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Hardy Spaces H7(R") Associated to Operators Satisfying
k-Davies-Gaffney Estimates

Jun Cao and Dachun Yang*

Abstract Let L be a one to one operator of type w having a bounded H, functional
calculus and satisfying the k-Davies-Gaffney estimates with k € N. In this paper, the
authors introduce the Hardy space HY (R™) with p € (0, 1] associated to L in terms
of square functions defined via {e‘t%L}t>0 and establish their molecular and general-
ized square function characterizations. Typical examples of such operators include the
2k-order divergence form homogeneous elliptic operator L with complex bounded mea-
surable coefficients and the 2k-order Schrodinger type operator Ly = (—A)* + V¥, where
A is the Laplacian and 0 < V € LE (R™). Moreover, as applications, for i € {1, 2}, the

loc

authors prove that the associated Riesz transform V*(L; 1/ %) is bounded from H 7. (R™)
to HP(R™) for p € (n/(n + k), 1] and establish the Riesz transform characterizations
of H} (R") for p € (rn/(n + kr), 1] if {e7""1},5 satisfies the L" — L? k-off-diagonal

estimates with r € (1,2]. These results when k =1 and L = L, are known.

1 Introduction

The Hardy spaces, as a suitable substitute of Lebesgue spaces LP(R™), play an important
role in various fields of analysis and partial differential equations. It is well known that
the Hardy spaces HP(R") are essentially related to the Laplacian operator A = Z;L:1 %22_,
which have been intensively studied; see, for example, [42, 23, 15, 43, 41, 25] and tﬁe
references therein.

In recent years, the study of Hardy spaces associated to different differential operators
inspires great interests; see, for example, [4, 7, 8, 12, 19, 20, 18, 21, 22, 28, 30, 31, 32] and
their references. In particular, in [4], when the operator L satisfies a pointwise Poisson
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2 Hardy Spaces H7 (R™) Associated to Operators

upper bound, Auscher, McIntosh and Duong introduced the Hardy space Hi(R") associ-
ated to L in terms of area integral functions. Later, in [19, 20], Duong and Yan introduced
the BMO-type space BMOL(R™) associated to such an L and proved the dual space of
H}(R™) is BMOy+(R™), where L* denotes the adjoint operator of L in L*(R™). Yan [46]
further generalized these results to the Hardy space H7 (R") with p € (0,1] close to 1 and
its dual space. Also, the Orlicz-Hardy space and its dual space associated to such an L
were studied in [38, 35].

Auscher and Russ [8] studied the Hardy space Hi on strongly Lipschitz domains as-
sociated with a second order divergence form elliptic operator L whose heat kernels have
the Gaussian upper bounds and regularity. Very recently, Auscher, McIntosh and Russ [7]
treated the Hardy space H' associated with the Hodge Laplacian on a Riemannian mani-
fold with doubling measure; Hofmann—-Mayboroda in [30, 31] and Hofmann—-Mayboroda—
MclIntosh in [32] introduced the Hardy and Sobolev spaces associated to a second order
divergence form elliptic operator L on R™ with bounded measurable complex coefficients
and these operators may not have the pointwise heat kernel bounds, while a theory of
the Orlicz-Hardy space and its dual space associated to L was independently developed
in [36, 37].

Moreover, a theory of Hardy spaces associated to the Schrodinger operators —A+V was
well developed, where the nonnegative potential V' satisfies the reverse Holder inequality;
see, for example, Dziubanski and Zienkiewicz [21, 22] and Yang and Zhou [48] and their
references. More generally, for nonnegative self-adjoint operators L satisfying the Davies-
Gaffney estimates, Hofmann et al. [28] introduced a new Hardy space H} (R"), which was
extended to the Orlicz-Hardy space by Jiang and Yang [34]. Recently, the Hardy space
H (1_ APR4V2 (R™) associated to the Schrédinger type operators (—A)? + V2 was also studied
in [12].

From now on, in what follows of this paper, we always let L be a one to one operator
of type w having a bounded Ho, functional calculus and satisfying the k-Davies-Gaffney
estimates with k£ € N (see (2.6) below). Motivated by [32, 28], in this paper, we introduce
the Hardy space H? (R™) with p € (0, 1] associated to L in terms of the square function

defined via {e=™L},~o (see (4.1) below) and establish their molecular and generalized
square function characterizations. Typical examples of such operators include the 2k-
order divergence form homogeneous elliptic operator Ly with complex bounded measurable
coefficients and the 2k-order Schrédinger type operator Ly = (—A)F 4+ V¥ where A is
the Laplacian and 0 < V € LfOC(R”). Moreover, as applications, for i € {1, 2}, we
prove that the associated Riesz transform V*(L; Y 2) is bounded from H ]I-ji (R™) to HP(R™)
for p € (n/(n + k), 1] and establish the Riesz transform characterizations of H7 (R")
for p € (rn/(n + kr), 1] if {e~*1},5¢ satisfies the L" — L? k-off-diagonal estimates with
r € (1,2] (see Definition 6.1 below for the definition). These results when k =1 and L = L,
were already obtained recently by Hofmann-Mayboroda [30, 31], Jiang-Yang [36, 34], and
Hofmann-Mayboroda-McIntosh [32].

A new ingredient appearing in this paper is the introduction of the k-Davies-Gaffney
estimates with k£ € N, which is naturally satisfied by 2k-order Schrodinger operators
(—=A)¢ + VF. Via the perturbation technique (see, for example, [10, 11]) and some ideas
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from the proof of [16, Lemma 2], and using the elliptic condition, we further show that
the semigroup {e~*1},-¢ also satisfies the k-Davies-Gaffney estimates.

Another new observation of this paper is that the nonnegative self-adjoint property of
operators in [28, 34] can be weakened into the assumption that L has a bounded H
functional calculus. We point out that when this manuscript was in preparation, we
learned from Anh and Li [1] that this was also observed by Duong and Li [17].

The paper is organized as follows. In Section 2, we first recall some results on the H
functional calculus and describe some assumptions on operators considered in this paper.
In particular, we introduce the notion of k-Davies-Gaffney estimates with £ € N in (2.6)
below. Some examples satisfying these assumptions are also given in this section.

Let L be an operator satisfying assumptions in Section 2. In Section 3, using some
ideas from [28, 30, 31, 32|, we establish some off-diagonal estimates for some families of
operators related to L. More precisely, we show that if {e7'"};~( satisfies the k-Davies-
Gaffney estimates, then the family {(zL)™e™*L},_qo of operators for any m € NU{0}

L(m/2—w)
also satisfies the k-Davies-Gaffney estimates in z (see Lemma 3.1), the k-Davies-Gaffney

estimates are stable under compositions (see Lemma 3.2) and the family {¢(¢tL)f(L)}i~0
of operators satisfies the k-Davies-Gaffney estimates of order o (see (3.7) below for the
definition), where 1 belongs to the decaying function class \1’077(52) as in (2.2) below
(see Lemma 3.3 below). Let L; be the 2k-order divergence form homogeneous elliptic
operator with complex bounded measurable coefficients and Lo the 2k-order Schrodinger
type operator. In this section, we also prove that the semigroup {e_tLl}t>0 and the
family {/tVFe i}~ of operators for i € {1,2} satisfy the k-Davies-Gaffney estimates,
respectively, in Propositions 3.1 and 3.2.

In Definition 4.1 of Section 4, we first introduce the Hardy space H? (R™) for p € (0, 1] in

terms of the square function Sy, defined via {e_t%L }t>0 and, in Definition 4.3, the molecu-
lar Hardy space H |1 2,(R") with M € (n(1/p—1/2)/(2k),00). Then, by using Lemma
3.1, we prove that for each (H7, €, M)-molecule m, ||Sz(m)||Lp@®ny is uniformly bounded
(see (4.6) below), which together with a boundedness criteria from [32] (see also Lemma
4.1 below) implies that Hj  5,(R") C H](R"). On the other hand, using the atomic

decomposition of the tent space 17 (RTFI) and the k-Davies-Gaffney estimate, we obtain
that the operator my, 7, in (4.15) maps any 7P(R:™!)-atom into an (H?, e, M)-molecule
up to a harmless positive constant multiple in Lemma 4.2 below. Then, by a Calderén
reproducing formula, we establish a molecular decomposition of H Q(Rn) which yields an-
other inclusion HY (R™) C H Zmol’ 1 (R™). Thus, we obtain the molecular characterization
of HY (R™) in Theorem 4.1 below.

Section 5 is devoted to the generalized square function characterization of HY (R™). Mo-
tivated by [32], we first introduce the generalized square function Hardy space Hi’ . (R™)
for p € (0,1] and some ) € ¥, -(S)) in Definition 5.1 below. Then, for any ¢ € ¥, (S9)
and all f € Hoo(Sg) (see (2.1) for the definition), we introduce the operators Qy 1, Ty, 1.
and their composition @/ (see (5.1), (5.4) and (5.5) for their definitions). Using the k-
Davies-Gaffney estimates of order o for {¢)(tL)f(L)}+~o in Lemma 3.3 below, we prove
that the operator Q7 is bounded on the tent space Tp(Rfrl) (see Lemma 5.2), Q.1 is
bounded from HY(R") to TP(R:*!) and 7y, 1, is bounded from TP(R) to HY(R™) for
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some 1) (see Lemma 5.3 below). Combining these boundedness and using a Calderén repro-
ducing formula in (5.14), we then obtain the generalized square function characterization
of HY (R™) in Theorem 5.1, which is used in obtaining the Riesz transform characterization
of H 21 (R™) in Section 6. For all a € (0, 00), let L* be the fractional power with exponent
a of L and the Hardy space H?,(R™) be defined as in (5.3) below via the square function
Sre asin (5.2). As another application of Theorem 5.1, we then obtain in Corollary 5.1
that HY.(R") = HY(R™) with equivalent norms, in particular, Hf’_A)k(R") = HP(R™)
with equivalent norms for all k£ € N, where HP(R") is the classical Hardy space in [42, 23].

Finally, in Section 6, we concentrate on the behavior of the Riesz transforms VkLZ-_ 1/2
on Hf (R") for i € {1,2}. By the gradient estimates of the semigroup {e7Fi}is0
in Proposition 3.2 and the composition rule of k-Davies-Gaffney estimates in Lemma
3.2, we first show that the two families of operators, {VkLi_lﬂ(I — e tiyM1,_y and
{VkLi_l/z(tLie_tLi)M}tw for all M € N, satisfy some estimates similar to the k-Davies-
Gaffney estimates of order M (see Lemma 6.1 below). Then, using these estimates, we
prove that for each (HJ , €, M)-molecule m with p € (n/(n + k), 1] and

M e (n(1/p —1/2)/(2k), o),

Vk(L._l/ ®)(m) is a classical HP(R™)-molecule up to a harmless constant multiple, which

(]

further implies that Riesz transforms V*(L; Y 2) are bounded from Hi (R™) to the clas-
sical Hardy space HP(R™) in Theorem 6.1 below. In the remaining part of this section,
motivated by [32], by assuming that the semigroup {e~**1};5( satisfies the L" — L? k-off-
diagonal estimates for r € (1,2], we then establish the Riesz transform characterization
of H} (R™). To this end, we first show in Lemma 6.2 below that {tLie~ 1}, also sat-
isfy the L" — L? k-off-diagonal estimates. We then recall some known results concerning

the homogeneous Triebel-Lizorkin space Fﬁq(R") and their atomic characterizations from

44, 27, 13] and [45, Proposition 4.3]. Let W*2(R") be the homogenous Sobolev space of
order k. With the help of these results, we show that if f € W*2(R") N H*P(R") when
p € (0, 1], then its atomic decomposition converges in both W 2(R") and H*?(R™) (see
Lemma 6.3 below). Moreover, by the L"—L? k-off-diagonal estimates for {tLie %1}, we
prove that for each H*P(R™)-atom b, S1+/L1 (b) is uniformly bounded on LP(R™) (see (6.13)
below), which, together with the generalized square function characterization of H £1 (R™)
in Theorem 5.1 and Lemma 6.3, shows that S;v/L; is bounded from the Hardy-Sobolev
space HFP(R™) to LP(R™). This combined with the boundedness of Riesz transforms on
Hj} (R") in Theorem 6.1 yields the Riesz transform characterization of Hj (R") in The-
orem 6.2 below. We point out in the proof of the estimate (6.13), we use the embedding
result (6.15) below on the homogeneous Triebel-Lizorkin space from [44] and another key
fact from [6, Theorem 1.1] that [|v/Lyfll2@n) < ”kaHLZ(Rn). The latter fact may not
be true for Lo; see Remark 6.1 below. Thus, it seems that one needs some new ideas to
obtain the Riesz characterization of Hﬂ (R™).

We now make some conventions on the notation. Throughout the whole paper, we
always let N = {1,2,---} and Z, = NU {0}. Denote the differential operator %

simply by 0%, where a = (a1, -+ ,ap,) and || = a3+ - -+ ay,. We also denote the 2k-order
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divergence form homogenous elliptic operator with complex bounded measurable coefficients
(—1)F 2 lal=|8l=k 0%(an,30°) by Ly and the 2k-order Schrédinger type operator (—A)k 4V
by Ls. We use C' to denote a positive constant, that is independent of the main parameters
involved but whose value may differ from line to line, and C(«,---) to denote a positive
constant depending on the parameters «, ---. Constants with subscripts, such as Cy, do
not change in different occurrences. If f < Cg, we then write f < g; and if f < g < f,
we then write f ~ g. For all z € R” and r € (0,00), let B(z,r) ={y e R": [z —y| < r}.
Also, for any set £ € R™, we use EC to denote R™ \ E and xg the characteristic function
of E.

2 Preliminaries

We first collect some basic results on the theory of H, functional calculus, developed
by Mclntosh in [39], that we need in the sequel. For more details and further references
about functional calculus, we refer the reader to [2, 26, 39] and the references therein.

For 0 € [0, ), the open and closed sectors, Sg and Sy, of angle 6 in the complex plane
C are defined as follows:

Sy ={zeC\{0}: |argz| <6}

and
Sp={2€C\{0}: |argz| <0} U{0}.
Let w € [0, w). A closed operator T in L%(R") is called of type w, if the spectrum of T,
o(T), is contained in S, and for each § € (w, 7), there exists a nonnegative constant C
such that for all z € C\ Sy, ||(T — 2I) 7| zz2rny) < Clz|7!, where and in what follows,
[S]lz(3) denotes the operator morm of the linear operator S on the normed linear space
H.
For u € [0, 7) and 0,7 € (0, o0), we need the following spaces of functions:

H(Sg) = {f: f is holomorphic on 52} ,

(2.1) Hoo(S0) = { £ € H(SD) + fllp(sp) < o0}
and
(22) W, (S)={fe€H(S): [f() <Cnf{|¢|°, |¢|77} for all £ € S}

It is known that every one to one operator T of type w in L?(R"™) has a unique holo-
morphic functional calculus which is consistent with the usual definition of polynomials of
operators; see, for example, [39]. More precisely, let T' be a one to one operator of type w,
withw € [0, 7), p € (w, 7), 0,7 € (0, 0), and f € \IJU,T(SS). The function of the operator
T, f(T') can be defined by the Hy, functional calculus in the following way,

(2.3) f(T) = = / (€1 —T)'f(€) d.
Y

T 2mi
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where v = {re? : co>r>0}U{re ™ : 0<r < o}, v € (w, u), is a curve consisting
of two rays parameterized anti-clockwise. It is well known that the above definition is
independent of the choice of v € (w, p1) and the integral in (2.3) is absolutely convergence
in L(L?(R™)) (see [39, 26]).

In what follows, we always assume w € [0, w/2). Then, it follows from [26, Proposition
7.1.1] that for every operator T of type w in L?(R™), —T generates a holomorphic Co-
semigroup {e_ZL}ZGSg/Z _on the open sector S?r/2—w such that He_ZLHE(Lz(Rn)) < 1 for all

z € S?r /2w and, moreover, every nonnegative self-adjoint operator is of type 0.

Let \IJ(SS) = UU,T>0\IJJ7T(SB). By the relationship between the associated semigroup
and the resolvent of T', for all f € \IJ(SB), f(T) can further be represented as

(2.4) (1) = /F T2 / T () de
where

— 1 z
(2.5) n+(z) = oy /y:l: 7 f(&)de, zeTy,

Iy = RTeF/270) 4, = Rte®™ and 0 < w < § < v < p < 7/2. Here and in what
follows, Rt = (0, 00).

It is well known that the above holomorphic functional calculus defined on \IJ(SE) can be
extended to Huo(Sj) via a limit process (see [39]). Recall that for xu € (0, 7), the operator
T is said to have a bounded HOO(SE) functional calculus in the Hilbert space H, if there
exists a positive constant C' such that for all ¢ € Hoo(S}), [[¥(T)|| i) < C”W‘Lw(sg) and
T is called to have a bounded Ho functional calculus in the Hilbert space H if there exists
w € (0, m) such that 7" has a bounded HOO(SS) functional calculus.

Now, we describe our assumptions of operators L considered in this paper. Throughout
the whole paper, we always assume that L satisfies the following assumptions:

(A1) The operator L is a one to one operator of type w in L?(R™) with w € [0, 7/2);
(A3) The operator L has a bounded H,, functional calculus in L?(R");

(A3) Let k € N. The operator L generates a holomorphic semigroup {e~**},~o which
satisfies the k-Davies-Gaffney estimate, namely, there exist positive constants C
and Cj such that for all closed sets E and F in R™, ¢t € (0, o0) and f € L?(R")
supported in E,

_ ~ dist(E, F))2/ (k=1
26 e thuLz(F)stexp{—[ e { Wlzace,

where and in what follows, dist(E, F) = infycp, yer |z — y| is the distance between
FE and F.

Remark 2.1. We point out that when k£ = 1, the k-Davies-Gaffney estimate is usually
called the Davies-Gaffney estimate (or the L? off-diagonal estimate or just the Gaffney
estimate); see, for example, [30, 31, 28, 34, 32].
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Let k € N. Examples of operators, satisfying the above assumptions (A1), (A2) and
(A3), include the following 2k-order divergence form homogeneous elliptic operator:

Li=(-1)" Y 0%aa,s0")
lal=15|=

with complex bounded measurable coefficients a, g for all multi-indices «, 8 and the 2k-
order Schridinger type operator Ly = (—A)*+V* with0 < V € L¥ (R™). More precisely,
let W52(R™) be the Sobolev space of order k endowed with the norm

|- ez = > 10%C)llz2@e-

0<|e| <k

Denote by a the sesquilinear form given by

(27) 9= [ Y aup@d’ @5 da

R
lo|=[8|=k

with domain D(a) = W*2(R"). We further assume that a satisfies the ellipticity condition,
that is, there exist positive constants 0 < A < A < oo such that

(2.8) llaa,pllLoe@ny < A for all a, 8 with |a| =k = |3
and
(2.9 Ra(f, )2 AV [y Tor all £ € WH2(EY),

where and in what follows, Rz for any z € C denotes the real part of z. The 2k-order
divergence form homogeneous elliptic operator L, with complex bounded measurable co-
efficients is then defined to be the operator associated to the form a.

Let w € [0, m/2]. Recall that an operator 7" in the Hilbert space H is called m-w-
accretive if

(i) the range of the operator T'+ I, R(T + I), is dense in H;
(ii) for all u € D(T), |arg(Tu, u)| < w,

where D(T') denotes the domain of T and arg(T'u, u) the argument of (T'u, u). It is known
by [26, Proposition 7.1.1] that every closed m-w-accretive operator is of type w (see [26,
p. 173]).

From [6], it follows that L; is closed and maximal accretive (see [26, p.327] for the
definition), which further yields that R(L; + I) is dense in L?(R"); see, for example [26,
Proposition C.7.2]. Moreover, by the ellipticity condition (2.8) and (2.9), we obtain that
for all f € Wk2(R"),

%(Ll f7 f)
éR )

[tan (arg(L1f, f))| :‘ (L1f, f)

<
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where and in what follows, Jz for any z € C denotes the imaginary part of z. Thus,
|arg(Ly f, f)| < arctan %, which together with the fact that R(Ly + I) is dense in L?(R™)
shows that L; is an m-arctan %—accretive operator in L?(R™) with the angle arctan% €
[r/4, w/2). Thus, Ly is an operator of type arctan %

Now, we show that L is one to one. Let N(L1) ={f € D(Ly): Lif = 0} be the null
space of L. For any fixed f € N(L;), by the elliptic condition (2.8) and (2.9), we have

(2.10) / n

which implies that V¥ f = 0 almost everywhere in R”. In what follows, denote by C2°(R")
the space of all C™ functions with compact support in R™. For all f € W*2(R™), by the
density of C°(R") in WH2(R"), there exists a sequence {f;};en of functions in C°(R"™)
such that lim; ., f; = f in WF2(R™). Denote the Fourier transform and the inverse
Fourier transform of f, respectively, by f and f. If f € N(Ly), by (2.10), the fact that
fj € CX(R™), the multiplication formula of Fourier transform and Plancherel’s theorem
(see, for example, [24, Theorem 2.2.14]), we have that for all ¢ € C°(R"™),

V)| de (L, D)l =
x Xz 1J, =

0= (VRf, @) = Jim (V'f;, ¢) = lim (=1)"(f;, V"¢) = lim (=1)*(f;, (V"9))

= lim *(f;, () () = (f, ()el(),

j—)

which implies that supp f C {0}. By [24, Corollary 2.4.2], we have that f is a polynomial,
which, together with the fact that f € L?(R"), implies that f = 0. Hence, N(L;) = {0}
and L7 is one to one.

Since L; is maximal accretive, from [2], it follows that L; has a bounded holomorphic
functional calculus. Finally, in Proposition 3.1 below, we will show that the semigroup
{e7t1},. ¢ satisfies the k-Davies-Gaffney estimate. Thus, the 2k-order divergence form
homogenous elliptic operator L1 with complex bounded measurable coefficients satisfies the
assumptions (A1), (Az) and (As).

Let ke N, A=3"70) a oa? >, be the Laplace operator and 0 < V € L% (R™). The 2k-order

Schrodinger type operator L2 = (—A)* + V* is the associated operator of the following
sesquilinear form

(211) 0.0 = [ V@) Vigle o + / V@) ()() do
with domain D(b) = {f € WF2(R™) : [L.[V f(z)|? dz < oo} which is also dense in
L2(R™), since C°(R™) C D(b).

It is easy to see that the 2k-order Schrodinger type operator Lo is a nonnegative self-
adjoint operator. From [26], it follows that Lo is m-0-accretive. Thus, by [26, Proposition
7.1.1], Lo is a one to one operator of type 0. Therefore, Ly has a bounded H,, functional
calculus. Moreover, by [9], the semigroup {e *2};. satisfies a Gaussian type estimate,
that is, the integral kernel e *2(z, y) of e~*2 has the property that there exist positive
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constant Cy and C3 such that for all ¢t € (0, c0) and z, y € R,

—tLy —n/(2k) |z — gD
(2.12) le (z, y)| < Cat exp —C3W 5
which implies that the semigroup {e~*#2};-( satisfies the k-Davies-Gaffney estimate im-

mediately. Thus, the 2k-order schridinger type operator Lo also satisfies the assumptions
(A1), (A2) and (Aj3).

3 k-Davies-Gaffney estimates

In this section, we prove some properties about the k-Davies-Gaffney estimates. We
point out that when £ = 1 and L is a non-negative self-adjoint operator or a second order
divergence form elliptic operator with complex bounded measurable coefficients, these
properties are already well known; see, for example, [5, 30, 31, 28, 34, 32].

Let 6 € [0, 7/2) and E, F be two closed sets in R". A family {T(z)}zesg of operators
is called to satisfies the k-Davies-Gaffney estimate in z if there exist positive constants Cy
and Cj such that for all f € L?(R") supported in E and z € Sj,

dist(E, F)]2F/(2k=1)
(31) HT(z)fuLz<F>scsexp{—[ e Wl

For any operator satisfying the assumptions (A1), (A2) and (Ag) in Section 2, we have
the following property.

Lemma 3.1. Assume that the operator L defined in L?(R™) satisfies the assumptions (A1),

(A2) and (As) in Section 2. Then for all £ € (0, 1), m € Zy, the family of operators,

{(ZL)me_ZL}zeS?(ﬂ g satisfy the k-Davies-Gaffney estimate in z, (3.1), with positive
5w

constants Cy and Cs depending only on m, £, n, k, w, C and C;.

Proof. We prove this lemma by using some ideas from [28]. Since L is of type w, we know

that the semigroup {e~*£'};~( can be extended to a holomorphic semigroup {e*L}, I

Thus, for all z € Sg 2w closed sets E, F C R™ and f, g € L?(R") supported respectively

in F and F, the function G(z): z — (e *Lf, g) is holomorphic on SQ/Q_W. Moreover, G
satisfies the following properties:

(i) there exists a nonnegative constant C' such that for all z € Sg 2w

G| < Cllf Iz 9l 2y,
(ii) there exist nonnegative constants C' and C; such that for all ¢ € (0, o0),

dist(E, F)]|?k/(2k=1)
rG<t>\50exp{—[ e Il lslze,
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In [40, Lemma 6.18], letting v = 7/2 —w, a = C|fll2m)l9llz2r)y, 8 = 0, b

Cib [dist(E, F)]%/(%_l), r=tand a = ﬁ, we then obtain that for any z = re? €
Sf(ﬂ/2—w)’
dist(E, F)[*H/=1
(32 IFE) sexp{—g(%(_ Ay sin(e/2 == 6D e ol
dist(E, F)])?k/(k=1)
sexp{—[ e Il lslize,

where Cy = %. From the analytic property of semigroups and the Cauchy

integral formula, it follows that for all m € N and z € S?(E_w)
2

mo—al o mml e dE
(3.3) (zL)"e™™ = (=2)" 5 - /|§_Z:nze (& — z)m+1”

where n € (0, sin((1 — ¢)(7/2 — w))). Thus, for any z € S?( o> the ball B(z,n|z|) C

%_
S?T P Combining (3.2) and (3.3), by Minkowski’s inequality, we obtain
1
—¢L ‘
(€ om+ He f

G oy S 117 [

|§—z[=nl2|

[dist(E, F)]2/@k=1)
Sexp{_ C4’Z‘1/(2k_1) ”f”Lz(E)a

which implies that {(zL)™e™*} S0z satisfies the k-Davies-Gaffney estimate in z. This
?7(11

o

finishes the proof of Lemma 3.1. O

Lemma 3.2. Let {A;}i~0, {Bs}s>0 be two families of linear operators, Cg and C7 two
positive constants. Assume that for all closed sets E, F C R", f € L?>(R") supported in
FE and t > 0, the following estimates hold:

dist(E, F))?*/(2k=1)
(3.4) [A¢fll2(r) < Coexp {_[ (C'7t1/()2]k—1) 1£1L2(),
and

dist(E, F))?*/(k=1)
(3’5) HBSfHL2(F) < Cgexp {_[ (0731/()2]k—1) HfHL2(E)’

Then, there exists a positive constant C such that for allt, s > 0, all closed sets E, F' C R™
and f € L*(R™) supported in E,

[dist(E, F))%/(k=1
(30 14:Bof o) = Cow {_57(max{t, ey [ e

where 57 = (C722k/(2k-1)
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Proof. If dist(E, F') = 0, then (3.6) is a simple corollary of (3.4) and (3.5). Now, we assume
that dist(E, F)) > 0. Asin [29], let p = dist(E, F) and G = {x € R" : dist(z, F) < p/2}.
Denote by G the closure of G. Tt is clear that dist(E, G) > p/2. Moreover, by (3.4) and
(3.5), we have

[Ae(xaBsH)llz2 ) < [ Ae(xaBsf)ll2@ny S 11Bsfllr2 @)
[dist(F, G)]?k/(2k=1)
5 eXp {_ 0781/(2k_1) HfHL2(E)
[dist(E, F)]?*/ (k=D
~ exp _C722k/(2k—1)31/(2k—1) HfHL2(E)'

Let C7 = €722/ (k=1 Gimilarly, by (3.4) and (3.5), we obtain

dist(R™ \ G, F))?*/(@k=1)
”At(XRn\GBsf)”m(F) S exp {—[ ( Citl/(%z]l) HBsfHLZ(E)

dist(E, F)]2F/(2k=1)
sexp{—[ o { Wlaey
7

Combining the above estimates, we have

|AtBs fl 22 (r)
<[ At(xeBsf)llz2(ry + 1At (xre\a Bs )|l 2(F)

[dist(E, F))*/ 1 (dist(E, F)]2/@
el 5781/(2k—1) Texp - 67t1/(2k_1) ||f||L2(E)

dist(E, F))2/ (k=1
< exp | —t(E, ) — ¢ Ifllz2(m),
Cr max{t, s}1/(2k=1)

<

~

which completes the proof of Lemma 3.2. O

Let 0 € [0,00). As in [32], a family {T}}~¢ of operators is called to satisfy the k-
Davies-Gaffney estimate of order o, if there exists a positive constant Cg, depending on
o, such that for all closed sets £, F C R", g € L>(R") supported in E and t € (0, c0),

. t ’
(3.7) 1Tegll L2y < Csmm{l’ W} 19112 (-

Lemma 3.3. Let p € (w, 7/2), ¢ € \IJU,T(SS) for some o € (0, ), 7 € (1, 00), and
fe HOO(SB). Then the family {(tL)f(L)}i>0 of operators satisfy the k-Davies-Gaffney
estimate of order o, (3.7), with the positive constant Cg controlled by ||f||Loo(52).
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Proof. For any fixed ¢ € ¥, ,(S)) C ¥(S)) and f € Hoo(S)), by (2.4) and (2.5), we have

(3.8) B(tL)F(L) = / ey (2) dz + / ey (2) dz,

ry _

where I'y = Rte®(™/2-0) and for all z € Ty,

nele) =5 [ 0O FE) de
T+

v+ =Rtet™ and 0 < w < @ < v < p < m/2. It was proved in [32, (2.32)] that for all
zely,

17l o+
(3.9 |ni<z>|s%mm{1, (%) }

Thus, by (3.8) and Minkowski’s inequality, we have that for all g € L?(R") supported
in F,

L) F(D)gll2ry < | e 9]l oy I d2l + | [le™*Eg]| o 11 (2)] 1d2]
(F) (")

Iy I
= J+ + J_.

Since 7/2 — 0 < w/2 — w, there exists a positive number ¢ € (0, 1) such that 7/2 — 0 <
{(m/2 — w), which immediately yields that 52/2_9 C S?(ﬂ/2—w)' Thus, by Lemma 3.1, the
family {e=* }oe s satisfy the k-Davies-Gaffney estimate in z, which, together with
(3.9), implies that

[dist(E, F)]?/(@k=1
Ts £ lllzem) /FSXP{‘ Sy ()l
< Il zesy gl /FSXP{‘ e (i () gl

dist(B, F)]/D) £\ 1
_ L (L 1
/{zel"i: |2|<t} eXp{ Cly| 2|1/ (2k=1) min 4 1L, H . |dz]

+/ | 1 e (soyllglizz(my = [O1 + O] [ fll oo (s0)ll9ll 2 ()
{z€l4+: |z|>t}

S

We estimate O by

: 2k /(2k—1)
0, < / exp  [dist(E, F)] i 1 @
{zel'+: |2z|<t} C4|Z|1/(2 -1) t

[dist(E, F)]2/(@k=1
o Cy |t/ @F=1) :

< exp

~
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On the other hand, Oy can be written into

0, < o B [diSt(E, F)]2k/(2k—1) i o+1 1 .
{z€l1: |z[>t} C4’Z‘ / ) ’Z‘ t

If ¢ > [dist(E, F)]?*, in this case, we trivially have

o </ <t>0+11|dz| 1
2 S Tl " ~ L
{ze€l+: |z|>t} |Z| t

If t < [dist(E, F)]**, by choosing N € [0, 00), we obtain

N o+1
Oy S/ - T <i> 1\alz\
{z€T1: t<|z|<[dist(E, F)]**} \ [dist(E, F)] || t

¢ o+1 1
+/ <—> — |dz|
(z€Ts: |2|>[dist(E, F)2F}y \ 2] ¢

BT L G T Y S T
~\ [dist(E, F))* [dist(E, F)]*¥ [dist(E, F)]** )

Combining the estimates of O; and Og, we obtain that {¢(tL)f(L)}+>0 satisfies the k-
Davies-Gaffney estimate of order o. O

Now, we turn to some properties of the operators L; and Ls given in Section 2. First,
we introduce the definition of the Legendre transform. Let h be a real valued function
defined on [0, co). The Legendre transform hf of h is defined by setting, for all s € R,

(3.10) hE(s) = iglo){st — h(t)}.

We have the following proposition about the operator L.

Proposition 3.1. Let Ly be the 2k-order divergence form homogeneous elliptic operator
defined as in Section 2. Then, the semigroup {e~"F1},~¢ satisfies the k-Davies-Gaffney
estimate.

Proof. We prove Proposition 3.1 by borrowing some ideas from [10, 11, 16]. In [11, Theo-
rem 1.2], letting (2, %, p, d) be the usual Euclidean space R", endowed with the Lebesgue
measure dzr and the Euclidean distant d, and with the set class % being the set of all
Lebesgue measurable sets, and also letting A = {¢ € C®°(R")NL>(R") : [[D@|| oo (mn) <
L1<l|a|<klhp=q=2,a=8=vy=0,r=t"/% h(z) =22/ for all z € [0, o)
and R = e "1, we then obtain the following two equivalent statements:

(i) There exists a positive constant C(k), depending on k, such that for all ¢ € A,
p €10, 00) and t € (0,00),

(311) e8| 112y < CORO ),
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where, by (3.10),

2k—1
B0 1/(2k) — ek . ak/ek-n) _ [(2k=1) %,
h* (pt )—iglg{pt s—s } [7(%)% Pt

(ii) There exists a positive constant C; such that for all the closed sets £ and F' of R"
and t € (0,00),

) dist(E, F)\ 2"/ k1)
tL )
(3.12) [xEe™™  XF|| £ 2@y < exp <_W> '

Recall that in this case, by [16, Lemma 4], d(E, F') defined in [11, (1.4)] is equivalent
to infyep, yer | — y| and, moreover, C(k) in [11, Theorem 1.2(ii)] is assumed to be 1.
However, by the change of variables, we easily see that the above equivalent statements
are simply corollary of the equivalence of (ii) and (iii) of Theorem 1.2 in [11].

Notice that by the density of the simple functions in L?(R"), (3.12) is equivalent to
the k-Davies-Gaffney estimate. Thus, to prove that the semigroup {e~*1};- satisfies the
k-Davies-Gaffney estimate, by the equivalence of (i) and (ii), it suffices to prove (3.11).

To this end, let a be the sesquilinear form as in (2.7) associated with L;. Recall that
its twisted form is defined by setting, for all p € [0, 00), ¢ € A and f, g € WF2(R"),

oo f, 9) = a(e” f, e "?g),

which, together with the Leibniz formula, further yields that there exist positive constant
C(a,7) and C(8,7) with |a| = |8 =k, 0 <y<aand 0 <7 < 3,

alfs )= 3 / G (2)0° (e £)(2)DP (P2 [) ()
lo|=|8]=k

— Z / (o p(1) Z C(,7)87eP? @ 9o f(z) + eP?@ 9 f ()

0<v<a

+ Z C(B,7)07e=re@)9B=T f(z) + e=P9@) 9P f(x) dz

0<y<p
- > aa,3(x)
a|—6|=k/Rn
X > Cla,y)C(B,7)0 e f ()07 e ro(n) 95 f ()

0<y<a,0<y<B

+ e @B f(z) D Cla,7)d7e D> f(x)

0<y<a
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0<y<B

n |:ep¢(m)8°‘f(x) Z C’(ﬁﬁ)@%m(w)aﬁxfﬂx)} } dxz +a(f, f).

Let C(a,0) = 1= C(8,0) and C(k) = <a0<7<
A is as in (2.8). By this estimate, ¢ € A, (2.8) and Holder’s inequality, we further have

|ap7¢(f7 f) - a(f7 f)|

<A / > C(a,fy)C(M)p'yaa“*f(x)p:faﬁfm}dx

A 121812k 20<y<a0<5<5 C (. 7)C(B,7)], where

la|=]8|=k ' R" {0<w<a,0<a’<ﬂ

A Y Y caneen|[ [peosef el

la|=|8l=k 0<7<a,0<7<B

Lo

=\ > > Cle)C(B A x L.

o 9 1/2
plvlaﬂ—vf(x)‘ dm}

Applying Plancherel’s theorem, (2.9) and Young’s inequality with € € (0, , we obtain

A
- N 46(k))
that there exists a positive constant C(e) such that for all A € (C(e)C(k), o),

< [ pgrri@] as < [ @ e o ae

€
< COPH I gy + el I aqany < COPH I any + TR, £),

‘ 2

n

which, together with a similar estimate for Is, shows that

(3.13) ol 1)~ alf, DI < 7RalF, )+ 3073y

Denote by L,s(= e P?L1eP?) the operator associated with app- Let fp = e tlee f. By
(3.13), we have

d
E Hft”%ﬁ(R") = _(Lpfbftv ft) - (ftv Lpd>ft) = _2§Rap¢(ft, ft)

= 2[R (a(ft, ft) — aqu(ft, ft)) — Ra(fi, fi)]
< 2lapg(fe, ft) —alfe, fi)| — 2Ra(fe, fi)

1 - -
< gRalfe, f) + AP (| fell 72y — 2Ra(fes f1) < 2007 | fill Zo gy -
Thus,
1fell 2y = lle™ 2% £ F2ggn) < exp{2Ao™ }1F |72 zny

< exp {20 (ot } 1112 g
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That is, (3.11) holds. Therefore, {e~* 1}, satisfies the k-Davies-Gaffney estimate, which
completes the proof of Proposition 3.1. O

Remark 3.1. In the proof of Proposition 3.1, we obtain the estimate (3.11) by following
the proof of [16, Lemma 2|. The same method should also work for the proof of [10,
Proposition 3.1]. Notice that the scaling method mentioned in the last two lines of [10,
p. 143] may not be valid to be used to remove the factor elawtet appearing in the proof
of [10, Proposition 3.1], as the authors claimed therein.

We also have the following gradient estimate for L1 and Lo.

Proposition 3.2. Let k € N, Ly be the 2k-order divergence form elliptic operator and Lo
the 2k-order Schrédinger type operator defined as in Section 2. Then, {/tVFe i}, g for
i € {1, 2} satisfy the k-Davies-Gaffney estimate.

Proof. For any Hilbert space H, let (-, -) be the inner product of H. By Hoélder’s inequal-
ity and the fact that {tL;e*Fi};~¢ and {e 7" i};~¢ satisfy the k-Davies-Gaffney estimate
which are deduced respectively from Proposition 3.1 and Lemma 3.1, we have that for all
closed sets E, F C R", f € L?(R") supported in E, and t € (0, o0),

st

L2(P)

S (e B f, e f) )|

_tLiny(F)

2
[dist(E, F))2k/(2k=1)
5 (exp {_ Cltl/(zk_l) HfH%Z(E)

which implies that {vtVFe tli},oo also satisfies the k-Davies-Gaffney estimate. This
finishes the proof of Proposition 3.2. O

S HtLie

4 Molecular characterizations of H}(R")

Assume that the operator L satisfies the assumptions (A;), (A2) and (As) in Section 2.
In this section, we introduce the Hardy space H: E(R") in means of the L-adapted square
function and characterize these Hardy spaces by the molecular decomposition. First, we
recall some notions.

Let T'(z) = {(y, t) € R" x (0, o) : |z —y| < t} be the cone with vertex x € R™. For
all f € L?(R") and = € R", the L-adapted square function Sy f is defined by

(4.1) Spf(x {//F( 12 Le= " L f(y )IQiﬁt}

Definition 4.1. Let p € (0, 1] and L satisfy the assumptions (A;), (Az) and (Ag) in
Section 2. A function f € L*(R") is said to be in HY (R") if S, f € LP(R™); moreover,
define ||f||grgny = ISLfllLe(rn). The Hardy space H?(R™) is then defined to be the

completion of HY (R™) with respect to the quasi-norm || - || HE (Rn)-
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Remark 4.1. Since both the 2k-order divergence form homogenous elliptic operator L
with complex bounded measurable coeflicients and the 2k-order Schrodinger type operator
Ly satisfy the assumptions (A1), (Az) and (A3), we then define the Hardy spaces H} (R")
and Hﬂ (R™), respectively, associated to L; and Lo as in Definition 4.1. In particular,
when k = 1, H (R") is just the Hardy space H” div(AT) (R™) associated to the second order
divergence form elliptic operator —div(AV) with complex bounded measurable coefficients
in [30, 31, 32, 36] and Hiz (R™) appears in [21, 22, 28, 48]; when k = 2, HEQ (R™) was also
studied in [12].

In what follows, a cube always means a closed cube whose sides are parallel to the
coordinate axes. Let Q C R™ be a cube with the side length [(Q). For i € Z,, denote by
Si(Q) the dyadic annuli based on @, namely,

(4.2) So(Q)=Q and S;(Q)=2'Q\ (271Q) for i € N,
where 2'(Q) is the cube with the same center as @ and the side length 2¢1(Q).

Definition 4.2. Let p € (0, 1], € € (0, 00), M € N and L satisfy the assumptions (Ay),
(A2) and (A3) in Section 2. A function m € L*(R™) is called an (HY, €, M)-molecule if
there exists a cube Q C R" such that

(i) for each £ € {1, ---, M}, m belongs to the range of L’ in L2(R");
(ii) foralli € Zy and £ € {0, 1, --- , M},
¢ . .
(4.3 (@) m < RUQIE R
L2(S:(Q))

Assume that {m;}22, is a sequence of (Hf, €, M)-molecules and {)\;}22, € IP. For
any f € L?(R"), if f = > 2o Ajmy in L?(R™), then > 2o Ajmy is called a molecular
(HY, 2, e, M)-representation of f.

We now introduce the notion of a molecular Hardy space H i ol v (R™) generated by
(H?, €, M)-molecules.

Definition 4.3. Let p € (0, 1], € € (0, c0), M € N and L satisfy the assumptions (A1),
(A2) and (A3) in Section 2. The molecular Hardy space Hy _ | ,,(R™) is defined to be the
completion of the space

HZmOLM(R") = {f: [ has a molecular (H?, 2, ¢, M) — representation}
with respect to the quasi-norm

1/p

[e.e] [ee]
= ] .|P . — . . ]
o (R = inf E I\ f= g Ajm; is a molecular
j=0 j=0

£ 11z

L
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(HY, 2, ¢, M) — representation},

where the infimum is taken over all the molecular (Hﬁ, 2, €, M)-representations of f as
above.

Now, we establish the molecular characterization of the Hardy space HY (R™).

Theorem 4.1. Letp € (0, 1], € € (0, 00), L satisfy the assumptions (A1), (A2) and (As)
in Section 2 and M € N such that M > %(% —2). Then, HY(R") = HY = (R") with
equivalent norms.

To prove Theorem 4.1, by Definitions 4.1 and 4.3, it suffices to prove that

n (1 1
(4.4) H’i(R") = H’Lmol’M(R”), M > % <5 — 5) ,

with equivalent norms. We divide this proof into two parts: (i) H . ,,(R™) C H} (R™);
(if) Hy (R™) C HY o s (R™)
To prove the inclusion HY . (R™) C HJ(R™), we need the following key lemma

which is just [32, Lemma 3.8]. Recall that a nonnegative sublinear operator T means that
T is sublinear and T'f > 0 for all f in the domain of T

Lemma 4.1. Letp € (0, 1], M € N and T be a linear operator, or a nonnegative sublinear
operator, which is of weak type (2, 2), that is, there exists a positive constant C such that
for alln € (0, o) and f € L*(R"),

{z € R™: [Tf(@)] >0} < Cn 2| flF2am)-

Assume further that there exists a positive constant C such that for all (Hﬁ, e, M)-
molecules m, |Tm||ppmny < C. Then the operator T is bounded from HY . . (R"™)
to LP(R™).

Proof of Theorem 4.1: the inclusion HY - (R™) C HY (R™). Recall that L is a one to
one operator of type w having a bounded Hoo functional calculus. For all z € R", ¢ €
\I’(Sg) defined as in Section 2, set ¢4 (x) = ¥(tx) for all t € (0,00). The quadratic norm
lgll7.5, associated with the operator L in L*(R™) and ¢, is defined by

- , A
lgllry = e (T)gll72ny —
0 t

for all g € [L*(R"™)|7,, which is a subspace of L?*(R™) such that the above integral is
finite. Since L has a bounded H,, functional calculus on L?(R™), it follows from [2] that
[L2(R™)]7, = L*(R™) and for all g € L%(R™),

(4.5) lgllre < llgllr2mny-
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By Fubini’s theorem, we have that [SLgllr2@n) ~ Hg”gwo, where 1o(z) = ze™* € U(S))
for all u € (0, 7/2). Thus, S is bounded on L?(R"). By Lemma 4.1, to prove the

inclusion H’i’mOL uR™) C Hp ! (R™), it suffices to prove that for all (HY, €, M)-molecules

m with M > %(% - 1),

(4.6) IScmllr@ny S 1.

Let @ be the cube associated with m as in Definition 4.2. Let jo € N be such that 2/0~! <
Vv/n < 270, By Minkowski’s inequality, Holder’s inequality and the L?(R™)-boundedness of
S1, we have

(0. ]
1Semll po@ny < I1S2m|pe2i0+1q) + Z 1Semll (s, @)
J=Jjo+5
otdniol | 11
S Imllpz@n)[27°7°Q1P 2 + 1Semllp2s;Q))195(@)7 2.
Jj=Jjo+5

Jun

For |[m/||z2(mny, by Minkowski’s inequality and the size condition (4.3) of m, we have

1

(4.7) Il 22 ) Z ”mHL2(s Q) = Z [271(Q n(3=3) 27Je < [Z(Q)]"(%_%),
j=0 =0

For j S {](] + 5, te }, let Ij = HSLmHLz(Sj(Q)). Then,

_ 2k dydt
(1) = / |Spm? i = / / / £ Le= " Lin(y) P22
S;(Q) S;(Q) ly—z|<t t

J

20(i— d)l
2k dy dt
_ / / / L ()P d
S;(Q) J0 ly—=|<t
o
o S
8;5(Q) J20U=9U(Q) Jly—x|<t

where 6 € (0, 1) is determined later.
For Dj, let b = L~™m. By Fubini’s theorem, Lemma 3.1 and the size condition (4.3)
of m, we have

00 2 t
D; = / / / ‘t%Le_t%LLMb(y)‘ dffl dz
Si(Q) J200-91(Q) Jly—a|<t t

o 2 dydt
— t2k(M+1)LM+1€_t2kLb y dr
/Sj(cz /29(j5>z<c2> /y x<t‘ W e

</°O Ht2k(M+1)LM+1 t%Lb‘
™ Jae-9Q

dt </°° Hb\|2 dt
L2(R™) HARM+1 ~ 20-91(Q) L2(R™) 44k M+1

; - . —4kM
~ [1B]1Z eny [2"“—5’1(@)} ~ [Z ||bl|%z<si(@>] [206-91@]
=0
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N 2—j[4kM9+n(1—%)] [2JZ(Q)] n(l—%) ‘

< [Z(Q)]4kM+2n(%—%) [29@_5)[(@)} —4kM

Recall that M > Z-(1/p — 1/2). Letting 6 be sufficiently close to 1 such that ag =
2kM6 — n(1/p —1/2) > 0, we then obtain

(4.8) D; < 2% |S,Q) 7 .

To estimate By, let §,(Q) = 2/H90+1Q \ (20-90-2Q) and §;(Q) = 27+0+2Q \ (21-90-3Q),
By Fubini’s theorem, we have

20U-5)1(Q) 2 dy dt
B[ [ e g
0 )

S;(Q t
2°079Q) ok 2 dy dt
5/ /~ ‘t%LE_t L (X2j*j0*3Qm) (y) —yt
0 S;(Q)

200-5)1(Q) - 2dydt
2k Y
+ / ‘t%Le e <><A. m) y)| ——
/0 5@ s@™) W] =
2°0-91Q) . 2 dydt
+ N tsze_t%L XRn\2i+io+2Q M (y) Y =Bj1 +Bj2 +B;s.
0 5i(Q) ' t
J

By the k-Davies-Gaffney estimate, (4.7) and choosing a € (2n(1/p—1/2)/(1 —6), 00), we
obtain

29(j75)l(Q) " 2][ 2k/(2k—1) dt
Bj1+Bj3 S / exp {—C [ (Q)] HmH%Q(Rn) n
0

t

2006-5)1(Q) ¢ a g i1 ‘ o
SHmH%Z(R"’/o [m(QJ T R ] I

where C denotes a positive constant. Let ag = (1 — 6)a/2 — n(1/p — 1/2). Then a; > 0
and we have

(4.9) Bj1+Bj3< [le(Q)]2n(1/2—1/p) 9—2ja1

Finally, by (4.5) and the size condition (4.3) of m, we obtain

J+jo+2

— i€ Tyi 2n(1/2—1/p)

(4’10) Bj72 S/ ”mHiz(gj(Q)) 5 Z Hm”2L2(SZ(Q)) 5 2 & [2]1(Q)] ' ’
l=j—jo—2

which, together with (4.8) and (4.9), shows that there exists a positive constant ay =
min{ag, a1, €} such that for all j € {jo+5, -+ },

(4.11) I; < [le(Q)]"(1/2_1/p)2—j0¢2 ~ |Sj(Q)|l/2—l/p2—ja2‘
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Combining (4.7) and (4.11), we have
(4.12) [Szmilznen) < Q@™ET PRriQI 2 4 T 27 5,
Jj=jo+5

from which we deduce (4.6). Thus, the inclusion HY . (R") C HY (R™) holds, which
completes the proof of part one of Theorem 4.1. O

Now, we prove the inclusion HY (R™) c H}  (R"). To this end, we need use some

results concerning the tent space from [14]. Let F be a function on R = R™ x (0, 00).
The A-functional of F' is defined by setting, for all x € R™,

F)(@) = { /L= }

For p € (0, 00), the tent space Tp(Rfrl) is defined by

PR = {F LR S Co Py = MA@y < oo}.

For any cube @, denote by Rg = @ x (0, [(Q)) the Carleson boz of Q. A measurable
function A on R’ is called a TP(R"™)-atom associated with Q with p € (0, 1], if A
satisfies the following properties:

(4.13) supp A C Rg

and

1/2
(4.14) {//R \A(a:,t)F@} < Q|
Q

For the tent space T' p(RZL_H) with p € (0, 1], we have the following atomic decomposition
from [14] (see also [32, Proposition 3.25]).

N
D=

Theorem 4.2 ([14]). Let p € (0,1]. For all F € TP(R™Y), there exist a numerical
sequence {\;}52, and a sequence {A;}3%, of Tp(Rfrl)—atoms such that for almost every
(x, t) € R},

t) = Z)\jA]’(Z’, t).
§=0
Moreover,

Z ’)\ ’p ~ ”F”Tp Rn+1

where the implicit equivalent posztwe constants depend only on the dimension n. Finally,
if F e TP(RYT) N T2RYET), then the decomposition also converges in T?(RH).
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Let M € N. For all F' € T2(R:‘_+1), define the operator my 1, by setting, for all z € R",

0 M+1 dt

(4.15) L F(z) = / <t2kL) e P, 1)
0

For this operator, we have the following useful lemma on its properties.

Lemma 4.2. Let M € N, p € (0, 1], € € (0, 00) and the operator L satisfy the assumptions
(A1), (A2) and (As) in Section 2. Let mp, 1 be as in (4.15). Then

(i) The operator mpy, 1, is bounded from T*(RHY) to L2(R");

(ii) For any TP(R’}FH)-atom A, mar, LA is an (HY, €, M)-molecule up to a harmless pos-
itive constant multiple.

(iii) If M € (n(1/p —1/2)/(2k), o0), then the operator w1, is bounded from the tent
space TP(R') to the molecular Hardy space HY ol i (R™).

Proof. We first show (i). Let L* be the adjoint operator of L in L?(R"). Observe that
L* also satisfies the assumptions (A1), (A2) and (As3) in Section 2. By Fubini’s theorem,
Holder’s inequality and the quadratic estimate (4.5) with L replaced by L*, we have that
for all F' € T2(R") and g € L2(R™),

00 M+1 _dt
/ / (tsz) e_tszF(x, t)g(z) " dx
nJo

/ / F(z, t)(2kLx)M Tt =121 g(3) ds dt
0 n

t
00 1/2
A [ e ora
A - t
00 M1 .
X {/ / (t%L*) et*L g(x)
0 n

S ||F||T2(Ri+1)||9HL2(R")7

(7, F, g)| =

9 1/2
dzx ﬂ}
t

which further implies that the operator s 1, is bounded from T 2(Rﬁ+l) to L?(R"). Thus,
(i) holds.

To prove (ii), let A be a TP(R™)-atom A associated with the cube Q. From (4.15), it
follows that for all £ € {0, ---, M} and = € R",

o0 M+1
(4.16) T, L A(w) =/ (tZkL> e LAz, t)%
0

— Lé /OO t2k(M+1)LM+1—Ze—t2kLA(x’ t) %
0

Observe that

/OO t2k(M+1)LM+1—£e—t2kLA(x7 £) % _ /oo $2k(M+1) <L1_%+1
0 0

dt

M+1
) e_tszA(a;, t) >
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which belongs to L?(R") via a dual argument similar to that used in the proof of (i). This,
combined with (4.16), implies that w1 (A) satisfies Definition 4.2(i).
For all z € R", letting

b(x) = / t%(MH)Le_t%LA(x, t) %,
0

we then have my A(x) = LMb(z). For all g € L*(R"), by Hélder’s inequality, (4.13),
(4.14) and the quadratic estimate (4.5) with L replaced by L*, we obtain

¢
(4.17) / ([MQ)F’CL) b(z)g(@) de
N / { / [1(Q))2H¢ LA RMAD oL 4 (5 4 %} g(z) dw
n 0
= [l(Q)]%Z // Az, t)(L*)Z+1t2k(M+1)e_t2kL*g(x) dx dt
Rg n
1/2
< Q)2 // )2 dm dt
) 1/2
X // (L*)Z+1t2k(M+1)e_tsz*g(x)‘ dx dt
Ro n
) 1/2
N [l(Q)]n(l/Q_l/p)-‘er‘M // ‘(tQKL*)Z-i-le_t?kL*g(x)‘ dx dt
S [l(Q)]n(1/2_1/p)+2kM||9HL2(R7L),
which further implies that for all ¢ € {0, ---, M},

< HQPPMQI2 7.

H )2k L
L2(2Q)

Thus, by this, we obtain that for all (e {0, .-+, M} and j € {0, 1},

a1 (@12 )

B L2(5;(Q))
o (IR
< || (@ L)

L?(5;(Q))

l —2kM < l n(1/2—1/p),
oy @I S 1Q)

which is desired.
Moreover, for all £ € {0, --- , M} and j € {2, 3, --- }, letting g € L?(R") with suppg C
S;(Q), choosing o € (n(1/p —1/2)(2 — 1/k), c0) and using Lemma 3.1, similarly to the
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estimate for (4.17), we have

[ (@) vwig) ds

1/2—1 2%k M ‘@ ok 7x\O+1 —t2k > 2 drdt 12
S@psmard [E [t g )

t

. 2%/ (2k—1 1/2
< Q)21 /p)+2kM [/Z(Q) exp {—C [dlst(Q, Sj(Q))] ! )} ﬂ]
x[lgllz2(s; (@)

S U(@)/2m YD Ik G0 g]| (g, )

which further implies that for all £ € {0, -+, M}and j€{2,3, -},

1) [ (@) tra e

L2(5;(Q))

< (@) p
L2(5;(Q))
Q)

S H (@) b‘ 12(5,(Q))

< [271(Q))M /2P gmilka/ R=1)=n(1/p=1/2)] (971 (Q)]M(M/2~1/P)gie,

where € = ka/(2k — 1) —n(1/p — 1/2) € (0,00).
Combining (4.18) and (4.19), we know that mys A satisfies Definition 4.2(ii) up to
a harmless positive constant multiple. Thus, w1 A is an (Hﬁ, €, M)-molecule up to a
harmless positive constant multiple, which completes the proof of (ii).
To show (iii), by density, we only need show that for all F' € TP (R’ffl) NT? (R’}fl),
||7TM,LFHH5

<
mol,]W(Rn) ~ ||F||Tp(Ri+1) )

To this end, by Theorem 4.2, there exist a sequence {4;}3%, of TP(R"*!)-atoms and
{Ni}32 € 1P such that F =32 \;4; in both pointwise and T2(R’™), and

e’} 1/17
(Z w) YT —
i=0

By (i) of this lemma, we know that

o0
L = E N, LA
=0
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in L?(R™), which, combined with (ii) of this lemma, shows that > ;2 \imas,z4; is a molec-
ular (H7, 2, €, M)-representation of my, . Thus, mar . F € HY | 1, (R") and

[e%e) 1/p
IracFllyy oy S {25 w} ~NFlgagar
1=

which completes the proof of (iii) and hence Lemma 4.2. O

Proof of Theorem 4.1: the inclusion HY (R™) c HY _ (R™). For all f € H}(R"), t €
(0, c0) and z € R™, let

(4.20) F(z,t) = t*Le ™ L ().

By Spf € LP(R") and f € L?*(R"™) together with the fact that Sy, is bounded on L%(R"),
we know that F' € TP(R™™) N T*(R"). Moreover, by the Hy functional calculus in
L?(R™), we have the following Calderén reproducing formula that for all g € L?(R"),

% ok M2 —o2ky, dl
g=Co [ (#L)" e 9=
0

where Cyg is a positive constant such that Cy fooo {2k(M+2) g2 % = 1. Thus, for all
€ , 1T lettin e as 1n (4.20), then f = Cgmpy ' and, emma 4.2(111) an
f H’i(R") if letting F' b in (4.20), then f = C, .. F and, by L 4.2(iii) and

its proof, we further know that f € Hj  , »(R") and [[flf, (R") S || fllzz@n)-
Therefore, HY (R™) C H%mol’ (R™), which completes the proof Theorem 4.1. O

5 Generalized square function characterizations of HY(R")

This section is devoted to the generalized square function characterization of HY (R™).
We first introduce the notion of the Hardy space HfZ’ . (R™) defined via the generalized
square function. Let w € [0, 7/2), a € (0, 00), B8 € (n(1/p —1/2)/(2k), o0o0) and ¢ €
\I/a,g(SB) with 4 € (w, 7/2). For all f € L*(R") and (=, t) € ]R’}fl, define the operator
Qy,Lf by,

(5.1) Qu.pf(x, t) = v(** L) f(x).

Definition 5.1. Let p € (0, 1], w € [0, 7/2), L be the operator of type w satisfying the
assumptions (Aj), (A2) and (Ag) in Section 2, a € (0, c0), 5 € (n(1/p —1/2)/(2k), o0),
p € (w, m/2) and ¢ € \I/a,ﬁ(SB). The generalized square function Hardy space HZ,L(Rn) is
defined to be the completion of the space

Hy,  (R") = {f € L*(R") : Qy,rf € TP(R}™)}
with respect to the quasi-norm HfHHfZ)’L([R”) = HQ%Lf”TP(Ri“)-

The following theorem, which establishes the generalized square function characteriza-
tion of H7(R™), is the main result of this section.
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Theorem 5.1. Let p € (0, 1], w € [0, 7/2), L be the operator of type w satisfying the
assumptions (A1), (A2) and (As) in Section 2, a € (0, 00), B € (n(1/p —1/2)/(2k), c0),
€ (w, m/2) and i € W, 5(S)). Then the Hardy space H} (R™) = HfZ)’L(]R”) with equiva-
lent norms.

Before proving Theorem 5.1, we first give an application of this theorem. Let a € (0, o0)
and L® be the fractional power with exponent o of L defined by the H, functional calculus
in L?(R") (see, for example, [39, 26]). More precisely, choose m € N such that m > a.
Then, 2%(1 4+ 2)™™ € \I’a,m_a(Sg) for all p € [0, w/2) and L is defined by setting

o — (0% — m Za
1= (0 = 1+ D" (o) (O
For more details about L, we refer the reader to [39, 26] and the references therein.
Assume that —L® generates a bounded holomorphic semigroup {e *" };~¢. From [26,
Example 3.4.6], it follows that this is true when o € (0, 1], and in this case, {7 };~q
is called the subordinated semigroup (see [26, p.80] for more details). For all f € L%(R"),
define the L%-adapted square function Sp« by setting, for all x € R™,

(5.2) St () = { /I ;

For p € (0, 1], we also define the Hardy space HY.(R™) associated to L* to be the
completion of the set

1/2
2k‘aLOc _2kaga 2 dy dt /
t e f (y)( ] :

(5.3) HY. (R") = {f € LAR") | Spe ]l gan) < o}

with respect to the quasi-norm ||f||H§a @) = [1Sca fl powny -
With the help of Theorem 5.1, we immediately obtain the following interesting corollary.

Corollary 5.1. Let p € (0,1] and L satisfy the assumptions (A1), (A2) and (Asz). Assume
further that when o € (1, 00), —L% generates a bounded holomorphic semigroup. Then,
for all o € (0, 00), the Hardy spaces HY .(R"™) = HT (R") with equivalent norms.

Proof. Let w € [0, 7/2). Recall that L is an operator of type w. For all a € (0, 00),

€ (w, m/2) and £ € 52, set (&) = €%, Then, for all B € (n(1/p — 1/2)/(2k), o),
¢ € Wy 3(S)) and hence, by Theorem 5.1, we have that for all f € L?(R"),

1AW g ey = 11520 Fllomy = 1 Qu, fllpwntry = 1z @ny ~ 1 a2 @y

which together with the density of L?(R") in H? (R™) and H?,(R") shows that H? (R")
H? . (R™) with equivalent norms. This finishes the proof of Corollary 5.1.

Ol

Let w € [0, 7/2) be as in Section 2 and p € (w, 7/2). To prove Theorem 5.1, we
introduce two operators as follows:
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(i) For all F € T?>(RM) and o € W(Sy), the operator 7y 1, is defined by setting, for all
r € R,

(54) ﬂ'w’LF / T[) t2kL l‘ t)

(i) For all ¥, ¢ € U(Sy), f € Hoo(S)) and F € T%(R"*), the operator Q7 is defined
by setting, for all x € R™ and s € (0, o0),

(5.5) QfF(:E, 5) =Qyro f(L)o qu’LF(:E, s)

= [ e it e o 7.

where the operator Qy 1, is defined as in (5.1).

Observe that by (4.5), Qu 1 is bounded from L2(R™) to T?(R"™) and so is Qur+
By Fubini’s theorem and Holder’s inequality, we have that for all F' € T2(]R7}r+1) and

g € L*(R"),
/ Ty L F(x)g(z) da —/ / Y(t**L)F(x, t) (a:) dx
R n

- [ [ Fe @@t

Thus, QE 1+ 1s the adjoint operator of my 1, which, together with the above observation,

shows that 7y, 1, is bounded from T?(R”™) to L?(R"). From these facts and (5.5) together
with that L has a bounded H,, functional calculus in L?(R"), it follows that @/ is bounded
on T2(R7H).

Let o1, o2, 71, 2 € (0, 00). Assume that ¢ € ¥, (Sg) and J € \IJUQJQ(SS). We

now consider the operator ¥ (s2*L)f(L)y(t2*L) in (5.5). Let a € (0, min{o1,7}) and
b € (0, min{og, 7 }). For s, t € (0, 00), when s < ¢, we write

(5:6)  V(FLFLDEL) = <t2—:) (1) "w(s* L) g (L) (240) " detL)

while when s > ¢, we write

~ t b b —-b ~
(5.7) w(s%L)f(L)w(t%L):(@) (s2) v f(L) (P4L) aetL)

£2k\ 0
= <SW> Ts%,t%'

Then, we have the following useful estimate on {Ts t}s>0-
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Lemma 5.1. Let k € N be as in (2.6), o1, 02, 71, T2 € (0,00), w € [0, 7/2), p €
(wa 7T/2), ¢ € \PO'I,Tl (52): 7;[) € \PO'Q,TQ(SB)J aec (07 min{ala 7_2}) and b € (07 min{a2, 7_1})-
Let f € Hoo(Sp). Let {Tsi}si>0 be as in (5.6) and (5.7) with s% and t?* replaced,
respectively, by s and t. Then, there exists a positive constant C such that for all M €
(0, min{oy + a, 71 +b}), s, t € (0, 00), closed sets E, F C R and g € L*(R") supported
mn B,
sy "
. max{t, s
(5.8) 175,91l 27y < Cll fI| oo (mny min {17 st (E, F)]Qk} l9llz2 (k-

Proof. We prove this lemma by considering two cases. If s <, since a € (0, min{o,72}),
we have that for all £ € Sg,

—a gl
(66" 96O S T e o S
and
a . ‘tf‘gz—i_a
‘(tﬁ) ¢(t5)‘ N W’

which, together with Lemma 3.3 with ¢ and f therein respectively replaced by (tg)“{/;(tf )
and (s&) %P (s€) f(§), implies that the family {Ts;}s<: of operators satisfy the k-Davies-
Gaffney estimate of order o9 + a in t.

Similarly, if s > ¢, since b € (0, min{oy,71}), we obtain that for all £ € Sg,

~ o2—b
5 16 G| <

> WHf”LOO(Rﬂ) 5 1

and

(56 w(s6)| < sl
=T s
which, together with Lemma 3.3 with ¢ and f therein respectively replaced by (5€)bap(s€)
and f(&)(t€) by (L), implies that the family {7y}~ of operators satisfy the k-Davies-
Gaffney estimate of order 71 4+ b in s.
Thus, for all M € (0, min{oa+a, 71+b}), we immediately obtain (5.8), which completes
the proof of Lemma 5.1. O

Lemma 5.2. Let p € (0, 1], L be the operator of type w satisfying the assumptions (Aq),
(A2) and (A3) in Section 2, a € (0, 00), B € (n(1/p —1/2)/(2k), 00), w € [0, 7/2),
e (w, m/2), Y € \I’Q,B(Sg) and Y € \115706(52). Then the operator QI originally defined in
(5.5) on T? (]R’ffl) can be continuously extended to a bounded linear operator on TP (Rﬁ“).
Moreover, there exists a positive constant C' such that for all F € TP(RCLFH) and f €
Heo(S)),

(5.9) |Q7F| . < Cllflliisp IF lpm gy

PR}
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Proof. By the density of T?(R"™) N TP(R7H) in TP(RTH) (see [14]), it suffices to prove
(5.9) for all F € T2R}T) N TP(RYH!). To this end, by borrowing some idea from the
proof of Theorem 1.1 in [47], we only need show that for all TP(R'}!)-atoms A,

(5.10) |74, i S 1 liesgy:

Rn+1

Indeed, if (5.10) holds, then from Theorem 4.2 and the T2(R"")-boundedness of Q7 A,
it follows that for any F € T*(R’™) N TP(RT), there exist a sequence {A; }52o of
TP(R")-atoms and {\j}32o € 1P such that F' = 3772 A\;jA; with the sum converges in
both pointwise and TQ(RTrl), and {3772, I\ PP~ HFHTP(RZ:H). We claim that for

dad 1
th-almost every (z, t) € Rfr ,

(5.11) o [ S a4, f:‘/\ QF Aj(a, 1)
j=0 j=0

Assume this claim for the moment. By (5.11) and p € (0, 1] together with the monotonicity
of I[P, we have

1/p
HQfF‘ Tp R”H < ZM |p||QfA HTp(Rnﬂ
7=0
1/p
SJSEUE {HQf( Mizw @ty } Z|/\ P

1/p

Sz § SN 6 ~ I laosy I Flpogane.

That is, Q@ is bounded on T' p(R”+1). To show the claim (5.11), for simplicity of the
notation, let du(z, t) = 2% for all (z, t) € € R} By the T2(R'M!)-boundedness of Qf
and the TQ(R"H) convergence of F = Z 0 AjAj, we obtain that for any n € (0, c0),

i n. f A
prr(free o (5 0] ) e | o

i=N—+1
This, combined with the Riesz theorem, implies that there exists a subsequence

QN DD N4

J=Ng+1 leEN

of {Qf(zj ° N+12jAj) I nen such that for p-almost every (z, t) € RTFI,

= 0.
TR

- of
Jim Q Z NA; | (z,t) =0,
—Ne-i-l
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where {Ny}oeny € N and limy_, oo Ny = co. Therefore, for p-almost every (z, t) € ]R’}fl and
all £ € N,

Q’ (Z%’AJ)( + Qf( > AjAj) (z, t)|,
=0 —0 J=Ne+1

which, together with letting ¢ — oo, shows the claim (5.11).
To finish the proof of Lemma 5.2, we still need prove (5.10). By the homogeneity of
the norm || - ||, &) without loss of generality, we may assume that || f||ze( soy = 1. Let

Q@ be the cube associated with the 7P(R”™)-atom A and Ry = Q x (0, 1(Q)), where 1(Q)
denotes the side length of Q. For all i € N, set 2'Rg = 2'Q x (0, 2/(Q)) C R:‘_H and
Si(Rg) =2'Rq \ (27" Rq).

For ¢« = 1, by Hélder’s inequality and the T2(]R’}r+1)—boundedness of Qf and the size
condition (4.14) of TP(R"™)-atoms, we have

(5.12) HX2RQQfA‘

= HA(XzRQ QfA)‘

Tr(R) Lp(RM)

< HA(X2RQ QfA)‘

1/p—1/2
L?(R™) [2vn +2)Q o

1/2
< // A, )P gz <,
Rg t

For ¢ > 2, using Holder’s inequality and Fubini’s theorem, we then obtain

HXSi(RQ)QfA‘ TPRY)

S| |>—l
l\)l)—l

= HA(Xsi(RQ)QfA)‘

< HA Xs.(rg) @A ‘

|2Z2+\f Q7

Lr(R

i1 /2
~ { [/02 UQ) /Rn X5:(Ro) (T, 8) ‘QfA(x, S)‘2 dedS]
/ / ] }‘2@"1’5 = {1+ 0} |2Q|7 7.

9i-11(Q) JRn

To estimate O, from (5.5), Minkowski’s inequality, Fubini’s inequality, Lemma 5.1 and
Holder’s inequality, we deduce that

i /2
211(Q) > ds)
O ~ {/ / X5;(Rg) (, 3)‘fo4($ 3)‘ dl’—}
2i— ll(Q

211(Q)
~ Xs; (z, s)

dt

/ G(s% L) F(L)H(EL) A, 1) o

2 1/2
dmﬁ}
t S
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{/2 / XSi(Rq) (2, s)
S/ooo[ Qrkb [/212211(;;

UQ) t 2kb
< A, t
<[ gg] 1ac ons
Q) dt
A'7t 2 n
{/0 JAC, )y &

1[2kb—n(1

200(Q

zll

<

~

S 2—2ik2b‘Q’l/2—l/p ~ 2—

where b € (n(1/p —1/2)/(2k), 8) and

I

}1/2

31

2
dt

¢ 2kb
) TSZk’tZkA(.Z', t) 7

S

da:ﬁ
s

}1/2

1/2
ds dt
/n|T2kt2kA x, t) | XS;(Ro) (%, s)d:n?] "
dt
R™) ¢

4kb dt

. _}1/2

UQ)
| |l
/p=1/2)] ‘Qileﬂ—l/p ~ 2 ‘21'@’1/2—1/;;7

m =2kb—n(l/p—1/2) > 0.

Let a € (0, «). To estimate I, by Fubini’s theorem and Minkowski’s inequality, we write

211Q) s\’
I~ { [ [ xsimgle 9] @ o) dw—}
0 Rn S
27UQ) o0 at)*  ds) "
0 R" 0 8
21711(62) [e'e] ] s o2ka t 2kb
~ {/0 /Rn Xs5i(Ro) (%5 5) /0 mln{(z) ; <g> }
1/2
X Tk por Az, t) ﬂ dx ds}
’ t S
1/2
4ka ds dt
g/ {/ / |T2k 2 Az, t) ‘ XSi(Rg) (T s)da:—} -

LG

=1 + L.

Let M € (n(1/p—1/2)/(2k
inequality that

), min{a +

ds

de % dt

b
2
‘Ts%,tzkA(:E, t)| Xsi(RQ)(x’ s) ¢

} :
b, B+ a}). It follows from Lemma 5.1 and Holder’s

2k ds

[ O m

TRGRE

Q)
I S /
0

/l(Q)
0

t2k

(@

RQ7 SZ

2M
i) MG Ol £

2M )

1/2
ds/ﬁ
t
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1 I(Q) 2%k M t S 4ka dS 1/2 dt
~ [sz(@)PkM/o IAC Dz Uo (7) ?] "

. y deat) [ @ o ar)
S RUQE //R A O = e

1/2
~ 9~ 2ikM {// Az, )2 dx dt} < 9 IRM=n(1/p=1/2)] 91 |1 /P=1/2
t ~Y
Rq

~ 2—1"\/2 ’272@‘1/]?—1/27

where v9 = 2kM —n(1/p —1/2) > 0.
For Is, via some similar calculations to the estimate of I;, we obtain

we [ MWQ) @M {pram }W .
5/01(62){[%]2kb+ [%]WCM} IAC, )l 2gzm %

< {//RQ 1Az, 1) dxtdt}l/z {/Ol(Q) ([%}4%4_ [%rkM) %}1/2

< (2—2ikb I 2—2ikM> QM2 1/P (271 4 277) ‘2@‘1/2—1/1).

1/2 u
IAC, Dl z2@ny &

Combining the estimates of I; and I3, we obtain
(5.13) 0< (27 + 2—i'yz) 12iQ/2 V.

By (5.12) and (5.13), we have

A g, 5 [reme”a [xs.no’a]]
HQ TP(]RTLl) ~ X2RQQ TP(]RTrl) + ZEZ; XSi(RQ)Q TP(]RTrl)
S14> (7P 27r) <1,
i=2
Thus, (5.10) holds, which completes the proof of Lemma 5.2. O

As an application of Lemma 5.2, we obtain the following boundedness of Q. 1, and 7y, r..

Lemma 5.3. Let p € (0, 1], w € [0, 7/2), L be the operator of type w satisfying the
assumptions (A1), (Az) and (As) in Section 2, o € (0, 00), B € (n(1/p —1/2)/(2k), c0)
and p € (w, m/2). Then

(i) the operator Qy. 1, originally defined on L*(R™) as in (5.1) with ¢ € Vo 5(S)), can
be extended to a bounded linear operator from HY(R™) to TP(R:L_H),
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(ii) the operator w1, originally defined on T?>(R'™Y) as in (5.4) with ¢ € Ug0(Sp), can
be extended to a bounded linear operator from TP(RZLFH) to HY (R™).

Proof. The proof of Lemma 5.3 is quite similar to that of [32, Proposition 4.9]. For the
convenience of the reader, we present the details. We first recall a Calderén reproducing
formula from [32, (4.12)]. For all ¢ € ¥(S}), there exists a function ¢ € ¥(S}) such that

<~ dt
| ewin g -1
0
Moreover, we have
(5.14) TpLoQpy =75, 0Qur =1 in L*(R").

In particular, let 1g(z) = ze™* for all z € 52. We then choose ¥g(z) = C(M)zMe™* for
all z € 52 such that g € \I/M7N(52) for any N € (0, oo), where M is the smallest positive
integer larger than n(1/p —1/2)/(2k) and C(M) [;° tMe™2" dt = 1.

By Definition 5.1 and (5.1), we have that for all f € HY (R") N L*(R"),

HQwo,LfHTP(Ri“) = ”f”Hg(R")y
which implies that Q. is bounded from H? (R") to TP(R"). For all ¢ € ¥, 5(SY), by
1

12 Y
this, together with the Calderén reproducing formula (5.14) and Lemma 5.2 with f =
therein, we obtain that for all f € H? (R™),

1@, fllz gty ~ HQw,L °mg 10 Qwo,Lf‘ : S 1Quo, L w1y

+1
TP(R™:

~ e ey

That is, Qy, 1, is bounded from HY(R™) to TP(R’™), which completes the proof of (i).
On the other hand, for all ¢ € \I’B,Q(SS), since ¥y € \11175(52), it follows from Lemma
5.2 with f =1 therein that for all F € TP(RT) 0 TR,

17, L E | iy oy = |@uo, © T, LE | ity S N1 F Ml iy

which shows that 7, is bounded from TP(R"™) to H?(R™). This finishes the proof of
(ii) and hence Lemma 5.3. O

Proof of Theorem 5.1. By Definitions 4.1 and 5.1, to show Theorem 5.1, it suffices to prove
that HY (R") = HZ}’ . (R™) with equivalent norms.

The inclusion HY (R") C HZ}’ ;(R™) is an easy consequence of the boundedness of Qy 1,
from HY(R") to TP(R™), which is true by Lemma 5.3(i). We now prove HZ)’L(R") C
]I;]Ig(R”).NLet Yo(z) = ze? for all z € S}). Observe that for any ¢ € :Ila,ﬁ(Sg), we can choose
P(z) = C(M)zMe=% for all z € 52 such that (5.14) holds, where C (M) is a constant such
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that C(M ) [T tM e ty(t) dt = 1. By (5.14), Lemma 5.2 with f = 1 therein, and Lemma
5.3(i), we obtain that for all f € H}, ; (R"),

12 @y = 1Quo,Lf lro@nrty = 1Quo,r 075 1 © Qur fllgw@ntry
SNQu.Lfllgp@nry ~ 1 llmz @),

which implies that Hy, ; (R") C H} (R"). This finishes the proof of Theorem 5.1. O

6 Riesz transforms on H7,(R") for i € {1, 2}

In this section, for the 2k-order divergence form homogeneous elliptic operator Ly with
complex bounded measurable coefficients and the 2k-order Schrodinger type operator Lo,
we consider the behavior of their Riesz transforms V*L; /2 on the Hardy space H- i (R™),

respectively for i € {1, 2}. First, we study the boundedness of V*L;7'/2 on H 7, (R™) for
i € {1, 2}. To this end, we need the following useful estimates.

Lemma 6.1. Let p € (0,1], M,k € N, Ly be the 2k-order divergence form homoge-

nous elliptic operator with complex bounded measurable coefficients and Lo the 2k-order

Schrodinger type operator. Then, there exists a positive constant C' such that for all

i € {1, 2}, closed sets E, F in R™ with dist(E, F) > 0, f € L>(R") supported in E and
€ (0, 00),

M
(6.1) HV’“Lfl/z (I- _“” f‘ L = <C <m> 1fllz2(e)
and

. M
(6.2) Hv’fL U2 (4Le ) f‘ o 5€ <W> 11 z2(m)-

Proof. We prove this lemma by borrowing some ideas from [29]. Let i € {1, 2}. From
[6, Theorem 1.1] and [40, Theorem 8.1], we deduce that V*L;~'/2 is bounded on L*(R").
Thus, it suffices to prove Lemma 6.1 in the case that t < [dist(E, F)]**. By the Hy
functional calculus in L?(R™), we obtain that for all f € L?(R"),

1 o0
. L, Y2f = _/ —sL; ;—1/2
(6.3) f N e s fds,
which together with the change of variables yields that

VkLi_l/Z (I _ e—tLi)Mf

R S S o—tLiyM ds
g, V- g

_ VM+2/OOVI€€—(M+2)SL¢ ([_e—tL)M ds
N NG
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. M
_ %/0 5V e (M+2)sLi [Z (M)(l)jemi] fﬁ

S
i=o \J

VM +2 [ | v d
+ il / VsVFem(MH2sLi (1 _ o=ty ¢ 22— 4 o
ﬁ t S

where (Af ) denotes the binomial coefficient.
To estimate I, we write

t
[ — VM + 2/ \/gvke—sLie—(MH)sLif@
2\/’7_'(' 0 S
M

M+2<M> -/t k —itL: —(M+2)sL: dS
LY () 1y [ ket (Mo p B g S
7=1 2ﬁ J ( ) 0 \/g 0 !

For Iy, it follows from Minkowski’s inequality, Propositions 3.1 and 3.2, Lemma 3.2 and
the assumption ¢ < [dist(E, F)]** that

ds

t
< k_—sL; —(M-i-l)sLi
1ol z2(F) N/O H\/EV e *Me f ) s
t C [dist(E, F))?*/(%k=1) ds
S /0 exp {_ 51/(2k—1) ”f”LQ(E) ?

{_ C [dist(E, F)]2k/(2k_1) }

11/(2k—1)

o [ ep - CelditE, VR ds
o p $1/(2k—1) g 1/ IlL2(E)

< exp

~

C [dist(E, F))?*/ (k=1 t
< —
~ eXp { £1/(2k—1) [dlSt(E, F)]Qk ”f”LQ(E)

. M
S (W) I £l L2y,

where 6’, 51, C, are positive constants such that Cy+Cy=C.
For each 1;, j > 1, by Lemma 3.2 and Propositions 3.1 and 3.2, we have

L / ds

' N tVkeitli —(M+2)sL; @5

Wl S 5 [ | (ViEwre ) o (e P
t O di 2% /(2k—1)

< L”f”m(E) exp _ Cldist(E, F)] ds

\/E 0 t1/(2k—1) \/E

. M
S <W> | fll 22y,
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which together with the estimate of Iy implies that

M
t
(6.4) ||I||L2(F) S <W> ||f||L2(E)a

where and in what follows, C always denotes a positive constant. We now estimate O by

writing

S
o [ (R o e s o 2
t

Using the analytic property of semigroups and Lemma 3.1, we have that for all g € L?(R"™)
supported in the closed set F and t < s,

- o =H—/t£<e-<s+%>w
dr

/ H (s 4+ r)Lie~ st
L2(F) s+

C [dist(E, F))?F/ (=1 dr
§/0 exp{ [ (1/(2k)]1) ||gHL2(E)

o
d
O ~ / \/gvke—SLie—MsLi (I _ e_tLi)M e_SLif _S
t

L2(P)

S+r

t C [dist(E, F))?F/ (=D
<—exp{— dist(E, ) ol s

~ s 81/(2k—1)

Thus,

09 -l

C [dist(E, F))*/=1
L2(F) S exp {_ S1/(2k—1T) 9/l 2 ()

Therefore, by Minkowski’s inequality, (6.5), Lemma 3.2, Propositions 3.1 and 3.2, and the
change of variables, we obtain

[e%S) —sL: S _sL: (s I\NM —sL:
10| L2 () S/t H(\/Evke Ll) o (Z [e Li _ o~ +t)LzD o (e=1) f
C(E) s
S S
oo M A1 2k/(2k—1)

t Cdist(E, F)] ds

< - - J—

Sl [ (3) exp{ ) :

. oK\ —M
5<M> T

L2(F)

t
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Combining this estimate with (6.4), we have

[z (1 ety ]

-M
[ Wdist(E, F)*
L2~ [ ”f”LQ(E)a

that is, (6.1) holds.
Now, we prove (6.2). Using (6.3) and the change of variables, we have that

kr —1/2 —tLi\M :L/w k_—sL;  —tL\M ﬁ
V*L; (tLZe ) f N V¥ (tLZe ) f

NG
> ds
~ Vke=(M+D)sLi (4, o=tLi Mf—
J AR ive
t dS o0
~ Vke—(M-l-l)sLi tLie—tLi M f_ + ...=B + D.
| (tLe™™) "I 5 ),

An application of the analytic property of semigroups, Propositions 3.1 and 3.2, and
Lemmas 3.1 and 3.2 yields that

<\/§vk€_éu> o (e_(M—H)SLi) o (%Lie_éLz) o (tLie_tLi)M_l f

1t C [dist(E, F)?/(k=D ds
< _ ) il
0 e€xp { +1/(2k—1) HfHLZ(E) \/5

- M
C [dist(E, F)]?/k=1) t
< — <y -
~ €Xp { F1/(2k—1) HfHL2(E) ~ [diSt(E, F)]2k ||f||L2(E')7

B2 (r)
1 ¢ ds

NG

L2(F)

where C is a positive constant.
For the estimate of D, similarly to the estimate for B, we write

0o M M
oo ) (e
' s s
and we estimate sL;e~(5t)Li f by

HsLie—(s-i-t)Lif

= fe_SLi /t g (rL-e_rLi) fdr
L2(F) ||t o Or v "

L*(F)

¢
< fe_sLi/ [Lie_TLif—rLi2e_rLif] dr
t 0 L2(F)
t
< fe_SLi/ Lie "Fif dr
t 0 L2(F)
t
+ ‘ fe_SLi / rLi%e "Fif dr =Vi+ Vs
t 0 L2(F)
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By Minkowski’s inequality, Lemma 3.1 and r < t < s, we obtain
s [f s [* C [dist(E, F)]*/k=1) dr
< = <2 _ s dr
Vi s t/o ‘ Lo dr 5 t/o exp{ (5 + 1)@ D) Il 2k .

O [dist(E, F)]?F/ k1)
Sexp{— dist(E, F) 112,

Lye—(s+7)Li (f)‘

$1/(2k—1)
Similarly, we have that

t
S 12 —(r+s)L; dr
< - L;
Vzwt/o H[(TJFS) I7e |

s t C [dist(E, F)|2/CF=1  gr
<3 _ )
< Wl | eXp{ e [T

O [dist(FE, F)]?F/ (k1)
< exp {— dist( ) £l z2(Eys

S1/(2k—1)

which together with the estimate of V; shows that the family {sLie_(s“)Li }=0 of operators
satisfies the k-Davies-Gaffney estimate in s. Thus, using Minkowski’s inequality, Lemmas
3.1 and 3.2, Propositions 3.1 and 3.2, and the change of variables, we obtain

M
< k_—sL; v o —(s+t)L;
ID 22y N/t H(\/Ev e >o <S> ° (sL,e ) f .

o M A 2k/(2k—1)
t C[dist(E, F)] ds
N HfHL2(E)/t <;> exp {— S1/(2k—1) S

. M
S <W> £l z2()-

Combining the estimates for B and D, we obtain that

. M
< | —
L2(F) ~ ([dist(E, F)]%) 122z

which shows that (6.2) also holds. This finishes the proof of Lemma 6.1. O

ds

HVkLz'_1/2 (tLie_tLi)M f‘

1/2) is bounded

With the help of Lemma 6.1, we show that the Riesz transform V* (L;
l,i=2and k=1

from HY (R™) to the classical Hardy space HP(R"), which when p = 1,
was first obtained in [28].

Theorem 6.1. Let k € N, p € (n/(n+k), 1], L1 be the 2k-order divergence form homoge-
neous elliptic operator with complex bounded measurable coefficients and Lo the 2k-order
Schrédinger type operator. Then, for all i € {1, 2}, the Riesz transform V"C(L-_l/2

) is
(2
bounded from H} (R") to the classical Hardy space HP(R").
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Proof. Let i € {1, 2}. We first claim that to prove Theorem 6.1, it suffices to show

that V¥(L; 1/2) maps each (HJ , €, M)-molecule m as in Definition 4.2 with € > 0 and
M > n(1/p—1/2)/(2k) into a classical HP(R™)-molecule in [43] up to a harmless constant
multiple.

Indeed, assume this claim for the moment. For any f € HY (R") by Theorem 4.1,
there exist {\; }] °0 € P and a sequence {m;}%2, of (H7 , e, M )-molecules such that
=3 j=oAjm; is a molecular (H?, 2, €, M)-representation of f and

1/p

1l oy ~ | 32 P
j=0

Moreover, from the L%(R™)-boundedness of V¥(L; Y 2) and the fact that f = 372 \jm;
holds in L2(R"), it follows that

(6.6) VR = vRLTY?) mej =S NVRELPm

in L2(R™) and hence in the space S'(R"™) of Schwartz distributions, which, together with
the above claim, implies that (6.6) is a classical molecular decomposition of V*(L; LY 2) f
in HP(R™). Thus, by the molecular characterization of HP(R™) in [43], we further obtaln
that

1/p

—12 -
[T gy S (WP |~ 1y oy
=0

which, combined with a density argument, then shows that V*(L; Y 2) is bounded from
Hpi(R") to HP(R™).

Let m be an (Hi’ €, M)-molecule associated with the cube @ as in Definition 4.2
with € > 0 and M > n(1/p — 1/2)/(2k). To prove the above claim, we need prove that
Vk(L; Y 2)m is a classical HP(R™)-molecule in [43] up to a harmless constant multiple. To

this end, we only need show that V*(L; 1/2 )m is a following defined HP(R"™)-molecule in
[33, 32], from which it follows that it is also a classical molecule in [43]. In what follows,
for any v € R, we denote by |v| the mazimal integer not more than . Let p € (0, 1] and
Q be a cube in R™. A function m € L*(R") is called an HP(R")-molecule associated to Q
if there exists a positive constant € € (0, oo) such that

(i) for all j € Z4,
n(1/p—1/2) ,_i.
(6.7) 125,00 S [270(@)] " 2

(ii) there exists a non-negative integer M € Z with M > |n(1/p —1)] such that for all
multi-indices o with 0 < |a| < M,

(6.8) / ai(z) de = 0.
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We first prove that Vk(Li_lﬂ)m satisfies (6.7). For all j € {0, 1, 2}, by the L*(R")-
boundedness of V¥(L;~'/?) and (4.7), we have

(6.9) Hvk(Li—W)m‘

SRR S Il S 11V

L2(S5(Q L2(R"
When j > 2, we write

< HV’“(L[”Q) <I - e_[l(Q)]%L")Mm

Hvk(Li_m)m‘ 12(8;(Q) ~

L2(55(Q))

M
+“Vk(Li_1/2) [I— (1—e—[l<Q>}2kLi) }m =1+40.

L2(5;(Q))
An application of Lemma 6.1 and (4.7) gives that

. M
5[ (1 10 ) ()

L2(5;(Q))
- _ kr \ M
+ Hvk(Li 2) (I— o ML Ll) (mxrm\(27410))

12(5,(@)
3 _ 2 \M
+Hvk(Li 12) (1 = e QLT (g0 2i-20)

L2(5;(Q))

< [dist(sj@), 2ﬂ'—2@>} 2 |

~ Q)

[distwj(@), R™\ <2ﬂ'+1@>>} A
Q)

< 9—2jkM [l(Q)]n(1/2—1/p) I [le(Q)]n(lﬂ—l/p) 9—je.

[mx2i-2q HLZ(Rn)

HmXR"\(2j+1Q)HL2(Rn) + HmXQj“Q\@j’lQ)HL2(Rn)

Let € = min{e, 2kM —n(1/p —1/2)} > 0. We then have
(6.10) 1< [21Q)]" PV g,
To estimate O, from Lemma 6.1 and (4.3), we deduce that

0 < sup V’fLi—l/?e—f[l(Q)}%Lim‘
1<e<M

L2(55(Q))
l

M M
~ sup Vkal/z <—[Z(Q)]2kLi6_1€1[I(Q)]Zkl”) ([l(Q)]_szfl) m
1<0<M M

M
~ sup ||VFL2 (ﬁw@n%w—év@n%)
1<0<M M

X [Xm?@ <[1(Q)]_2kLi_1)M} m

L2(5;(Q))
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+ sup
1<6<M

x [XR"\2J'+1Q <[1(Q)]_2kLi_1>M} m

M
VkLi_l/Q <% [Z(Q)]%Lie_% [Z(Q)]%LZ)

+ sup Hv’foW (i[zm%
12(5,(Q))  1S(<M M

L . M — — M
xLie_V[l(Q)}sz) [X21‘+1Q\21‘2Q <[Z(Q)] L, 1) }m

L2(5;(Q))

M
ornguo (QI*L)  m

l

L2(R™) L2(R™)

(@) |

1/2
+ [ZJZ(Q)] n(1/2—1/p) 2—je
(@)

1/2
< 9—2kM {f: 22E[e+n(1/p1/2)]} [l(Q)]n(l/2—l/p) + [2]'[(@)]”(1/2—1/10) 9—je
k=0
<27 Q)"

which, together with (6.10), implies that Vk(Li_l/ 2)m satisfies (6.7) with € therein replaced
by €.

Now, we prove that Vk(Li_l/ 2)m satisfies (6.8) by borrowing some idea from the proof of
Theorem 7.4 in [36]. Let D(y/L;) be the domain of /Z; and R(L;~'/?) the range of L; "'/2.
From [6, 40], it follows that D(v/L;) = D(a;), where D(a;) C W*2(R") is the domain of
the sesquilinear form associated to L;, which implies that R(L;~'/?) ¢ W*2(R"). Let
{9152, € C°(R™) such that

(i) 22721 ¢j(z) =1 for almost every x € R™;

(ii) for each j € N, there exists a ball B; C R™ such that suppy; C 2Bj, ¢; =1 on B;
and 0 < ¢; < 1;

iii) there exists a positive constant C, such that for all j € N and x € R"™,
©

k
> V(@) < Cy

(=1

(iv) there exists N, € N such that 322, xap; < No.

For all j € N and multi-indices «, let n; € CS°(R™) such that n; = 1 on 2B; and suppn; C
4B;. Since R(L;~Y?) ¢ W*2(R™) and n; 2 € C°(R™), we have

/ 2*VE L7 m(z) da :/ VA (Z(PjVLil/2) m(z) dx

j=1
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/ av’“ %VL 1/2> m(z) do
> ],

(0 [V ga)) UL m(a) da.

nxavkl VL; _1/2) m(x) dx

NE ||PH48 ||M8

1

<.
Il

Thus, for all o] <k —1=n(1/[n/(n+ k)] — 1), we obtain

NE

<

/ VL () da

/n <Vk_1(77j:no‘)) V(L; " ?m(z) dx

<.
Il
—

M

[ VL m(a) o

<.
Il
—

<.
Il
—

I
(]2
—
S
4
;S
&~
|
=
N
&
L
8

; V(ﬁj)%Li_lpm(l’) dx

ot

=0,

<.
Il
-

which implies that Vk(L Y 2)m satisfies (6.8) with p and M respectively replaced by
n/(n+k) and n(1/[n/(n+ k)] — 1). Thus, V(L 1/2)m is a classical HP(R™) molecule in
[43], which completes the proof of Theorem 6.1. O

On the Hardy space H ]’-jl (R™), we further obtain its characterization by the Riesz trans-

forms V*(L; -~ ?). To this end, we first introduce some notions.

Definition 6.1. Let p € (0, 1] and L; be the 2k-order divergence form homogenous elliptic
operator with complex bounded measurable coefficients. The Riesz transform Hardy space

H fl Riesy(R™) is defined to be the completion of the set

HY, riess(R") = {f € LXR") : VH(L;)f € HP@R™)}

with respect to the quasi-norm

1F 11z

Lq,Riesz

(R?) = Hvk Ly f‘ Hp(RM)

for all f € H} | pio, (R™).

We also need the following notion of LP — L9 k-off-diagonal estimates, which when k =1
previously appeared in [3] (see also [32]).
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Definition 6.2. Let k € N, r, ¢ € (1, 00) and r < q. A family {S;};~¢ of operators is
said to satisfy the L™ — L7 k-off-diagonal estimate, if there exist positive constant C' and
C such that for all closed sets E, F C R" and f € L"(R™) N L?(R") supported in E,

~[dist(E, F)]?/21D
)exp {_C[ ( tl/(2]1]_1) ”f”L”"(E)

On the L™ — L9 k-off-diagonal estimate of the 2k-order divergence form homogeneous
elliptic operator L with complex bounded measurable coefficients, we have the following
useful lemma.

7_L(l_
q

1St f || pacry < Ct2*

Sl=

Lemma 6.2. Let Ly be the 2k-order divergence form homogeneous elliptic operator with
complex bounded measurable coefficients and r € (1, 2] such that the semigroup {e 1}~
satisfies the L™ — L? k-off-diagonal estimate. Then the family {tLie~"*1};~o of operators
also satisfies the L™ — L? k-off-diagonal estimate.

Proof. By the analytical property of the semigroup {e *1};~¢, we have {tLie "1 };50 =
{2(%L1€_%L1)(6_%L1)}t>0. Since the k-Davies-Gaffney estimate is just the L? — L? k-
off-diagonal estimate, it follows from Proposition 3.1 and Lemma 3.1 that {%Lle_%Ll}bo
satisfies the L?— L? k-off-diagonal estimate. Moreover, by the fact that {e_%Ll Hs0 satisfies
the L" — L? k-off-diagonal estimate and an argument similar to the proof of Lemma 3.2 with
{A¢}4>0 and {Bs}s0, respectively, replaced by {%Lle_%Ll H>0 and {e_%Ll }>0, we obtain
that {tLle_tLl}t>0 also satisfies the L" — L? k-off-diagonal estimate, which completes the
proof of Lemma 6.2. O

Proposition 6.1. Let L1 be the 2k-order divergence form homogeneous elliptic opera-
tor with complex bounded measurable coefficients and r € (1, 2] such that the semigroup
{e=tF1Y,o 0 satisfies the L" — L? k-off-diagonal estimate. Then for all p € (0, 1] such that
p>rn/(n+kr) and h € H] g, (R"),

bl @y < ClIV* L2 | o emy-
To prove Proposition 6.1, we need recall some results concerning the homogenous Hardy-
Sobolev space H*P(R™); see, for example, [13, 27, 44, 45)].

Deﬁnition 6.3. Let £k € N and p € (0,1]. The homogeneous Hardy-Sobolev space
HFP(R™) is defined to be the space

Hk,p(R”) = f S S/(R”)/c@k—l(Rn) . HfHHkP(R") = Z HaofHHp(R") <0y,
lo|=k

where S’(R™) denotes the space of all Schwartz distributions on R™ and 1 (R"™) the
class of all polynomials of order strictly less than k on R™.

Let ¢ € N be fixed. Let S(R™) denote the space of all Schwartz functions on R™ and
¢ € S(R™) such that
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(1) (? is radial, supp¢ C {# € R™: |z| < 1} and for all £ # 0, [;° |p(t€) 2 % =1, where
¢ denotes the Fourier transform of ¢,
(ii) for all |y| <4, [gn x7¢(x)dx = 0.

For any given ¢ € S(R™) as above and all f € S'(R"), let Q;f = ¢ x f, where ¢y =
t™"¢(z/t) for all t € (0, 00) and z € R". Let p, ¢ € (0, 00) and o € R such that
la] < £+ 1. The homogenous Triebel-Lizorkin space Fj',(R™) is defined to be the space

Eg,(R") = {f e SR/ PR+ |1fllp.

S TAGEY

where @(R”) denotes the class of all polynomials on R™; see, for example, [27, 44, 45].
Let WH2(R™) for k € N denote the homogenous Sobolev space of order k endowed with
the norm || - ”V’VW(Rn) = Hvk(-)HLz(Rn): It is known that the homogeneous Sobolev space
WH2(R"™) and Hardy-Sobolev space H kP(R™) coincide, respectively, with the Triebel-
Lizorkin space F;Q(R") and F; o(R™) with equivalent norms (see, for example, [44, p. 242]).

<00y,

Lp(Rn)

Definition 6.4. Let k € N, ¢ > k be any fixed positive integer and p € (0, 1]. A function
b is called an H®P(R™)-atom if it satisfies that

(i) there exists a ball B C R™ such that suppb C B,
(ii) for any |y| < 4, [z, 27b(x)dz =0,
(i)
1/2-1
(6.11) ||b||F2’f2(Rn) < |B|Y/?-1p,

Lemma 6.3. Let p € (0,1}, k € N and f € WE2(R™) N H5P(R™). Then there exist
{.)\j}jo-‘;o € lp. and a sequence {b;}3%, of HFP(R™)-atoms such that f = > 2o Ajbj in
WE2(R™) N HFP(R™), and Hf”Hk,p(Rn) ~ {32720 I\ [P}/

Proof. For any f € Wk’z(]R”) NHkP (R™), by the coincidence of Sobolev spaces and Hardy-
Sobolev spaces with Triebel-Lizorkin spaces, we know that f € F&(R”) N F£2(R"). From
this and a slight modification on the proof of [45, Proposition 4.3] together with the same
observation as in Theorem 4.2 on the convergence of the atomic decomposition for elements
in the tent spaces, we deduce all the desired conclusions of Lemma 6.3, which completes
the proof of Lemma 6.3. O

Proof of Proposition 6.1. For all g € L*(R"), define the operator S; by setting, for all

r € R,
Sig(z) = {//F(x)

1/2
2k 2 dy dt
tk\/Lle & ng(y)‘ tg+1 }
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For all h € Hp,. ., (R"), let f = L7"h. Then f € W**(R") N H*?(R™) and, by
Lemma 6.3, there exist {);}32, € [’ and a sequence {b;}52 of H*P(R™)-atoms such that
f=2220Ab) in WE2(R™) N H*P(R™) and, moreover, (3520 I\;P)VP ~ 1 g eny- By
Theorem 5.1 with L replaced by L1, to show Proposition 6.1, we only need prove that for
all f € Wh2(R™) N HMP(R™) with p € (nr/(n + kr), 1],

(6.12) Hslx/flfH

Lr(R) 5 ”f”Hk,p(Rn)-

To prove (6.12), it suffices to prove that for all H*?(R")-atoms b,

(6.13) “Slfb(

LP(R™)

Indeed, if (6.13) holds, by the L?(R™)-boundedness of S; which is deduced from (4.5), and
[5, Theorem 1.1], we obtain

s

oy £ [VE]

~[[¥4

~ 1 lezgeny:

L2(R™) L2(R™)

which together with an argument similar to the proof of (5.11) yields that for almost
every € R", [S1v/Lif(x)] < 32524 |XjS1v/L1bj(x)|. This combined with (6.13) shows
that (6.12) is valid.

We now prove (6.13). For j € N, let R(S;(Q)) = Uzes,@)l'(z) be the saw-tooth
region based on S;(Q) C R™. By Minkowski’s inequality, Holder’s inequality and Fubini’s
theorem, we obtain

i/l = 22 1V,

Lr(S;(Q
. HS“/ib‘ 12(1Q) Qi+ i HSI\/EbH;(Sj(Q)) Q"
j=3

< s, o @152

N p/2
2 pa——
—l—Z {// ) ‘t%Lle_tszlb(y) %} |211 ‘ (,1, p
(L-1
< Hslf ‘L2(4Q QG2
= ok —t2FL, 2 dydt »/2 ; n(i-1)p
+Z /23 2Q /21'31(Q) ‘t Lye b(y)‘ 12k 1 |2[ |

oo p/2

E {/R"\?”Q /0°° ) } 21Q)"

Jj=3
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=1+) )P+ (Vi)
j=3 j=3

For I, by the L?(R")-boundedness of Sy, (6.11) and [6, Theorem 1.1] we have

1_1 l
|@|<p 2P < 160 Q17

M\H

(6.14) » <

To estimate J;, recall the following embedding theorem (see, for example, [44]) that for
all f e Fk_k ,(R"),
n+kr?

(6.15) 1l S [[947]

L n+k:7“ (Rn ’

For each Oj, using Minkowski’s inequality, Lemma 6.2, (6.15), Lemma 6.2, Hélder’s
inequality and (6.11), we obtain

J; < /OO Ht2kL1e—t2’“L1b2
2-31(Q)

1/2
dt 291(Q n(3~-3)
L2(20-2Q) t1+2k | ‘

1/2
o n(l_1y dt : n(l_1
S {/2 (2 ")t1+2k} 1271(Q)| G2 6/ - (@)

I731(Q)
n(2 n(i-1)—k
< U@ T Bl £ @)V
1_1 —k ntkr n 1_1

< UQ)TH|| vy o @I E 2,
Let a =7 +k— 2. Sincep € (n+kr, 1], we then have o > 0 and
(6.16) Z P<Z2 ap <1,

7j=3

To estimate V;, we write

=31(Q) 1/2
j n(-1) 7 U —42FL 2 dydt

< J 2 1 _Z
Vi £ Q)" { Lo Pme ™ i)

1/2
. (L1
+ [ / / O T
R\21-2Q J21-31(Q)

Similarly to the estimate of J;, we have
(6.17) Vo $27%.

To estimate V1, let 8 € (2k+2n(1/r—1/2), o00). By Lemma 6.2, (6.11) and (6.15), there
exists a positive constant C' such that

. n(i-1)
Vir S [2UQ)] 7 2
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2j73l(Q) B 2][ 2k/(2k—1) 1/2
S [ [ e {—c[ @) L
0

12k/(2k—1) £2k+1
[ 278Q) 8 12
: n2- | (% (-1 t dt k
S [2UQ)) e e /0 £z =) Q)| P HV b‘

=

271(Q

: 11 27°UQ) Y2
< [2]1(@)]"(p 3) 1 )]B/O t2n(%—%)+6—2k—1 dt]

nt+kr _n

oy @8 £ 2=,

X Hvkb‘

which together with (6.17) shows that
Svp =Sz
=3

J=3

<

This, combined (6.14) and (6.16), implies (6.13), which completes the proof of Proposition
6.1. O

Combining Theorem 6.1 and Proposition 6.1, we obtain the following Riesz transform
characterization of H 21 (R™). We point out that Theorem 6.2 when k£ = 1 is just the Riesz
transform characterization of H” div(AV) (R™) for p € (0, 1], which is exactly [32, Theorem
5.2] in the case that p € (0, 1].

Theorem 6.2. Let k € N, Ly be the 2k order divergence form homogeneous elliptic
operator and v € (1, 2] such that rn/(n + kr) < 1 and the semigroup {e "}~ satisfies
the L™ — L? k-off-diagonal estimates. Then for all p € (rn/(n + kr), 1],

H, (R") = Hiieqy, 1, (R")
with equivalent norms.

Remark 6.1. We point out that a key fact used in the proof of Proposition 6.1 (and
hence Theorem 6.2) is [|[v/ L1 f|z2@n) S ”kaHLZ(Rn), which comes from [6, Theorem 1.1].

This inequality for Ls is equivalent to the following inequality that for all f € Wk’2(R"),

|21

<Js

L2(R") L2(R™)

which seems impossible even when V' = 1. Thus, the method used in the proof of Propo-
sition 6.1 seems unsuitable for obtaining a counterpart of Proposition 6.1 for Lo .
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