(Li

−1/2)

[
I −

(
I − e−[l(Q)]2kLi

)M]
m

∥∥∥∥
L2(Sj(Q))

≡ I + O.

An application of Lemma 6.1 and (4.7) gives that

I .

∥∥∥∥∇
k(Li

−1/2)
(
I − e−[l(Q)]2kLi

)M
(mχ2j−2Q)

∥∥∥∥
L2(Sj(Q))

+

∥∥∥∥∇
k(Li

−1/2)
(
I − e−[l(Q)]2kLi

)M
(mχRn\(2j+1Q))

∥∥∥∥
L2(Sj(Q))

+

∥∥∥∥∇
k(Li

−1/2)
(
I − e−[l(Q)]2kLi

)M
(mχ2j+1Q\(2j−2Q))

∥∥∥∥
L2(Sj(Q))

.

[
dist(Sj(Q), 2j−2Q)

l(Q)

]2kM ∥∥mχ2j−2Q

∥∥
L2(Rn)

+

[
dist(Sj(Q), Rn \ (2j+1Q))

l(Q)

]2kM ∥∥mχRn\(2j+1Q)

∥∥
L2(Rn)

+
∥∥mχ2j+1Q\(2j−1Q)

∥∥
L2(Rn)

. 2−2jkM [l(Q)]n(1/2−1/p) +
[
2j l(Q)

]n(1/2−1/p)
2−jǫ.

Let ǫ̃ ≡ min{ǫ, 2kM − n(1/p − 1/2)} > 0. We then have

I .
[
2j l(Q)

]n(1/2−1/p)
2−jǫ̃.(6.10)

To estimate O, from Lemma 6.1 and (4.3), we deduce that

O . sup
1≤ℓ≤M

∥∥∥∇kLi
−1/2e−ℓ[l(Q)]2kLim

∥∥∥
L2(Sj(Q))

∼ sup
1≤ℓ≤M

∥∥∥∥∥∇
kLi

−1/2

(
ℓ

M
[l(Q)]2kLie

− ℓ
M

[l(Q)]2kLi

)M (
[l(Q)]−2kLi

−1
)M

m

∥∥∥∥∥
L2(Sj(Q))

∼ sup
1≤ℓ≤M

∥∥∥∥∥∇
kLi

−1/2

(
ℓ

M
[l(Q)]2kLie

− ℓ
M

[l(Q)]2kLi

)M

×
[
χ2j−2Q

(
[l(Q)]−2kLi

−1
)M]

m

∥∥∥∥
L2(Sj(Q))
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+ sup
1≤ℓ≤M

∥∥∥∥∥∇
kLi

−1/2

(
ℓ

M
[l(Q)]2kLie

− ℓ
M

[l(Q)]2kLi

)M

×
[
χRn\2j+1Q

(
[l(Q)]−2kLi

−1
)M]

m

∥∥∥∥
L2(Sj(Q))

+ sup
1≤ℓ≤M

∥∥∥∥∇
kLi

−1/2

(
ℓ

M
[l(Q)]2k

×Lie−
ℓ
M

[l(Q)]2kLi
)M [

χ2j+1Q\2j−2Q

(
[l(Q)]−2kLi

−1
)M]

m

∥∥∥∥
L2(Sj(Q))

. 2−2jkM

∥∥∥∥
(
[l(Q)]−2kL−1

i

)M
m

∥∥∥∥
L2(Rn)

+

∥∥∥∥χ2j+1Q\2j−1Q

(
[l(Q)]−2kL−1

i

)M
m

∥∥∥∥
L2(Rn)

. 2−2jkM





∞∑

k̃=0

∥∥∥∥
(
[l(Q)]−2kL−1

i

)M
m

∥∥∥∥
2

L2(S
k̃
(Q))





1/2

+
[
2j l(Q)

]n(1/2−1/p)
2−jǫ

. 2−2jkM





∞∑

k̃=0

2−2k̃[ǫ+n(1/p−1/2)]





1/2

[l(Q)]n(1/2−1/p) +
[
2j l(Q)

]n(1/2−1/p)
2−jǫ

. 2−jǫ̃
[
2j l(Q)

]n/p−2/p
,

which, together with (6.10), implies that ∇k(L
−1/2
i )m satisfies (6.7) with ǫ therein replaced

by ǫ̃.

Now, we prove that ∇k(L
−1/2
i )m satisfies (6.8) by borrowing some idea from the proof of

Theorem 7.4 in [36]. Let D(
√
Li) be the domain of

√
Li and R(Li

−1/2) the range of Li
−1/2.

From [6, 40], it follows that D(
√
Li) = D(ai), where D(ai) ⊂ W k,2(Rn) is the domain of

the sesquilinear form associated to Li, which implies that R(Li
−1/2) ⊂ W k,2(Rn). Let

{ϕj}∞j=1 ⊂ C∞
c (Rn) such that

(i)
∑∞

j=1 ϕj(x) = 1 for almost every x ∈ R
n;

(ii) for each j ∈ N, there exists a ball Bj ⊂ R
n such that suppϕj ⊂ 2Bj , ϕj ≡ 1 on Bj

and 0 ≤ ϕj ≤ 1;

(iii) there exists a positive constant Cϕ such that for all j ∈ N and x ∈ R
n,

k∑

ℓ=1

|∇ℓϕj(x)| ≤ Cϕ;

(iv) there exists Nϕ ∈ N such that
∑∞

j=1 χ2Bj ≤ Nϕ.

For all j ∈ N and multi-indices α, let ηj ∈ C∞
c (Rn) such that ηj ≡ 1 on 2Bj and supp ηj ⊂

4Bj . Since R(Li
−1/2) ⊂W k, 2(Rn) and ηj x

α ∈ C∞
c (Rn), we have

∫

Rn

xα∇kLi
−1/2m(x) dx =

∫

Rn

xα∇k−1




∞∑

j=1

ϕj∇Li−1/2


m(x) dx
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=

∞∑

j=1

∫

Rn

xα∇k−1
(
ϕj∇Li−1/2

)
m(x) dx

=
∞∑

j=1

∫

Rn

ηjx
α∇k−1

(
∇Li−1/2

)
m(x) dx

=

∞∑

j=1

(−1)k−1

∫

Rn

(
∇k−1(ηjx

α)
)
∇(Li

−1/2)m(x) dx.

Thus, for all |α| ≤ k − 1 = n(1/[n/(n + k)]− 1), we obtain

∣∣∣∣
∫

Rn

xα∇kLi
−1/2m(x) dx

∣∣∣∣ ≤
∞∑

j=1

∣∣∣∣
∫

Rn

(
∇k−1(ηjx

α)
)
∇(Li

−1/2m(x) dx

∣∣∣∣

≤
∞∑

j=1

∣∣∣∣
∫

Rn

ηj∇(Li
−1/2)m(x) dx

∣∣∣∣

=

∞∑

j=1

∣∣∣∣
∫

Rn

ηj∇(ϕiLi
−1/2)m(x) dx

∣∣∣∣

=

∞∑

j=1

∣∣∣∣
∫

Rn

∇(ηj)ϕiLi
−1/2m(x) dx

∣∣∣∣ = 0,

which implies that ∇k(L
−1/2
i )m satisfies (6.8) with p and M respectively replaced by

n/(n+ k) and n(1/[n/(n+ k)]− 1). Thus, ∇k(L
−1/2
i )m is a classical Hp(Rn) molecule in

[43], which completes the proof of Theorem 6.1.

On the Hardy space Hp
L1
(Rn), we further obtain its characterization by the Riesz trans-

forms ∇k(L
−1/2
1 ). To this end, we first introduce some notions.

Definition 6.1. Let p ∈ (0, 1] and L1 be the 2k-order divergence form homogenous elliptic
operator with complex bounded measurable coefficients. The Riesz transform Hardy space
Hp
L1,Riesz(R

n) is defined to be the completion of the set

H
p
L1,Riesz(R

n) ≡
{
f ∈ L2(Rn) : ∇k(L

−1/2
1 )f ∈ Hp(Rn)

}

with respect to the quasi-norm

‖f‖Hp
L1,Riesz(R

n) ≡
∥∥∥∇k(L

−1/2
1 )f

∥∥∥
Hp(Rn)

for all f ∈ H
p
L1,Riesz(R

n).

We also need the following notion of Lp−Lq k-off-diagonal estimates, which when k = 1
previously appeared in [3] (see also [32]).



Jun Cao and Dachun Yang 43

Definition 6.2. Let k ∈ N, r, q ∈ (1, ∞) and r ≤ q. A family {St}t>0 of operators is
said to satisfy the Lr − Lq k-off-diagonal estimate, if there exist positive constant C and
C̃ such that for all closed sets E, F ⊂ R

n and f ∈ Lr(Rn) ∩ L2(Rn) supported in E,

‖Stf‖Lq(F ) ≤ Ct
n
2k

( 1
q
− 1
r
) exp

{
−C̃ [dist(E, F )]2k/(2k−1)

t1/(2k−1)

}
‖f‖Lr(E).

On the Lr − Lq k-off-diagonal estimate of the 2k-order divergence form homogeneous
elliptic operator L1 with complex bounded measurable coefficients, we have the following
useful lemma.

Lemma 6.2. Let L1 be the 2k-order divergence form homogeneous elliptic operator with
complex bounded measurable coefficients and r ∈ (1, 2] such that the semigroup {e−tL1}t>0

satisfies the Lr − L2 k-off-diagonal estimate. Then the family {tL1e
−tL1}t>0 of operators

also satisfies the Lr − L2 k-off-diagonal estimate.

Proof. By the analytical property of the semigroup {e−tL1}t>0, we have {tL1e
−tL1}t>0 =

{2( t2L1e
− t

2
L1)(e−

t
2
L1)}t>0. Since the k-Davies-Gaffney estimate is just the L2 − L2 k-

off-diagonal estimate, it follows from Proposition 3.1 and Lemma 3.1 that { t2L1e
− t

2
L1}t>0

satisfies the L2−L2 k-off-diagonal estimate. Moreover, by the fact that {e− t
2
L1}t>0 satisfies

the Lr−L2 k-off-diagonal estimate and an argument similar to the proof of Lemma 3.2 with
{At}t>0 and {Bs}s>0, respectively, replaced by { t2L1e

− t
2
L1}t>0 and {e− t

2
L1}t>0, we obtain

that {tL1e
−tL1}t>0 also satisfies the Lr −L2 k-off-diagonal estimate, which completes the

proof of Lemma 6.2.

Proposition 6.1. Let L1 be the 2k-order divergence form homogeneous elliptic opera-
tor with complex bounded measurable coefficients and r ∈ (1, 2] such that the semigroup
{e−tL1}t>0 satisfies the Lr − L2 k-off-diagonal estimate. Then for all p ∈ (0, 1] such that
p > rn/(n+ kr) and h ∈ H

p
L1,Riesz(R

n),

‖h‖Hp
L1

(Rn) ≤ C‖∇kL1
−1/2h‖Hp(Rn).

To prove Proposition 6.1, we need recall some results concerning the homogenous Hardy-
Sobolev space Ḣk,p(Rn); see, for example, [13, 27, 44, 45].

Definition 6.3. Let k ∈ N and p ∈ (0, 1]. The homogeneous Hardy-Sobolev space
Ḣk,p(Rn) is defined to be the space

Ḣk,p(Rn) ≡



f ∈ S ′(Rn)/Pk−1(R

n) : ‖f‖Ḣk,p(Rn) ≡
∑

|σ|=k

‖∂σf‖Hp(Rn) <∞



 ,

where S ′(Rn) denotes the space of all Schwartz distributions on R
n and Pk−1(R

n) the
class of all polynomials of order strictly less than k on R

n.

Let ℓ ∈ N be fixed. Let S(Rn) denote the space of all Schwartz functions on R
n and

φ ∈ S(Rn) such that
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(i) φ is radial, suppφ ⊂ {x ∈ R
n : |x| < 1} and for all ξ 6= 0,

∫∞
0 |φ̂(tξ)|2 dtt = 1, where

φ̂ denotes the Fourier transform of φ,

(ii) for all |γ| ≤ ℓ,
∫
Rn
xγφ(x) dx = 0.

For any given φ ∈ S(Rn) as above and all f ∈ S ′(Rn), let Qtf ≡ φt ∗ f , where φt ≡
t−nφ(x/t) for all t ∈ (0, ∞) and x ∈ R

n. Let p, q ∈ (0, ∞) and α ∈ R such that
|α| < ℓ+ 1. The homogenous Triebel-Lizorkin space Ḟαp,q(R

n) is defined to be the space

Ḟαp,q(R
n) ≡

{
f ∈ S ′(Rn)/P(Rn) : ‖f‖Ḟαp,q(Rn)

≡
∥∥∥∥∥

{∫ ∞

0

(
t−α|Qtf |

)q dt
t

}1/q
∥∥∥∥∥
Lp(Rn)

<∞



 ,

where P(Rn) denotes the class of all polynomials on R
n; see, for example, [27, 44, 45].

Let Ẇ k,2(Rn) for k ∈ N denote the homogenous Sobolev space of order k endowed with
the norm ‖ · ‖Ẇ k,2(Rn) ≡ ‖∇k(·)‖L2(Rn). It is known that the homogeneous Sobolev space

Ẇ k,2(Rn) and Hardy-Sobolev space Ḣk,p(Rn) coincide, respectively, with the Triebel-
Lizorkin space Ḟ k2,2(R

n) and Ḟ kp,2(R
n) with equivalent norms (see, for example, [44, p. 242]).

Definition 6.4. Let k ∈ N, ℓ ≥ k be any fixed positive integer and p ∈ (0, 1]. A function
b is called an Ḣk,p(Rn)-atom if it satisfies that

(i) there exists a ball B ⊂ R
n such that supp b ⊂ B,

(ii) for any |γ| ≤ ℓ,
∫
Rn
xγb(x) dx = 0,

(iii)

‖b‖Ḟ k2,2(Rn) ≤ |B|1/2−1/p.(6.11)

Lemma 6.3. Let p ∈ (0, 1], k ∈ N and f ∈ Ẇ k,2(Rn) ∩ Ḣk,p(Rn). Then there exist
{λj}∞j=0 ∈ lp and a sequence {bj}∞j=0 of Ḣk,p(Rn)-atoms such that f =

∑∞
j=0 λjbj in

Ẇ k,2(Rn) ∩ Ḣk,p(Rn), and ‖f‖Ḣk,p(Rn) ∼ {
∑∞

j=0 |λj |p}1/p.

Proof. For any f ∈ Ẇ k,2(Rn)∩Ḣk,p(Rn), by the coincidence of Sobolev spaces and Hardy-
Sobolev spaces with Triebel-Lizorkin spaces, we know that f ∈ Ḟ k2,2(R

n)∩ Ḟ kp,2(Rn). From
this and a slight modification on the proof of [45, Proposition 4.3] together with the same
observation as in Theorem 4.2 on the convergence of the atomic decomposition for elements
in the tent spaces, we deduce all the desired conclusions of Lemma 6.3, which completes
the proof of Lemma 6.3.

Proof of Proposition 6.1. For all g ∈ L2(Rn), define the operator S1 by setting, for all
x ∈ R

n,

S1g(x) ≡
{∫∫

Γ(x)

∣∣∣tk
√
L1e

−t2kL1g(y)
∣∣∣
2 dy dt

tn+1

}1/2

.
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For all h ∈ H
p
Riesz, L1

(Rn), let f ≡ L
−1/2
1 h. Then f ∈ Ẇ k,2(Rn) ∩ Ḣk,p(Rn) and, by

Lemma 6.3, there exist {λj}∞j=0 ∈ lp and a sequence {bj}∞j=0 of Ḣk,p(Rn)-atoms such that

f =
∑∞

j=0 λjbj in Ẇ
k,2(Rn) ∩ Ḣk,p(Rn) and, moreover, (

∑∞
j=0 |λj |p)1/p ∼ ‖f‖Ḣk,p(Rn). By

Theorem 5.1 with L replaced by L1, to show Proposition 6.1, we only need prove that for
all f ∈ Ẇ k,2(Rn) ∩ Ḣk,p(Rn) with p ∈ (nr/(n+ kr), 1],

∥∥∥S1
√
L1f

∥∥∥
Lp(Rn)

. ‖f‖Ḣk,p(Rn).(6.12)

To prove (6.12), it suffices to prove that for all Ḣk,p(Rn)-atoms b,

∥∥∥S1
√
L1b
∥∥∥
Lp(Rn)

. 1.(6.13)

Indeed, if (6.13) holds, by the L2(Rn)-boundedness of S1 which is deduced from (4.5), and
[5, Theorem 1.1], we obtain

∥∥∥S1
√
L1f

∥∥∥
L2(Rn)

.
∥∥∥
√
L1f

∥∥∥
L2(Rn)

∼
∥∥∥∇kf

∥∥∥
L2(Rn)

∼ ‖f‖Ẇ k,2(Rn),

which together with an argument similar to the proof of (5.11) yields that for almost
every x ∈ R

n, |S1
√
L1f(x)| ≤

∑∞
j=0 |λjS1

√
L1bj(x)|. This combined with (6.13) shows

that (6.12) is valid.

We now prove (6.13). For j ∈ N, let R(Sj(Q)) ≡ ∪x∈Sj(Q)Γ(x) be the saw-tooth
region based on Sj(Q) ⊂ R

n. By Minkowski’s inequality, Hölder’s inequality and Fubini’s
theorem, we obtain

∥∥∥S1
√
L1b
∥∥∥
p

Lp(Rn)
.

∞∑

j=0

∥∥∥S1
√
L1b
∥∥∥
p

Lp(Sj(Q))

.
∥∥∥S1

√
L1b
∥∥∥
p

L2(4Q)
|Q|n(

1
p
− 1

2
)p +

∞∑

j=3

∥∥∥S1
√
L1b
∥∥∥
p

L2(Sj(Q))

∣∣2j l(Q)
∣∣n( 1p− 1

2
)p

.
∥∥∥S1

√
L1b
∥∥∥
p

L2(4Q)
|Q|(

1
p
− 1

2
)p

+

∞∑

j=3

{∫∫

R(Sj(Q))

∣∣∣t2kL1e
−t2kL1b(y)

∣∣∣
2 dy dt

t2k+1

}p/2 ∣∣2j l(Q)
∣∣n( 1p− 1

2
)p

.
∥∥∥S1

√
L1b
∥∥∥
p

L2(4Q)
|Q|(

1
p
− 1

2
)p

+

∞∑

j=3

{∫

2j−2Q

∫ ∞

2j−3l(Q)

∣∣∣t2kL1e
−t2kL1b(y)

∣∣∣
2 dy dt

t2k+1

}p/2 ∣∣2j l(Q)
∣∣n( 1p− 1

2
)p

+

∞∑

j=3

{∫

Rn\2j−2Q

∫ ∞

0
· · ·
}p/2 ∣∣2j l(Q)

∣∣n( 1p− 1
2
)p
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≡ I +

∞∑

j=3

(Jj)
p +

∞∑

j=3

(Vj)
p.

For I, by the L2(Rn)-boundedness of S1, (6.11) and [6, Theorem 1.1] we have

I .
∥∥∥
√
L1b
∥∥∥
p

L2(Rn)
|Q|(

1
p
− 1

2
)p . ‖b‖p

Ḟ k2,2(R
n)
|Q|(

1
p
− 1

2
)p . 1.(6.14)

To estimate Jj, recall the following embedding theorem (see, for example, [44]) that for
all f ∈ Ḟ knr

n+kr
,2(R

n),

‖f‖Lr(Rn) .
∥∥∥∇kf

∥∥∥
L

nr
n+kr (Rn)

.(6.15)

For each Oj, using Minkowski’s inequality, Lemma 6.2, (6.15), Lemma 6.2, Hölder’s
inequality and (6.11), we obtain

Jj .

{∫ ∞

2j−3l(Q)

∥∥∥t2kL1e
−t2kL1b

∥∥∥
2

L2(2j−2Q)

dt

t1+2k

}1/2 ∣∣2j l(Q)
∣∣n( 1p− 1

2
)

.

{∫ ∞

2j−3l(Q)
t2n(

1
2
− 1
r
) dt

t1+2k

}1/2 ∣∣2j l(Q)
∣∣n( 1p− 1

2
) ‖b‖Lr(Q)

.
[
2j l(Q)

]n( 1
p
− 1
r
)−k ‖b‖Lr(Q) .

[
2j l(Q)

]n( 1
p
− 1
r
)−k
∥∥∥∇kb

∥∥∥
L

rn
n+kr (Q)

.
[
2j l(Q)

]n( 1
p
− 1
r
)−k
∥∥∥∇kb

∥∥∥
L2(Q)

|l(Q)|n+krr −n
2 . 2[n(

1
p
− 1
r
)−k]j.

Let α ≡ n
r + k − n

p . Since p ∈ ( nr
n+kr , 1], we then have α > 0 and

∞∑

j=3

(Jj)
p .

∞∑

j=3

2−αjp . 1.(6.16)

To estimate Vj, we write

Vj .
[
2j l(Q)

]n( 1
p
− 1

2
)

{∫

Rn\2j−2Q

∫ 2j−3l(Q)

0

∣∣∣t2kL1e
−t2kL1b(y)

∣∣∣
2 dy dt

t2k+1

}1/2

+
[
2j l(Q)

]n( 1
p
− 1

2
)

{∫

Rn\2j−2Q

∫ ∞

2j−3l(Q)
· · ·
}1/2

≡ Vj,1 +Vj,2.

Similarly to the estimate of Jj, we have

Vj,2 . 2−αj .(6.17)

To estimate Vj,1, let β ∈ (2k+2n(1/r−1/2), ∞). By Lemma 6.2, (6.11) and (6.15), there

exists a positive constant C̃ such that

Vj,1 .
[
2jl(Q)

]n( 1
p
− 1

2
)
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×
[∫ 2j−3l(Q)

0
t2n(

1
2
− 1
r
) exp

{
−C̃

[
2j l(Q)

]2k/(2k−1)

t2k/(2k−1)

}
dt

t2k+1

]1/2
‖b‖Lr(Q),

.
[
2jl(Q)

]n( 1
p
− 1

2
)

[∫ 2j−3l(Q)

0
t2n(

1
2
− 1
r
)

[
t

2j l(Q)

]β dt

t2k+1

]1/2 ∥∥∥∇kb
∥∥∥
L

rn
n+kr (Q)

.
[
2jl(Q)

]n( 1
p
− 1

2
)

[
1

[2j l(Q)]β

∫ 2j−3l(Q)

0
t2n(

1
2
− 1
r
)+β−2k−1 dt

]1/2

×
∥∥∥∇kb

∥∥∥
L2(Q)

|l(Q)|n+krr −n
2 . 2

j[n( 1
p
− 1
r
)−k]

,

which together with (6.17) shows that

∞∑

j=3

(Vj)
p =

∞∑

j=3

2−αjp . 1.

This, combined (6.14) and (6.16), implies (6.13), which completes the proof of Proposition
6.1.

Combining Theorem 6.1 and Proposition 6.1, we obtain the following Riesz transform
characterization of Hp

L1
(Rn). We point out that Theorem 6.2 when k = 1 is just the Riesz

transform characterization of Hp
−div(A∇)(R

n) for p ∈ (0, 1], which is exactly [32, Theorem

5.2] in the case that p ∈ (0, 1].

Theorem 6.2. Let k ∈ N, L1 be the 2k order divergence form homogeneous elliptic
operator and r ∈ (1, 2] such that rn/(n + kr) ≤ 1 and the semigroup {e−tL1}t>0 satisfies
the Lr − L2 k-off-diagonal estimates. Then for all p ∈ (rn/(n+ kr), 1],

Hp
L1
(Rn) = Hp

Riesz, L1
(Rn)

with equivalent norms.

Remark 6.1. We point out that a key fact used in the proof of Proposition 6.1 (and
hence Theorem 6.2) is ‖

√
L1f‖L2(Rn) . ‖∇kf‖L2(Rn), which comes from [6, Theorem 1.1].

This inequality for L2 is equivalent to the following inequality that for all f ∈ Ẇ k,2(Rn),
∥∥∥V k/2f

∥∥∥
L2(Rn)

.
∥∥∥∇kf

∥∥∥
L2(Rn)

,

which seems impossible even when V ≡ 1. Thus, the method used in the proof of Propo-
sition 6.1 seems unsuitable for obtaining a counterpart of Proposition 6.1 for L2 .
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