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SHRINKING TARGETS FOR COUNTABLE MARKOV
MAPS

HENRY WJ REEVE

ABSTRACT. Let T be an expanding Markov map with a countable num-
ber of inverse branches and a repeller A contained within the unit in-
terval. Given a € Ry we consider the set of points x € A for which
T"(x) hits a shrinking ball of radius e™"* around y for infinitely many
iterates n. Let s(a) denote the infimal value of s for which the pressure
of the potential —slog|T’| is below sa. Building on previous work of
Hill, Velani and Urbanski we show that for all points y contained within
the limit set of the associated iterated function system the Hausdorff
dimension of the shrinking target set is given by s(«). Moreover, when

A = [0, 1] the same holds true for all y € [0, 1]. However, given 8 € (0, 1)
we provide an example of an expanding Markov map T with a repeller
A of Hausdorff dimension 8 with a point y € A such that for all & € R
the dimension of the shrinking target set is zero.

1. INTRODUCTION

Suppose we have a dynamical system (X, T, u) consisting of a space X
together with a map 7' : X — X and a T-invariant ergodic probability
measure p. Let A be a subset of positive ;1 measure. Poincaré’s recurrence
theorem implies that p almost every z € X will visit A an infinite number
of times, ie. (,,eny Upsm 77" A has full 1 measure. This raises the question
of what happens when we allow A to shrink with respect to time. How does
the size of (N, ,eny Upsm T~ "A(n) depend upon the sequence {A(n)},on?

We shall consider this question in the setting of hyperbolic maps. Given
a Gibbs measure p, Chernov and Kleinbock have given general conditions
according to which (,,cxy Upsm T "A(n) will have full p measure [CK].
However, when >~>°  1(A(n)) is finite it is clear that (), ey Upsm T~ "A(1)
must be of zero y measure. In particular, if {A(n)}, o is a sequence of balls
which shrink exponentially fast around a point, then (,,cy Upspm 77" A(n)
must be of zero Lebesgue measure. Thus, in order to understand its geo-
metric complexity we must determine its Hausdorff dimension (see [F1] for
an introduction to dimension theory).

In [HVI], HV2] Hill and Velani consider the dimension of the shrinking
target set

Dy(a) == ﬂ U {zeX:|T(z)—y| <e™}.

meNn>m
1
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Let s(a) denote the infimal value of s for which the pressure of the potential
—slog|T’| is below sa. In [HV2] it is shown that for an expanding rational
maps of the Riemann sphere the dimension of D, («) is given by s(«a) for all
points y contained within the Julia set. Now suppose we have a piecewise
continuous map of the unit interval T' with repeller A. When T has just
finitely many inverse branches, Hill and Velani’s formula for the dimension
of Dy(a) extends unproblematically. That is, for all y € A, dimyDy(a) =
s(a). However when T has an infinite number of inverse branches things
become more difficult, owing to the unboundedness |7”|. In [U] Urbanski
showed that for those y € A satisfying sup{|(T")(T™(y))|}n>0 < o0, the
dimension of Dy(«) is equal to s(«). We prove that, even for systems with
an infinite number of inverse branches, this formula extends to all points
y € A. Moreover, when A = [0,1] we have dimyDy(a) = s(a) for all
y € [0,1]. However, we provide a family of examples showing that when
dimyA € (0,1), whilst s(«) is always positive, the dimension of Dy(«) can
be zero for certain members of y € A\A.

2. STATEMENT OF RESULTS

Before stating our main results we shall introduce some notation and
provide some further background.

Definition 2.1 (Expanding Markov Map). Let V = {V;},c4 be a countable
family of disjoint subintervals of the unit interval with non-empty interior.
Given w = (wo, -+ ,wp—1) € A" for some n € N we let V, := ﬂﬁ;éT_”wa.
We shall say that T : UjeAV; — [0,1] is an expanding Markov map if T
satisfies the following conditions.

(1) For eachi € A, T|y; is a C* map which maps the interior of V; onto
open unit interval (0, 1),

(2) There exists & > 1 and N € N such that for all n > N and all
x € UyeanV, we have |(T™) (x)| > £,

(3) There exists some sequence {pn}neny C R with limy,—oopn = 0 such
that for alln € N, w € A", and oll x,y € V,,,

o TV

T W)l T
We shall say that T is a finite branch expanding Markov map if A is a finite
set.

The repeller A of an expanding Markov map is the set of points for
which every iterate of 7" is well-defined, A := [, 77" ([0, 1]). We assume
throughout that #.4 > 1. Otherwise A would either empty or contained
within a single point.

Given a point y € A in the closure of the repeller and some a € R, we
shall be interested in the set of points x € A for which 7" () hits a shrinking
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T

ball of radius e™"™* around y for infinitely many iterates n,

(2.1) Dy(a):= () |J {zeA:|T"() -yl <e ™},

meNn>m

More generally, given a function ¢ : A — R4 we let S, (¢) := Z?;ol @oT
and define

(22) Dye):=() U {x EN: T (z)—y| < e—snw)(a:)}.
meNn>m
Sets of the form Dy(yp) arise naturally in Diophantine approximation.

Example 2.1. Given a € Ry we let

p
x_i

J(a) = {a: €0,1] -

1
< — for infinitely many p, q € N} .
q

Let T :[0,1] — [0,1] be the Gauss map =+ L — | L] which is an ezpanding
Markov map on the repeller A = [0,1]\Q. We define ¢ : A — R by ¢(x) =
log |T"(x)| and for each a > 2 we let Yo := (§ — 1) 9. Then for all2 < a <

B < v we have,

(2.3) Do (tha) € J(B) C Do (¢y) -

In |J, B] Jarrik and Besicovitch showed that for o > 2, dimy(J(a)) = %
By this is equialent to the fact that for all o > 2
. 2
dimyy Do (Va) = o

As we shall see, in sufficiently well behaved settings, the Hausdorff dimen-
sion of Dy(y) may be expressed in terms of the thermodynamic pressure.

Definition 2.2 (Tempered Distortion Property). Given a real-valued po-
tential ¢ : A — R we define the n-th level variation of ¢ by,

varn () :=sup {|p(z) — o(y)| : 2,y € Vo, w € A"}
We shall say that a potential @ satisfies the tempered distortion condition if
vary () < oo and limy, oo 1~ var, (S,(9)) = 0.

Note that by condition (3) in definition[2.1]the potential ¢(z) := log |T"(z)|
satisfies the tempered distortion condition.
Given a potential ¢ : A — R and a word w € A" for some n € N we define

o(w) :=sup{p(z):z € V,}.

Definition 2.3. Given a potential ¢ : A — R, satisfying the tempered
distortion condition, we define the pressure by

Plp) = lim ~log 3" exp(Su(e)(@))
we A"
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This definition of pressure is essentially the same as that given by Mauldin
and Urbaniski in [MU1,MU2]. We note that the limit always exists, but may
be infinite. Recall that we defined ¥ (x) to be the log-derivative, 1 (z) :=
log |T'(x)|. Given o > 0 we define s(«) by,

(2.4) s(a) :=inf {s: P(—s¢) < sa}.

More generally, given a non-negative positive potential ¢ : A — R>(, satis-
fying the tempered distortion condition, we define,

(2.5) s(p) :=1inf {s: P(—s(¢y +¢)) < 0}.

The project of trying to determine the Hausdorff dimension of Dy(¢p)
began with a series of articles due to Hill and Velani [HVI] HV2, [HV3].
Whilst Hill and Velani gave the dimension of Dy (¢) for an expanding rational
map of the Riemann sphere, the result extends unproblematically to any
expanding Markov map with finitely many inverse branches.

Theorem 1 (Hill, Velani). Let T be a finite branch expanding Markov map
with repeller A and let ¢ : A — R a non-negative potential which satisfies the
tempered distortion condition. Then, for all y € A we have dimyDy(p) =

s(¢p)-

Given the neat connection between Diophantine approximation and shrink-
ing target sets for the Gauss map it is natural to try to generalise Theorem
to the setting of expanding Markov maps with an infinite number of inverse
branches. However, for such maps things can become much more delicate.

Note that we always have A, C A C A. Indeed, when T is a finite branch
Markov map A, = A = A, up to a countable set. However, for Markov maps
with infinitely many inverse branches both of these containments may be
strict.

In [U] Urbanski proves the following extention of Theorem 1| to points
y € A, for an infinite branch expanding Markov map.

Theorem 2 (Urbanski). Let T be an expanding Markov map with repeller
A and let ¢ : A — R a non-negative potential which satisfies the tempered
distortion condition. Then, for every y € Ao we have dimyDy(p) = s(p).

In terms of dimension A, is a large set, with dimyA, = dimyA [MUI].
However, it follows from Bowen’s equation combined with the strict mono-
tonicity of the pressure function for finite iterated function systems (see
[F2, Chapter 5]) that for any T ergodic measure with dimypu = dimyA,
1(As) = 0. For example, when 7' is the Gauss map and G the Gauss measure,
which is ergodic and equivalent to Lebesgue measure £, then A, is the set
of badly approximable numbers with dimyA, = 1 and L(A,) = G(As) = 0.

Our main theorem extends the above result to all y € A.

Theorem 3. Let T be an expanding Markov map with repeller A and let
@ : A = R be a non-negative potential which satisfies the tempered distortion
condition. Then, for every y € A we have dimyD,(p) = s(p).
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Note that in Example 0 ¢ A =R\Q, so it is clear that for certain
maps dimy Dy (¢) = s(p) holds for y € A\A. The following theorem shows
that this holds whenever A is dense in the unit interval.

Theorem 4. Let T be an expanding Markov map with a repeller A satis-
fying A = [0,1] and let ¢ : A — R a non-negative potential which satis-
fies the tempered distortion condition. Then, for every y € [0,1] we have
dimy Dy(p) = 5().

Returning to Example we let T denote the Gauss map and v, =
($ — 1) ¢ and let a > 2. By the Jarriik Besicovitch theorem [J, [B] we have
dimy Dy (o) = % It follows from Theorem [U] that dimyDy (V) = %
also holds for all badly approximable numbers y. By Theorem [4] we see that
dimy Dy, (o) = 2 for all y € [0,1].

We remark that Bing Li, BaoWei Wang, Jun Wu, Jian Xu have indepen-
dently obtained a proof of Theorem [4] in the special case in which T is the
Gauss map, as well some interesting results concerning targets which shrink
at a super-exponential rate [BBJJ]. However, the methods used in [BBJJ|
rely upon certain properties of continued fractions which do not hold in full
generality.

Now suppose that A # [0,1] and y € A\A. It might seem reasonable
to conjecture that again dimyDy(¢) = s(y). However this is not always
the case and, as the following theorem demonstrates, this conjecture fails in
rather a dramatic way.

Given @ : N — R we define,

Sy(@):= () |J {z € X :d(T"(x),y) < ®(n)}.

meNn>m

Theorem 5. Let @ : N — Ry be any strictly decreasing function satisfying
lim,, oo ®(n) = 0. Then, for each B € (0,1) there exists an expanding
Markov map T with a repeller A with dimyA = [ together with a point
y € A satisfying dimySy(®) = 0.

Thus, even for & which approaches zero at a subexponential rate we can
have dimyS,(®) = 0. We remark that s(«) is always strictly positive.

We begin In Section [d] we prove the upper bound in Theorems [3| and
[4 simultaneously with an elementary covering argument. In Section [5] we
introduce and prove a technical proposition which implies the lower bounds
in both Theorems [3] and [d In Section [6] we prove Theorem 5] We conclude
in Section [1 with some remarks.

3. INFINITE ITERATED FUNCTION SYSTEMS

In order to make the proof more transparent we shall employ the language
of iterated function systems.

Let T : UjeaV; — [0,1] be a countable Markov map. We associate an
iterated function system {¢;},. 4 corresponding to 7" in the following way.
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For each i € A we let ¢; : [0,1] — V; denote the unique C! map satisfying
¢p;ioT(x) =z for all z € V,.

Let ¥ denote symbolic space AN endowed with the product topology
and let o : ¥ — X denote the left shift operator. Given an infinite string
w = (wy)ven € L and m,n € N we let m|w|n denote the word (w,))_,, . €
A"=™ . Given 7 = (14, ,7n) € A" for some n € N we let ¢, :== ¢, 0---0
¢r,. Sets of the form ¢-([0,1]) are referred to as cylinder sets.

Take w € AY. Note that by definition [2.1] (2) we have diam (¢, ([0, 1])) <
&7 for all n > N. Thus, we may define,

m(w) = ﬂ ¢w|n([07 1]).
neN
This defines a continuous map 7 : X — [0, 1].

Since the intervals {V;},. 4, have disjoint interiors the iterated function
system {¢; }ica satisfies the open set condition (see [E'1, Section 9.2]) and
m(2)\A is countable. By definition (1) we have T o m(w) = m o o(w) for
all w € 771 (A). Thus, T : A — A and o : ¥ — ¥ are conjugate up to a
countable set.

In Definition we have used a slightly modified version of the definition
given in [MU2, (2.1)]. Nevertheless, the following theorems may be proved
in essentially the same way as the proofs given in [MU2].

Theorem 6 (Mauldin, Urbanski). Given a countable Markov map T with
repeller A we have dimyA = inf {s : P(—s1) < 0}.

When T has finitely many branches there is a unique s(A) such that
P(—=s(A)y) = 0 and dimyA = s(A). However, Mauldin and Urbanski
have shown that when 7" has countably many inverse branches we can have
P(—ty) < 0 for all ¢ > inf {s: P(—st¢) < 0} and consequently there is no
such s(A) (see [MUI, Example 5.3]). Similar examples show that in general
there need not be any s satisfying P(—s(1) + ¢)) = 0 and consequently we
must take s(¢) :=inf {s : P(—s(y) + ¢)) < 0} in Theorems (3 and

The pressure P has the following finite approximation property.

Theorem 7 (Mauldin, Urbanski). Let T' be a countable Markov map and

@ : A = R a potential satisfying the tempered distortion condition. Then
P(p) =sup{Pr(¢) : F C A is a finite set}.

Corollary 1. Let ¢ : A — R be a non-negative potential satisfying the
tempered distortion condition. Then P(—s(¢)(v¥ + ¢)) < 0.

Proof. Suppose P(—s(¢)(¥+¢)) > 0. Then, by Theorem [} Pr(—s(p)(¢+
©)) > 0 for some finite set F C A. However 1 + ¢ is bounded on FV
as vary (), vary(¢) < oo, and hence s — Pr(—s(¢)(¥) + ¢)) is continuous.
Thus, there exists t > s(¢) for which

P(=t(¢ +¢)) > 0> Pr(=t(¢ +¢)) > 0.

Since ¢ + ¢ > 0, s — P(—s(¢ + ¢)) is non-increasing and hence, ¢ <
inf {s: P(—s(x) + ¢)) < 0}. Since s(p) < ¢ this is a contradiction. O
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Corollary 2. Let T be a countable Markov map. Then for all potentials
v : A = R, satisfying the tempered distortion condition, s(p) > 0.

Proof. Since ¥ + ¢ > 0 and #A > 2 it follows from Defintion that
P(—s(¢ +¢)) > log2 > 0 for all s < 0. If, however, s(p) < 0 then by
Corollary (1| there exists some s < 0 with P(—s(¢¥ + ¢)) < 0, which is a
contradiction. O

4. PROOF OF THE UPPER BOUND IN THEOREMS [3] AND []

In this section we use a standard covering argument to prove a uniform
upper bound on the dimension of Dy (), which entails the upper bounds in
Theorems [3] and [

Throughout the proof we shall let p,, denote

pr = max {vary (An(v)), varn (A4, (0))} -

Since both ¢ and ¢ satisfy the tempered distortion condition, limy, .~ pn, =
0.

Proposition 4.1. For every y € [0,1] we have dimyDy(p) < s(¢).

Proof. For each n € N and w € A" we define,

(4.1) yen = {x eV, |T™x) — y| < e~ nfev Sn@@)(z)} .

Clearly every x € Dy(yp) is in V.J"" for infinitely many n € N and w € A™.
Moreover, by the mean value theorem we have,

e~ infzev, Sn(9)(2)—inf.ev, Sn(¥)(2)

e~ Infzev, Sn(d)(2)—infzev, Sn(p)(2)

e3WPze vy, Sn(—(d+9))(2)+2npn
eIn(=(d+¢)) (W) +2npn

(4.2) diam (V")

(VAN VAR VANRR VAN

Choose s > s(p), so there exists some ¢t < s with P(—t(¢ + ¢)) < 0. By
condition (2) in definition together with ¢ > 0 we have S, (¢ + ¢) >
nlog¢ for all sufficiently large n and hence P(—s(¢ + ¢)) < 0. Take € > 0
with € < —P(—s(¢ + ¢)). Since lim,_,o pr, = 0 there exists some ng € N
such that for all n > ng we have,

(4.3) D Aexp(Su(—s(¢+ ) (W)} < e 2morm.

weA™

Now choose some § > 0. Since p, — 0 and S,(¢ + ¢) > nlog¢ for all
sufficiently large n, it follows from that we may choose ny > ng so
that for all n > ny diam(V"") < 8. Moreover, J,,>,,, {Vi" },cqn forms a
countable cover of Dy(¢). Applying together with we see that for
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all n1 > ng,
Z Z diam(V#")* < Z Z eSUP-ev,, Sn(=s(p+9))(2)+2nspn
n>ni weA" n>nj weA™
< Z e "< Z e " < oo.
n>nq nzng

Thus, H3(Dy(v)) < Xsp, € " for all 6 > 0 and hence H*(Dy(p)) <
D onsng € ¢ < 0o, Thus, dimy(Dy(p)) < s and since this holds for all
s > s(¢) we have dimy (Dy(¢)) < s(y). O

5. PROOF OF THE LOWER BOUND IN THEOREMS [3] AND [

In order to prove the lower bound to Theorems [3]and [4 we shall introduce
the positive upper cylinder density condition. The condition essentially
says that there is a sequence of arbitrarily small balls, surrounding a point
y € [0, 1], such that each ball contains a collection of disjoint cylinder sets
who’s total length is comparable to the diameter of the ball. As we shall see,
given any countable Markov map T" with repeller A this condition is satisfied
for all y € A, and if A = A, this condition is satisfied for all y € [0,1]. The
substance of the proof lies in showing that for any point y € [0, 1], for
which the positive upper cylinder density condition is satisfied, we have

dimy; Dy () > s(p).

Definition 5.1 (Positive upper cylinder density). Suppose we have an ex-
panding Markov map with a corresponding iterated function system {¢;};c 4.
Giveny € A, n € N and r > 0 we define,

C(y,n,r) = {¢T([07 1]) ‘T E An7¢7([07 1]) - B(y,T‘)} :

We shall say that the iterated function system {¢;},c 4 has positive upper
cylinder density at y if there is a family of natural numbers (\;);er, with
lim, 0 A\ = 0o and limsup,_,q A, tlogr < 0, for which

limsup ! Z diam(A) > 0.
=0 AEC(yAryr)

Proposition 5.1. Let T be an expanding Markov map with associated it-
erated function system {¢;};c 4. Suppose that {¢;},c 4 has positive upper
cylinder density at y € A. Then for each non-negative potential ¢ : A — R
which satisfies the tempered distortion condition we have dimyDy(¢) > s(p).

Combining Proposition [5.1] with Lemmas [5.1] and [5.2] completes the proof
of the lower bound in Theorems [3| and [4], respectively.

Lemma 5.1. Let T be an expanding Markov map. Then the corresponding
iterated function system {¢;}ica has positive upper cylinder density at every
y €A.
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Proof. Suppose that y € A. Then there exists some w € 3 such that y €
Puin([0,1]) for all n € N. We shall define (\;).cr, by
Ar :=min {n € N : 2diam (¢,,,,([0,1])) <r}.
Clearly lim,_,g A, = co. Moreover,
r < 2diam (¢y)n,—1([0,1])) < 2¢" M

so limsup,_,., A- tlogr < —logé < 0.
Given any n € N choose r,, := 2diam (¢,,,([0,1])). Clearly X, = n and
¢w|n([07 1]) S C(y7 n, T‘n). Hence,

limsup 7! Z diam(A) >
0 AEC(yAryr)

N | —

O

Lemma 5.2. Suppose T is an expanding Markov map with A = [0,1]. Then
the corresponding iterated function system {¢;}ica has positive upper cylin-
der density at every y € [0, 1].

Proof. Suppose T satisfies A = [0,1]. Then for any n € N we have
(5.1) 01 CRCRC |J auh)C U (0 1))
weA"

weAm

We define (A\),er, by
- —logr + log2
o log & '
Clearly lim, o A, = co and limsup,_,o A\, ' logr = —log& < 0.
Suppose y € [0, %] Given any r < % and any w € A we have

(5.2) diam (¢,,([0,1])) < £ < r/2.
Now C(y,n,r) contains all but the right most member of

T :={¢u([0,1]) : 6([0,1]) N [y, y + 1) # 0},
if such a member exists. By (5.1) > 4.7 diam(A) > r, so by (5.2)) we have,
(5.3) > diam(4) > r/2.

AeC(y,Ar,r)

By symmetry also holds for y € [1,1].
Letting r — 0 proves the lemma. ([

Before going into details we shall give a brief outline of the proof of
Proposition We begin by taking s < s(¢) and extracting a certain
finite set of words B such that Pg(—s(¢ + ¢)) > 0. In addition, we take a
Bernoulli measure p supported on BY with h(u) =t [(¢ + p)du for some
t > s. We then construct a tree structure, iteratively, in the following way.
Let I'y—1 be the finite collection of words in the tree at stage ¢ — 1 and
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v4—1 denote the length of those words. At stage ¢ we take ay so large that
oy ' max {8y, () (w), Sy,_, (p)(w) : w € Ty} is negligible. We then take a
ball of radius B(y,r,) so that r, < exp(—ay [ pdu) and B(y,r,) contains
a collection of disjoint cylinder sets who’s total width is comparable to r,
corresponding to a finite collection of words R, of length A,. This is made
possible by the upper cylinder density condition. We then choose 3, so
that exp(—8, | ¢dp) is greater than, but comparable with, r,. T, consists
of all continuations of I'y—1 of length v, := B4 + Ay so that fjlw € R,
and w, is chosen freely from B for all 7,—1 < v < ;. Having constructed
our tree we shall define S to be a certain subset of its limit points for
which w|f, behaves “typically” with respect to p for each ¢. Given w €
S we have Sg (¢)(m(w)) = Bq [@du < —logry so Belw|ly, € Ry implies
TP (m(w)) —y| < exp(—Ss,(¢)(m(w))). Hence m(S) C Dy(y). At each stage
Bq, S consists of approximately 8,h(x) intervals of diameter approximately
exp(—0Bq [du). Moreover, for all w € S, B4|w|vy € Rq. The total diameter
of cylinders corresponding to words from R is about r4 ~ exp(—8, [ pdu),
and so at stage 7y, S consists of approximately S,h(p) intervals of diameter
roughly exp(—8, [ (¥ + ¢)dp), giving an optimal covering exponent of ¢ > s.
The fact that 8, > a4 will be shown to imply that we cannot obtain a cover
which is more efficient, and as such dimym(S) > t.

Proof of Proposition[5.1. Choose s < s(p) so that P(—s(¢+¢)) > 0. With-
out loss of generality we may assume that s > 0. Now take € € (0, P(—s(¢+
©))). Since limy, o0 pn = 0, it follows from the definition of pressure that
for all sufficiently large n we have,

(54) Z GXP(Sn(—S(¢+<p))(w)) > esn+2nspn.
weA"
Consequently, for all sufficiently large n we have,
(5.5) Z 5O ()(T)+5n(9)(T)) 5 pen
TEAN

By choosing some large k we obtain,

(5.6) Z eSSk (M +Sk(9)(T) < 6.
TeAF

Thus, there exists some finite subset F C A* with

(5.7) Z eSSk (M)+Sk(0)(T) < 6.
TeF

Note that s > 0 and for each 7 € F, Si(¢)(7) > 0 and Sk(¢)(7) > 0, so
eSS WIM+()(M) € (0,1) for every T € F.

The finite set F inherits an order <, from the order on [0, 1] in a natural
way by 71 <.« 7o if and only if sup ¢, ([0,1]) < inf ¢,(]0,1]). Partition F
into two disjoint sets 1 and F» so that if 7 € F; then its succesor under
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<4 is in Fo and if 7 € F5 then its succesor under <, is in Fj. Clearly we
may choose one m € {1,2} so that

1
—s(Sk (V) (T)+Sk (o) (T —s(SE () (T)+Sk () (T
(5.8) E e~ 55k (¥)(7) k()())>§§e (Sk()()+5k(9)(7) - 3.

TEFm TEF

Since s > 0, Sp(¥)(7) > 0 and Si(@)(7) > 0, e 5SSk < 1 for
every 7 € F. Thus we may remove both the smallest and the largest element
from F,,, under the order <, to obtain a set B C F,, satisfying

(5.9) 3 eSO 5 1,
TEB

Let ¢ := max {Si(¥)(7) + Sk(p)(7) : 7 € F} > 0. Given any wi,ws € A"
and 71, 7o € B with either wy # wy or 7 # T, or both, we have,

(5.10) |z — y| > max {e_s"(w)(wl)_c, e_S"w)(wQ)_c}

for all z € (¢pw, © ¢r,)([0,1]) and y € (dw, © ¢ )([0,1]). When wy # wo this
follows from the fact that B contains neither the maximal nor the minimal
element of F under <,. When wy = wy but 7y # 79 this follows from the fact
that since 7,79 € B C F;,, 71 cannot be the successor of 75 and 7o cannot
be the successor of 7.

Since B is finite and for each w € ¥ Sk (¢)(w) > klog& and Sk(¢)(w) > 0,
we may take ¢ € (s, 1) satisfying

(5.11) Z et Sk (M) +Sk(D)(T)) — 1.
TEB

We define a k-th level Bernoulli measure p on BN by defining p(7) for 7 €
Ak by p(T) = e_t(sk(w)(T)_"sk(‘b)(T)) and Setting M ([7-17 . e 77—77,]) e p’T1 .. .an
for each (11, -+ ,m,) € B". We define,

E(Sk(¥) = > p(r)Sk(¥)(r)
E(Sk(p)) = > p(T)Sk(@)(7).

Choose a decreasing sequence {dg}sen C Rsg so that [[ oy (1 —dq) > 0.
Take ¢ € N. By Kolmogorov’s strong law of large numbers combined with
Egorov’s theorem there exists set S, C BY with u(S,) > 1-J, and N(q) € N
such that for all w = (wy,)yeny € Sy with w, € B for each v € N and all
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n > N(q) we have,

(512) ZSk < E(Su(w)+
(5.13) Zsk < E(Sue) +

CATIES S Zp<v>1ogp<f>+;
v=1

- >+Ewa>»+2

2
< ( Zsk )(ws) + E(Sk(e ))) +2
2
Clearly we may assume that (/N (q))qen is increasing and N (1) > 2.

Now fix

¢ € 0, lim sup r~* Z diam(A4) |,

r—=0 AeC(y,Ar,r)
d € <lim sup /\r_1 log r, 0) .
r—0

We shall now give an inductive construction consisting of a quadruple
of rapidly increasing sequences of natural numbers (ag)genufoys (8g)genu{o}s

(’Yq)qENU{O}v ()\q)quu{o}’ a sequence of positive real numbers (Tq)quu{o} and
a pair of sequences of finite sets of words (Rq)quu{o} and (Pq)quu{o}’ First

set ap = o= =0, \g =1 and Ag =T'g = ). For each ¢ € N we define

Qg = 1qu2'yq_1N(q)N(q +1) [log C_lc(?) + 2py,_,) max {S7q71(¢)(7) + Sy, (@) (1) : T € Fq_l} —‘ .

Note that since I';_; is finite o is well defined.
We then choose r, > 0 so that,

_ 1
(515 —logr, > K ag —2-) (B(S(o) + ) +agmrct

and also

> diam(A4) > (ry

AEC(Y,Arg.rq)

and A\ 'logr < d.
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Let Ay := A;,. We may choose R, to be a finite set of words 7 € AN s0
that for each 7 € R, ¢-([0,1]) C B(y,ry) and

> diam (¢-([0, 1)) > (ry.

TER

Let 3, be the largest integer satisfying k|(5; — v4—1) and

1
(10)  ~logry> k8, —9-1) (E(Sule) + 1 ) +rc-ta
We let v, := B4 + Ag. We define I'y by,
Ly = {w € A wl|yg—1 € Tgo1,7g-1|w|By € Bkil(ﬂq_yq*l)aﬁg@hq € Rq} .

Note that since B, I';_1 and R, are finite, so is I';.
We inductively define a sequence of measures W, supported on I'y.
For each w € A" and 7 € Ry we let

q(w 7_) — diam (¢wo¢r([0a 1])) )
) S diam (6 0 6 ([0, 1)

Now by the definition of Iy, each w? € I'y is of the form w? = (w1, ki, s Kk=1(By—q—1)" Tq)
where wi™t € Ty, K} € Bforv=1,--- k7 1(8; — 74-1) and 7, € R;. We
set,
k= (Bq—"¥q—1)
Wo@) =W ) [ TT p0m) o (@0 s miaga, ) 70)
v=1

DefineI' := {w € ¥ : w|y, € Ty for all ¢ € N} and extend the sequence (W, )q4en
to a measure W on I' in the natural way.
We let S C T denote the subset,

(5.17) S :={w el: [y,—1|w|Bg NSy # 0 for all ¢ € N}.
Lemma 5.3. For allw € S and n € N we have m(w) € ¢, ((0,1)).

Proof. Suppose for a contradiction that w € S and for some N € N n(w) ¢
Gun((0,1)). Then for all n > N we have 7(w) € ¢y, ({0,1}) = 9, ([0, 1]).
However, given N € N we may choose ¢ with v, > N. Then w,, 1 € B by
the construction of S. Consequently ¢, 11([0,1]) is in neither the left most,
nor the right most interval amongst,

{Gujs@y 0 0-([0,1]) : 7€ F}.
Hence, m(w) & 0¢ |, ([0,1]). O

Lemma 5.4. 7(S) C Dy(p).
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Proof. Take w € S. By Lemmavve have 7(w) € ¢,),((0,1)) € V), and
hence Sy, (¢)(w) < Sp(¢)(w|n) for all n € N and in particular for each g € N,
Sp, (@) (w) < Sp,(0)(w]By)
< Sﬁqf'yqﬂ(@)(’Yq—l’WLBq) + Vg1
k= (Ba—q—1)
> S(@) (-1 + (v = DElwlyg-1 + vk) + cvg1.

v=1

By (5.13) combined with the fact that [y,—1|w|5,] NSy # 0,

S5 (@)(w) < k-4<ﬁq——v@-1>(Exsa<¢>>+»;)-+(n@1-

IN

Thus, by the definition of r, we have, ry < e~ 384 (V)W)
T9(m(w)) = m(071(w)) € Py ufn, (10, 1])
Since w € S C T, fy|w|vy € Ry and hence
T%(w(w)) € B3,y ([0:1]) € Bly, rq) € Bly,e %5 F)).
Since this holds for all ¢ € N, 7(w) € Fy(¢). O

Lemma 5.5. Suppose w € S. Given ¢ € N and ;-1 < n < 34 we have,

—log Wy ([wln]) > t (Sn(¥)(w|n) + k" (n — 74-1)E(Sk()))
_ 31

2n
— 1 2V v N(q)e,

3
—mmmwmy%wwm—%—mm-

Proof. We prove the lemma by induction. The lemma is trivial for ¢ = 0.
Now suppose that

3Yq-1
—log Wy—1 ([wlygl) = £Sy,_, (¥) (wlrg-1) — . —

Take 7,1 < n < 8, consider £(n) := [k~ (n — v4-1)]. If £(n) < N(q) then
clearly

— 29-1Prg1-

Sn(¢)(w|n) Srg-1 (V) (@l7g-1) + Sny () (vg-1]w]n)

Sy, () (Wlyg-1) + N(g)e,

(= 94-1)E(Sk(¢)) < N(g)e
Since t < 1 and N(¢ — 1) < N(q) it follows from the inductive hypothesis
together with the definition of W, that,

—logW, ([wln]) > —logWy1 ([wlyg-1])
>t (Sa(®)(wln) + &1 (n — 54—1)E(Sk()))

_ 37(1—1
-1

<
<

— 29-1Px, — 2N (q)c.
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On the other hand, if ¢(n) > N(q) then by equation (5.14]) together with
[Yg—1]w|Bq] NSy # O we have

k= tyg+£(n)—1 on
> logp(Whitts s Whrk) < —t (Skeny () (Yg—1lwlg-1 + KL(n)) + £(n)E(Sk(¥))) + "
v=k~1vq—1
< =t (S (D) (Wn = vg-1) + k(0 — 74— 1)E(Sk(9)))

2
+20+—n.
q

Moreover, by the defintion of W, we have,

(n)—1
—logWy (winl) = —logWe-1 (Whg-1]) = > logp(@hwsts - s Whwr)
v=0
>t (S5m0 ()@ ]Yg-1) + Sneyyoy () (Wln = Yg-1) + BT (0 = 7-1)E(Sk()))
- 37%_11 = 29g-1Ppr, 4 — 2¢— 2;1
> t(Sn(®)(w@ln) + k7 (n = 74-1)E(Sk(¢)))
~ 37g-1 2n

— 2, — N(q)e — =.
i1 a1 (9)c .

In particular we have

—log Wy ([wlBg]) > (S5, (¥)(wlBq) + k™ (By — 14-1)E(Sk()))

Note that,
Clog W, (whel) = —log W, ([wlBa]) — log a(w|By, Balwlre)

= —log W, ([wl|B,]) — log (Zﬁﬁ?ﬁ;jﬁﬁ ;]T)() [0,1))) )

> —log Wy ([w]B,]) — tlog (ZTESZZSZ:T;[(: ;]T)() [0.1])) ) |
Clearly,

— log diam (qﬁwm([o, 1])) > Sy, (W) (Wlvg) = YaPr,
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Moreover,
Y diam (Gu5,0r([0,1])) > D7 exp (=55, (¥)(wlBy, 7))
TER, TER,
> e %8 (V)(wlBy) Z e~ 52 (¥)(7)
TER,
> e~ 984 (V) (W]Bg)=Aapx Z diam (¢-([0,1]))
TER,

> e_Sﬂq(w)(wmq)_)\ququq_
Note that from the definition of 5, and ¢ we have,
—logry < k_l(ﬂq —Y-1)E(Sk(p)) + c(vg-1 +1) + ¢

Combining these inequalities we see that,

253
—logW, ([wlvg]) > S, (W) (wlvg) — Yepry, — N(g)c — Tq
3v,—
- /Yz 11 = 2%g-1Prg—1 — AgPrg — c(yg-1+1) —q+log¢
3.
> 15y, (¥)(wlg) — 7(’ — 294D,

since v, > 4 > a4 and by the definition of oy,

3Yg—1
ag >q <q - Tt 201000 (Vg1 +1)+qg— 10g<> :

U
We define a Borel measure pu by u(A4) := W(S N7~ 1(A)) for Borel sets
A C0,1].
Lemma 5.6. 4([0,1]) > 0.

Proof. This follows immediately from the fact that

W(S) = [J(1 -6y > 0.
qeN

Lemma 5.7. For all w € S we have

hoing P2 AB(E(), 1))

>t.
r—0 log r

Proof. For the proof of Lemmal5.7] we shall require some additional notation.
Given a pair of functions f and g, depending on ¢ € N and r € (0,1), we
shall write,

(5.18) fla,r) > g(q,7) —nlg,7),
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to denote that for each € > 0 there exists an N € N and a ¢ > 0 such that
given any (¢,7) € N x (0,1) with ¢ > N and r < ¢ we have
(5.19) flg,r) = g(g,r) —e
Note that by (5.15) 7, < e~ for all ¢ € N and by Definition this implies
that limg 00 Aq = limg00 Ar, = 00 and hence limg pr, = 0. Thus for
any function g : N x (0,1) — R,

9(a;r) — pr, = 9(q,7) — nlg, 7).
Similarly, it follows from the definition of 3, that

g9(q,7) = eN(@)N(g+ 1B, > g(g,r) — n(g, ).
Firstly we show that for any z = 7(w) with w € S B(z,r) and r > 0 for
which there exists ¢ € N and [ € N with 7,1 <1 < 3, such that
B(.CL‘, 7‘) N W(S) - ¢w|l([07 1]) but B(.’IJ, T) N W(S) Z ¢w|l+1([07 1])
satisfies

(5.20) log u(B(z,r))

>t — .
log > n(gq,r)

Indeed, as B(x,r) N7(S) C ¢y ([0, 1]) it follows from Lemmathat,
—logpu(B(z,r)) > —logW ([w[l])
= —log W, ([wll])
3’yq_1 21
> tS()(wl|l) — -1 2Yg-1Px, 1 — i N(g)e
=~ log W, ([wll)
6l
> S (V) (wll) — 1 2lpx,_1>
since | > y4—1 > ¢N(g)c. Since Si(¢)(w|l) > llog& this implies
log p(B(z, 7)) _1< 6 )
—— 2 > t—1lo — +2 .
s = TR g e
However, B(z,r) N 7(S) € ¢uu41([0,1]) and hence B(z,r) N 7(S) &
Gl ([0,1]) where k(1) := k[k~Y(1 + 1)]. It follows that B(z,r) N m(S)
intersects ¢.)([0,1]), for some 7 € S, as well as ¢,,.)([0,1]). Since
k(l) < By and w, 7 € S, (k(l) — k)|w|k(l), (k(1) — k)|7|c(l) € B. Thus, by
(E-10),

r> LS @) wlnb) k)~
= 2

o= Sn(®)(wll)—c—log2.

v

Thus,

log p(B(z, 7)) > <1+c+log2> (t—log£_1 <6+2,0/\q_1>>

logr logr qg—1
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which implies the first claim (5.20]).

Secondly, we show that given w € S, = € [0,1] and r > 0 for which
B(z,7) N 7(S) € ¢y8,([0,1]) and yet B(z,r) N7 (S) £ dyp, © ¢-([0,1]) for
any 7 € Ry we have,

log pu (B(z,7))

>t — .

(5.21)

From the proof of Lemma [5.5| we have,

—log Wy ([wlBg]) = (S, (1) (w|Bg) + K~ (Bg — 14-1)E(Sk()))
_ 31 264
q

— 29103, — N(g)e -

k_l(ﬁq — Yg-1)E(Sk(p)) + c(vg-1+1) + ¢

S diam (dyp5,0r([0,1])) = e Fa AR Aarng o
TER

IN

—logr,

Suppose r > r4. Then by the first two inequalities together with the fact
that B(z,7) C ¢,,([0, 1]) we have

—logu(B(z,r)) = —logWy([w|Bq))
3q 2
> —tlogr— <qu11 + 29g-1Pr,—1 + N(q)c + fq +e(yg-1+1) + q> :

Note also that B(z,7) C ¢y3,([0,1]) implies —logr > f;log& > v4-1logé
and hence,

log u(B(z, 7))
log r

Y

_ 3 N(g)c+c(yvg-1+1)+q 2
t—log§1<q_1+2p)\q1+ (@) (Bql ) +=
q

q
2 t— 77(% ’I").

Now suppose that » < r, and let 7 denote the following collection,

_ diam (¢yp, © ¢-([0,1]) N B(z,7)) 1 } '

T = {7cR,: - >
{ I diam (¢w\ﬁq © ¢T([Oa 1])) 2
We also define By (z,r) C B(x,r) by,

By(z,r) = U ¢w|ﬁq o ¢-([0,1])

TET

From the definition of ;1 and W we see that for each 7 € R, we have,

(Puip, © ¢ ([0,1])) < W ([w]Bg, 7])

< Wy (olty)) - o G, © 00, 1)

ZTERq diam (qbw‘ﬁq © ¢T([O’ 1])) '
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Hence, as t < 1,

p(Br(z,r)) < > pdu, © 6-([0,1]))
TET
W, (jwlf]) - v Gam (9uip, 0 9r(0, 1))

> rer, diam (gy5, © 6-((0,1]))

ZTET diam (st‘ﬂq ° (;57-([0, 1])) )t
ZTERq diam (¢w|,8q o ¢ ([0, 1]))

—t

< 2W, (wIB)) | D diam (¢, © 6-(10,1])) | 7.

TER,

IN

IN

W ([w]84]) (

Piecing the previous inequalities together with the observations from the
proof of Lemma, [5.5| we obtain

—log p (Br(z,7))

37g-1 23

. z 1 + 27412, + N(q)c+ 7(1 +e(vg-1+1) + g+ Agpr, —log¢ —log2 | .
Now Ay < dlogr, < dlogr, where d < 0 is the constant as appears in the

positive upper cylinder density condition. Hence,

log pu (B (x, 1))

> —tlogr — <

5.22
( ) logr
N + 1+1)+qg-—1 +log 2 2
> t—log£1< +2py,, + M@et g 1)+ g lopd tlog +>+qu
qg—1 /Bq q
Z t_n(Q7T)

Consider the set C := {7 € Ry : ¢yg, © -([0,1]) N B(z,7) # 0,7 ¢ T}.
It is clear that C contains at most two elements, with ¢, 5, © ([0, 1]) con-
taining either inf B(x,r) or sup B(z,r). We shall show that for 7 € C we
have,

logﬂ' ((¢w|,3q © d)‘r)([ov 1]) N B(J}, T))
log r

Take 7 € C and assume that sup B(x,7) € @y, © ¢-([0,1]) ie. ¢y, ©
¢-(]0, 1]) intersects the right hand boundary of B(z,r). Since 7 ¢ T we have
diam (¢, © ¢-([0,1]) N B(z,r)) < 3diam (¢u|s, © - ([0, 1])) . Choose @ €
S such that 7(®) is on the right hand side of ¢, 09 ([0, 1])NB(z, ) N7 (S).
Define 7 := [7(®©) — inf(¢y5, © ¢-)([0,1])|, and consider B(m(®),7). Since
m(@) is on the right hand side of (¢, © ¢-)([0,1]) N B(z,r) N 7(S5) and

(5.23)

Z - 77((177")

diam (6,15, 0 6 ([0, 1]) 1 Bz, ) < sdiam (45, 0 6-(10,1))



20

we have

HENRY WJ REEVE

(Pwip, © 02)([0,1]) N B(x,r) N7(S) € B(w(w),7) € (¢u)g, © ¢-)([0,1])

and O]y, = (w|By, 7).

We consider two cases. First suppose that B(7(®),7) C ¢g|s,,, ([0, 1]). It
follows from Lemma [5.5] that,

—log Wyi1 ([@]Bg+1])
£ (S, (V) (WIBgr1) + k7 (Bgr1 — Yg-1) exp(Sk(¥)))

—log p (B(m(w), 7)) =
>

Hence,

37q 28441
_2la_o - ~ N(g+1
g DT (¢+1)c
5ﬁq+1
tBg+1logé — [ klog& +cN(g+1) + .

_]Ogﬂ((qbw\ﬁqong)([Oa 1])QB($7T)) > t—10g£_1 (klog€+CN(q+1) 5
n ﬁqul

6q+1 log f

+ 25q+1p>\q> .

Since B(z,r) N7(S) € (du8, © #+)([0,1]) for any 7" € Ry, it follows from

(5-10) that
(5.24) —logr

Thus,

log 1t ((éu)p, © ¢7)(0,1]) N B(z, 7))

<
<

—max {5, (V)(7'): T €Ty} —c
ag+11og € < Byt1logé.

log r

Floge! (klog§+c]\7(q+1) 5

/8q+1

Z - 77(%7“)

+ =+ 2py,
q

Now suppose that B(m(©),7) € ¢g|s,.,([0,1]). Then we may apply (5.20)

to obtain

(5.25)

Clearly 7 < 2r and so lim,_,

> t*n(qulaf)'

log 7
log > 1 and hence,

logﬂ ((¢w|ﬁq o ¢T)([O’ 1]) N B(:Ea T‘))

r

log r

Z t— 77(6_177")

By symmetry the same holds if ¢,5, © ¢-([0,1]) intersects the left hand
boundary of B(x,r). This proves the claim (5.23).

Recall that,

B(z,r)Nx(S) C By(z,r)U (

U <¢w|6q © (bT)([O? 1}) N B(x,r)

TeC

) |

+ =+ 2p,
q

)

)
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Noting that #C < 2 we obtain,
p(Bx,r) < p(Br(z,r)+ Y 1 (b, o ¢-)([0,1]) N B(x,r))

TeC
< 3max {u (Br(z.r))} U {p ((¢uys, © )(0.1) 1 Bla,1)) : 7 € C}.

By combining with (5.22)) and ([5.23)),
log pu (B(x,r)) —log3
logr

Z t— 7](% T)a
which implies ((5.21]).

To complete the proof of the Lemma we fix w € S, let x = 7(w) and
consider a ball B(r(w), ) of radius r > 0. Now choose ¢(r) € N so that

B(l‘, T) N 7T(S) - ¢w|ﬂyq(r)_1([07 1]) but B(CC, T) N W(S) Z ¢w|~/q(r) ([07 1])
Now either B(z,r)Nw(S) & ¢w\ﬁq<r) ([0, 1]), in which case we apply or

B(z,r)n=w(S) £ ¢w|/3q(f-) ([0,1]) in which case we apply 1' In both cases
we obtain,

logu(B(z,7)) _ ,
log r -

By (5.24]) whenver ¢(r) < @ we have
r > exp (—max {S,,(¥)(7') : 7 € g} —¢) > 0.
Hence, lim,_,¢ g(r) = oo. Therefore, by (5.26|) we have

(5.27) lim inf 108 4B (T (W), )
' r—0 log r

(5.26) = n(q(r),r).

> t.

0

To complete the proof of Proposition [5.1| we recall the following standard
Lemma.

Lemma 5.8. Let v be a finite Borel measure on some metric space X.
Suppose we have J C X with v(J) > 0 such that for all x € J
. logv(B(x,r))

lim inf

> d.
r—0 log r -

Then dimyJ > d.
Proof. See [EF2, Proposition 2.2] . O
Thus by Lemmas [5.7] and [5.6] we have
dimyn(S) >t > s.

Hence, by Lemma the Hausdorff dimension of Dy (y) is at least s. Since
this for all s < s(¢), we have

dimy Dy () > s(p).
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6. PROOF OF THEOREM [l

Proof of Theorem [5 We begin by defining a sequence (7, )nen by

61) rwi=mind (245 e | e L @m) - o+ 1))
qeN

Note that since ® is strictly decreasing each 7, > 0. Now take ng >
2 so that ®(ng) < (1—21*5_1) and ) 5.0 e P < 1. For each n >
ng we choose some closed interval V,, C (®,41,®,) of length r,, which
is always possible, since r, < ®(n) — ®(n + 1). Note that since each

- B - _ ._
rn < e ™ we have Zn2n0 ry < annoe An < 1. Hence, 1 = ry :=
—1

9-h7" (1 =D > rﬁ)ﬁ > 0. Note also that 1 — ®(ng) > 277" > 2p,.
Thus, we may choose two disjoint closed intervals Vi, Vo of width ry = ro
contained within (®(ng),1).

We now let A :={n €N:n >ng} U{1,2}. Define T : J,c4 Vo — [0,1]
to be the unique expanding Markov map which maps each of the intervals
{Vi}nea onto [0,1] in an affine and orientation preserving way. First note
that,

(6.2) Z diam(V;,)? = rlﬁ + rg + =1

Thus, dimyA = 8 by Moran’s formula.

Take n > ng and consider S(()n)(fb) ={reA:|T"(x)| < ®(n)}. Since T
is orientation preserving it follows from the construction of 7' that we can
cover Sy, (®) with sets of the form V,, = Nj_oT 7V, where w € C, :=
{w e Antl P Wntl > n} Since T is piecewise linear we have diamV,, =
H?;Lll Tw; for each w € A"t Tt follows that for any m > ng we may
cover So(®) with the family {Vi:wely}.

n>m
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Now take € > 0. For all n > ¢! we have,

Z (diamV,) < Z (Pwy = Taon )€

UJECn Wecn
n
€ €
- ($n)
neA q>n
n —k2 €
2
S ES Sl I 1 [ 25wt I
qeN k>n qeN
n —n2e
< |2+ Z e |2+ Z e~a/m D) e 2hne
qeN qeN k>n
n -n
< (24 ) e 24D e ) e eh
qeN qeN k>n
< e Z e k.
keN

Thus, for all m > ¢! we have,

YD (diamlp) < Yy ey et < (Z e_k>2 < o0.

n>m weCp n>m keN keN

Since limy, oo sup {diamV,, : w € C,,} = 0 it follows that dimySy(P) < e.
As this holds for all € > 0 we have dimySy(®) = 0. O

We note that by Corollary [2| s(a) > 0 for all « € R.

7. REMARKS

Both Theorems [3] and [f] may be extended in a number of ways with some
minor alterations of the proof.
Given ® : N x A — (0,1) we define

Sy(@) =) J{zeA:|T"(@) -yl < O(n,2)}.
meNn>m

Theorems [3] and [] both deal with the case where ® is multiplicative, ie.
O(n+m,x) = ®(n,T™(z)) - ®(m,z), for all n,m € NU{0} and = € A.
Indeed, when ® is multiplicative, we may take ¢ :  — —log ®(0, x) so that
D(n,z) = exp(—Sn(i)(x)) and S,(®) = Dy ().

We say that ® is almost multiplicative if there exists some constant C' > 1
such that,
D(n, T"(z)) - ®(m, )

®(n+m,x)

ct< < C,
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for all n,m € N and x € A. Examples include the norms of certain matrix
products (see [FLLIY]). Givenw € A" we let ®(w) := sup {®(n,z) : x € V,}.
Following Feng and Lau [FL] one may define a pressure function, P(s, ®) —
R by
.1
Ps, @) = lim = > (@) [[Wlle)"

n—oo n
weAN

and let s(®) := inf {s: P(s,®) < 0}. Technical modifications to the proof
of Theorems [3] and [f] show that whenever 7' is a countable Markov map and
® is almost multiplicative, dimyS,(®) = s(®) for all y € A, and if A = [0, 1]
then dimyS, (®) = s(®) for all y € A.

Instead of considering the sets D, (¢) we can consider sets of the form,

. 1 logd(T"(x),y) _
Ly(p) = {x eA: hﬂS{ng = —1} .

When T is a countable Markov map we have dimy L, () = dimyDy(p) =
s(¢) for ally € A and when T is a countable Markov map satisfying A = [0, 1]
we have dimy Ly (¢) = dimyD,(¢) = s(¢) for all y € [0,1]. To prove the
upper bound we note that L,(¢) C dimyD,((1 — d)¢) for all § € (0,1)
and lims_,0 dimy D, ((1 — 0)¢) = lims_,0 s((1 — d)¢) = s(¢). To prove the
lower bound requires a technical adaptation of the proof of Proposition [5.1
removing those points = for which 7" (x) moves too close to y.

One can also consider what happens when we replace assumption (1) in
Definition with the weaker assumption that T is modelled by a subshift
of finite type. If the corresponding matrix is finitely primitive (see [MU2)
Section 2.1]) then one may adapt the proofs of Theorems [3| and |4 with only
mino modifications. However, to determine the dimension of Dy(y) for an
arbitrary countable subshift of finite type would require further innovation.
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