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1 Introduction

In this note we consider measure-preserving transformations of a Probability

space (X, µ). We prove the existence of a mixing rank one construction T such
that the product T ⊗ T 2 ⊗ T 3 ⊗ . . . has simple spectrum. This result has been

announced in [6]. It had an application in recent Thikhonov’s proof [9] of the
existence of mixing transformation with homogeneous spectrum of multiplicity

m > 2 (see [3]). Let us remark that for generic non-mixing transformations the
above spectral properties have been found by Ageev [2].

Rank one construction is determined by h1 and a sequence rj of cuttings

and a sequence s̄j of spacers

s̄j = (sj(1), sj(2), . . . , sj(rj − 1), sj(rj)).

We recall its definition. Let our T on the step j be associated with a collection

of disjoint sets (intervals)

Ej, TEjT
2, Ej, . . . , T

hjEj.

We cut Ej into rj sets (subintervals) of the same measure

Ej = E1
j

⊔

E2
j

⊔

E3
j

⊔

. . .
⊔

E
rj
j ,

then for all i = 1, 2, . . . , rj we consider columns

Ei
j, TE

i
j, T

2Ei
j, . . . , T

hjEi
j.
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Adding sj(i) spacers we obtain

Ei
j, TE

i
jT

2Ei
j, . . . , T

hjEi
j, T

hj+1Ei
j, T

hj+2Ei
j, . . . , T

hj+sj(i)Ei
j

(the above intervals are disjoint). For all i < rj we set

TT hj+sj(i)Ei
j = Ei+1

j .

Now we obtain a tower

Ej+1, TEj+1T
2Ej+1, . . . , T

hj+1Ej+1,

where

Ej+1 = E1
j ,

T hj+1Ej+1 = T hj+sj(rj)E
rj
j ,

hj+1 + 1 = (hj + 1)rj +
rj
∑

i=1

sj(i).

So step by step we define a general rank one construction.

On notation. We denote weak operator approximations by ≈w and ≈s for
strong ones. Θ is the orthogonal projection into the space of constant functions
in L2(X, µ). Thus, the expression Tm ≈w Θ (for large m) means that T is

mixing.
Stochastic Ornstein’s rank one transformation. D. Ornstein has proved

the mixing for almost all spesial stochastic constructions. His proof can be very
shortly presented in the following manner. Let Hj → ∞, Hj << rj, we consider

uniformly distributed stochastic variables aj(i) ∈ {0, 1, . . . , Hj} and let

sj(i) = Hj + aj(i)− aj(i+ 1).

Then for m ∈ [hj, hj+1)

Tm ≈w D1T
k1P1 +D2T

k2P2 +D3T
k3P3,

where Di are operators of multiplication by indicators of special parts of j-

towers (all Di and Pi depend on m), |k1| < hj+1, |k2|, |k3| < hj , the operators
Pi have the form:

P1 =
∑

n∈[−Hj+1,Hj+1]

cj+1(n)T
n, cj+1(n) =

Hj+1 + 1− |n|

(Hj+1 + 1)2
,
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P2,3 =
∑

n∈[−Hj ,Hj ]

cj(n)T
n, cj(n) =

Hj + 1− |n|

(Hj + 1)2
.

We have
‖DiT

ki‖ ≤ 1

and

Pi ≈s Θ

since T is ergodic. Finally we get for large m

Tm ≈w Θ.

2 T smj → Θ for a given exclusive s

Weak limits aI + (1 − a)Θ are well known in ergodic theory. They have been
used in connection with Kolmogorov’s problem [8]and for a machinery of coun-

terexamples [4].

LEMMA 1. For any ε > 0, N and s ∈ [1, N ] there is a rank one (1 − ε)-
partially mixing construction T with the following property: for a sequence mj

(N, s)−Property







T smj → Θ,

T kmj → (1− ak)Θ + akI

for some ak > 0, k 6= s, 1 ≤ k ≤ N .

We are able to work with staircase spacer arrays [1] as well as algebraic
spacers [7], but we prefer stochastic constructions [5]. We do not try to construct

explicit examples here and follow this simple way.
Proof. Let s = 3, N = 5. A sequence of spacers is organized as follows. A

spacer vector s̄j is a concatenation of arrays

S1, S1, A1, S2, S2, A2, S4, S4, A4, S5, S5, A5,

where Sk, Ak are independent arrays of spacers. Moreover let arrays Sk be

stochastic Ornstein’s spacer sequences of the length kLj with an average value
equals to Hj; let an array Ak be of a length [ε−1kLj].
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Letmj = (hj+Hj)Lj, then for a small constant a > 0 (we omit its calculation)
and k 6= s, 1 ≤ k ≤ N , one gets

T kmj ≈w kakI + (1− kak)(D1T
k1P1 +D2T

k2P2 +D3T
k3P3) ≈w

≈w kakI + (1− kak)Θ, ak > a.

Via Ornstein’s approach the mixing is everywhere in j-tower except a part D
that is situated under the second spacer array Sk. For this part we have for
measurable sets B,B′

µ(T kmjB ∩B′ ∩D) ≈ µ(D)µ(B ∩B′),

so kakI appears. However

T 3mj ≈w Θ

since we ”forget” to copy an array of the length 3L.

3 Exclusive n for which T nmj → aI + bT + cΘ

(n, a, b)-constructions. Let rj → ∞. We fix positive a, b, a + b + c = 1, and
n > 1. For a subsequence rj′−1 we produce a flat part (a-part), a polynomial
part (b-part) and a mixing part (c-part) (stochastic [5], algebraic [7], or staircase

[1] that we use here). These parts will be now provided by the following spacer
sequence s̄j′. We set ( writing again j instead of j′)

a-Part: for i = 1, 2, . . . , [arj]

sj(i) = Hj.

b-Part: for i ∈ ([arj], [(a+ b)rj]) if i = ni′ we set sj(i) = nHj − 1, otherwise
sj(i) = 0. So this part of spacer vector looks as

. . . , 0, 0, . . . , 0, nHj − 1, 0, 0, . . . , 0, nHj − 1, 0, 0, . . . , 0, nHj − 1, 0, . . .
Mixing c-Part: sj(i) = i for i > [(a+ b)rj].
A condition for (j−1)-steps. We define on j−1-step our construction to

be a pure staircase and we set Hj = hj−1 (recall that j = j′ is a subsequence).
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Weak limits. Let mj = hj +Hj. We get the following convergences:

n−Property











































Tmj → aI + (b+ c)Θ,

T 2mj → aI + (b+ c)Θ,

. . .

T (n−1)mj → aI + (b+ c)Θ,

T nmj → aI + bT + cΘ.

Indeed, we have

TKmj ≈w aT 0 + b

(

n−K

n
TKHj +

K

n
T (K−n)Hj+1

)

+
1

rj

rj
∑

i>(a+b)rj

T−2i−1,

TKmj ≈w aI + b

(

n−K

n
TKHj +

K

n
T (K−n)Hj+1

)

+ cΘ.

For K = n

b

(

n−K

n
TKHj +

K

n
T (K−n)Hj+1

)

= bT.

For K = 1, 2, . . . , n− 1 we use TKHj , TKHj+1 ≈w Θ and obtain

b

(

n−K

n
TKHj +

K

n
T (K−n)Hj+1

)

≈w bΘ.

4 Main result

LEMMA 2. Let for m = 2, 3, . . . , n and all s ≤ m a transformation T have

m-Properies and (s,m)-Properties. Then T ⊗ T 2 ⊗ . . . T n has simple spectrum.

Proof. A cyclic vector for T in H = L0
2 is denoted by f . We shall prove that

a cyclic space CF is H⊗n, where F = f⊗n and T ⊗ T 2 ⊗ . . . T n is restricted to

H⊗n. For S = T⊗T 2⊗ . . . T n−1 we assume it has simple spectrum by induction.
From n-property we get

bn−1f⊗n−1 ⊗ (aI + bT )f ∈ CF ,

hence, f⊗n−1 ⊗ Tf ∈ CF , thus, for all k

f⊗n−1 ⊗ T kf ∈ CF .
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This implies

f⊗n−1 ⊗H ⊂ CF , Sif⊗n−1 ⊗H ⊂ CF , H⊗n−1 ⊗H ⊂ CF .

To see that T ⊗ T 2 ⊗ . . . T n has a simple spectrum in L⊗n
2 we note that all

different products T n1 ⊗ . . .⊗ T nk are spectrally disjoint. This follows directly

from (s,n)-Properties (see Lemma 1). For example, if s = 2 (in Lemma 2), then
in H⊗3

(T ⊗ T 2 ⊗ T 5)mj →w 0,

but
(T ⊗ T 3 ⊗ T 5)mj →w a1a3a5I > a3I.

THEOREM. There is a mixing transformation T such that T ⊗T 2⊗ T 3 . . .

has simple spectrum.

Proof. We construct rank one transformations Tp with n-Properties and
(s,N)-Properties (n,N ≤ p). We make these constructions cp-partially mixing
with Tp⊗T 2

p ⊗ T 3
p . . . of simple spectrum (Lemma 2). Then cp tends very slowly

to 1, and we force a limit mixing construction T to have the desired spectral
property via standard technique (see [3], [6]). In [6] we define Tp → T (p → ∞)

to have simple spectrum for all T⊙n. Replacing this aim by another one we
provide simple spectrum of T ⊗ T 2 ⊗ . . . T n via the same methods.

Finally let us formulate a similar problem on flows:
Conjecture. There is a mixing flow Tt such that for all collections of dif-

ferent ti > 0 the products Tt1 ⊗Tt2 ⊗Tt3 . . . have simple spectrum. Moreover the
same is true for

exp(Tt1)⊗ exp(Tt2)⊗ exp(Tt3) . . .

(here Tti are now treated as unitary operators restricted onto H).
The main difficulty is not to find a solution but is to find an elegant one. It

seems that the following lemma could be useful.

LEMMA 3. If for a flow Tt with simple spectrum and any positive different

s, t1, t2, . . . , tn there is mj → ∞ and positive a1, a2, . . . , an such that

Ttimj
→ aiI + (1− ai)Θ, i = 1, 2, . . . , n− 1,
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Ttnmj
→ anTs + (1− an)Θ,

then the corresponding (Gaussian) automorphisms

exp(Tt1)⊗ exp(Tt2)⊗ exp(Tt3) . . .

have simple spectrum.

Remark. There is a weakly mixing flow Tt possessing the following property:
given a ∈ [0, 1] there is a sequence mi such that for any real s > 0 there is a

subsequence mi(k) (it depends on s) providing

Tsmi(k)
→ aI + (1− a)Θ.

(It is not possible to have Tsmi
→ aI + (1 − a)Θ for a set of s of a positive

measure.)
Hint: let us consider rank one flows with rj >>> hj.
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