# Simple Spectrum for Tensor Products of Mixing Map Powers 

V.V. Ryzhikov*

July 26, 2011

## 1 Introduction

In this note we consider measure-preserving transformations of a Probability space $(X, \mu)$. We prove the existence of a mixing rank one construction $T$ such that the product $T \otimes T^{2} \otimes T^{3} \otimes \ldots$ has simple spectrum. This result has been announced in [6]. It had an application in recent Thikhonov's proof [9] of the existence of mixing transformation with homogeneous spectrum of multiplicity $m>2$ (see [3]). Let us remark that for generic non-mixing transformations the above spectral properties have been found by Ageev [2].

Rank one construction is determined by $h_{1}$ and a sequence $r_{j}$ of cuttings and a sequence $\bar{s}_{j}$ of spacers

$$
\bar{s}_{j}=\left(s_{j}(1), s_{j}(2), \ldots, s_{j}\left(r_{j}-1\right), s_{j}\left(r_{j}\right)\right) .
$$

We recall its definition. Let our $T$ on the step $j$ be associated with a collection of disjoint sets (intervals)

$$
E_{j}, T E_{j} T^{2}, E_{j}, \ldots, T^{h_{j}} E_{j} .
$$

We cut $E_{j}$ into $r_{j}$ sets (subintervals) of the same measure

$$
E_{j}=E_{j}^{1} \sqcup E_{j}^{2} \sqcup E_{j}^{3} \sqcup \ldots \sqcup E_{j}^{r_{j}},
$$

then for all $i=1,2, \ldots, r_{j}$ we consider columns

$$
E_{j}^{i}, T E_{j}^{i}, T^{2} E_{j}^{i}, \ldots, T^{h_{j}} E_{j}^{i} .
$$

*This work is partially supported by the grant NSh 8508.2010.1.

Adding $s_{j}(i)$ spacers we obtain

$$
E_{j}^{i}, T E_{j}^{i} T^{2} E_{j}^{i}, \ldots, T^{h_{j}} E_{j}^{i}, T^{h_{j}+1} E_{j}^{i}, T^{h_{j}+2} E_{j}^{i}, \ldots, T^{h_{j}+s_{j}(i)} E_{j}^{i}
$$

(the above intervals are disjoint). For all $i<r_{j}$ we set

$$
T T^{h_{j}+s_{j}(i)} E_{j}^{i}=E_{j}^{i+1}
$$

Now we obtain a tower

$$
E_{j+1}, T E_{j+1} T^{2} E_{j+1}, \ldots, T^{h_{j+1}} E_{j+1}
$$

where

$$
\begin{gathered}
E_{j+1}=E_{j}^{1}, \\
T^{h_{j+1}} E_{j+1}=T^{h_{j}+s_{j}\left(r_{j}\right)} E_{j}^{r_{j}}, \\
h_{j+1}+1=\left(h_{j}+1\right) r_{j}+\sum_{i=1}^{r_{j}} s_{j}(i) .
\end{gathered}
$$

So step by step we define a general rank one construction.
On notation. We denote weak operator approximations by $\approx_{w}$ and $\approx_{s}$ for strong ones. $\Theta$ is the orthogonal projection into the space of constant functions in $L_{2}(X, \mu)$. Thus, the expression $T^{m} \approx_{w} \Theta$ (for large $m$ ) means that $T$ is mixing.

Stochastic Ornstein's rank one transformation. D. Ornstein has proved the mixing for almost all spesial stochastic constructions. His proof can be very shortly presented in the following manner. Let $H_{j} \rightarrow \infty, H_{j} \ll r_{j}$, we consider uniformly distributed stochastic variables $a_{j}(i) \in\left\{0,1, \ldots, H_{j}\right\}$ and let

$$
s_{j}(i)=H_{j}+a_{j}(i)-a_{j}(i+1) .
$$

Then for $m \in\left[h_{j}, h_{j+1}\right)$

$$
T^{m} \approx_{w} D_{1} T^{k_{1}} P_{1}+D_{2} T^{k_{2}} P_{2}+D_{3} T^{k_{3}} P_{3}
$$

where $D_{i}$ are operators of multiplication by indicators of special parts of $j$ towers (all $D_{i}$ and $P_{i}$ depend on $m$ ), $\left|k_{1}\right|<h_{j+1},\left|k_{2}\right|,\left|k_{3}\right|<h_{j}$, the operators $P_{i}$ have the form:

$$
P_{1}=\sum_{n \in\left[-H_{j+1}, H_{j+1}\right]} c_{j+1}(n) T^{n}, \quad c_{j+1}(n)=\frac{H_{j+1}+1-|n|}{\left(H_{j+1}+1\right)^{2}}
$$

$$
P_{2,3}=\sum_{n \in\left[-H_{j}, H_{j}\right]} c_{j}(n) T^{n}, \quad c_{j}(n)=\frac{H_{j}+1-|n|}{\left(H_{j}+1\right)^{2}} .
$$

We have

$$
\left\|D_{i} T^{k_{i}}\right\| \leq 1
$$

and

$$
P_{i} \approx_{s} \Theta
$$

since $T$ is ergodic. Finally we get for large $m$

$$
T^{m} \approx_{w} \Theta
$$

## $2 T^{s m_{j}} \rightarrow \Theta$ for a given exclusive $s$

Weak limits $a I+(1-a) \Theta$ are well known in ergodic theory. They have been used in connection with Kolmogorov's problem [8] and for a machinery of counterexamples [4].

LEMMA 1. For any $\varepsilon>0, N$ and $s \in[1, N]$ there is a rank one $(1-\varepsilon)$ partially mixing construction $T$ with the following property: for a sequence $m_{j}$

$$
(\mathbf{N}, \mathbf{s})-\text { Property }\left\{\begin{array}{r}
T^{s m_{j}} \rightarrow \Theta, \\
T^{k m_{j}} \rightarrow\left(1-a_{k}\right) \Theta+a_{k} I
\end{array}\right.
$$

for some $a_{k}>0, k \neq s, 1 \leq k \leq N$.
We are able to work with staircase spacer arrays [1] as well as algebraic spacers [7], but we prefer stochastic constructions [5]. We do not try to construct explicit examples here and follow this simple way.

Proof. Let $s=3, N=5$. A sequence of spacers is organized as follows. A spacer vector $\bar{s}_{j}$ is a concatenation of arrays

$$
S 1, S 1, A 1, S 2, S 2, A 2, S 4, S 4, A 4, S 5, S 5, A 5,
$$

where $S k, A k$ are independent arrays of spacers. Moreover let arrays $S k$ be stochastic Ornstein's spacer sequences of the length $k L_{j}$ with an average value equals to $H_{j}$; let an array $A k$ be of a length $\left[\varepsilon^{-1} k L_{j}\right]$.

Let $m_{j}=\left(h_{j}+H_{j}\right) L_{j}$, then for a small constant $a>0$ (we omit its calculation) and $k \neq s, 1 \leq k \leq N$, one gets

$$
\begin{aligned}
T^{k m_{j}} \approx_{w} k a_{k} I+ & \left(1-k a_{k}\right)\left(D_{1} T^{k_{1}} P_{1}+D_{2} T^{k_{2}} P_{2}+D_{3} T^{k_{3}} P_{3}\right) \approx_{w} \\
& \approx_{w} k a_{k} I+\left(1-k a_{k}\right) \Theta, \quad a_{k}>a
\end{aligned}
$$

Via Ornstein's approach the mixing is everywhere in $j$-tower except a part $D$ that is situated under the second spacer array $S k$. For this part we have for measurable sets $B, B^{\prime}$

$$
\mu\left(T^{k m_{j}} B \cap B^{\prime} \cap D\right) \approx \mu(D) \mu\left(B \cap B^{\prime}\right)
$$

so $k a_{k} I$ appears. However

$$
T^{3 m_{j}} \approx_{w} \Theta
$$

since we "forget" to copy an array of the length $3 L$.

## 3 Exclusive $n$ for which $T^{n m_{j}} \rightarrow a I+b T+c \Theta$

( $n, a, b$ )-constructions. Let $r_{j} \rightarrow \infty$. We fix positive $a, b, a+b+c=1$, and $n>1$. For a subsequence $r_{j^{\prime}-1}$ we produce a flat part (a-part), a polynomial part (b-part) and a mixing part (c-part) (stochastic [5], algebraic [7], or staircase [1] that we use here). These parts will be now provided by the following spacer sequence $\bar{s}_{j^{\prime}}$. We set (writing again $j$ instead of $j^{\prime}$ )
a-Part: for $i=1,2, \ldots,\left[a r_{j}\right]$

$$
s_{j}(i)=H_{j}
$$

b-Part: for $i \in\left(\left[a r_{j}\right],\left[(a+b) r_{j}\right]\right)$ if $i=n i^{\prime}$ we set $s_{j}(i)=n H_{j}-1$, otherwise $s_{j}(i)=0$. So this part of spacer vector looks as
$\ldots, 0,0, \ldots, 0, n H_{j}-1,0,0, \ldots, 0, n H_{j}-1,0,0, \ldots, 0, n H_{j}-1,0, \ldots$
Mixing c-Part: $s_{j}(i)=i$ for $i>\left[(a+b) r_{j}\right]$.
A condition for $(j-1)$-steps. We define on $j-1$-step our construction to be a pure staircase and we set $H_{j}=h_{j-1}$ (recall that $j=j^{\prime}$ is a subsequence).

Weak limits. Let $m_{j}=h_{j}+H_{j}$. We get the following convergences:

$$
\text { n - Property }\left\{\begin{aligned}
& T^{m_{j}} \rightarrow a I+(b+c) \Theta \\
& T^{2 m_{j}} \rightarrow a I+(b+c) \Theta, \\
& \ldots \\
& T^{(n-1) m_{j}} \rightarrow a I+(b+c) \Theta \\
& T^{n m_{j}} \rightarrow a I+b T+c \Theta
\end{aligned}\right.
$$

Indeed, we have

$$
\begin{gathered}
T^{K m_{j}} \approx_{w} a T^{0}+b\left(\frac{n-K}{n} T^{K H_{j}}+\frac{K}{n} T^{(K-n) H_{j}+1}\right)+\frac{1}{r_{j}} \sum_{i>(a+b) r_{j}}^{r_{j}} T^{-2 i-1}, \\
T^{K m_{j}} \approx_{w} a I+b\left(\frac{n-K}{n} T^{K H_{j}}+\frac{K}{n} T^{(K-n) H_{j}+1}\right)+c \Theta
\end{gathered}
$$

For $K=n$

$$
b\left(\frac{n-K}{n} T^{K H_{j}}+\frac{K}{n} T^{(K-n) H_{j}+1}\right)=b T .
$$

For $K=1,2, \ldots, n-1$ we use $T^{K H_{j}}, T^{K H_{j}+1} \approx_{w} \Theta$ and obtain

$$
b\left(\frac{n-K}{n} T^{K H_{j}}+\frac{K}{n} T^{(K-n) H_{j}+1}\right) \approx_{w} b \Theta .
$$

## 4 Main result

LEMMA 2. Let for $m=2,3, \ldots, n$ and all $s \leq m$ a transformation $T$ have $m$-Properies and ( $s, m$ )-Properties. Then $T \otimes T^{2} \otimes \ldots T^{n}$ has simple spectrum.

Proof. A cyclic vector for $T$ in $H=L_{2}^{0}$ is denoted by $f$. We shall prove that a cyclic space $C_{F}$ is $H^{\otimes n}$, where $F=f^{\otimes n}$ and $T \otimes T^{2} \otimes \ldots T^{n}$ is restricted to $H^{\otimes n}$. For $S=T \otimes T^{2} \otimes \ldots T^{n-1}$ we assume it has simple spectrum by induction.

From $n$-property we get

$$
b^{n-1} f^{\otimes n-1} \otimes(a I+b T) f \in C_{F},
$$

hence, $f^{\otimes n-1} \otimes T f \in C_{F}$, thus, for all $k$

$$
f^{\otimes n-1} \otimes T^{k} f \in C_{F} .
$$

This implies

$$
f^{\otimes n-1} \otimes H \subset C_{F}, \quad S^{i} f^{\otimes n-1} \otimes H \subset C_{F}, \quad H^{\otimes n-1} \otimes H \subset C_{F} .
$$

To see that $T \otimes T^{2} \otimes \ldots T^{n}$ has a simple spectrum in $L_{2}^{\otimes n}$ we note that all different products $T^{n_{1}} \otimes \ldots \otimes T^{n_{k}}$ are spectrally disjoint. This follows directly from ( $\mathrm{s}, \mathrm{n}$ )-Properties (see Lemma 1). For example, if $s=2$ (in Lemma 2), then in $H^{\otimes 3}$

$$
\left(T \otimes T^{2} \otimes T^{5}\right)^{m_{j}} \rightarrow_{w} 0,
$$

but

$$
\left(T \otimes T^{3} \otimes T^{5}\right)^{m_{j}} \rightarrow_{w} a_{1} a_{3} a_{5} I>a^{3} I
$$

THEOREM. There is a mixing transformation $T$ such that $T \otimes T^{2} \otimes T^{3} \ldots$ has simple spectrum.

Proof. We construct rank one transformations $T_{p}$ with n-Properties and ( $s, N$ )-Properties $(n, N \leq p)$. We make these constructions $c_{p}$-partially mixing with $T_{p} \otimes T_{p}^{2} \otimes T_{p}^{3} \ldots$ of simple spectrum (Lemma 2 ). Then $c_{p}$ tends very slowly to 1 , and we force a limit mixing construction $T$ to have the desired spectral property via standard technique (see [3], [6]). In [6] we define $T_{p} \rightarrow T(p \rightarrow \infty)$ to have simple spectrum for all $T^{\odot n}$. Replacing this aim by another one we provide simple spectrum of $T \otimes T^{2} \otimes \ldots T^{n}$ via the same methods.

Finally let us formulate a similar problem on flows:
Conjecture. There is a mixing flow $T_{t}$ such that for all collections of different $t_{i}>0$ the products $T_{t_{1}} \otimes T_{t_{2}} \otimes T_{t_{3}} \ldots$ have simple spectrum. Moreover the same is true for

$$
\exp \left(T_{t_{1}}\right) \otimes \exp \left(T_{t_{2}}\right) \otimes \exp \left(T_{t_{3}}\right) \ldots
$$

(here $T_{t_{i}}$ are now treated as unitary operators restricted onto $H$ ).
The main difficulty is not to find a solution but is to find an elegant one. It seems that the following lemma could be useful.

LEMMA 3. If for a flow $T_{t}$ with simple spectrum and any positive different $s, t_{1}, t_{2}, \ldots, t_{n}$ there is $m_{j} \rightarrow \infty$ and positive $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
T_{t_{i} m_{j}} \rightarrow a_{i} I+\left(1-a_{i}\right) \Theta, i=1,2, \ldots, n-1,
$$

$$
T_{t_{n} m_{j}} \rightarrow a_{n} T_{s}+\left(1-a_{n}\right) \Theta,
$$

then the corresponding (Gaussian) automorphisms

$$
\exp \left(T_{t_{1}}\right) \otimes \exp \left(T_{t_{2}}\right) \otimes \exp \left(T_{t_{3}}\right) \ldots
$$

have simple spectrum.
Remark. There is a weakly mixing flow $T_{t}$ possessing the following property: given $a \in[0,1]$ there is a sequence $m_{i}$ such that for any real $s>0$ there is a subsequence $m_{i(k)}$ (it depends on $s$ ) providing

$$
T_{s m_{i(k)}} \rightarrow a I+(1-a) \Theta .
$$

(It is not possible to have $T_{s m_{i}} \rightarrow a I+(1-a) \Theta$ for a set of $s$ of a positive measure.)

Hint: let us consider rank one flows with $r_{j} \ggg h_{j}$.

## References

[1] T.M. Adams. Smorodinsky's conjecture on rank one systems, Proc. Amer. Math. Soc. 126 (1998), 739-744.
[2] O.N. Ageev. The homogeneous spectrum problem in ergodic theory, Invent. Math. 160(2005), 417-446.
[3] A.I. Danilenko. A survey on spectral multiplicities of ergodic actions. arXiv:1104.1961
[4] A. del Junco, M. Lemanczyk. Generic spectral properties of measure-preserving maps and applications. Proc. Amer. Math. Soc., 115(3) (1992), 725-736.
[5] D. Ornstein. On the root problem in ergodic theory. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, pp. 347-356. Univ. California Press, Berkeley, Calif., 1972.
[6] V.V. Ryzhikov. Weak limits of powers, the simple spectrum of symmetric products and mixing constructions of rank 1, Sb. Math. 198 (2007), 733-754.
[7] V.V. Ryzhikov. On mixing rank one infinite transformations. arXiv:1106.4655
[8] A. M. Stepin. Spectral properties of generic dynamical systems. Izv. Akad. Nauk SSSR Ser. Mat., 50:4 (1986), 801-834
[9] S.V. Tikhonov, Mixing transformations with homogeneous spectrum, Sb. Math. (to appear).

E-mail: vryz@mail.ru

