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ON THE MUMFORD–TATE CONJECTURE FOR 1–MOTIVES

PETER JOSSEN

Abstract. We show that the statement analogous to the Mumford–Tate conjecture for abelian

varieties holds for 1–motives on unipotent parts. This is done by comparing the unipotent part of

the associated Hodge group and the unipotent part of the image of the absolute Galois group with

the unipotent part of the motivic fundamental group.
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Introduction and overview

Let k be a field which is finitely generated over Q, with algebraic closure k. Let X be a separated

scheme of finite type over k, and let i ≥ 0 be an integer. For every embedding σ : k −−→ C the

cohomology group

V0 = H i(X(C),Q)

carries a mixed rational Hodge structure. The fundamental group of the Tannakian subcategory of

the category of mixed Hodge structures generated by V0 is called the Mumford–Tate group of V0.

It is an algebraic subgroup of GLV0 , which is reductive in the case X is smooth and proper. For

any prime number ℓ, the ℓ–adic étale cohomology group

Vℓ = H i
ét(Xk,Qℓ)
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2 PETER JOSSEN

is a Galois representation, conjectured to be semisimple if X is smooth and proper. The vector

spaces V0 and Vℓ both carry a weight filtration, and, once an extension of σ to k is chosen, there is a

canonical, natural isomorphism of filtered Qℓ–vector spaces V0⊗Qℓ
∼= Vℓ called comparison isomor-

phism. The general Mumford–Tate conjecture states that the image of the Galois group Gal(k|k)

in the group of Qℓ–linear automorphisms of Vℓ contains an open subgroup which is contained and

open in the Qℓ–points of the Mumford–Tate group associated with the Hodge structure V0, via the

comparison isomorphism. The classical Mumford–Tate conjecture is the special case where X is an

abelian variety and i = 1.

Although a conjecture in general, the classical Mumford–Tate conjecture is known to be true in

a variety of cases, see [Rib90] or the introduction of [Vas08] for overviews. For abelian varieties of

complex multiplication type, the statement of the conjecture follows from Faltings’s theorems, but

was proven already in 1968 by Pohlmann [Poh68]. Serre proved it for elliptic curves in [Ser68], and

for abelian varieties A with Endk A = Z of dimension 2, 4, 6 or an odd number in [Ser85]. Serre’s

results were improved by Pink in [Pin98]. Recent progress on the question is due to Vasiu who

shows in [Vas08] the statement of the conjecture to be true for an abelian variety A under some

conditions on the Shimura pair associated with H1(A(C),Q).

The general Mumford–Tate conjecture fits well into the framework of motives. We will show

in this note that it holds for 1–motives, provided the classical Mumford–Tate conjecture holds for

abelian parts. Recall from [Del74] that a 1–motive M over k is given by a diagram of commutative

group schemes over k of the form

M =




Y

0 T G A 0
��u

// // // //




where A is an abelian variety, T a torus and Y étale locally constant, locally isomorphic to a finitely

generated free group. In other words, Y is a Galois–module which is finitely generated and free as

a commutative group. We can look at tori, abelian varieties and finitely generated free groups with

Galois action as 1–motives, and 1–motives come equipped with a weight filtration W such that

grW0 (M) = Y grW−1(M) = A grW−2(M) = T

With every 1–motive M are associated ℓ–adic Galois representations VℓM and having chosen a

complex embedding k −−→ C also a mixed Hodge structure V0M . There is a natural comparison

isomorphism V0M ⊗Qℓ
∼= VℓM which is compatible with the weight filtration. We write lM for the

Lie algebra associated with the image of Gal(k|k) in GL(VℓM) and hM for the Lie algebra of the

Mumford–Tate group of V0M . The Lie algebras lM ⊆ EndQℓ
(VℓM) and hM ⊆ EndQ(V0M) both

carry a two step filtration induced by the weight filtration on VℓM and V0M respectively which we

also denote by W :

0 ⊆W−2l
M ⊆W−1l

M ⊆ lM and 0 ⊆W−2h
M ⊆W−1h

M ⊆ hM

The nilpotent Lie algebrasW−1l
M andW−1h

M are the nilpotent radicals of lM and hM respectively,

the reductive Lie algebras grW0 (lM ) and grW0 (hM ) are the ones classically associated with the abelian

variety A = gr−1(M), if A 6= 0. The comparison isomorphism permits us to identify hM ⊗Qℓ with

a Lie subalgebra of EndQℓ
(VℓM). With this identification made, we can state our first main result

as follows:
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Theorem 1. Let M be a 1–motive over a finitely generated subfield k of C. The Lie algebra

lM is contained in hM ⊗ Qℓ, and the equality W−1l
M = W−1h

M ⊗ Qℓ holds. In particular, the

Mumford–Tate conjecture holds for M if and only if it holds for the abelian variety grW1 (M).

With every variety X over k one can naturally associate a 1–motive M1(X) over k such that

there are canonical isomorphisms

V0M
1(X) ∼= H1(X(C),Q) and VℓM

1(X) ∼= H1
ét(Xk,Qℓ)

of Hodge structures and Galois representations respectively. For curves this is a classical construc-

tion due to Deligne, in general it is due to Barbieri–Viale and Srinivas [BVS01]. Our first theorem

immediately yields:

Corollary. Let X be a variety over k. The Mumford–Tate conjecture holds for cohomology

in degree 1 of X if and only if the classical Mumford–Tate conjecture holds for the albanese of a

smooth projective variety birational to X.

It is only natural to ask for an analogue of Theorem 1 in positive characteristic, replacing k

by a field which is finitely generated over a finite field. Alas, there is no Mumford–Tate group in

characteristic p > 0. However, if we concentrate on the weight (−1)–parts, i.e. nilpotent radicals, we

can do even better by constructing a motive with which we can compare W−1l
M and W−1h

M ⊗Qℓ.

This motive will be a semiabelian variety, and was already constructed, following Deligne, by

Bertolin in [Ber03], where it is called Lie algebra of the unipotent motivic fundamental group of M .

Our second main result is the following theorem.

Theorem 2. With every 1–motive M over a noetherian regular scheme S is canonically asso-

ciated a semiabelian scheme P (M) over S, having the following properties:

(1) For every flat morphism noetherian regular schemes S′ −−→ S, there is a natural isomor-

phism P (M)×S S
′ ∼= P (M ×S S

′).

(2) If S = spec(C), there is a canonical isomorphism of Hodge structures W−1h
M ∼= V0P (M),

where hM is the Lie algebra of the Mumford–Tate group of V0M .

(3) If S is the spectrum of a field k which is finitely generated over its prime field, and given

an algebraic closure k of k, there is a canonical isomorphism of Galois representations

W−1l
M ∼= VℓP (M), where lM is the Lie algebra of the image of Gal(k|k) in GL(VℓM), upon

which Gal(k|k) acts by conjugation.

To get an idea of what P (M) and the isomorphisms in the theorem look like, consider a 1–motive

M over a field k, where Y = Z and T = 0, so M is given by an abelian variety A over k and a

rational point a = u(1) ∈ A(k). In that case, P (M) is defined to be the smallest abelian subvariety

of A which contains a multiple of a. For instance, P (M) = 0 if and only if a is torsion, which for

instance is always the case if k is finite. For a fixed prime number ℓ and an integer i ≥ 0, consider

the fields

k(A[ℓi]) and k(ℓ−ia)
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obtained by adjoining to k the ℓi–torsion points of A(k), respectively all ℓi–division points of a in

A(k). So k(ℓ−ia) is a Galois extension of k(A[ℓi]), and there is a natural map

ϑ : Gal
(
k(ℓ−ia)|k(A[ℓi])

)
−−→ A[ℓi]

sending σ to σ(b)− b where b ∈ A(k) is any point such that ℓib = a. A result of Ribet ([Rib76], see

also [Hin88], Appendix 2, Lemme I,bis) states that if k is a number field, the image of the map ϑ

is contained in the subgroup P (M)[ℓi] of A[ℓi] with (finite) index bounded independently of i, and

even equal to P (M)[ℓi] for all but finitely many ℓ. Passing to limits over i and then passing to Lie

algebras gives the isomorphism claimed in part (3) of our theorem. Let it be acknowledged that

Hindry’s reformulation of Ribet’s result was seminal to our general construction.

An important application of 1–motives is their use as a tool in the study of the group of global

sections G(S) of an abelian or semiabelian scheme G over a base scheme S. This is no surprise,

since to give an S–rational point on G is the same as to give a morphism Z −−→ G over S. For

instance, if S is the spectrum of a number field k, direct consequences of our theorems in the

case where M = [Y −−→ A] for an abelian variety A over k play an important role in the proof

of local–global principles for subgroups of A(k), as I have shown in [Jos11]. I will give a further

illustration concerning deficient points on semiabelian varieties over number fields, which were

introduced by Jacquinot and Ribet in [JR87]. In the case where S is a curve over C, such points

have been studied recently by Bertrand in [Ber11] in connection with a relative version of the

Manin–Mumford conjecture.

Overview. Section 1 is to rehearse 1–motives and related constructions. In Section 2 we

show that the image of the absolute Galois group is contained in the Qℓ–points of the Mumford–

Tate group. This is essentially a reformulation of a result of Deligne and Brylinski. In Section 3

we construct the semiabelian variety P (M), that is, the Lie algebra of the unipotent part of the

motivic fundamental group of a 1–motive. We then compare the Lie algebra of the unipotent motivic

fundamental group with the Mumford–Tate group and with the image of Galois in sections 5 and 6

respectively, by showing that the Hodge, respectively the ℓ–adic realisation of P (M) is canonically

isomorphic to the Lie algebra of the unipotent part of the Mumford–Tate group, respectively to the

Lie algebra of the unipotent part of the image of Gal(k|k) in GL(VℓM). With this we have proven

the essential part of our Main Theorem. However we now have two isomorphisms between the

nilpotent radicals of lM and hM ⊗Qℓ, the one given in the Main Theorem, the other via comparison

with the motivic fundamental group. We will check in section 7 that they are the same, and deduce

our main theorems as stated above. In section 8 we give some corollaries to our main theorems,

concerning deficient points. The appendix contains a comment by P. Deligne.

Acknowledgments. I am indebted to the University of Regensburg, who kindly supported me

for quite some time now without ever seriously complaining. I am grateful to Tamás Szamuely and

Pierre Deligne who suggested valuable improvements to earlier versions of the text. This work was

initiated in July 2010 while attending a workshop on Tannakian categories in Lausanne, I wish to

thank the EPFL and in particular Varvara Karpova for kindest hospitality.
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1. Complements and recollections on 1–motives

We introduce some constructions related to 1–motives relevant to our goals, and also recall some

standard definitions and constructions. We fix for this section a noetherian regular scheme S,

serving as base scheme.

– 1.1. We start with some recollections on 1–motives. By a 1–motive M over S we understand a

diagram of commutative group schemes over S of the form

M =




Y

0 T G A 0
��u

// // // //




where A is an abelian scheme, T a torus and Y étale locally constant, locally isomorphic to a

finitely generated free group. A morphism of 1–motives is a morphism of diagrams. The weight

filtration of M is the three step filtration 0 ⊆W−2M ⊆W−1M ⊆W0M =M given by

W−2M =




0

0 T T 0 0
��

// // //


 and W−1M =




0

0 T G A 0
��

// // // //




This filtration is functorial inM , and although the category of 1–motives is not an abelian category,

the quotients M/Wi(M) make sense in the obvious way and we have in particular

grW∗ (M) =




Y

0 T T⊕A A 0
��0

// // // //




We will often identify 1–motives M with two term complexes [Y
u

−−→ G] placed in degrees 0 and 1,

and accordingly morphisms of 1–motives with morphisms of complexes.

– 1.2. With every 1–motive M over C is associated an integral Hodge structure T0M , called

the Hodge realisation of M . The construction of T0M goes as follows: The kernel of the expo-

nential map exp : LieG(C) −−→ G(C) is canonically isomorphic to the singular homology group

H1(G(C),Z). Consider then the pull–back diagram

0 H1(G(C),Z) T0M Y 0

0 H1(G(C),Z) LieG(C) G(C) 0

// //

��

//

��
u

//

// // //exp //

The group T0M is finitely generated and free. It depends functorially on M hence carries a

weight filtration induced by the weight filtration of M . The Hodge filtration on T0M ⊗ C has

only one nontrivial step which is determined by the Hodge filtration on H1(A(C),C). We write

V0M := T0M ⊗ Q for the corresponding rational Hodge structure. The construction of T0M

behaves well in families: If M is a 1–motive over a smooth complex variety X, then the family

(T0Mx)x∈X is a variation of mixed Hodge structures.
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– 1.3. Let V be a rational mixed Hodge structure. The Mumford–Tate group HV of V is the

fundamental group of the Tannakian category generated by V inside the Tannakian category of

rational mixed Hodge structures. We identify this group with an algebraic subgroup of GLV via

its natural, faithful action on V . The weight filtration on HV is the filtration given by

Wi(H
V ) = {f ∈ HV | (f − id)(WnV ) ⊆Wn+iV }

Let M be a 1–motive over C. The Mumford–Tate group M is the Mumford–Tate group of the

Hodge–realisation V0M of M . We write hM ⊆ EndQ(V0M) for its Lie algebra.

– 1.4. Let ℓ be a prime number and let M be a 1–motive over a field k of characteristic 6= ℓ with

algebraic closure k and absolute Galois group Γ := Gal(k|k). We consider the finite Γ–modules

H0(M ⊗L Z/ℓiZ) =
{(y, x) ∈ Y ×G(k) | u(y) = ℓix}

{(ℓiy, u(y)) | y ∈ Y }

where we regard M as a two term complex of discrete Γ–modules [Y −−→ G(k)] placed in degrees

0 and 1. We define

TℓM := lim
i≥0

H0(M ⊗L Z/ℓiZ) and VℓM := TℓM ⊗Qℓ

The object TℓM is a finitely generated free Zℓ–module equipped with a continuous action of Γ. The

construction of TℓM is functorial in M , hence a weight filtration on TℓM whose graded quotients

are the ordinary Tate modules of T and A, and Y ⊗ Zℓ. The construction of behaves well for

1–motives M over a base scheme S over which ℓ is invertible. In that case, TℓM is a smooth ℓ–adic

sheaf on S.

– 1.5. Let M be a 1–motive over a number field k, and let ρℓ : Gal(k|k) −−→ GL(TℓM) be the

associated Galois representation. The image of ρℓ is a closed subgroup of GL(TℓM), hence has the

structure of an ℓ–adic Lie group. We denote by lM ⊆ EndQℓ
(VℓM) its Lie algebra.

– 1.6. Let M be a 1–motive over a field of characteristic zero k. The deRham realisation of M is

a finite dimensional vector space over k, which is constructed as follows: Among the extensions of

M by vector groups there is a universal one, given by

Y Y

0 Ext(M,Ga[−1])∗ G♮ G 0
�� ��

// // // //

We set VdR(M) = LieG♮. This is a finite dimensional vector group over k which depends functorially

onM , hence the weight filtration onM defines a weight filtration on VdR(M). We define the Hodge

filtration on VdR(M) by F 0VdR(M) := ker(LieG♮ −−→ LieG). If M is a 1–motive over a smooth

variety S over k, then the deRham–realisation defines a finitely generated locally free OS–module.

This module comes equipped with a canonical integrable connection

∇ : VdR(M) −−→ VdR(M)⊗OS
Ω1
S/k
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called the Gauss–Manin connection (see [AB11] §4.2 for a construction). In the case where M is

given by an abelian variety A over S, then VdR(A) identifies with the dual HdR
1 (A/S) of H1

dR(A/S),

and the Gauss–Manin connection is the classical one constructed by Katz and Oda by loc.cit.,

Lemma 4.5.

– 1.7. There exist canonical isomorphisms comparing the Hodge realisation of a 1–motive with

the ℓ–adic and the deRham realisation. Given a 1–motive M over a finitely generated extension k

of Q, a complex embedding σ : k −−→ C and an extension of σ to an algebraic closure k of k, these

are isomorphisms

T0(σ
∗M)⊗Z Zℓ

∼=
−−→ TℓM and T0(σ

∗M)⊗Z C
∼=

−−→ VdRM ⊗k C

of Zℓ–modules and of complex vector–spaces respectively, where σ∗M is the pull–back of M to

specC via σ. These isomorphisms are natural inM , hence in particular respect the weight filtration.

These isomorphisms work of course also for families.

We now present a special family of 1–motives, which shows that two 1–motives can be smoothly

deformed into into each other if they have the same graded pieces for the weight filtration, that is,

if they are built from the same torus, abelian variety and lattice.

Proposition 1.8. Let T be a torus, A be an abelian scheme and Y be a lattice over S, and set

M0 := [Y
0
−→ (T ⊕A)]. The fppf–presheaf on S given by

(i : U → S) 7−→
1–Motives M over U with grW∗ (M) = i∗M0

Isomorphisms α with grW∗ (α) = idi∗M0

is representable by a S–scheme XS(T,A, Y ) which is smooth over S. In particular, this presheaf is

a sheaf. More precisely, the S–schemes XS(T,A, 0) and XS(0, A, Y ) are abelian schemes over S,

and XS(T, 0, Y ) is a torus over S, and there are isomorphisms of sheaves

XS(T,A, 0) ∼= Hom(T∨, A∨) XS(0, A, Y ) ∼= Hom(Y,A) XS(T, 0, Y ) ∼= Hom(Y, T )

where T∨ is the character group of T and A∨ the abelian scheme dual to A. There is a canonical

morphism

XS(T,A, Y ) −−→ XS(T,A, 0) ×S XS(0, A, Y )

which gives XS(T,A, Y ) the structure of a XS(T, 0, Y )–torsor on XS(T,A, 0) ×S XS(0, A, Y ).

Proof. The fppf presheaf on S associating with i : U → S the group Ext1(i∗A, i∗T ) is representable

by an abelian scheme p′ : X ′ −−→ S over S, by the Barsotti–Weil formula. This means that we have

natural bijections

MorS(U,X
′)

∼=
−−→

Semiabelian schemes on U , extensions of i∗A by i∗T

Isomorphisms inducing the identity on i∗T and i∗A

where by a semiabelian scheme we understand a a group scheme which is globally an extension

of an abelian scheme by a torus1 over S. Denoting by G′ be the semiabelian scheme over X ′

1I ask the reader to forgive me this nonstandard terminology. By a semiabelian scheme over S one usually

understands a group scheme over S each of whose fibres is an extension of an abelian scheme by a torus. This is the

right thing to consider in order to study degenerations of abelian schemes.
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corresponding via this bijection to the identity map idX′ , the above bijection is given by

(f ′ : U −−→ X ′) 7−→ f ′
∗
G′

Set Y ′ := p′∗Y . The fppf presheaf on X ′ associating with j : U −−→ X ′ the group HomU (j
∗Y ′, j∗G′)

is representable by a semiabelian scheme q : X −−→ X ′ over X ′, so we have natural bijections

MorX′(U,X)
∼=

−−→ Homomorphisms j∗Y ′ −−→ j∗G′ of fppf–sheaves on U

Define Y := q∗Y ′ and G := q∗G′, and let M := [u : Y −−→ G] be the 1–motive over X where u is the

morphism corresponding via this bijection to the identity morphism idX . The above bijection is

then given by sending a j : U → X ′ to the 1–motive j∗M. We claim that the scheme X, considered

as a scheme over S via the composite p := p′ ◦ q, has the required properties. Because X ′ is

smooth and connected over S and X is smooth and connected over X ′, the scheme X is smooth

and connected over S. We now show that for every S–scheme i : U −−→ S the natural map

MorS(U,X) −−→
1–Motives M over U with grW∗ (M) = i∗M0

Isomorphisms α with grW∗ (α) = idi∗M0

sending an S–morphism (f : U −−→ X) to the 1–motive f∗M over U is a bijection. Indeed, to give

an S–morphism f of an S–scheme U to X is the same as to give an S–morphism f ′ : U −−→ X ′

and an X ′–morphism g : U −−→ X, where U is now viewed as an X ′–scheme via j = f ′:

U X

X ′

S
��/

//
//

//
//

//
//

//
//

i

��?
??

??
??

?
j=f ′

//g=f

����
��

��
��q

����
��
��
��
��
��
��
��
�

p

��
p′

So, to give an S–morphism f : U −−→ X is the same as to give an extension G = f ′∗G′ of i∗A

by i∗T on U modulo appropriate isomorphisms and a homomorphism of i∗Y = j∗Y ′ to G = j∗G′.

This datum is exactly what a 1–motive M over U with gr∗W (M) = i∗M0 consists of, again modulo

appropriate isomorphisms. �

Remark 1.9. Consider the case where Y = Z and T = Gm. ThenXS(T,A, Y ) is a Gm–bundle over

A×A∨, that is, an invertible sheaf. This sheaf is the Poincaré sheaf. This shows that XS(T,A, Y )

is not a group scheme, except in the degenerate cases.

Remark 1.10. Let M = [Y −−→ G] be a 1–motive over S, and write MA := M/W−2M =

[Y −−→ A], notations being as in 1.1. We have already used that the fppf–sheaves Hom(Y,G) and

Ext1(MA, T ) are representable by semiabelian schemes over S. If ℓ is invertible on S, there are

canonical isomorphisms of ℓ–adic sheaves

T0Hom(Y,G) ∼= HomZ(Y,T0G) and TℓExt
1(MA, T ) ∼= HomZℓ

(TℓMA,TℓT )
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on S, and similar isomorphisms of variations of Hodge–structures if S is smooth over C. These

isomorphisms are compatible with the comparison isomorphisms, meaning that the squares

HomZ(Y,T0G)⊗ Zℓ HomZℓ
(Y ⊗ Zℓ,TℓG) HomZ(T0MA,T0T )⊗Zℓ HomZℓ

(TℓMA,TℓT )

T0Hom(Y,G)⊗ Zℓ TℓHom(Y,G) T0Ext(MA, T )⊗ Zℓ TℓExt(MA, T )
��

∼=

//
∼=

��
∼= ��

∼=

//
∼=

��
∼=

OO

//
∼=

OO OO

//
∼=

OO

commute.

2. Cohomological realisation of families of 1–motives

In the previous section we have associated a Q–Lie algebra hM ⊆ EndQ(V0M) with a 1–motive

M over C (1.3), and a Qℓ–Lie algebra lM ⊆ EndQℓ
(VℓM) with a 1–motive M over a field of

characteristic 6= ℓ (1.5). In this section we will show that if M is a 1–motive over a field which

is finitely generated over Q, then the Lie algebra lM is contained in hM ⊗ Qℓ via the comparison

isomorphism. By naturality of the comparison isomorphism, this inclusion is compatible with the

weight filtration.

Theorem 2.1. Let k be a field of finite transcendence degree over Q and let σ : k −−→ C be an

embedding. Let M be a 1–motive over k, and identify h(σ
∗M)⊗Qℓ with a subalgebra of EndQℓ

(VℓM)

via the comparison isomorphism V0(σ
∗M) ⊗ Qℓ

∼= VℓM . Then the Lie algebra lM is contained in

h(σ
∗M) ⊗Qℓ.

For abelian varieties in place of M this was shown by Deligne in [Del82] (see also [CS11]),

essentially by proving that every Hodge cycle on an abelian variety is an absolute Hodge cycle. For

1–motives, the corresponding statement was proven by J.-L. Brylinski ([Bry86], Théorème 2.2.5):

Theorem 2.2 (Brylinski, Deligne). Let M be a 1–motive over k. Every Hodge cycle of M relative

to some embedding σ : k −−→ C is an absolute Hodge cycle.

After recalling the notion of absolute Hodge cycles we will give a proof of theorem 2.2, and then

show how the statement about Lie algebras follows from it. The proof of Brylinski’s Theorem

consists essentially of a deformation argument, so we will be concerned with families of 1–motives

and their realisations. The idea is to show that if M1 and M2 are 1–motives such that M1 can be

smoothly deformed to M2, then the statement of Theorem 2.2 holds for M1 if it holds for M2. We

have already seen in Proposition 1.8 that every 1–motive M can be smoothly deformed to a split

1–motive. For split 1–motives the statement of the theorem 2.2 is true by Deligne’s Theorem on

absolute Hodge cycles on abelian varieties.

I have decided to include a proof of theorem 2.2 to make the text more self contained on one

hand, and on the other hand because the proof I present here seems a little more natural to me

than Brylinski’s. Indeed, Brylinski’s deformation process consists of using Hodge realisations in

order to produce an analytic family of 1–motives deforming a given 1–motive to a 1–motive which is

split up to isogeny, and then to make this family algebraic using GAGA ([Bry86], Lemme 2.2.8.6).

Having Proposition 1.8 at hand, we can avoid all this.
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– 2.3. We fix for this section a field k of of finite transcendence degree over Q with algebraic closure

k. In order to handle realisations of a motive M over k simultaneously, we introduce

Ak := k ×
(
Q⊗

∏

ℓ prime

Zℓ

)
VA(M) := VdRM ×

(
Q⊗

∏

ℓ prime

TℓM
)

So Ak is a commutative Q–algebra, and VA(M) is a finitely generated Ak–module. This works also

in families: Let S be an integral, regular scheme of finite type over k and let M be a 1–motive over

S. Then we can consider the sheaf AS on Sét, and so VA(M) is naturally a sheaf of AS–modules.

We will work with tensor spaces of VA(M). For a finite index set I and integers ai, bi, ci for i ∈ I

with ai, bi ≥ 0 set

VIA(M) =
⊕

i∈I

(
VA(M)⊗ai ⊗ (VA(M)∗)⊗bi ⊗ A(1)⊗ci

)

where A(1) := VA(Gm) and (−)∗ = Hom(−,AS). We refer to global sections of VIA(M) as tensors.

For every embedding σ : k −−→ C there is a canonical isomorphism of Aσ∗S–module sheaves

ασ : VI0 (σ
∗M)⊗Q Aσ∗S

∼=
−−→ V I

A (σ
∗M)

on the complex variety σ∗S, where VI0 (σ
∗M) is the corresponding tensor space of variations of

Hodge structures. These sheaves are local systems for the complex topology.

Definition 2.4. Let M be a 1–motive over k. A tensor t ∈ Γ(k, V I
A (M)) for some finite index set

I is called Hodge cycle relative to an embedding σ : k −−→ C if the following holds:

(1) there exists an element t0 ∈ VI0 (σ
∗M) such that t = ασ(t0 ⊗ 1).

(2) the deRham component tdR of t belongs to F 0(VI
dRM) ∩W0(V

I
dRM).

An element t ∈ VIA(M) is called absolute Hodge cycle if it is a Hodge cycle relative to all embeddings

σ : k −−→ C.

– 2.5. In other words, the Hodge cycles relative to σ : k −−→ C are the image of elements of bidegree

(0, 0) in VI0 (Mσ) under the comparison isomorphism ασ . They form therefore a finite dimensional

Q–linear subspace of VIA(σ
∗M).

Proposition 2.6 (Deligne). Let S be a connected scheme over k and let s0, s1 be closed points of S.

Let M be a 1–motive over S, and let t ∈ Γ(S,VIA(M) be a tensor. Suppose that tdR is annihilated

by the Gauss–Manin connection and that (tdR)s is in F 0(VdRMs) at every point s ∈ S. If ts0 is an

absolute Hodge cycle, then so is ts1.

Proof. Under the assumptions of the proposition, we have to show that ts1 meets the two conditions

in Definition 2.4. We start with condition (1). Fix an embedding σ : k −−→ C. We claim that for

all s ∈ S the natural maps

Γ(σ∗S,VI0 (σ
∗M)) −−→ VI

0 (σ
∗Ms) and Γ(S,VI

A(M)) −−→ VI
A(Ms)

are injective. Indeed, VI0 (σ
∗M) is a local local system of finite dimensional Q–vector spaces on

σ∗S, and Tℓ(M) is a locally constant ℓ–adic sheaf on S, so for any s ∈ S(k) the global sections of
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these sheaves can be regarded as the fixed points of the respective fibres at s under the monodromy

action of the étale fundamental group based at s:

Γ(σ∗S,V0(σ
∗M)) ∼= V0(σ

∗Ms)
πét
1
(s,σ∗S) and Γ(S,Tℓ(M)) ∼= Tℓ(Ms)

πét
1
(s,S)

The map Γ(S,VdR(M)) −−→ VdR(Ms) is injective because VdR(M) is a finitely generated locally

free OS–module, so our claim follows. Following Deligne, we consider now this diagram:

Γ(σ∗S,V0(σ
∗M)) Γ(σ∗S,V0(σ

∗Mσ))⊗ A) Γ(S,VA(M))

V0(σ
∗Ms) V0(σ

∗Ms)⊗ A VA(Ms)
��

//

��

//
∼=

��
// //

∼=

The left hand horizontal maps are given by x 7−→ x ⊗ 1, and the right hand horizontal maps

are the comparison isomorphisms. We have seen that the vertical maps are injective. Consider

the above diagram for s = s0. We are given t ∈ Γ(S,VA(M)) and are told that its image in

VA(Ms0) comes from an element in V0(σ
∗Ms0). The intersection of the images of Γ(S,VA(M))

and V0(σ
∗Ms) in VA(Ms) is exactly the image of Γ(σ∗S,V0(σ

∗M)) in VA(Ms) by standard linear

algebra (choose a Q–basis of A containing 1). So t comes from a global section th of V0(σ
∗M). The

element ts1 ∈ VA(Ms1) comes thus from an element in V0(σ
∗Ms1), namely from the image of th in

VA(σ
∗Ms1), and that is what condition (1) asks for.

We now come to the second condition. We have (tdR)s1 ∈ F 0(V I
dRMs1) by assumption. The

Gauss–Manin connection is functorial, hence preserves the weight filtration ([AB11], §4.2). Since

tdR is horizontal and (tdR)s0 ∈W0(V
I
dRMs0) we must also have W0(V

I
dRMs1) as needed. �

Corollary 2.7. Let S be a connected scheme over k and let M be a 1–motive over S. Let V be a

local subsystem of a tensor space V I
0 (M) such that Vs consists of (0, 0)–cycles for all s ∈ S and of

absolute Hodge cycles for at least one s0 ∈ S. Then Vs consists of absolute Hodge cycles for all s.

Proof. The proof is litterally the same as the proof of 2.15 in [Del82]. The argument is the following:

If V I
0 (M) is constant, every element of Vs0 extends to a global section of V , and we are done by

Proposition 2.6. In general, observe that grW0 (V I
0 (M)) has a polarisation, so there is a rational,

positive definite bilinear form on grW0 (V I
0 (M)) which is compatible with the action of π1(S, s0).

Hence the image of π1(S, s0) in GL(Vs0) is finite. After passing to a finite cover of S, the local

system V becomes constant, and we are done. �

Lemma 2.8. Let M0 = [Y
0
−→ (T ⊕ A)] be a split 1–motive over k. Every Hodge cycle of M0

relative to some embedding σ : k −−→ C is an absolute Hodge cycle.

Proof. Without loss of generality we may assume that T is split and that Y is constant. We can

also assume that A is not trivial. But then, all tensor spaces associated with realisations of M0 are

also tensor spaces associated with A, and we know by the main result in [Del82] that every Hodge

cycle for A is an absolute Hodge cycle. �

Proof of Theorem 2.2. Let M1 be a 1–motive over k, let σ : k −−→ C be a complex embedding and

let t1 ∈ VA(M1) be a Hodge cycle relative σ. We have to show that t1 is an absolute Hodge cycle.
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SetM0 := grW∗ (M1) = [Y
0
−→ (T⊕A)] and consider the smooth connected scheme X := Xk(T,A, Y )

and the universal 1–motiveM onX from Proposition 1.8. The 1–motivesM0 andM1 are isomorphic

to the fibres of M in k–rational points x0, x1 ∈ X(k), so we can deduce Theorem 2.2 from Corollary

2.7 and Lemma 2.8. �

It remains to deduce Theorem 2.1 from Theorem 2.2. We start with the the following proposition,

analogous to Proposition 2.9.b of [Del82].

Proposition 2.9. LetM be a 1–motive over k and define CIAH to be the subspace of absolute Hodge

cycles in VIA(M). The Galois group Γ := Gal(k|k) leaves CIAH invariant, and the action of Γ on

CIAH factors over a finite quotient of Γ.

Proof. That Γ leaves CIAH invariant is immediate from the definition of absolute Hodge cycles.

Then, observe that for any prime number ℓ the map CIAH −−→ VI
ℓ (M) is injective, and that the

subgroup N of Γ fixing CIAH is closed. The quotient Γ/N is a profinite group, and can be identified

with a subgroup of the countable group GL(CIAH). Hence Γ/N must be finite. �

– 2.10. In what follows, we will use the following alternative description of the Mumford–Tate

group. Let V be a rational mixed Hodge structure and consider a tensor space

V I =
⊕

i∈I

(
V ⊗ai ⊗ (V ∗)⊗bi ⊗Q(1)⊗ci

)

The algebraic group GLV acts naturally on the Q–vector spaces V ⊗ai ⊗ (V ∗)⊗bi and the multi-

plicative group Gm acts on Q(1)⊗ci , so GLV ×Gm acts on V I . It follows from general tannakian

formalism that the Mumford–Tate group of V ⊕ Q(1) is the largest subgroup of GLV ×Gm which

fixes all elements of bidegree (0, 0) in all tensor spaces V I .

Lemma 2.11. Let V be a rational mixed Hodge structure such that Q(1) is contained in 〈V 〉⊗.

There exists a tensor space V I of V such that the Mumford–Tate group HV of V is isomorphic to

the stabiliser in GLV ×Gm of the rational elements of bidegree (0, 0) of V I .

Proof. Because GLV ×Gm is a noetherian scheme over Q, there exists an index set I such that

HV⊕Q(1) is the largest subgroup of GLV ×Gm which fixes all elements of bidegree (0, 0) in V I . If

the tannakian category 〈V 〉⊗ generated by V already contains Q(1), then the projection on the

first factor induces an isomorphism HV⊕Q(1) ∼= HV . �

Lemma 2.12. Let M be a 1–motive over C. Then Q(1) is contained in 〈V0M〉⊗ if and only if M

is not pure of weight zero.

Proof. If M is pure of weight zero, then 〈V0M〉⊗ only consists of pure Hodge structures of weight

0, hence does not contain Q(1). Otherwise, either the torus T := W−2M or the abelian variety

A := grW−1M is nontrivial. If T is nontrivial, then Q(1) is a substructure of V0M . If A is nonzero,

then the choice of a polarisation of A yields a surjective morphism (V0A)
⊗2 −−→ Q(1). �



ON THE MUMFORD–TATE CONJECTURE FOR 1–MOTIVES 13

Proof of Theorem 2.1. If M is pure of weight zero, the Lie algebras lM and h(σ
∗M) ⊗ Qℓ are both

trivial. We suppose that M is not pure of weight zero. Let us fix an index set I such that HM is

isomorphic, via projection on the first factor, to the stabiliser in GLV0(σ∗M) of elements of bidegree

(0, 0) in the tensor space VI0M , as given by Lemma 2.11. Denote by CIAH the finite dimensional

Q–linear subspace of absolute Hodge cycles in VI
A(M). By Theorem 2.2 this subspace is equal to

the image in VIA(M) of elements in VI0 (σ
∗M) of bidegree (0, 0) via the comparison isomorphism

VI0 (σ
∗M)⊗Q A

∼=
−−→ VIA(M)

By Proposition 2.9 there is an open subgroup Γ′ of Γ such that the action of Γ′ on CIAH is trivial. In

particular the image of Γ′ in the automorphisms of VIℓ (M) fixes the images of elements in VI0 (σ
∗M)

of bidegree (0, 0) under the comparison isomorphism VI0 (M) ⊗Qℓ −−→ VIℓ (M). The image of Γ′ in

the group of Qℓ–linear automorphisms of VℓM is therefore contained in the Qℓ–points of H
M , and

because Γ′ is of finite index in Γ this shows that lM is contained in h(σ
∗M) ⊗ Qℓ as we wanted to

show. �

3. Construction of the unipotent motivic fundamental group

In this section we construct the Lie algebra of the unipotent motivic fundamental group of a

1–motive. A construction of this object in terms of biextensions and cubist symmetric torsors was

proposed by P. Deligne ([Ber03]). Our construction is more elementary, but has the disadvantage

that it is not a priori clear why it should produce the right thing. Deligne has remediated this, I

have reproduced his comments in the appendix.

– 3.1. The idea of the motivic fundamental group of a 1–motive is the following: Let k be a field,

and suppose for a moment that there exists a Tannakian category Mk of mixed motives over k with

rational coefficients. Let M ∈ Mk be a 1-motive and write 〈M〉⊗ for the Tannakian subcategory

of Mk generated by M . The motivic Galois group πmot(M) of M is defined to be the Tannakian

fundamental group of 〈M〉⊗. The weight filtration W∗ on M defines a filtration on the group

πmot(M) and also on its Lie algebra, which we denote by the same letter W∗ and also call weight

filtration. The first filtration step W−1πmot(M) is the unipotent radical of πmot(M), because pure

motives are semisimple objects. We are interested in its Lie algebra

W−1(Lie πmot(M)) = LieW−1(πmot(M))

This is a Lie algebra object in the category of motives whose underlying mixed motive has weights

−1 and −2. From the point of view of 1–motives, it is a semiabelian variety, say P (M), which is

moreover equipped with a Lie algebra structure. We want to construct this semiabelian variety.

Our plan of action for this section is the following: Given a 1–motive M we will construct

geometrically a semiabelian variety P (M) and declare it to be W−1(Lie πmot(M)). To justify our

declaration, we establish in sections 5 and 6 canonical isomorphisms

W−1(h
M ) −−→ V0P (M) and W−1(l

M ) −−→ VℓP (M)



14 PETER JOSSEN

of rational Hodge structures and of Galois representations respectively. The semiabelian variety

P (M) comes equipped with a Lie bracket, and these isomorphisms are both compatible with Lie

brackets, that is, they are isomorphisms of Lie algebra objects. This structure is important, but

not for our construction. For the sake of completeness we discuss it in the next section, where we

also check that our construction coincides with Deligne’s up to a canonical isomorphism.

– 3.2. Let S be a noetherian regular scheme, and let M = [u : Y −−→ G] be a 1–motive over S.

Recall that by a semiabelian scheme over S we understand an extension of an abelian scheme by

a torus over S. We start with constructing a semiabelian scheme U(M) over S, which will contain

P (M). Write MA := M/W−1M = [Y −−→ A]. The two semiabelian schemes Hom(Y,G) and

Ext1(MA, T ) are extensions over S of the abelian schemes Hom(Y,A) and Ext1(A,T ) respectively

by the torus Hom(Y, T ). We define a semiabelian scheme U(M) by requiring the short sequence

of fppf–sheaves on S

0 −−→ Hom(Y, T )
(+,−)

−−−−−→ Hom(Y,G)× Ext1(MA, T ) −−−→ U(M) −−→ 0

to be exact. The first arrow is given on points by sending t to the pair (ι1(t),−ι2(t)), where ι1 is

obtained by applying Hom(Y,−) to the morphism T −−→ G and where ι2 is obtained by applying

Ext1(−, T ) to the map MA −−→ Y [1]. Representability of U(M) by a semiabelian scheme is not

a problem. The map u corresponds to a global section u of Hom(Y,G), and viewing M as an

extension of MA by T we also get a global section η on Ext1(MA, T ). Denote by u the image of

(u, η) in U(M)(S).

Definition 3.3. LetM be a 1–motive over a noetherian regular scheme S. We write P (M) for the

smallest semiabelian subscheme of U(M) which contains nu for some nonzero n ∈ Z, and name it

Lie algebra of the unipotent motivic fundamental group of M .

Alternatively, we could declare P (M) to be the connected component of the unity of the Zariski

closure of Zu. Over a field, this is clear. In general, one has to know that the Zariski closure

of of a semiabelian subvariety in the generic fibre is semiabelian2. We continue by checking two

things: First, that the construction of P (M) is compatible with flat base change, and secondly

that that the realisations of U(M) are canonically isomorphic to the weight (−1) part of the linear

endomorphisms of the corresponding realisation of M , showing that U(M) is the right habitat for

P (M).

Proposition 3.4. Let S′ −−→ S be a flat morphism between noetherian regular schemes, and let

M be a 1–motive over S. There are natural isomorphisms

U(M ×S S
′) ∼= U(M)×S S

′ and P (M ×S S
′) ∼= P (M)×S S

′

of group schemes over S′.

2Our terminology is that a semiabelian scheme over S is an extension over S of an abelian scheme by a torus

over S. A possible argument is this: For an abelian scheme A the statement follows from the fact that any abelian

subvariety of its generic fibre is the image of an endomorphism, and endomorphisms of the generic fibre of A uniquely

extend to endomorphisms of A over S. The same works for a torus T . Then use that extensions of A by T over the

generic fibre uniquely extend to extensions over S by the Barsotti–Weil formula, and because A is proper.
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Proof. The construction of U(M) is even compatible with arbitrary base change, because the

formation of Hom(Y, T ), Hom(Y,G) and Ext1(MA, T ) is so. If S′ −−→ S is flat, then so is the

induced morphism U(M) ×S S
′ −−→ U(M). In order to see that the construction of P (M) is

compatible with flat base change, we have to show that the operation of taking Zariski closures is

compatible with flat base change. In fact, less than flatness is necessary, as the following general

argument shows:

Let X be a scheme of finite type over S, let R ⊆ X(S) be a subset of the set of S–rational points

of X and denote by R the smallest closed subscheme of X whose S–rational points contain R. Let

f : S′ −−→ S be a morphism such that the generic points of S′ go to generic points of S (this is

weaker than flatness). Write X ′ := X ×S S
′ and denote by R′ the image of R in X(S′) = X ′(S′).

Again, let R′ be the smallest closed subscheme of X ′ whose S′–rational points contain R′. Then,

the equality

R′ = R×S S
′

holds. Indeed, we can reduce to the case that S and S′ are both spectra of some fields and we can

also assume that R = X. If X is a variety over a field k any Zariski dense subset of X(k) is also

dense as a subset of X(K) where K is any extension of k, proving the claim. �

Proposition 3.5. Let M be a 1–motive over C, or over a number field k. Respectively, there are

canonical isomorphisms

α0 : V0U(M)
∼=

−−→W−1 EndQ(V0M) and αℓ : VℓU(M)
∼=

−−→W−1 EndQℓ
(VℓM)

of Hodge structures and of Galois representations.

Proof. The constructions and verifications are analogous for the Hodge and the ℓ–adic realisations,

so we only treat the case of ℓ–adic realisation. We identify VℓT and VℓG with subspaces of VℓM ,

and write πY and πMA
for the canonical projections onto Y ⊗ Qℓ and VℓMA. There are natural

isomorphisms of Galois representations

VℓHom(Y,G) ∼= HomQℓ
(Y ⊗Qℓ,VℓG) and VℓExt

1(MA, T ) ∼= HomQℓ
(VℓMA,VℓT )

We can therefore represent elements of VℓU(M) by pairs (f, g) where f : Y ⊗ Qℓ −−→ VℓG and

g : VℓMA −−→ VℓT are Qℓ–linear functions. We set

αℓ(f, g) = f ◦ πY + g ◦ πMA
∈W−1 EndQℓ

(VℓM)

This yields a well defined map. Indeed, two pairs (f, g) and (f ′, g′) represent the same element of

VℓU(M) if and only if there exists a Qℓ–linear function h : Y ⊗ Qℓ −−→ VℓT such that f − f ′ = h

and g − g′ = −h ◦ πY . So we have

(f − f ′) ◦ πY + (g − g′) ◦ πMA
= h ◦ πY − h ◦ πY = 0

The map αℓ : VℓU −−→ W−1 EndQℓ
(VℓM) thus defined is linear, and also Galois equivariant. An

inverse to αℓ can be obtained as follows. Choose a Qℓ–linear section s of πY : VℓM −−→ VℓY and a

Qℓ–linear retraction r of the inclusion VℓT −−→ VℓM . For γ ∈W−1 EndQ(VℓM) we set

α−1
ℓ (γ) = (f − h, g)
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where f ,g and h defined by f = γ ◦ s, g ◦ πMA
= r ◦ γ and h = r ◦ γ ◦ s. This makes sense because

we have

γ(VℓM) ⊆ VℓG and γ(VℓG) ⊆ VℓT and γ(VℓT ) = {0}

by definition of the weight filtration on End(VℓM). To check that α−1
ℓ is an inverse to αℓ is

straightforward. �

We end this section with a technical definition, which we will use later in sections 5 and 6:

Definition 3.6. Let G and G̃ be semiabelian varieties over an algebraically closed field k. We say

that G̃ contains all isogeny types of G if there exists an integer n ≥ 0 and a morphism with finite

kernel grW∗ (G) −−→ grW∗ (G̃)n.

Lemma 3.7. LetM = [Y −−→ G] be a 1–motive over an algebraically closed field k. The semiabelian

variety G contains all isogeny types of P (M).

Proof. We have P (M) ⊆ U(M) by definition, so we can as well show that grW∗ (G) contains all

isogeny types of U(M). Write G as an extension of an abelian variety A by a torus T . We choose

an isogeny A∨ −−→ A and isomorphisms Y ≃ Zr and T ≃ Gs
m. These choices induce a morphism

grW−1 U(M) = Hom(Y,A)⊕ Ext1(A,T ) ≃ Ar ⊕ (A∨)s −−→ Ar+s

with finite kernel. We get also an isomorphism grW−2 U(M) = Hom(Y, T ) ≃ Gr+s
m , hence we can

find a morphism from grW∗ (U(M)) to grW∗ (G)r+s with finite kernel as needed. �

4. Comments on Lie structures

In this section we explain the Lie algebra structure on P (M) and compare our construction of

P (M) with the construction presented in [Ber03]. We will not use this comparison later, and the

reader who is only interested in the proof of our main theorems can skip it. We fix a field k of

characteristic zero.

– 4.1. What is a Lie bracket on a semiabelian variety G over k? Naively, that should be an

alternating bilinear map G × G −−→ G satisfying the Jacobi identity, but there are no such maps

except for the zero map. There are two ways out, one via the theory of biextensions, the other via

homological algebra. We choose to formulate our constructions in terms of homological algebra, so

a Lie bracket should be a morphism

β : G[−1]⊗L G[−1] −−→ G[−1]

in the derived category of fppf–sheaves3 on spec k, which is graded antisymmetric and satisfies the

Jacobi–identity. Instead of β we can also give its adjoint adβ : G[−1] −−→ RHom(G,G). The object

RHom(G,G) is homologically concentrated in degrees 0 and 1, and given in degree 1 by the sheaf

3Recall that we have chosen to place the complexes [Y −−→ G] associated with 1–motives in degrees 0 and 1. With

this convention the 1–motive [Z −−→ 0] is a neutral object for the tensor product of complexes, as it should be.
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Ext1(A,T ) which is representable by an abelian variety. Therefore, β is uniquely determined by a

morphism of abelian varieties

adβ : A −−→ Ext1(A,T )

Any morphism A −−→ Ext1(A,T ) yields a morphism G[−1] ⊗L G[−1] −−→ G[−1], so it remains to

express antisymmetry and the Jacobi identity for β in terms of its adjoint. The Jacobi–identity

comes for free, because β factors over a map A[−1] ⊗L A[−1] −−→ T [−1], so the derived algebra is

contained in the centre. This shows in particular that the Lie algebra object (G,β) is necessarily

nilpotent – from the point of view of motives this was already clear for weight reasons. Denoting by

T∨ the group of characters of T , the abelian variety dual to Ext(A,T ) is canonically isomorphic to

T∨⊗A, and the morphism dual to adβ is then given by a morphism T∨⊗A −−→ A∨, or equivalently

by a homomorphism of Galois modules

λ : T∨ −−→ Homk(A,A
∨)

From this point of view the antisymmetry condition is easy to express: The image of λ must be

contained in the subgroup of selfdual homomorphisms A −−→ A∨, that is, λ(χ) = λ(χ)∨ must hold

for all χ ∈ T∨. We make this our definition:

Definition 4.2. Let G be a semiabelian variety over k, extension of an abelian variety A by a

torus T . Write A∨ for the abelian variety dual to A and T∨ for the group of characters of T . A

Lie algebra structure on G is a homomorphism of Galois modules

λ : T∨ −−→ Homk(A,A
∨)

such that λ(χ) = λ(χ)∨ holds for all χ ∈ T∨.

– 4.3. This definition makes sense over any base scheme in place of k. To give a Lie algebra

structure on the semiabelian variety G is the same as to give a Lie algebra on the associated split

semiabelian variety grW∗ (G) = T ⊕ A. Given a Lie algebra structure λ : T∨ −−→ Homk(A,A
∨) and

a realisation functor, say Vℓ, one gets a map

VℓA⊗VℓA −−→ VℓT

which equips the vector space VℓG with the structure of a nilpotent Lie algebra. The derived Lie

algebra [VℓG,VℓG] is contained in VℓT , and in fact equal to Vℓ(T
′), where T ′ ⊆ T is the subtorus

with character group T∨/ ker(λ) modulo torsion. A polarisation ψ : A −−→ A∨ defines a Lie algebra

structure on Gm ⊕A, and the Lie bracket one obtains from this is the classical Weil pairing.

– 4.4. Let M be a 1–motive over k. The semiabelian variety U(M) carries a canonical Lie algebra

structure. Set UT := Hom(Y, T ) and UA := Hom(Y,A)⊕Hom(T∨, A∨), so U(M) is an extension

of UA by UT . The dual U∨
A of UA is canonically isomorphic to (Y ⊗ A∨) ⊕ (T∨ ⊗ A), and the

character group of UT is canonically isomorphic to Y ⊗ T∨. So we can define

λ : (Y ⊗ T∨) −−→ Homk(UA, U
∨
A) λ(y ⊗ χ)(f, g) =

(
y ⊗ g(χ), χ ⊗ f(y)

)
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We leave it to the reader to check that we have indeed λ(y ⊗ χ) = λ(y ⊗ χ)∨ for all y ∈ Y and

χ ∈ T∨, and that the induced Lie bracket on realisations, say on V0U(M), is given by

[(f, g), (f ′, g′)] = (g ◦ f ′,−f ′ ◦ g)

for all (f, g), (f ′, g′) ∈ HomQ(Y ⊗Q,V0G)⊕HomQ(V0MA,V0T ). This shows in particular that the

canonical isomorphisms α0 and αℓ from Proposition 3.5 are isomorphisms of Lie algebras.

– 4.5. The abelian variety UA contains the special rational point v coming from the 1–motive M ,

the image of u in UA. We can recover U from λ, v and its graded pieces UT and UA. Indeed, the

dual of U is given by the morphism

(Y ⊗ T∨) −−→ U∨
A (y ⊗ χ) 7−→ λ(y ⊗ χ)(v) =

(
y ⊗ v∨(χ), χ⊗ v(y)

)

The same formula must then hold for the subvariety P (M) of U(M), whose dual is a quotient of

the 1–motive [(Y ⊗ T∨) −−→ U∨
A ]. This is what is meant in [Ber03] by saying that the unipotent

radical of the Lie algebra of πmot(M) is the semiabelian variety defined by the adjoint action of the

semisimplification of the Lie algebra of W−1πmot(M) on itself.

– 4.6. It remains to explain why P (M) is a Lie subobject of U(M). This is indeed nothing special

to P (M) and U(M), so let us consider any abelian variety A, torus T , a Lie algebra structure

λ : T∨ −−→ Homk(A,A
∨)

and a rational point a ∈ A(k). The Lie algebra structure λ and the point a define an extension G

of A by T , namely the dual of the 1–motive

[w : T∨ −−→ A∨] w(χ) = λ(χ)(a)

In this situation, the following is true:

Proposition 4.7. Let A′ ⊆ A be the connected component of the algebraic subgroup of A generated

by a, and let G′ ⊆ G be any semiabelian subvariety whose projection to A equals A′. Then G′ is a

Lie subobject of G.

For example if g is a preimage of a in G, then G′ could be the connected component of the algebraic

subgroup of G generated by g. This is what we have in our concrete situation P (M) ⊆ U(M).

Proof of 4.7. We suppose without loss of generality that a is a rational point of A′, so A′ is the

Zariski closure of Za. Denote by [w′ : T ′∨ −−→ A′∨] the 1–motive dual to G′. The dual of the

inclusion G′ −−→ G is then a commutative square

T∨ A∨

T ′∨ A′∨

��
κ∨

//w

��
ι∨

//w′



ON THE MUMFORD–TATE CONJECTURE FOR 1–MOTIVES 19

with surjective vertical maps dual to the inclusions κ : T ′ −−→ T and ι : A′ −−→ A. To say that G′

is a Lie subobject of G is to say that the arrow λ′ in the diagram

T∨ Homk(A,A
∨)

T ′∨ Homk(A
′, A′∨)

��
κ∨

//λ

�� f 7−→ι∨◦f◦ι

//____ λ′

exists. Let χ ∈ T∨ be a character such that κ∨(χ) = 0. We must show that the endomorphism

ι∨ ◦ λ(χ) ◦ ι of A′ is trivial. Indeed, we have

ι∨(λ(χ)(a)) = ι∨(w(χ)) = w′(κ(χ)) = w′(0) = 0

so a ∈ A′ belongs to the kernel of this endomorphism, and because a generates A′ as an algebraic

group, we must have ι∨ ◦ λ(χ) ◦ ι = 0. �

5. Comparison of the motivic fundamental group with the Mumford–Tate group

In this section, we show that for every 1–motive M over C there is a canonical isomorphism of

mixed rational Hodge structuresW−1h
M ∼= V0P (M). We write Γ for the absolute Hodge group over

Q, that is, the Tannakian fundamental group of the category of mixed rational Hodge structures.

So Γ is a group scheme over Q which acts on the underlying rational vector space of every mixed

rational Hodge structure, in such a way that we have an equivalence of categories

MHSQ
∼=

−−→ {Finite dimensional Q–linear representations of Γ}

which is compatible with duals and tensor products. We look at mixed Hodge structures, and

in particular at Hodge realisations of 1–motives, as Q–vector spaces together with an action of

Γ. The Mumford–Tate group of a Hodge structure V is then just the image of Γ in GLV . For a

1–motive M we write ΓM for the maximal subgroup of Γ acting trivially on V0M , in particular if

notations are as in 1.1, then ΓgrW
∗
M = ΓT⊕A⊕Y is the largest subgroup of Γ acting trivially on all

pure subquotients of V0M .

– 5.1. Let M = [u : Y −−→ G] be a 1–motive over C and set U := U(M). The action of Γ on

V0M is given by a group homomorphism ρ0 : Γ −−→ GLV0M , whose image is by definition the

Mumford–Tate group of M . The subgroup ΓgrW
∗
M acts on V0M by unipotent automorphisms, and

we have

log(ρ0(γ)) = (ρ0(γ)− 1)− 1
2(ρ0(γ)− 1)2 ∈W−1 End(V0M)

We have constructed a canonical isomorphism α0 : V0U −−→ W−1 End(V0M), and by composing

we get a map ϑ0 := α−1
0 ◦ log ◦ρ0. The image of ϑ0 : ΓgrW

∗
M −−→ V0U is a Lie subalgebra of V0U ,
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isomorphic via α0 to the Lie algebra W−1h
M . Here is the picture:

ΓgrW
∗
M Γ

GLV0M

V0P (M) ⊆ V0U(M) W−1 End(V0M)
��

log ◦ρ0

zzttttttttttttttt

ϑ0

//⊆

��
ρ0

//α0

More explicitly, the map ϑ0 is given as follows: Choose a section s : Y ⊗Q −−→ V0M and a retraction

r : V0M −−→ V0T . Then, ϑ(γ) is represented by the pair

(∗) (f − h− 1
2e, g) ∈ HomQ(Y ⊗Q,V0G)×HomQ(V0MA,V0T )

where f, g, h and e are given by

(∗∗) f(y) = γs(y)− s(y) g(a) = r(γã− ã) h = r ◦ f e(y) = γ2s(y)− 2γs(y) + s(y)

for all y ∈ Y and a ∈ V0MA. In the second equality, ã is any element of V0M mapping to a ∈ V0MA

and V0T is understood to be contained in V0G. The class of (f−h−
1
2e, g) in V0U(M) is independent

of the choice of s and r. The main result of this section is:

Theorem 5.2. The image of the map ϑ0 : ΓgrW
∗
M −−→ V0U(M) is equal to V0P (M). In other

words, the map α0 induces an isomorphism

V0P (M)
∼=

−−→W−1h
M

of rational Hodge structures.

– 5.3. We begin with an auxiliary construction. Let G be a semiabelian variety over C, and let us

construct a Q–linear map

κ0 : G(C)⊗Q −−→ H1(Γ,V0G)

as follows: Given a complex point x ∈ G(C) we consider the 1–motive Mx := [Z
17−→x
−−−−→ G]. The

weight filtration on Mx induces a long exact sequence of rational vector spaces starting with

0 −−→ (V0G)
Γ −−→ (V0Mx)

Γ −−→ Q
∂

−−→ H1(Γ,V0G) −−→ · · ·

and we set κ0(x ⊗ 1) = ∂(1). Explicitly, elements of the integral Hodge realisation T0Mx are

pairs (v, n) ∈ LieG(C) × Z with exp(v) = nx. We define κ0(x ⊗ 1) to be the class of the cocycle

γ 7−→ γ(v, 1) − (v, 1) where v ∈ LieG(C) is any element such that exp(v) = x.

Proposition 5.4. The map κ0 constructed in 5.3 is injective and natural in G.

Proof. Let x ∈ G(C) be a complex point such that the cocycle c : γ 7−→ γ(v, 1) − (v, 1) is a

coboundary, where v ∈ LieG(C) is such that exp(v) = x. We have to show that x is a torsion point.

Indeed, since c is a cocycle, there exists an element w ∈ V0G ⊆ LieG(C) such that c(γ) = γw − w

for all γ ∈ Γ. Let n > 0 be an integer such that nw ∈ T0G = ker(exp). Then (nv − nw, n) is a
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Γ–invariant element of T0Mx, hence the linear map Z −−→ T0[nZ −−→ G] sending 1 to (nv− nw, n)

is a morphism of Hodge structures. From this we get a morphism of 1–motives

Z 0

nZ G
��·n

//

��
//n 7−→nx

because integral Hodge realisation is a fully faithful functor by [Del74], 10.1.3. This shows that

nx = 0. Naturality of κ0 follows from naturality of the Hodge realisation. �

Proposition 5.5. Let M = [Z
u

−−→ G] be a 1–motive over C. The class κ0(u(1) ⊗ 1) restricts to

zero in H1(ΓM ,V0G).

Proof. Choose v ∈ LieG(C) such that exp(v) = u(1), so that the pair (v, 1) ∈ LieG(C)×Z defines

an element of V0M . By definition of ΓM we have γ(v, 1) = (v, 1) and hence κ0(γ) = 0 for all

γ ∈ ΓM . �

Proposition 5.6. Let M = [u : Y −−→ G] be a 1–motive over C and consider the 1–motives

MU := [Z
17−→u
−−−−→ U(M)] and MP := [nZ

n 7−→nu
−−−−−→ P (M)]

where n ≥ 1 is an integer such that the point nu of U(M) belongs to P (M) and u is as in Definition

3.3. The inclusions ΓM = ΓMU
⊆ ΓMP

hold in Γ.

Proof. We write 〈V 〉 for the Tannakian subcategory of the category of rational Hodge structures

generated by a Hodge structure V . We have to show

a) V0M ∈ 〈V0MU 〉 b) V0MU ∈ 〈V0M〉 c) V0MP ∈ 〈V0MU 〉

For a), consider the morphisms of 1–motives given by the following commutative squares:

Z U(M) Y ⊗ Z Y ⊗Hom(Y,G)

Z Hom(Y,G) Y G

//17−→u

�� proj ��
∼=

//y⊗17−→y⊗u

�� y⊗f 7−→f(y)

//
17−→u

//
u

Both morphisms induce surjective morphisms of Hodge structures. The left hand diagram shows

that V0[Z −−→ Hom(Y,G)] belongs to 〈V0MU 〉, hence also the Hodge structure

(Y ⊗Q)⊗V0[Z −−→ Hom(Y,G)] ∼= V0[Y ⊗ Z −−→ Y ⊗Hom(Y,G)]

The right hand morphism shows that also V0M belongs to 〈V0MU 〉. The verification of b) is similar,

here we consider the morphism of 1–motives given by

Z Hom(Y,G) ⊕ Ext1(MA, T )

Hom(Y, Y )⊕Hom(T, T ) Hom(Y,G) ⊕ Ext1(MA, T )
��

17−→(id,id)

//
17−→(u,η)

//
(f,g)7−→(u◦f,g∗η)

where η ∈ Ext1k(MA, T ) is the extension class defined by M . This diagram induces an injection of

Hodge structures. The Hodge structure associated with the lower row is isomorphic to the direct

sum of HomQ(Y ⊗Q,V0M) and HomQ(V0M,V0T ), hence belongs to 〈V0M〉. Hence also the Hodge

structure associated with the upper row belongs to 〈V0M〉, and V0MU is a quotient of this Hodge

structure by definition of U(M). Finally, c) is obvious since V0MP is a substructure of V0MU . �
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Corollary 5.7. Let M = [u : Y −−→ G] be a 1–motive over C and set G̃ := grW∗ G = T⊕A. Let n ≥

1 be an integer such that the point nu of U(M) belongs to P (M). For every ψ ∈ HomC(P (M), G̃),

the cohomology class κ0(ψ(nu)⊗ 1) ∈ H1(Γ,V0G̃) restricts to zero in H1(ΓM ,V0G̃).

Proof. Set P := P (M), define 1–motives MP := [Z
17−→nu
−−−−−→ P ] and Mψ := [Z

17−→ψ(nu)
−−−−−−−→ G̃]. The

pair (idZ, ψ) defines a morphism of 1–motives MP −−→Mψ, and we find a commutative diagram

P (C)⊗Q H1(Γ,V0P ) H1(ΓM ,V0P )

G̃(C)⊗Q H1(Γ,V0G̃) H1(ΓM ,V0G̃)

��
ψ⊗1

//κ0

��

//res

��
//κ0 //res

where all vertical maps are induced by ψ. The restriction map H1(Γ,V0P ) −−→ H1(ΓM ,V0P )

factors over H1(ΓMP
,V0P ) by Proposition 5.6, hence κ0(nu⊗ 1) maps to zero in H1(ΓM ,V0P ) by

Proposition 5.5. �

– 5.8. With the help of the map κ0 and its properties we established so far, we can show that

the image of ϑ0 is contained in V0P (M). Let M = [u : Y −−→ G] be a 1–motive over C and write

MA :=M/W−2M = [Y −−→ A] and U := U(M). Let

π : U −−→ UA := Hom(Y,A)⊕ Ext1(A,T )

be the projection onto the abelian quotient UA of U and let ι be the inclusion of ΓG⊕MA
into ΓgrW

∗
M .

We consider the two composition maps

U(C)⊗Q
κ0−−−→ H1(ΓgrW

∗
M ,V0U)

(V0π)∗
−−−−−→ H1(ΓgrW

∗
M ,V0UA) ∼= Hom(ΓgrW

∗
M ,V0UA)

and

U(C)⊗Q
κ0−−−→ H1(ΓgrW

∗
M ,V0U)

ι∗
−−→ H1(ΓG⊕MA

,V0U) ∼= Hom(ΓG⊕MA
,V0U)

These send u⊗ 1 to the homomorphisms (V0π) ◦ κ0(u⊗ 1) and κ0(u⊗ 1) ◦ ι respectively. Here we

have used that ΓgrW
∗
M acts trivially on V0UA and that ΓG⊕MA

acts trivially on V0U . The following

lemma explains the relation between ϑ0 and κ0:

Lemma 5.9. Notations being as in 5.8, the equalities

(V0π) ◦ ϑ0 = (V0π) ◦ κ0(u⊗ 1) and ϑ0 ◦ ι = κ0(u⊗ 1) ◦ ι

hold in Hom(ΓgrW
∗
M ,V0UA) and in Hom(ΓG⊕MA

,V0U) respectively.

Proof. Write MU = [Z
17−→u
−−−−→ U ] and choose x ∈ LieU with exp(x) = u. We can represent x by a

pair

(xf , xg) ∈ LieHom(Y,G) ⊕ Lie Ext1(MA, T )

with expxf = u and expxg = η, the class of M in Ext1(MA, T ). Regarding xf as a group

homomorphism xf : Y −−→ LieG, we get a section s : Y ⊗Q −−→ V0M defined by s(y) = (xf (y), y).

Regarding xg as a group homomorphism xg : T
∨ −−→ Lie(M∨

A) we get a section T∨ ⊗Q −−→ V0M
∨

defined by χ 7−→ (xg(χ), χ). The linear dual of this section is a retraction r : V0M −−→ V0T . With

the help of the section s and the retraction r we can describe ϑ0 explicitly as in 5.1, so ϑ0(γ) is the
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class of (f − h− 1
2e, g) where f, g, h and e depend on s, r and γ according to the equations (∗∗) in

5.1.

Having this explicit description at hand, we can verify the left hand formula of the lemma.

Applying its left hand term to γ ∈ ΓgrW
∗
M we get the element of V0UA given by the pair

V0π
(
f − h− 1

2e, g
)
=

(
V0π ◦ f,V0π ◦ g

)
∈ Hom(Y ⊗Q,V0A)⊕Hom(V0A,V0T )

On the right hand side we find, using the definition of κ0

(V0π) ◦ κ0(u⊗ 1)(γ) = (V0π)(γ(x, 1) − (x, 1)) = γ(πx, 1) − (πx, 1) ∈ V0UA

where πx is the image of x in LieUA. This element is given by the pair
(
γ(πxf , 1)− (πxf , 1), γ(πxg , 1)− (πxg, 1)

)
∈ V0Hom(Y,A)⊕V0Ext

1(MA, T )

which if viewed as an element of Hom(Y ⊗Q,V0A)×Hom(V0A,V0T ) equals (V0π ◦ f,V0π ◦ g).

We now come to the second formula. Let us fix an element γ ∈ ΓG⊕MA
, so γ acts trivially on

V0G and on V0MA. Hence we have f = g = h and e = 0, so ϑ0(γ) is given by the homomorphism

h ∈ Hom(Y ⊗Q,V0T ) h(y) = γsf (y)− sf (y)

Under the canonical isomorphism V0Hom(Y,G) ∼= Hom(Y ⊗Q,V0G) this homomorphism h corre-

sponds to the element

γ(xf , 1)− (xf , 1) = γ(x, 1) − (x, 1)

which equals κ0(u⊗ 1)(γ) by definition of κ0. �

Lemma 5.10. Let 0 −−→ T −−→ G
π

−−→ A −−→ 0 be a semiabelian variety over C, let G′ ⊆ G be a

semiabelian subvariety and let V ⊆ V0G be a Hodge substructure. If the inclusions π(V ) ⊆ V0π(G
′)

and V ∩V0T ⊆ V0G
′ hold, then V is contained in V0G

′. (Think of it as exactness of grW∗ ).

Proof. Consider the following diagram with exact rows:

0 V ∩V0T V π(V ) 0

0 V0(T/(T ∩G′)) V0(G/G
′) V0(A/π(G

′)) 0

//

��0

//

��

//

��0

//

// // // //

The left and right vertical maps are zero by hypothesis, and we have to show that the middle vertical

map is zero as well. This follows by diagram chase, using that there are no nonzero morphisms of

Hodge structures π(V ) −−→ V0(T/(T ∩G′)). Indeed, π(V ) is pure of weight −1 and V0(T/(T ∩G′))

is pure of weight −2. �

Proposition 5.11. The image of the map ϑ0 : ΓgrW
∗
M −−→ V0U is contained in V0P .

Proof. This is a consequence of Lemmas 5.9 and 5.10. Indeed, by Lemma 5.10 it is enough to check

that the inclusions

(V0π)(im(ϑ0)) ⊆ V0π(P ) and im(ϑ0) ∩V0UT ⊆ V0P

hold. An element γ ∈ ΓgrW
∗
M belongs to ΓG⊕MA

if and only if it acts trivially on V0UA. Hence by

Lemma 5.9, these inclusions are the same as

im((V0π) ◦ κ0(u⊗ 1)) ⊆ V0π(P ) and im(κ0(u⊗ 1) ◦ ι) ⊆ V0P
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But since nu ∈ P for some nonzero n, the class κ0(u⊗ 1) comes from a cocycle which takes values

in V0P . �

Lemma 5.12. Let M = [Y −−→ G] be a 1–motive over C and set G̃ := gr∗W G = T ⊕A. The map

H1(hM ,V0G̃) −−→ HomhM (W−1h
M ,V0G̃)

given by restriction of cocycles is an isomorphism.

Proof. The Hochschild–Serre spectral sequence for Lie algebra cohomology associated with the Lie

algebra extension 0 −−→ W−1h
M −−→ hM −−→ hG̃ −−→ 0 yields the following exact sequence in low

degrees

H1(hG̃,V0G̃) −−→ H1(hM ,V0G̃) −−→ HomhM (W−1h
M ,V0G̃) −−→ H2(hG̃,V0G̃)

so it suffices to show that the first and last term in this sequence vanish. To do so, it suffices by

Sah’s lemma to show that there exists a central element x ∈ hG̃ which acts as an automorphism

on V0G̃. But this is clear since hG̃ contains an element which acts as the identity on V0A and as

multiplication by 2 on hT . �

Lemma 5.13. Let M = [u : Y −−→ G] be a 1–motive over C and set G̃ := grW∗ G = T ⊕ A. The

map α∗
0 : HomΓ(V0P (M),V0G̃) −−→ HomΓ(W−1h

M ,V0G̃) given by α∗
0(f) = f ◦ α−1

0 is injective.

Proof. Set P := P (M) for brevity. We will construct in a first step another injective map β0 :

HomΓ(V0P,V0G̃) −−→ HomΓ(W−1h
M ,V0G̃), and prove in a second step that the equality α∗

0 = β0

holds. For the construction of β0 we use the following diagram

HomC(P, G̃)⊗Q

0 H1(hM ,V0G̃) H1(Γ,V0G̃) H1(ΓM ,V0G̃)

HomΓ(W−1h
M ,V0G̃)

�� (∗)uul l l l

//

��
∼=

// //res

where the map (∗) is Q–linear and sends ψ ⊗ 1 to κ0(ψ(nu) ⊗ 1). By Corollary 5.7 the map (∗)

lifts to H1(hM ,V0G̃) as indicated. The isomorphism on the left is given by Lemma 5.12. Let β0 be

the composition

β0 : HomΓ(V0P,V0G̃) ∼= HomC(P, G̃)⊗Q −−→ HomΓ(W−1h
M ,V0G̃)

The map β0 is injective because (∗) is so. Indeed, let ψ ∈ Hom(P, G̃) be a homomorphism such

that κ0(ψ(nu) ⊗ 1) = 0. Then, since κ0 is injective by Proposition 5.4 we have ψ(nu) = 0 and

hence kerψ is a subgroup of P containing nu. We must then have kerψ = P by definition of P , so

ψ = 0. It remains to check that we have α∗
0 = β0. Because all maps are Q–linear, we only have to

check that for every ψ ∈ Hom(P, G̃) and every γ ∈ ΓgrW
∗
M the equality

α∗
0(V0ψ)(log ρ0(γ)) = β0(V0ψ)(log ρ0(γ))
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holds in V0G̃. The left hand side is equal to V0ψ(ϑ0(γ)). Let w ∈ LieP (C) be an element with

exp(w) = nu, and set v := ψ(w) ∈ Lie G̃. We then have exp(v) = ψ(nu) and using Lemma 5.9

β0(V0ψ)(log ρ0(γ)) = κ0(ψ(nu))(γ) = γ(v, 1) − (v, 1) = V0ψ(γ(w, 1) − (w, 1)) = V0ψ(ϑ0(γ))

as we wanted to show. �

Lemma 5.14. Let G be a semiabelian variety over C and let G̃ be a split semiabelian variety

containing all isogeny types of G (Definition 3.6). Let V be a Hodge substructure of V0G. If the

restriction map

HomΓ(V0G,VℓG̃) −−→ HomΓ(V,V0G̃)

is injective, then V is equal to V0G.

Proof. In the case where G is an abelian variety or a torus, this is clear by semisimplicity of

the category of pure polarisable rational Hodge structures. The general case can be proved by

dévissage, writing G as an extension of an abelian variety by a torus. We give a detailed proof for

the analogous statement about Galois representations (Lemma 6.14). �

Proof of Theorem 5.2. The image W−1h
M of the map ϑ0 is contained in V0P by Proposition 5.11.

By Lemma 5.13, the restriction map HomΓ(V0P,V0G̃) −−→ HomΓ(imϑ0,V0G̃) is injective, and we

know by Lemma 3.7 that G contains all isogeny of P . Hence the equality imϑ0 = V0P must hold

by Lemma 5.14. �

6. Comparison of the motivic fundamental group with the image of Galois

Let k be field which is finitely generated over its prime field, and let k be an algebraic closure

of k. Let ℓ be a prime number different from the characteristic of k. In this section, we show

that for every 1–motive M over k there is a canonical isomorphism of ℓ–adic Galois representations

W−1l
M ∼= VℓP (M). In analogy with the previous section we write Γ for the absolute Galois group

Gal(k|k), and ΓM for the subgroup of Γ consisting of those elements which act trivially on VℓM .

For a commutative group C, we introduce the notation

C ⊗̂ Zℓ := lim
i≥0

C/ℓiC and C ⊗̂Qℓ := (C ⊗̂ Zℓ)⊗Zℓ
Qℓ

There is a canonical map C −−→ C ⊗̂Zℓ whose kernel consists of the ℓ–divisible elements of C, and

we write c ⊗̂ 1 for the image of c ∈ C under this map.

– 6.1. Let M = [u : Y −−→ G] be a 1–motive over k and set U := U(M). The action of Γ on

VℓM is given by a group homomorphism ρℓ : Γ −−→ GLVℓM . The group ΓgrW
∗
M consisting of those

elements of Γ which act trivially on grW∗ VℓM acts on VℓM by unipotent automorphisms, and we

have

log ρℓ(γ) = (ρℓ(γ)− 1)− 1
2(ρℓ(γ)− 1)2 ∈W−1 End(VℓM)



26 PETER JOSSEN

We have constructed a canonical isomorphism αℓ : V0U −−→ W−1 End(V0M), and by composing

we get a map ϑℓ := α−1
ℓ ◦ log ◦ρℓ. The image of ϑℓ : ΓgrW

∗
M −−→ V0U is a Zℓ submodule of VℓU

whose Qℓ–linear span is a Lie subalgebra of V0U , isomorphic via αℓ to the Lie algebra W−1l
M . The

overall picture is similar to that in 5.1:

ΓgrW
∗
M Γ

GLVℓM

VℓP (M) ⊆ VℓU(M) W−1 End(VℓM)
��

log ◦ρℓ

zzttttttttttttttt

ϑℓ

//⊆

�� ρℓ

//αℓ

For the record, the map ϑℓ is explicitly given as follows: Choose a section s : Y ⊗Qℓ −−→ VℓM and

a retraction r : VℓM −−→ VℓT . Then, ϑℓ(γ) is represented by the pair

(∗) (f − h− 1
2e, g) ∈ HomQℓ

(Y ⊗Qℓ,VℓG)×HomQℓ
(VℓMA,VℓT )

where f, g, h and e are given by

(∗∗) f(y) = γs(y)− s(y) g(a) = r(γã− ã) h = r ◦ f e(y) = γ2s(y)− 2γs(y) + s(y)

for all y ∈ Y and a ∈ VℓMA. In the second equality, ã is any element of VℓM mapping to a ∈ VℓMA

and VℓT is understood to be contained in VℓG. The main result of this section is the following

theorem, which in the case of a 1–motive of the form [Y −−→ A] for some abelian variety A specialises

to a Theorem of Ribet ([Rib76], see also the appendix of [Hin88]).

Theorem 6.2. The image of the map ϑℓ : ΓgrW
∗
M −−→ VℓU(M) contained and open in VℓP (M). In

other words, the map αℓ induces an isomorphism

VℓP (M)
∼=

−−→W−1l
M

of Galois representations.

– 6.3. We start with the construction of a map κℓ analogous to κ0 in the previous section. Let

K|k be a Galois extension contained in k and let G be a semiabelian variety over K. We construct

the map

κℓ : G(K) ⊗̂ Zℓ −−→ H1(K,TℓG)

as follows: The multiplication–by–ℓi map on G(k) induces a long exact cohomology sequence, from

where we can cut out the injection G(K)/ℓiG(K) −−→ H1(K,G[ℓi]). Taking limits over i and taking

into account that H1(K,−) commutes with limits of finite Gal(k|K)–modules, we get the map κℓ.

Proposition 6.4. The map κℓ constructed in 6.3 is injective and natural in G and K.

Proof. Injectivity of κℓ follows from injectivity of G(K)/ℓiG(K) −−→ H1(K,G[ℓi]) and left exactness

of limits. Naturality in G and K is obvious from the construction. �

Proposition 6.5. Let M = [u : Z −−→ G] be a 1–motive over k given by u(1) = p ∈ G(k). The

class κℓ(p ⊗̂ 1) ∈ H1(Γ,VℓG) restricts to zero in H1(ΓM ,VℓG).
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Proof. We must show that ΓM leaves all ℓi–division points of p fixed. The action of ΓM on the

finite quotients

{(n, x) ∈ Z×G(k) | ℓix = np}

{(ℓin, np) | n ∈ Z}

of TℓM is trivial by definition of ΓM . Hence if x ∈ G(k) is an ℓi–division point of p, that is ℓix = p,

then there exists for every γ ∈ ΓM an integer n ∈ Z with

γ(1, x) − (1, x) = (0, γx− x) = (ℓin, np)

The only possibility is n = 0, hence γx = x as desired. �

Proposition 6.6. Let M = [u : Y −−→ G] be a 1–motive over k and consider the 1–motives

MU := [Z
17−→u
−−−−→ U(M)] and MP := [nZ

n 7−→nu
−−−−−→ P (M)]

where n ≥ 1 is an integer such that the point nu of U(M) belongs to P (M) and u is as in Definition

3.3. The inclusions ΓM ⊆ ΓMU
⊆ ΓMP

hold in Γ, and ΓM has finite index in ΓMU
.

Proof. The Galois representation VℓMP is a subrepresentation of VℓMU , so ΓMU
⊆ ΓMP

holds

trivially. As for the other inclusion, after replacing k by a finite extension over which Y is con-

stant, even the equality ΓM = ΓMU
holds. The proof consists of recognising VℓM and VℓMU as

subquotients of products of each other, as in the proof of 5.6. �

Corollary 6.7. Let M = [u : Y −−→ G] be a 1–motive over k and set G̃ := grW∗ G = T⊕A. Let n ≥

1 be an integer such that the point nu of U(M) belongs to P (M). For every ψ ∈ Homk(P (M), G̃),

the cohomology class κℓ(ψ(nu) ⊗̂ 1) ∈ H1(Γ,VℓG̃) restricts to zero in H1(ΓM ,VℓG̃).

Proof. This is a consequence of 6.5 and 6.6, the same way 5.7 was a consequence of 5.5 and 5.6. �

– 6.8. We now come to the relation between κℓ and ϑℓ. Let M = [u : Y −−→ G] be a 1–motive

over k and write MA := M/W−2M = [Y −−→ A] and U := U(M). Let

π : U −−→ UA := Hom(Y,A)⊕Hom(T∨, A∨)

be the projection onto the abelian quotient UA of U and let ι be the inclusion of ΓG⊕MA
into ΓgrW

∗
M .

We consider the two composition maps

U(k) ⊗̂Qℓ
κℓ−−→ H1(ΓgrW

∗
M ,VℓU)

(Vℓπ)∗
−−−−−→ H1(ΓgrW

∗
M ,VℓUA)

∼= Hom(ΓgrW
∗
M ,VℓUA)

and

U(k) ⊗̂Qℓ
κℓ−−→ H1(ΓgrW

∗
M ,VℓU)

ι∗
−−→ H1(ΓG⊕MA

,VℓU) ∼= Hom(ΓG⊕MA
,VℓU)

These send u ⊗̂ 1 to the homomorphisms (Vℓπ) ◦ κℓ(u ⊗̂ 1) and κℓ(u ⊗̂ 1) ◦ ι respectively. Here we

have used that ΓgrW
∗
M acts trivially on VℓUA and that ΓG⊕MA

acts trivially on VℓU . The following

lemma is analogous to Lemma 5.9:
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Lemma 6.9. Notations being as in 6.8, the equalities

(Vℓπ) ◦ ϑℓ = (Vℓπ) ◦ κℓ(u ⊗̂ 1) and ϑℓ ◦ ι = κℓ(u ⊗̂ 1) ◦ ι

hold in Hom(ΓgrW
∗
M ,VℓUA) and in Hom(ΓG⊕MA

,VℓU) respectively.

Proof. Let us choose an ℓ–division sequence of u, which we may represent by two sequences of

points

(ui)
∞
i=0 in Homk(Y,G) and (ηi)

∞
i=0 in Ext1

k
(MA, T )

with u0 = u and ℓui = ui−1, and with η0 = η and ℓηi = ηi−1. Here η ∈ Ext1k(MA, T ) is as usual the

class given byM . The ηi’s define extensions Gi of A by T together with maps mi : G −−→ Gi. With

the help of these division sequences we construct a section s : Y ⊗ Qℓ −−→ VℓM and a retraction

r : VℓM −−→ VℓT as follows:

s((yi)
∞
i=0) = (yi, ui(yi))

∞
i=0 and r(yi, xi)

∞
i=0 = mi(xi)

∞
i=0

Using the section s and the retraction r we can write down the map ϑℓ as in 6.1, equations (∗) and

(∗∗). The remainder of the proof of 6.9 is then litterally the same as the proof of 5.9. �

Lemma 6.10. Let 0 −−→ T −−→ G
π

−−→ A −−→ 0 be a semiabelian variety over k, let G′ be a

semiabelian subvariety of G and let V be a Galois invariant linear subspace of VℓG. If the inclusions

π(V ) ⊆ Vℓπ(G
′) and V ∩VℓT ⊆ VℓG

′ hold, then V is contained in VℓG
′.

Proof. The proof is analogous to the proof of 5.10. That there are no nonzero Galois equivariant

maps π(V ) −−→ Vℓ(T/(T ∩G′)) can be seen for example by looking at absolute values of eigenvalues

of Frobenius elements. �

Proposition 6.11. The image of the map ϑℓ : ΓgrW
∗
M −−→ VℓU is contained in VℓP .

Proof. Follows from 6.9, 6.10 and naturality of the map κℓ, the same way 5.11 follows from 5.9,

5.10 and naturality of the map κ0. �

Lemma 6.12. Let M = [Y −−→ G] be a 1–motive over k and set G̃ := grW∗ G = T ⊕ A. The map

H1(lM ,VℓG̃) −−→ HomgrW
0
lM (W−1l

M ,VℓG̃) that sends the class of a cocycle c to the restriction of c

to W−1l
M is an isomorphism.

Proof. The Lie subalgebra W−1l
M of lM is the is the largest subalgebra acting trivially on VℓG̃ by

construction of the weight filtration, so we have grW0 l
M = lG̃. In low degrees, the Hochschild–Serre

spectral sequence associated with the Lie algebra extension 0 −−→ W−1l
M −−→ lM −−→ lG̃ −−→ 0

yields an exact sequence

H1(lG̃,VℓG̃) −−→ H1(lM ,VℓG̃)
∗

−−→ H1(W−1l
M ,VℓG̃)

lG̃ −−→ H2(lG̃,VℓG̃)

We can identify H1(W−1L
M ,VℓG̃) with HomQℓ

(W−1L
M ,VℓG̃), and under this identification the

map (∗) is given by restricting cocycles as in the statement of the lemma. Hence, to finish the

proof it suffices to show that the first and last term in the above sequence is trivial. Indeed, it

follows from an adaptation of Serre’s vanishing criterion given in [Ser71] that H i(lG̃,VℓG̃) is zero

for all i ≥ 0. �



ON THE MUMFORD–TATE CONJECTURE FOR 1–MOTIVES 29

Lemma 6.13. The map α∗
ℓ : HomΓ(VℓP,VℓG̃) −−→ HomΓ(W−1l

M ,VℓG̃) given by α∗
ℓ (f) = f ◦ α−1

is injective.

Proof. We will again construct another injective map βℓ : HomΓ(VℓP,VℓG̃) −−→ HomΓ(W−1l
M ,VℓG̃)

and prove in a second step that the equality α∗
ℓ = βℓ holds. For the construction of βℓ we use the

following commutative diagram.

Homk(P, G̃)⊗Qℓ

0 H1(LM ,VℓG̃) H1(k,VℓG̃) H1(kM ,VℓG̃)

HomΓ(W−1l
M ,VℓG̃)

�� (∗)uul l l l

// //

��
∼=

//

The map (∗) sends a homomorphism ψ to the element κℓ(ψ(nu) ⊗̂ 1). This map is injective by

minimality of P := P (M) and injectivity of the Kummer map κℓ, and its composite with the

restriction is zero by Corollary 6.7, hence the dashed arrow. The lower vertical isomorphism is

obtained by taking Γ–fixed points of the isomorphism of Lemma 6.12 and taking into account that

H1(LM ,VℓG̃) = H1(lM ,VℓG̃)
Γ by Lazard’s theorem comparing Lie group cohomology with Lie

algebra cohomology ([Laz65], V.2.4.10). Let βℓ be the induced injection

βℓ : HomΓ(VℓP,VℓG̃) −−→ H1(LM ,VℓG̃)

The equality βℓ = α∗
ℓ as in the proof of 5.13, from Lemma 6.9, so α∗

ℓ is injective. �

Lemma 6.14. Let G be a semiabelian variety and let G̃ be a split semiabelian variety over k

containing (over k) all isogeny types of G (Definition 3.6). Let V be a Galois invariant Qℓ–linear

subspace of VℓG. If the restriction map

HomΓ′(VℓG,VℓG̃) −−→ HomΓ′(V,VℓG̃)

is injective for all open subgroups Γ′ of Γ, then V is equal to VℓG.

Proof. Write G as an extension of an abelian variety A by a torus T , and G̃ as a sum of an abelian

variety Ã and a torus T̃ . Without loss of generality we can replace k by a finite Galois extension

of k, so that there exists an integer n and morphisms A −−→ Ãn and T −−→ T̃ n with finite kernels

defined over k. Then, consider the commutative diagram with exact rows:

0 V ∩VℓT V πV 0

0 VℓT VℓG VℓA 0

//

��⊆

//

��⊆

//

��⊆

//

// // //π //

We apply HomΓ(−,VℓÃ) to this diagram and get

0 HomΓ(πV,VℓÃ) HomΓ(V,VℓÃ) 0

0 HomΓ(VℓA,VℓÃ) HomΓ(VℓG,VℓÃ) 0

// //
∼= //

//

OO

//
∼=

OO

//

using that Hom(VℓT1,VℓÃ) = 0 and Hom(V ∩VℓT1,VℓÃ) = 0 for weight reasons. The vertical maps

are injective by hypothesis. The Galois representations VℓA and VℓÃ are semisimple as Galois
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modules (by Faltings in characteristic zero, and by Tate, Zahrin and Mori in positive characteristic),

and all simple factors appearing in VℓA also appear in VℓÃ by hypothesis. Hence injectivity of the

left hand vertical map implies the equality πV = VℓA. Next, we apply HomΓ(−,VℓT̃ ) instead, and

find

0 HomΓ(V,VℓT̃ ) HomΓ(V ∩VℓT,VℓT̃ ) Ext1Γ(πV,VℓT̃ )

0 HomΓ(VℓG,VℓT̃ ) HomΓ(VℓT,VℓT̃ ) Ext1Γ(VℓA,VℓT̃ )

// // //

//

OO

//

OO

//

using that Hom(VℓA1,VℓT̃ ) = 0 for weight reasons. The right hand side vertical map is injective

by hypothesis, and we have already shown that the left hand vertical map is the identity. The

middle vertical map is therefore injective. The Galois representation VℓT is semisimple because

VℓT ⊗Qℓ(−1) is so by Maschke’s Theorem, hence the middle vertical map can only be injective if

the equality V ∩VℓT = VℓT holds, and so we are done. �

Proof of Theorem 6.2. The image W−1l
M of the map ϑℓ is contained in VℓP by Proposition 6.11.

By Lemma 6.13, the restriction map HomΓ(VℓP,VℓG̃) −−→ HomΓ(imϑℓ,VℓG̃) is injective, and we

know by Lemma 3.7 that G contains all isogeny types of P . Hence the equality im ϑℓ = VℓP must

hold by Lemma 6.14. �

7. Conclusions and compatibility of the comparison isomorphisms

In this section we prove Theorems 1 and 2 as stated in the introduction, and also show that the

comparison isomorphisms between realisations of M and of P (M) are compatible. We start with

the proof of Theorem 2, where we only have to assemble results:

Proof of Theorem 2. For every 1–motive M over a noetherian, regular scheme S we have con-

structed a semiabelian variety P (M) in 3.3. The construction is compatible with flat base change

by Proposition 3.4, hence satisfies statement (1) of the theorem. Statement (2) is the content of

Theorem 5.2, and statement (3) the content of Theorem 6.2. �

– 7.1. We now come to the compatibility problem: Let M be a 1–motive over a number field k,

choose a complex embedding k −−→ C and a prime number ℓ, and denote by k the algebraic closure

of k in C. The comparison isomorphism V0M ⊗Qℓ −−→ VℓM induces an isomorphism

EndQ(V0M)⊗Qℓ
∼=

−−→ EndQℓ
(VℓM)

and we have identified the Lie algebra lM with a subalgebra of hM ⊗ Qℓ via this isomorphism. In

sections 5 and 6 we constructed canonical maps

W−1h
M −−→ V0P (M) and W−1l

M −−→ VℓP (M)
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and proved that they are isomorphisms. The object P (M) is a semiabelian variety, and we also

have the comparison isomorphism V0P (M)⊗Qℓ −−→ VℓP (M). Putting things together, we get the

following diagram

(∗)

EndQ(V0M)⊗Qℓ EndQℓ
(VℓM)

W−1h
M ⊗Qℓ W−1l

M

V0P (M)⊗Qℓ VℓP (M)

//
∼=

44jjjjjjjjjj

⊆

**TTTTTTTTTTT
Theorem 5.2

∼=

jjTTTTTTTTTTTTT

⊆

ttjjjjjjjjjjjjjj
Theorem 6.2

∼=

//
∼=

We next check:

Proposition 7.2. The diagram (∗) commutes.

Proof. We consider the group scheme ΓHdg
gr∗M over specQ and the profinite group ΓGal

gr∗M , given by

ΓHdg
gr∗M = {γ ∈ ΓHdg | γ|V0(gr∗M) = id} and ΓGal

gr∗M = {γ ∈ ΓGal | γ|Vℓ(gr∗M) = id}

respectively, where ΓHdg denotes the absolute Hodge group, and ΓGal the absolute Galois group of

k. In the following diagram, the triangles on the left and on the right commute by definition of ϑ0

and ϑℓ:

EndQ(V0M)⊗Qℓ EndQℓ
(VℓM)

ΓHdg
gr∗M W−1 EndQ(V0M)⊗Qℓ W−1 EndQℓ

(VℓM) ΓGal
gr∗M

V0U(M)⊗Qℓ VℓU(M)

V0P (M)⊗Qℓ VℓP (M)

//
∼=

//log ◦ρ0

**TTTTTTTTTTTTTTTT

ϑ0

OO
⊆

//
∼=

OO
⊆

oo log ◦ρℓ

ttjjjjjjjjjjjjjjjjj

ϑℓ

OO
α0⊗1 ∼=

//
∼=

OO
αℓ ∼=

OO
⊆

//
∼=

OO
⊆

By definition, W−1h
M ⊗Qℓ is the Qℓ–linear span of im(log ◦ρ0), and W−1l

M is the Qℓ–linear span

of im(log ◦ρℓ). The top and the bottom square in the above diagram commute by naturality of the

comparison isomorphisms, and all that remains is to show that the central square commutes. By

construction of the semiabelian variety U(M), see 3.2, and naturality of comparison isomorphisms,

this follows from the commutativity of the two squares pictured in 1.10. �

Proof of Theorem 1. In the situation of Theorem 1, we know by Theorem 2.1 that lM is contained

in hM ⊗ Qℓ once we identify End(VℓM) with End(V0M) ⊗ Qℓ via the comparison isomorphism

VℓM ∼= V0M ⊗ Qℓ. By Proposition 7.2, the inclusion lM ⊆ hM ⊗ Qℓ is compatible with the

comparison isomorphism VℓP (M) ∼= V0(M) ⊗ Qℓ, hence an equality (for dimension reasons, this

would also follow without referring to 7.2). �
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8. Corollaries

We propose in this last section to illustrate how our theorems can be used to aggress questions

about the geometry and arithmetic of semiabelian varieties. We use our them here to continue

some work started by Ribet and Jacquinot in [JR87] about so–called deficient points on semiabelian

varieties. We stick here to semiabelian varieties over number fields. Motivated by [Ber11], it would

be equally interesting to consider semiabelian varieties defied over smooth curves over C.

– 8.1. Let k be a number field with algebraic closure k, let M = [Y
u

−−→ G] be a 1–motive over k,

and denote by kM ⊆ k the fixed field of the pointwise stabiliser of TℓM in Gal(k|k). Equivalently,

kM is the smallest subfield of k over which Y is constant and all ℓ–division points of u(Y ) are

defined.

Definition 8.2. A point Q ∈ G(k) is called deficient if it is ℓ–divisible in the group G(kM ). We

write DM (k) for the subgroup of G(k) of deficient points.

– 8.3. Our goal is to describe the group DM (k), which has been studied in [JR87] in the case of a

1–motive of the form [0 −−→ G] where G is an extension of an abelian variety by Gm. We will show

here that it is independent of the prime ℓ, finitely generated of rank ≤ r where r only depends on

the dimension of VℓM , say. To do so, we will give a geometrical construction of DM (k), roughly

in the following way: Recall that the semiabelian variety P := P (M) associated with M in 3.3 is

supposed to be a Lie algebra object, acting on G. So we can, in a sense yet to be clarified, consider

derivations of P with values in G. The deficient points will, up to multiplying by integers, be the

images of nu under such derivations, were nu is a multiple of the rational u point on U(M) defined

by M , see 3.2. That derivations play a key role in the construction of deficient points is already

visible in [JR87], the construction there being attributed to Breen. We first state an immediate

corollary to Theorem 6.2, which shows that the notion of deficiency does not depend on the prime

ℓ. This corollary can also be utilised to extend the definition of deficient points to 1–motives over

an arbitrary base.

Corollary 8.4 (To Theorem 6.2). Let M = [Y
u

−−→ G] be a 1–motive over k, let Q ∈ G(k) be

a rational point and define M+ = [Y ⊕ Z
u+

−−−→ G] by u+(y, n) = u(y) + nQ. The following are

equivalent:

(1) The point Q ∈ G(k) is deficient for one (or for all) primes ℓ.

(2) The map P (M+) −−→ P (M) induced by the canonical morphism M −−→M+ is an isogeny.

Proof. The morphisms of 1–motives M −−→ M+ −−→ [Z −−→ 0] induce a short exact sequence of

ℓ–adic representations 0 −−→ VℓM −−→ VℓM
+ −−→ Qℓ −−→ 0. Define fields kM and kM+ as in 8.1,

so kM+ is a Galois extension of kM . The Galois group Gal(kM+ |kM ) identifies canonically with a

compact subgroup of VℓM , hence is commutative and has the structure of a finitely generated, free

Zℓ–module.

The point Q ∈ G(k) is deficient if and only the field extension kM+ |kM is trivial. This in turn is

the case if and only if Gal(kM+ |kM ) is trivial, or, yet in other words, if the Lie algebra morphism
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lM
+

−−→ lM is an isomorphism. The graded quotients of weight 0 of lM
+

and lM are the same,

hence, by Theorem 6.2, the map lM
+

−−→ lM is an isomorphism precisely if VℓP (M
+) −−→ VℓP (M)

is an isomorphism. �

– 8.5. We now explain what we mean with derivations of P with values in G. Let P be a semiabelian

variety, extension of an abelian variety AP by a torus TP , equipped with a Lie structure λ, and let

G be a semiabelian variety, extension of A by T , equipped with an action α of P . The Lie structure

and the action are given by maps of Galois modules

λ : T∨
P −−→ Homk(AP , A

∨
P ) and α : T∨ −−→ Homk(AP , A

∨)

as we have explained in 4.1. Along the same lines as in 4.1, we figure that a derivation4 of P into

G corresponds to a pair of morphisms of k–group schemes ∂ = (∂T , ∂A) from TP to T and from AP

to A respectively, such that the Leibniz rule

(∂∨A ◦ α(χ)) + (α(χ)∨ ◦ ∂A) = λ(∂∨T (χ))

holds for all χ ∈ T∨. This is an equality in Homk(AP , A
∨
P ). We denote by Derk(P,G) the group

of all such derivations from P to G. It is a subgroup of Homk(TP , T ) × Homk(AP , A), hence it is

finitely generated and free, and comes equipped with an action of Gal(k|k).

– 8.6. Back to our concrete situation, let M = [u : Y −−→ G] be a 1–motive, where G is an

extension of A by T . Let P = P (M) be the semiabelian variety defined in 3.3, and write TP for

the torus part and AP for the abelian quotient of P . Recall that AP is an abelian subvariety of

Hom(Y,A) ×Hom(T∨, A∨) and TP a subtorus of Hom(Y, T ). We identify A∨
P with a quotient of

(Y ⊗A∨)× (T∨ ⊗A) and T∨
P with a quotient of Y ⊗ T∨. The dual of P is the morphism

w : T∨
P −−→ A∨

P w(y ⊗ χ) = w(y ⊗ χ) = (y ⊗ v∨(χ), χ⊗ v(y))

where v : Y −−→ A is the composite of u with the projection G −−→ A, and v∨ : T∨ −−→ A∨ is the

corresponding map in the 1–motive dual to M . The maps λ, defining the Lie algebra structure of

P = P (M), and α, defining the action of P on G are given by

λ : Y ⊗ T∨ −−→ Hom(AP , A
∨
P ) λ(y ⊗ χ)(f, g) = (y ⊗ g(χ), χ ⊗ f(y))

and

α : T∨ −−→ Hom(AP , A
∨) α(χ)(f, g) = g(χ)

respectively. Observe that in the special case where Y is trivial and G a non–isotrivial extension

of a simple abelian variety A by Gm, we have P (M) = Hom(Z, A∨) = A∨, and Derk(P (M), A)

consists of homomorphisms ∂A ∈ Hom(A∨, A) with the property ∂A + ∂∨A = 0. So the group of

derivations is isomorphic to the quotient of Hom(A∨, A) modulo the Néron–Severi group of A.

Lemma 8.7. Let y+ be an element of Y . The pair of homomorphisms (∂T , ∂A) given by

∂A : AP
⊆

−−→ AU
(f,g)7−→f(y+)

−−−−−−−−−−→ A and ∂T : TP
⊆

−−→ TU
h 7−→h(y+)

−−−−−−−−→ T

is a derivation of P to G.

4actually: a πmot
1 (M)–equivariant derivation



34 PETER JOSSEN

Proof. The duals of ∂A and ∂P are given by ∂∨A : a 7−→ (y+ ⊗ a, 0) and ∂∨T : χ 7−→ y+ ⊗ χ. For

(f, g) ∈ AP , we compute:

∂∨A(α(χ)(f, g)) + α(χ)∨(∂A(f, g)) = ∂∨A(g(χ)) + α(χ)∨(f(y+)) =

= (y+ ⊗ g(χ), 0) + (0, χ ⊗ f(y+)) = (y+ ⊗ g(χ), χ ⊗ f(y+)) =

= λ(y+ ⊗ χ)(f, g) = λ(∂∨T (χ))(f, g)

so the equality (∂∨A ◦ α(χ)) + (α(χ)∨ ◦ ∂A) = λ(∂∨T (χ)) holds, as demanded. �

Lemma 8.8. Let (∂T , ∂A) ∈ Derk(P (M), G) be a derivation. If ∂A = 0, then w ◦ ∂∨T = 0. Recipro-

cally, if ∂T : TP −−→ T is any morphism such that w ◦ ∂∨T = 0, then (∂T , 0) is a derivation.

Proof. By definition of w and λ, the equality

w(∂∨T (χ)) = λ(∂T (χ))(v, v
∨)

holds for all χ ∈ T∨. Hence, if (∂T , 0) is a derivation, then we have λ(∂T (χ)) = 0 for all χ ∈ T∨

by the Leibniz rule, therefore w ◦ ∂∨T = 0. On the other hand, if w(∂∨T (χ)) = 0 then we have

λ(∂T (χ))(v, v
∨), and since (v, v∨) generates PA, we get λ(∂∨T (χ)) = 0. �

– 8.9. We will now construct a linear map

Φ : DM (k) ⊗Q −−→ Derk(P (M), G) ⊗Q

which will eventually turn out to be an isomorphism, as follows: Given a deficient point Q ∈ DM (k),

define a 1–motive M+ = [Y ⊕ Z
u

−−→ G] by u+(y, n) = u(y) + nQ. Let

r : P (M) −−→ P (M+)

be a morphism whose composition with the morphism P (M+) −−→ P (M) induced by M −−→ M+

is multiplication by some nonzero integer n. Such a morphism exists by Corollary 8.4. We get

morphisms

∂T : TP (M)
rT−−−→ TP (M+)

⊆
−−→ Hom(Y ⊕ Z, T )

f 7−→f(0,1)
−−−−−−−−→ T

∂A : AP (M)
rA−−−→ AP (M+)

⊆
−−→ Hom(Y ⊕ Z, A)⊕Hom(T∨, A∨)

(f,g)7−→f(0,1)
−−−−−−−−−−→ A

and set Φ(Q ⊗ 1) = (∂T , ∂A) ⊗ n−1. By Lemma 8.7 the pair (∂T , ∂A) is indeed a derivation, and

(∂T , ∂A)⊗ n−1 does not depend on the choice of the isogeny r, hence Φ is a well–defined Q–linear

map.

Theorem 8.10. The map Φ constructed in 8.9 is an isomorphism.

Proof. Let us write T0 for the torus dual to kerw, where w : T∨
P −−→ A∨

P is the map defined by P .

So T0 is the largest torus quotient of P via the canonical projection π0 : P −−→ T0. The torus T0

comes equipped with a special point u0 := π(u). Every subtorus of T0 that contains u0 is already

equal to T0.

We now check injectivity and surjectivity of the map Φ, starting with injectivity. Let q ∈ DM (k)

be a deficient point such that Φ(q ⊗ 1) = 0. Replacing M by M+, we can suppose without loss
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of generality that q = u(y+) for some y+ ∈ Y . Because Derk(P (M), G) is a finitely generated free

group, the relation Φ(q ⊗ 1) = 0 means that the maps

∂A : AP
⊆

−−→ AU
(f,g)7−→f(y+)

−−−−−−−−−−→ A and ∂T : TP
⊆

−−→ TU
h 7−→h(y+)

−−−−−−−−→ T

are both zero. We have πA(q) = v(y+) = ∂A(v, v
∨) = 0, so q must be an element of T (k). But then

we have q = u0(y
+) = ∂T (u0) = 0, using Lemma 8.8. This shows injectivity of Φ.

To show that Φ is surjective, let ∂ = (∂T , ∂A) be a derivation, and let us construct a deficient point

q with Φ(q ⊗ 1) = ∂ ⊗ 1. Define a := ∂A(v, v
∨) ∈ A(k) and let q̃ ∈ G be any point with π(q̃) = a.

Define M+ = [Y ⊕ Z
u+

−−−→ G] by u+(y, n) = u(y) + nq̃ and let

ρ : P (M+) −−→ P (M)

be the induced morphism of semiabelian varieties. The kernel of ρ is contained in TP (M+). We get

two derivations ∂̃ = (∂̃T , ∂̃A) and ∂ ◦ ρ = (∂T ◦ ρT , ∂A ◦ ρA) on P (M+) with values in G. Their

difference is the derivation

∂̃ − ∂ ◦ ρ = (∂̃T − ∂T ◦ ρT , 0)

so δ := ∂̃T −∂T ◦ρT is a morphism from the maximal torus quotient T+
0 of P (M+) to T . The point

q := q̃ − δ(π(u+)) has the required property. �

Corollary 8.11. Let M = [Y
u

−−→ G] be a 1–motive over k. The group of deficient points DM (k)

is finitely generated, and its rank is the same as the rank of Derk(P (M), G).

Proof. We have an isomorphism Φ : DM (k)⊗Q −−→ Derk(P (M), G)⊗Q, so all we have to show is

that the group DM (k) is finitely generated. One can show (by dévissage) that the group G(k) is

abstractly isomorphic to a direct sum of a finite group and a free group. So any subgroup of G(k),

in particular DM (k), also is isomorphic to a direct sum of a finite group and a free group. �

Appendix: The construction of P (M) from the Tannakian point of view

I reproduce here in almost unaltered form a comment of P. Deligne, explaining our construction

of the Lie algebra of the unipotent motivic fundamental group P (M) of a 1–motive M in terms of

Tannakian formalism. I alone am to blame for mistakes.

The starting point is that in definition 3.3 the point u should be seen as an extension of

W−1End(M) by the unit object Z. This extension can be constructed in a general setting as

follows:

– A.1. Let T be a tannakian category in characteristic zero with unit object 1. Suppose each

object of T has a functorial exhaustive filtration W compatible with tensor products and duals,

the functor grW∗ being exact. For any object M , the object End(M) = M∨ ⊗ M contains the

subobject W−1End(M). The filtration of End(M) is deduced from the filtration of M , hence

W−1End(M) = im
(⊕

p

Hom(M/WpM,WpM) −−→ End(M)
)
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As Ext1(M/WpM,WpM) = Ext1(1,Hom(M/WpM,WpM)), we can take the class of M in each of

the vector spaces Ext1(M/WpM,WpM), interpret it as a class in Ext1(1,Hom(M/WpM,WpM)),

take the sum of those and push to W−1End(M) by functoriality of Ext1. We get a class

cl(M) ∈ Ext1(1,W−1End(M))

which is natural in M under taking subobjects and quotients.

– A.2. Let G be the fundamental group of T . It has an invariant unipotent subgroupW−1(G) with

Lie algebra W−1(LieG). Thus, for all objects M , the group G acts on M respecting the filtration

W , and the unipotent subgroup W−1(M) acts trivially on grW∗ M . Let w : Gm −−→ G/W−1(G) be

the cocharacter defined by the numbering of the filtration of W of M , for any M . This means that

for a ∈ Gm, the automorphism w(a) of grW∗ (M) acts as multiplication with an on grWn (M). Let us

consider the inverse image of this Gm in G, or more precisely Gm ×G/W−1G G. Its Lie algebra L is

an extension of Lie(Gm) = 1 by LieW−1(G).

For any object M of T , let uM be the image in W−1End(M) of LieW−1(G). The extension L

gives us by functoriality a quotient LM of L acting on M , which is an extension of 1 by uM .

In the setting of section 3, U(M) corresponds toW−1End(M), and the subobject P (M) of U(M)

corresponds to the subobject uM of W−1End(M). We have a 1–motive [Z −−→ U(M)] given by the

point u, which has to be seen as an extension of [0 −−→ U(M)] by [Z −−→ 0], and P (M) was

defined to be the smallest subobject of U(M) from which this extension comes, say after passing

to Q–coefficients. Exactly in this way the two stories A.1 and A.2 are related:

Proposition A.3. (1) The extension cl(M) is the push out of the extension LM via the inclu-

sion uM −−→W−1End(M).

(2) If v is a subobject of uM such that cl(M) is the image of a class in Ext1(1, v), then v = uM .

I claim in (1) an equality in Ext1(1,W−1End(M)). As Hom(1,W−1End(M)) is 0 for weight

reasons, it is the same as an (unique) isomorphism of actual extensions.

A first computation, which was helpful for understanding but now has disappeared from the

proof, was to consider the category of graded representations of a graded Lie algebra g with degrees

< 0, and wondering what cocycle c : g −−→W−1End(M) was giving me cl(M) inH1(g,W−1End(M)).

The answer is the composite map g −−→ g −−→ W−1End(M), where the first map is multiplication

by n in degree −n, and the second map is given by the action of g on M .

Proof of Proposition A.3. (1) For each integer n we have a map

en : 1 −−→ End(grWn M) −−→ grW0 End(M) =
⊕

p

End(grWp M)

The push–out by uM −−→ W−1End(M) of the extension 0 −−→ uM −−→ LM −−→ 1 −−→ 0 is the

pull–back of the extension

(∗) 1 −−→W−1End(M) −−→ W0End(M) −−→ grW0 End(M) −−→ 1

by
∑

n nen. Indeed,
∑

n nen gives the action of 1 = Lie(Gm) on grW∗ M corresponding to the

grading. Define Ep :=
∑

n>p en and let A ≤ B be integers such that WAM = 0 and WBM = M .
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We have then ∑

n

nen =
∑

A≤p≤B

Ep +m
∑

n

en

for some integer m depending on the choice of A and B. The map
∑

n en lifts to the identity

morphism of M , viewed as a map 1 −−→ End(M) which factors over W0End(M). The pull–back

of (∗) by m
∑

n en is hence trivial, and the push–out of LM by the inclusion uM −−→ W−1End(M)

is the sum of the pull–backs of (∗) by the Ep. This pull–back by Ep comes from an extension of

1 by Hom(M/WpM,WpM), which I would like to call Endomorphisms of M respecting Wp(M),

inducing a multiple of the identity on M/WpM and 0 on WpM . At least, that is what it becomes

in any realisation. This is the extension already considered in A.1, corresponding to the class of M

in Ext1(M/WpM,WpM). The sum of those extension classes, pushed to W−1End(M), had been

defined to be cl(M).

(2) On objects N of weights < 0, i.e. such that N =W−1N , the functor Ext1(1,−) is left exact.

For any class α in Ext1(1, N), there is hence a smallest sub-object N0 of N such that α comes from

a class in Ext1(1, N0). Indeed, if α comes from N ′ and from N ′′, the short exact sequence

0 −−→ N ′ ∩N ′′ −−→ N ′ ⊕N ′′ −−→ N

shows after applying Ext1(1,−) that α also comes from N ′ ∩N ′′. It remains to show that the class

of LM in Ext1(1, uM ) does not come from any v ( uM . Indeed, any subobject of LM is stable by

the action of LM because G and LieG act on everything. �

Proposition A.4. Any Lie–subobject of LM mapping onto 1 is equal to LM . In other words, the

extension 0 −−→ uM −−→ LM −−→ 1 −−→ 0 is essential.

Proof. The bracket of LM passes to the quotients by W and defines brackets

WpLM/Wp−1LM ⊗ LM/W−1LM −−→WpLM/Wp−1LM

and this bracket grWp LM ⊗ 1 −−→ grWp LM is the multiplication by p. For any subobject L′ of LM

mapping onto the quotient 1, the stability of L′ by the action of WpLM hence gives a surjectivity

grWp L′ −−→ grWp LM

from which the equality L′ = LM follows. �
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[Ser85] , Cours au collège de France, 1984–1985
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Universitätsstr. 31

93040 Regensburg, GERMANY

peter.jossen@gmail.com


	Introduction and overview
	1. Complements and recollections on 1–motives
	2. Cohomological realisation of families of 1–motives
	3. Construction of the unipotent motivic fundamental group
	4. Comments on Lie structures
	5. Comparison of the motivic fundamental group with the Mumford–Tate group
	6. Comparison of the motivic fundamental group with the image of Galois
	7. Conclusions and compatibility of the comparison isomorphisms
	8. Corollaries
	Appendix: The construction of P(M) from the Tannakian point of view
	References

