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Abstract

Shiu, Chan and Chang [On the spectral radius of graphs with connectivity at most

k, J. Math. Chem., 46 (2009), 340-346] studied the spectral radius of graphs of order n

with κ(G) ≤ k and showed that among those graphs, the maximum spectral radius is

obtained uniquely at Kn

k
, which is the graph obtained by joining k edges from k vertices

of Kn−1 to an isolated vertex. In this paper, we study the spectral radius of graphs

of order n with κ(G) ≤ k and minimum degree δ(G) ≥ k. We show that among those

graphs, the maximum spectral radius is obtained uniquely at Kk+(Kδ−k+1∪Kn−δ−1).
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1 Introduction

Let G be a simple graph of order n with vertex set V (G) = {v1, v2, . . . , vn}. We denote by

δ(G) the minimum degree of vertices of G . The adjacency matrix of the graph G is defined

to be a matrix A(G) = [aij ] of order n, where aij = 1 if vi is adjacent to vj , and aij = 0

otherwise. Since A(G) is symmetric and real, the eigenvalues of A(G), also referred to as

the eigenvalues of G, can be arranged as: λn(G) ≤ λn−1(G) ≤ · · · ≤ λ1(G). The largest

eigenvalue λ1(G) is called spectral radius and also denoted by ρ(G). For k ≥ 1, we say that

a graph G is k-connected if either G is a complete graph Kk+1, or else it has at least k + 2

vertices and contains no (k − 1)-vertex cut. The connectivity κ(G) of G is the maximum

value of k for which G is k-connected.

When G is connected, A(G) is irreducible and by the Perron-Frobenius Theorem, the

spectral radius is simple and there is an unique positive unit eigenvector. We shall refer to

such an eigenvector as the Perron vector of G.
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The eigenvalues of a graph are related to many of its properties and key parameters.

The most studied eigenvalues have been the spectral radius ρ(G) (in connection with the

chromatic number, the independence number and the clique number of the graph [9, 11]).

Brualdi and Solheid [2] proposed the following problem concerning spectral radius:

Given a set of graphs C , find an upper bound for the spectral radius of graphs in C and

characterize the graphs in which the maximal spectral radius is attained.

If C is the set of all connected graphs on n vertices with k cut vertices, Berman and

Zhang [1] solved this problem. Liu et al. [8] studied this problem for C to be the set of

all graphs on n vertices with k cut edges. Wu et al. [12] studied this problem for C to be

the set of trees on n vertices with k pendent vertices. Feng, Yu and Zhang [3] studied this

problem for C to be the set of graphs on n vertices with matching number β.

Li, Shiu, Chan and Chang studied this question for graphs with n vertices and connec-

tivity at most k, and obtained the following result.

Theorem 1.1 (Li, Shiu, Chan and Chang [10]) Among all the graphs with connectiv-

ity at most k, the maximum spectral radius is obtained uniquely at Kk + (K1 ∪Kn−k−1).

Let Gk,δ,n = Kk + (Kδ−k+1 ∪Kn−δ−1). We denote by Vk,δ,n the set of graphs of order

n with κ(G) ≤ k ≤ n − 1 and δ(G) ≥ k. Clearly, Vk,δ+1,n ⊆ Vk,δ,n. In this paper, we

investigate the problem for the graphs in Vk,δ,n. We show that among all those graphs, the

maximal spectral radius is obtained uniquely at Gk,δ,n.

In our arguments, we need the following technical lemma.

Theorem 1.2 (Li and Feng [7]) Let G be a connected graph, and G′ be a proper subgraph

of G. Then ρ(G′) < ρ(G).

2 Main results

Theorem 2.1 Let u, v be two vertices of the connected graph G. Let {v1, . . . , vk} ⊆ N(v)

and {vk+1, . . . , uk+l} ⊆ V (G) − N(v). Suppose x = (x1, x2, . . . , xn)
T is the Perron vector

of G, where xi corresponds to the vertex vi(1 ≤ i ≤ n). Let G∗ be the graph obtained from

G by deleting the edges vvi (1 ≤ i ≤ k) and adding the edges vvi (k + 1 ≤ i ≤ k + l).

If
∑k

i=1
xi ≤

∑k+l
i=k+1

xi, then ρ(G) ≤ ρ(G∗). Furthermore, if
∑k

i=1
xi <

∑k+l
i=k+1

xi, then

ρ(G) < ρ(G∗).
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Proof. Then we have

xT (A(G∗)−A(G))x = −xv

k
∑

i=1

xi + xv(
k+l
∑

j=k+1

xj −
k

∑

i=1

xi) + xv

k+l
∑

j=k+1

xj

= 2xv(

k+l
∑

j=k+1

xj −
k

∑

i=1

xi) ≥ 0.

So we have

ρ(G∗) = max
‖y‖=1

yTA(G∗)y ≥ xTA(G∗)x ≥ xTA(G)x = ρ(G). (1)

If ρ(G∗) = ρ(G), then the equalities in (1) hold. Thus

xTA(G∗)x = xTA(G)x.

Hence
∑k

i=k xi =
∑k+l

i=k+1
xi. This completes the proof. ✷

With above proof, we obtain the following result.

Corollary 2.2 Suppose G∗ in Theorem 2.1 is connected, and y = (y1, y2, . . . , yn)
T is the

Perron vector of G∗, then
∑k+l

i=k+1
yi ≥ ∑k

i=1
yi. Furthermore, if

∑k+l
i=k+1

xi >
∑k

i=1
xi,

then
∑k+l

i=k+1
yi >

∑k
i=1

yi.

Proof. Suppose that
∑k+l

i=k+1
yi <

∑k
i=1

yi, by Theorem 2.1, we have ρ(G∗) < ρ(G), a

contradiction.

Since
∑k+l

i=k+1
xi >

∑k
i=1

xi, by Theorem 2.1, we have ρ(G∗) > ρ(G). If
∑k+l

i=k+1
yi ≤

∑k
i=1

yi, by Theorem 2.1 then we have ρ(G∗) ≤ ρ(G), a contradiction. This completes the

proof. ✷

Lemma 2.3 If δ(G) > n+k
2

+ 1, then G is (k + 1)-connected.

Theorem 2.4 Let n, k and δ be three positive integers. Among all the connected graphs of

order n with connectivity at most k and minimum degree δ, the maximal spectral radius is

obtained uniquely at Gk,δ,n.

Proof. By Lemma 2.3, we have 2δ ≤ n + k + 2. If n = k + 1, then Kk+1 is an unique

k-connected graph with order n. So we can assume that n ≥ k + 2. Now we have to prove

that for every G ∈ Vk,δ,n, then ρ(G) ≤ ρ(Gk,δ,n), where the equality holds if and only if

G = Gk,δ,n. Let G
∗ ∈ Vk,δ,n with V (G∗) = {v1, . . . , vn} be the graph with maximum spectral

radius in Vk,δ,n, that is, ρ(G) ≤ ρ(G∗) for all G ∈ Vk,δ,n.
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Denote the Perron vector with x = (x1, . . . , xn), where xi corresponding to vi for i =

1, . . . , n. Since G∗ ∈ Vk,δ,n and it is not a complete graph, then G∗ has a k-vertex cut, say

S = {v1, . . . , vk}. In the following, we will prove the following three claims.

Claim 1. G∗ contains exactly two components.

Suppose contrary that G∗ − S contains three components G1, G2 and G3. Let u ∈ G1

and v ∈ G2. It is obvious that S is also an k-vertex cut of G+uv; i.e. G∗ +uv ∈ Vk,δ,n. By

Theorem 1.2, we have ρ(G∗) < ρ(G∗ + uv). This contradicts the definition of G∗.

Therefore, G∗ − S has exactly two components G1 and G2.

Claim 2. Each subgraph of G∗ induced by vertices V (Gi)∪S, for i = 1, 2, is a clique.

Suppose contrary that there is a pair of non-adjacent vertices u, v ∈ V (Gi)∪S for i = 1

or 2. Again, G∗+uv ∈ Vk,δ,n. By Theorem 1.2, we have ρ(G∗) < (G∗+uv). This contradicts

the definition of G∗.

From Claim 2, it is clear that all G1 and G2 are cliques too. Then we write Kni
instead

of Gi, for i = 1, 2, in the rest of the proof, where ni = |Gi|. Since δ(G) ≥ k, we have

ni ≥ δ − k for i = 1, 2.

Claim 3. Either n1 = δ − k + 1 or n2 = δ − k + 1.

Otherwise, we have n1 > δ−k+1 and n2 > δ−k+1. Let v ∈ G1 and u ∈ G2 . Suppose

NG∗(v) = {v1, v2, . . . , vn2−1, v1, v2, . . . , vk}

and

NG∗(u) = {u1, u2, . . . , un1−1, v1, v2, . . . , vk}.

Partition the vertex set of G into three parts: the vertices of S; the vertices of G1; the

vertices of G2. This is an equitable partition of G with quotient matrix

Q =







k − 1 n1 n2

k n1 − 1 0

k 0 n2 − 1







By Perron-Frobenius Theorem, Q has a Perron-vector x = {x1, x2, x3}. Now we show that

x2 < x3 if n1 < n2. Let ρ(Q) denotes the largest eigenvalue of Q. Then we have

kx1 + (n1 − 1)x2 = ρ(Q)x2 (2)

kx1 + (n2 − 1)x3 = ρ(Q)x3 (3)
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By (2) and (3), we have

(n2 − 1)x3 − (n1 − 1)x2 = ρ(Q)(x3 − x2).

Hence

(ρ(Q)− n2 + 1)(x3 − x2) = (n2 − n1)x2 > 0.

Since ρ(Q) is also the largest eigenvalue of G∗, we have ρ(Q) > ρ(Kn2
) = n2 − 1. Hence

x3 > x2. The eigenvector x can be extended to an eigenvector of A(G∗), say

y = (x11, . . . , x1k, x21, . . . , x2n1
, x31, . . . , x3n2

),

where xi1 = . . . = xini
= xi for i = 2, 3 and x11 = · · · = x1k = x1. Let z = 1√

kx2

1
+n1x

2

2
+n3x

2

3

y.

We have zzT = 1 and so z is a Perron-vector of G∗. Let G = G∗ − {vv1, vv2, . . . , vvk} +

{vvk+1, . . . , vvk+l} and we have G ∈ Vk,δ,n. Since n2x3 > (n1 − 1)x2, by Theorem 2.1,

ρ(G∗) < ρ(G), which is a contradiction. This completes claim 3.

By Claim 3, we have n1 = δ + 1− k. Hence G∗ = Gk,δ,n. This completes the proof. ✷

Theorem 2.5 The spectral radius of Gk,δ,n is the largest root of the following equation

x3 + (3−n)x2 + (nδ− δ2 −n− kn+ k+ kδ+2− 2δ)x+ (knδ+ k2 + nδ+ k2δ− kδ− k2n−
kδ2 − 2δ − δ2) = 0.

Proof. Let G1 be the subgraph of Gk,δ,n induced by k vertices of all the vertices of degree

n − 1, G2 be the subgraph induced by all the vertices of degree δ vertices and G3 be the

subgraph induced by the remaining n−δ−1 vertices. Also, let Gij be the bipartite subgraph

induced by V (Gi) and V (Gj) and let eij be the size of G12. A theorem of Haemers [4]

shows that eigenvalues of the quotient matrix of the partition interlace the eigenvalues of

the adjacency matrix of G. The quotient matrix Q is the following

Q =







2e1
n1

e12
n1

e13
n1

e21
n2

2e2
n2

e23
n2

e31
n3

e32
n3

2e33
n3






=







k − 1 δ − k + 1 n− δ − 1

k δ − k 0

k 0 n− δ − 2






.

Applying eigenvalue interlacing to the greatest eigenvalue of G, we get

λ1(H) ≥ λ1(Q), (4)

with the equality if the partition is equitable [ [5], p.202]. Note that the partition is equitable,

so the equality hold. This completes the proof. ✷
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