SHRINKING TARGETS FOR COUNTABLE MARKOV MAPS

HENRY WJ REEVE

Abstract

Let T be an expanding Markov map with a countable number of inverse branches and a repeller Λ contained within the unit interval. Given $\alpha \in \mathbb{R}_{+}$we consider the set of points $x \in \Lambda$ for which $T^{n}(x)$ hits a shrinking ball of radius $e^{-n \alpha}$ around y for infinitely many iterates n. Let $s(\alpha)$ denote the infimal value of s for which the pressure of the potential $-s \log \left|T^{\prime}\right|$ is below $s \alpha$. Building on previous work of Hill, Velani and Urbański we show that for all points y contained within the limit set of the associated iterated function system the Hausdorff dimension of the shrinking target set is given by $s(\alpha)$. Moreover, when $\bar{\Lambda}=[0,1]$ the same holds true for all $y \in[0,1]$. However, given $\beta \in(0,1)$ we provide an example of an expanding Markov map T with a repeller Λ of Hausdorff dimension β with a point $y \in \bar{\Lambda}$ such that for all $\alpha \in \mathbb{R}_{+}$ the dimension of the shrinking target set is zero.

1. Introduction

Suppose we have a dynamical system (X, T, μ) consisting of a space X together with a map $T: X \rightarrow X$ and a T-invariant ergodic probability measure μ. Let A be a subset of positive μ measure. Poincaré's recurrence theorem implies that μ almost every $x \in X$ will visit A an infinite number of times, ie. $\bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m} T^{-n} A$ has full μ measure. This raises the question of what happens when we allow A to shrink with respect to time. How does the size of $\bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m} T^{-n} A(n)$ depend upon the sequence $\{A(n)\}_{n \in \mathbb{N}}$?

We shall consider this question in the setting of hyperbolic maps. Given a Gibbs measure μ, Chernov and Kleinbock have given general conditions according to which $\bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m} T^{-n} A(n)$ will have full μ measure [CK]. However, when $\sum_{n=0}^{\infty} \mu(A(n))$ is finite it is clear that $\bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m} T^{-n} A(n)$ must be of zero μ measure. In particular, if $\{A(n)\}_{n \in \mathbb{N}}$ is a sequence of balls which shrink exponentially fast around a point, then $\bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m} T^{-n} A(n)$ must be of zero Lebesgue measure. Thus, in order to understand its geometric complexity we must determine its Hausdorff dimension (see [F1] for an introduction to dimension theory).

In HV1, HV2 Hill and Velani consider the dimension of the shrinking target set

$$
\mathcal{D}_{y}(\alpha):=\bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m}\left\{x \in X:\left|T^{n}(x)-y\right|<e^{-n \alpha}\right\}
$$

Let $s(\alpha)$ denote the infimal value of s for which the pressure of the potential $-s \log \left|T^{\prime}\right|$ is below $s \alpha$. In HV2 it is shown that for an expanding rational maps of the Riemann sphere the dimension of $\mathcal{D}_{y}(\alpha)$ is given by $s(\alpha)$ for all points y contained within the Julia set. Now suppose we have a piecewise continuous map of the unit interval T with repeller Λ. When T has just finitely many inverse branches, Hill and Velani's formula for the dimension of $\mathcal{D}_{y}(\alpha)$ extends unproblematically. That is, for all $y \in \bar{\Lambda}, \operatorname{dim}_{\mathcal{H}} \mathcal{D}_{y}(\alpha)=$ $s(\alpha)$. However when T has an infinite number of inverse branches things become more difficult, owing to the unboundedness $\left|T^{\prime}\right|$. In $\left.\mathbb{U}\right]$ Urbański showed that for those $y \in \Lambda$ satisfying $\sup \left\{\left|\left(T^{\prime}\right)\left(T^{n}(y)\right)\right|\right\}_{n \geq 0}<\infty$, the dimension of $\mathcal{D}_{y}(\alpha)$ is equal to $s(\alpha)$. We prove that, even for systems with an infinite number of inverse branches, this formula extends to all points $y \in \Lambda$. Moreover, when $\bar{\Lambda}=[0,1]$ we have $\operatorname{dim}_{\mathcal{H}} \mathcal{D}_{y}(\alpha)=s(\alpha)$ for all $y \in[0,1]$. However, we provide a family of examples showing that when $\operatorname{dim}_{\mathcal{H}} \Lambda \in(0,1)$, whilst $s(\alpha)$ is always positive, the dimension of $\mathcal{D}_{y}(\alpha)$ can be zero for certain members of $y \in \bar{\Lambda} \backslash \Lambda$.

2. Statement of results

Before stating our main results we shall introduce some notation and provide some further background.

Definition 2.1 (Expanding Markov Map). Let $\mathcal{V}=\left\{V_{i}\right\}_{i \in \mathcal{A}}$ be a countable family of disjoint subintervals of the unit interval with non-empty interior. Given $\omega=\left(\omega_{0}, \cdots, \omega_{n-1}\right) \in \mathcal{A}^{n}$ for some $n \in \mathbb{N}$ we let $V_{\omega}:=\cap_{\nu=0}^{n-1} T^{-\nu} V_{\omega_{\nu}}$. We shall say that $T: \cup_{i \in \mathcal{A}} V_{i} \rightarrow[0,1]$ is an expanding Markov map if T satisfies the following conditions.
(1) For each $i \in \mathcal{A},\left.T\right|_{V_{i}}$ is a C^{1} map which maps the interior of V_{i} onto open unit interval $(0,1)$,
(2) There exists $\xi>1$ and $N \in \mathbb{N}$ such that for all $n \geq N$ and all $x \in \cup_{\omega \in \mathcal{A}^{n}} V_{\omega}$ we have $\left|\left(T^{n}\right)^{\prime}(x)\right|>\xi^{n}$,
(3) There exists some sequence $\left\{\rho_{n}\right\}_{n \in \mathbb{N}} \subset \mathbb{R}$ with $\lim _{n \rightarrow \infty} \rho_{n}=0$ such that for all $n \in \mathbb{N}, \omega \in \mathcal{A}^{n}$, and all $x, y \in V_{\omega}$,

$$
e^{-n \rho_{n}} \leq \frac{\left|\left(T^{n}\right)^{\prime}(x)\right|}{\left|\left(T^{n}\right)^{\prime}(y)\right|} \leq e^{n \rho_{n}}
$$

We shall say that T is a finite branch expanding Markov map if \mathcal{A} is a finite set.

The repeller Λ of an expanding Markov map is the set of points for which every iterate of T is well-defined, $\Lambda:=\bigcap_{n \in \mathbb{N}} T^{-n}([0,1])$. We assume throughout that $\# \mathcal{A}>1$. Otherwise Λ would either empty or contained within a single point.

Given a point $y \in \bar{\Lambda}$ in the closure of the repeller and some $\alpha \in \mathbb{R}_{+}$we shall be interested in the set of points $x \in \Lambda$ for which $T^{n}(x)$ hits a shrinking
ball of radius $e^{-n \alpha}$ around y for infinitely many iterates n,

$$
\begin{equation*}
\mathcal{D}_{y}(\alpha):=\bigcap_{m \in \mathbb{N} n \geq m} \bigcup_{n}\left\{x \in \Lambda:\left|T^{n}(x)-y\right|<e^{-n \alpha}\right\} . \tag{2.1}
\end{equation*}
$$

More generally, given a function $\varphi: \Lambda \rightarrow \mathbb{R}_{+}$we let $S_{n}(\varphi):=\sum_{i=0}^{n-1} \varphi \circ T^{l}$ and define

$$
\begin{equation*}
\mathcal{D}_{y}(\varphi):=\bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m}\left\{x \in \Lambda:\left|T^{n}(x)-y\right|<e^{-S_{n}(\varphi)(x)}\right\} . \tag{2.2}
\end{equation*}
$$

Sets of the form $\mathcal{D}_{y}(\varphi)$ arise naturally in Diophantine approximation.
Example 2.1. Given $\alpha \in R_{+}$we let

$$
J(\alpha):=\left\{x \in[0,1]:\left|x-\frac{p}{q}\right|<\frac{1}{q^{\alpha}} \text { for infinitely many } p, q \in \mathbb{N}\right\} .
$$

Let $T:[0,1] \rightarrow[0,1]$ be the Gauss map $x \mapsto \frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor$ which is an expanding Markov map on the repeller $\Lambda=[0,1] \backslash \mathbb{Q}$. We define $\psi: \Lambda \rightarrow \mathbb{R}$ by $\psi(x)=$ $\log \left|T^{\prime}(x)\right|$ and for each $\alpha>2$ we let $\psi_{\alpha}:=\left(\frac{\alpha}{2}-1\right) \psi$. Then for all $2<\alpha<$ $\beta<\gamma$ we have,

$$
\begin{equation*}
\mathcal{D}_{0}\left(\psi_{\alpha}\right) \subset J(\beta) \subset \mathcal{D}_{0}\left(\psi_{\gamma}\right) . \tag{2.3}
\end{equation*}
$$

In [J, B] Jarnik and Besicovitch showed that for $\alpha>2$, $\operatorname{dim}_{\mathcal{H}}(J(\alpha))=\frac{2}{\alpha}$. By (2.3) this is equialent to the fact that for all $\alpha>2$

$$
\operatorname{dim}_{\mathcal{H}} D_{0}\left(\psi_{\alpha}\right)=\frac{2}{\alpha}
$$

As we shall see, in sufficiently well behaved settings, the Hausdorff dimension of $\mathcal{D}_{y}(\varphi)$ may be expressed in terms of the thermodynamic pressure.

Definition 2.2 (Tempered Distortion Property). Given a real-valued potential $\varphi: \Lambda \rightarrow \mathbb{R}$ we define the n-th level variation of φ by,

$$
\operatorname{var}_{n}(\varphi):=\sup \left\{|\varphi(x)-\varphi(y)|: x, y \in V_{\omega}, \omega \in \mathcal{A}^{n}\right\} .
$$

We shall say that a potential φ satisfies the tempered distortion condition if $\operatorname{var}_{1}(\varphi)<\infty$ and $\lim _{n \rightarrow \infty} n^{-1} \operatorname{var}_{n}\left(S_{n}(\varphi)\right)=0$.

Note that by condition (3) in definition 2.1 the potential $\psi(x):=\log \left|T^{\prime}(x)\right|$ satisfies the tempered distortion condition.

Given a potential $\varphi: \Lambda \rightarrow \mathbb{R}$ and a word $\omega \in \mathcal{A}^{n}$ for some $n \in \mathbb{N}$ we define $\varphi(\omega):=\sup \left\{\varphi(x): x \in V_{\omega}\right\}$.

Definition 2.3. Given a potential $\varphi: \Lambda \rightarrow \mathbb{R}$, satisfying the tempered distortion condition, we define the pressure by

$$
P(\varphi):=\lim _{n \rightarrow \infty} \frac{1}{n} \log \sum_{\omega \in \mathcal{A}^{n}} \exp \left(S_{n}(\varphi)(\omega)\right) .
$$

This definition of pressure is essentially the same as that given by Mauldin and Urbański in MU1, MU2. We note that the limit always exists, but may be infinite. Recall that we defined $\psi(x)$ to be the log-derivative, $\psi(x):=$ $\log \left|T^{\prime}(x)\right|$. Given $\alpha>0$ we define $s(\alpha)$ by,

$$
\begin{equation*}
s(\alpha):=\inf \{s: P(-s \psi) \leq s \alpha\} \tag{2.4}
\end{equation*}
$$

More generally, given a non-negative positive potential $\varphi: \bar{\Lambda} \rightarrow \mathbb{R}_{\geq 0}$, satisfying the tempered distortion condition, we define,

$$
\begin{equation*}
s(\varphi):=\inf \{s: P(-s(\psi+\varphi)) \leq 0\} \tag{2.5}
\end{equation*}
$$

The project of trying to determine the Hausdorff dimension of $\mathcal{D}_{y}(\varphi)$ began with a series of articles due to Hill and Velani HV1, HV2, HV3. Whilst Hill and Velani gave the dimension of $\mathcal{D}_{y}(\varphi)$ for an expanding rational map of the Riemann sphere, the result extends unproblematically to any expanding Markov map with finitely many inverse branches.

Theorem 1 (Hill, Velani). Let T be a finite branch expanding Markov map with repeller Λ and let $\varphi: \Lambda \rightarrow \mathbb{R}$ a non-negative potential which satisfies the tempered distortion condition. Then, for all $y \in \bar{\Lambda}$ we have $\operatorname{dim}_{\mathcal{H}} \mathcal{D}_{y}(\varphi)=$ $s(\varphi)$.

Given the neat connection between Diophantine approximation and shrinking target sets for the Gauss map it is natural to try to generalise Theorem 1 to the setting of expanding Markov maps with an infinite number of inverse branches. However, for such maps things can become much more delicate.

Note that we always have $\Lambda_{\circ} \subseteq \Lambda \subseteq \bar{\Lambda}$. Indeed, when T is a finite branch Markov map $\Lambda_{\circ}=\Lambda=\bar{\Lambda}$, up to a countable set. However, for Markov maps with infinitely many inverse branches both of these containments may be strict.

In (U) Urbański proves the following extention of Theorem 1 to points $y \in \Lambda_{\circ}$ for an infinite branch expanding Markov map.

Theorem 2 (Urbański). Let T be an expanding Markov map with repeller Λ and let $\varphi: \Lambda \rightarrow \mathbb{R}$ a non-negative potential which satisfies the tempered distortion condition. Then, for every $y \in \Lambda_{\circ}$ we have $\operatorname{dim}_{\mathcal{H}} \mathcal{D}_{y}(\varphi)=s(\varphi)$.

In terms of dimension Λ_{\circ} is a large set, with $\operatorname{dim}_{\mathcal{H}} \Lambda_{\circ}=\operatorname{dim}_{\mathcal{H}} \Lambda$ MU1. However, it follows from Bowen's equation combined with the strict monotonicity of the pressure function for finite iterated function systems (see [F2, Chapter 5]) that for any T ergodic measure with $\operatorname{dim}_{\mathcal{H}} \mu=\operatorname{dim}_{\mathcal{H}} \Lambda$, $\mu\left(\Lambda_{\circ}\right)=0$. For example, when T is the Gauss map and \mathcal{G} the Gauss measure, which is ergodic and equivalent to Lebesgue measure \mathcal{L}, then Λ_{\circ} is the set of badly approximable numbers with $\operatorname{dim}_{\mathcal{H}} \Lambda_{\circ}=1$ and $\mathcal{L}\left(\Lambda_{\circ}\right)=\mathcal{G}\left(\Lambda_{\circ}\right)=0$.

Our main theorem extends the above result to all $y \in \Lambda$.
Theorem 3. Let T be an expanding Markov map with repeller Λ and let $\varphi: \Lambda \rightarrow \mathbb{R}$ be a non-negative potential which satisfies the tempered distortion condition. Then, for every $y \in \Lambda$ we have $\operatorname{dim}_{\mathcal{H}} \mathcal{D}_{y}(\varphi)=s(\varphi)$.

Note that in Example $2.10 \notin \Lambda=\mathbb{R} \backslash \mathbb{Q}$, so it is clear that for certain maps $\operatorname{dim}_{\mathcal{H}} D_{y}(\varphi)=s(\varphi)$ holds for $y \in \bar{\Lambda} \backslash \Lambda$. The following theorem shows that this holds whenever Λ is dense in the unit interval.

Theorem 4. Let T be an expanding Markov map with a repeller Λ satisfying $\bar{\Lambda}=[0,1]$ and let $\varphi: \Lambda \rightarrow \mathbb{R}$ a non-negative potential which satisfies the tempered distortion condition. Then, for every $y \in[0,1]$ we have $\operatorname{dim}_{\mathcal{H}} D_{y}(\varphi)=s(\varphi)$.

Returning to Example 2.1 we let T denote the Gauss map and $\psi_{\alpha}:=$ $\left(\frac{\alpha}{2}-1\right) \psi$ and let $\alpha>2$. By the Jarńik Besicovitch theorem [J, B] we have $\operatorname{dim}_{\mathcal{H}} D_{0}\left(\psi_{\alpha}\right)=\frac{2}{\alpha}$. It follows from Theorem 2 U that $\operatorname{dim}_{\mathcal{H}} \mathcal{D}_{y}\left(\psi_{\alpha}\right)=\frac{2}{\alpha}$ also holds for all badly approximable numbers y. By Theorem 4 we see that $\operatorname{dim}_{\mathcal{H}} \mathcal{D}_{y}\left(\psi_{\alpha}\right)=\frac{2}{\alpha}$ for all $y \in[0,1]$.

We remark that Bing Li, BaoWei Wang, Jun Wu, Jian Xu have independently obtained a proof of Theorem 4 in the special case in which T is the Gauss map, as well some interesting results concerning targets which shrink at a super-exponential rate [BBJJ. However, the methods used in [BBJ] rely upon certain properties of continued fractions which do not hold in full generality.

Now suppose that $\bar{\Lambda} \neq[0,1]$ and $y \in \bar{\Lambda} \backslash \Lambda$. It might seem reasonable to conjecture that again $\operatorname{dim}_{\mathcal{H}} \mathcal{D}_{y}(\varphi)=s(\varphi)$. However this is not always the case and, as the following theorem demonstrates, this conjecture fails in rather a dramatic way.

Given $\Phi: \mathbb{N} \rightarrow \mathbb{R}_{+}$we define,

$$
\mathcal{S}_{y}(\Phi):=\bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m}\left\{x \in X: d\left(T^{n}(x), y\right)<\Phi(n)\right\} .
$$

Theorem 5. Let $\Phi: \mathbb{N} \rightarrow \mathbb{R}_{>0}$ be any strictly decreasing function satisfying $\lim _{n \rightarrow \infty} \Phi(n)=0$. Then, for each $\beta \in(0,1)$ there exists an expanding Markov map T with a repeller Λ with $\operatorname{dim}_{\mathcal{H}} \Lambda=\beta$ together with a point $y \in \bar{\Lambda}$ satisfying $\operatorname{dim}_{\mathcal{H}} \mathcal{S}_{y}(\Phi)=0$.

Thus, even for Φ which approaches zero at a subexponential rate we can have $\operatorname{dim}_{\mathcal{H}} \mathcal{S}_{y}(\Phi)=0$. We remark that $s(\alpha)$ is always strictly positive.

We begin In Section 4 we prove the upper bound in Theorems 3 and 4 simultaneously with an elementary covering argument. In Section 5 we introduce and prove a technical proposition which implies the lower bounds in both Theorems 3 and 4. In Section 6 we prove Theorem 5. We conclude in Section 7 with some remarks.

3. Infinite iterated function systems

In order to make the proof more transparent we shall employ the language of iterated function systems.

Let $T: \cup_{i \in \mathcal{A}} V_{i} \rightarrow[0,1]$ be a countable Markov map. We associate an iterated function system $\left\{\phi_{i}\right\}_{i \in \mathcal{A}}$ corresponding to T in the following way.

For each $i \in \mathcal{A}$ we let $\phi_{i}:[0,1] \rightarrow \bar{V}_{i}$ denote the unique C^{1} map satisfying $\phi_{i} \circ T(x)=x$ for all $x \in V_{i}$.

Let Σ denote symbolic space $\mathcal{A}^{\mathbb{N}}$ endowed with the product topology and let $\sigma: \Sigma \rightarrow \Sigma$ denote the left shift operator. Given an infinite string $\omega=\left(\omega_{\nu}\right)_{\nu \in \mathbb{N}} \in \Sigma$ and $m, n \in \mathbb{N}$ we let $m|\omega| n$ denote the word $\left(\omega_{\nu}\right)_{\nu=m+1}^{n} \in$ \mathcal{A}^{n-m}. Given $\tau=\left(\tau_{1}, \cdots, \tau_{n}\right) \in \mathcal{A}^{n}$ for some $n \in \mathbb{N}$ we let $\phi_{\tau}:=\phi_{\tau_{1}} \circ \cdots \circ$ $\phi_{\tau_{n}}$. Sets of the form $\phi_{\tau}([0,1])$ are referred to as cylinder sets.

Take $\omega \in \mathcal{A}^{\mathbb{N}}$. Note that by definition 2.1 (2) we have $\operatorname{diam}\left(\phi_{\omega_{n}}([0,1])\right) \leq$ ξ^{-n} for all $n \geq N$. Thus, we may define,

$$
\pi(\omega):=\bigcap_{n \in \mathbb{N}} \phi_{\omega \mid n}([0,1]) .
$$

This defines a continuous map $\pi: \Sigma \rightarrow[0,1]$.
Since the intervals $\left\{V_{i}\right\}_{i \in \mathcal{A}}$ have disjoint interiors the iterated function system $\left\{\phi_{i}\right\}_{i \in \mathcal{A}}$ satisfies the open set condition (see [F1, Section 9.2]) and $\pi(\Sigma) \backslash \Lambda$ is countable. By definition 2.1 (1) we have $T \circ \pi(\omega)=\pi \circ \sigma(\omega)$ for all $\omega \in \pi^{-1}(\Lambda)$. Thus, $T: \Lambda \rightarrow \Lambda$ and $\sigma: \Sigma \rightarrow \Sigma$ are conjugate up to a countable set.

In Definition 2.3 we have used a slightly modified version of the definition given in [MU2, (2.1)]. Nevertheless, the following theorems may be proved in essentially the same way as the proofs given in [MU2].
Theorem 6 (Mauldin, Urbański). Given a countable Markov map T with repeller Λ we have $\operatorname{dim}_{\mathcal{H}} \Lambda=\inf \{s: P(-s \psi) \leq 0\}$.

When T has finitely many branches there is a unique $s(\Lambda)$ such that $P(-s(\Lambda) \psi)=0$ and $\operatorname{dim}_{\mathcal{H}} \Lambda=s(\Lambda)$. However, Mauldin and Urbański have shown that when T has countably many inverse branches we can have $P(-t \psi)<0$ for all $t \geq \inf \{s: P(-s \psi) \leq 0\}$ and consequently there is no such $s(\Lambda)$ (see [MU1, Example 5.3]). Similar examples show that in general there need not be any s satisfying $P(-s(\psi+\varphi))=0$ and consequently we must take $s(\varphi):=\inf \{s: P(-s(\psi+\varphi)) \leq 0\}$ in Theorems 3 and 4 .

The pressure P has the following finite approximation property.
Theorem 7 (Mauldin, Urbański). Let T be a countable Markov map and $\varphi: \Lambda \rightarrow \mathbb{R}$ a potential satisfying the tempered distortion condition. Then $P(\varphi)=\sup \left\{P_{\mathcal{F}}(\varphi): \mathcal{F} \subseteq \mathcal{A}\right.$ is a finite set $\}$.
Corollary 1. Let $\varphi: \Lambda \rightarrow \mathbb{R}$ be a non-negative potential satisfying the tempered distortion condition. Then $P(-s(\varphi)(\psi+\varphi)) \leq 0$.
Proof. Suppose $P(-s(\varphi)(\psi+\varphi))>0$. Then, by Theorem 7. $P_{\mathcal{F}}(-s(\varphi)(\psi+$ $\varphi))>0$ for some finite set $\mathcal{F} \subset \mathcal{A}$. However $\psi+\varphi$ is bounded on $\mathcal{F}^{\mathbb{N}}$ as $\operatorname{var}_{1}(\psi), \operatorname{var}_{1}(\varphi)<\infty$, and hence $s \mapsto P_{\mathcal{F}}(-s(\varphi)(\psi+\varphi))$ is continuous. Thus, there exists $t>s(\varphi)$ for which

$$
P(-t(\psi+\varphi))>0 \geq P_{\mathcal{F}}(-t(\psi+\varphi))>0
$$

Since $\psi+\varphi \geq 0, s \mapsto P(-s(\psi+\varphi))$ is non-increasing and hence, $t \leq$ $\inf \{s: P(-s(\psi+\varphi)) \leq 0\}$. Since $s(\varphi)<t$ this is a contradiction.

Corollary 2. Let T be a countable Markov map. Then for all potentials $\varphi: \Lambda \rightarrow \mathbb{R}$, satisfying the tempered distortion condition, $s(\varphi)>0$.

Proof. Since $\psi+\varphi \geq 0$ and $\# \mathcal{A} \geq 2$ it follows from Defintion 2.3 that $P(-s(\psi+\varphi)) \geq \log 2>0$ for all $s \leq 0$. If, however, $s(\varphi) \leq 0$ then by Corollary 1 there exists some $s \leq 0$ with $P(-s(\psi+\varphi)) \leq 0$, which is a contradiction.

4. Proof of the upper bound in Theorems 3 and 4

In this section we use a standard covering argument to prove a uniform upper bound on the dimension of $D_{y}(\varphi)$, which entails the upper bounds in Theorems 3 and 4 .

Throughout the proof we shall let ρ_{n} denote

$$
\rho_{n}:=\max \left\{\operatorname{var}_{n}\left(A_{n}(\psi)\right), \operatorname{var}_{n}\left(A_{n}(\varphi)\right)\right\} .
$$

Since both ψ and φ satisfy the tempered distortion condition, $\lim _{n \rightarrow \infty} \rho_{n}=$ 0.

Proposition 4.1. For every $y \in[0,1]$ we have $\operatorname{dim}_{\mathcal{H}} D_{y}(\varphi) \leq s(\varphi)$.
Proof. For each $n \in \mathbb{N}$ and $\omega \in \mathcal{A}^{n}$ we define,

$$
\begin{equation*}
V_{\omega}^{\varphi, n}:=\left\{x \in V_{\omega}:\left|T^{n}(x)-y\right|<e^{-\inf _{z \in V_{\omega}} S_{n}(\varphi)(z)}\right\} . \tag{4.1}
\end{equation*}
$$

Clearly every $x \in \mathcal{D}_{y}(\varphi)$ is in $V_{\omega}^{\varphi, n}$ for infinitely many $n \in \mathbb{N}$ and $\omega \in \mathcal{A}^{n}$. Moreover, by the mean value theorem we have,

$$
\begin{align*}
\operatorname{diam}\left(V_{\omega}^{\varphi, n}\right) & \leq e^{-\inf _{z \in V_{\omega}} S_{n}(\phi)(z)-\inf _{z \in V_{\omega}} S_{n}(\varphi)(z)} \tag{4.2}\\
& \leq e^{-\inf _{z \in V_{\omega}} S_{n}(\phi)(z)-\inf _{z \in V_{\omega}} S_{n}(\varphi)(z)} \\
& \leq e^{\sup _{z \in V_{\omega}} S_{n}(-(\phi+\varphi))(z)+2 n \rho_{n}} \\
& \leq e^{S_{n}(-(\phi+\varphi))(\omega)+2 n \rho_{n}} .
\end{align*}
$$

Choose $s>s(\varphi)$, so there exists some $t<s$ with $P(-t(\phi+\varphi)) \leq 0$. By condition (2) in definition 2.1 together with $\varphi \geq 0$ we have $S_{n}(\phi+\varphi) \geq$ $n \log \xi$ for all sufficiently large n and hence $P(-s(\phi+\varphi))<0$. Take $\epsilon>0$ with $\epsilon<-P(-s(\phi+\varphi))$. Since $\lim _{n \rightarrow \infty} \rho_{n}=0$ there exists some $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ we have,

$$
\begin{equation*}
\sum_{\omega \in \mathcal{A}^{n}}\left\{\exp \left(S_{n}(-s(\phi+\varphi))(\omega)\right)\right\}<e^{-n \epsilon-2 n s \rho_{n}} . \tag{4.3}
\end{equation*}
$$

Now choose some $\delta>0$. Since $\rho_{n} \rightarrow 0$ and $S_{n}(\phi+\varphi) \geq n \log \xi$ for all sufficiently large n, it follows from (4.2) that we may choose $n_{1} \geq n_{0}$ so that for all $n \geq n_{1} \operatorname{diam}\left(V_{\omega}^{\varphi, n}\right)<\delta$. Moreover, $\bigcup_{n \geq n_{1}}\left\{V_{\omega}^{\varphi, n}\right\}_{\omega \in \mathcal{A}^{n}}$ forms a countable cover of $\mathcal{D}_{y}(\varphi)$. Applying (4.2) together with 4.3) we see that for
all $n_{1} \geq n_{0}$,

$$
\begin{aligned}
\sum_{n \geq n_{1}} \sum_{\omega \in \mathcal{A}^{n}} \operatorname{diam}\left(V_{\omega}^{\varphi, n}\right)^{s} & \leq \sum_{n \geq n_{1}} \sum_{\omega \in \mathcal{A}^{n}} e^{\sup _{z \in V_{\omega}}} S_{n}(-s(\varphi+\phi))(z)+2 n s \rho_{n} \\
& \leq \sum_{n \geq n_{1}} e^{-n \epsilon} \leq \sum_{n \geq n_{0}} e^{-n \epsilon}<\infty
\end{aligned}
$$

Thus, $\mathcal{H}_{\delta}^{s}\left(\mathcal{D}_{y}(\varphi)\right) \leq \sum_{n \geq n_{0}} e^{-n \epsilon}$ for all $\delta>0$ and hence $\mathcal{H}^{s}\left(\mathcal{D}_{y}(\varphi)\right) \leq$ $\sum_{n \geq n_{0}} e^{-n \epsilon}<\infty$. Thus, $\operatorname{dim}_{\mathcal{H}}\left(\mathcal{D}_{y}(\varphi)\right) \leq s$ and since this holds for all $s>s(\varphi)$ we have $\operatorname{dim}_{\mathcal{H}}\left(\mathcal{D}_{y}(\varphi)\right) \leq s(\varphi)$.

5. Proof of the lower bound in Theorems 3 and 4

In order to prove the lower bound to Theorems 3 and 4 we shall introduce the positive upper cylinder density condition. The condition essentially says that there is a sequence of arbitrarily small balls, surrounding a point $y \in[0,1]$, such that each ball contains a collection of disjoint cylinder sets who's total length is comparable to the diameter of the ball. As we shall see, given any countable Markov map T with repeller Λ this condition is satisfied for all $y \in \Lambda$, and if $\bar{\Lambda}=\Lambda$, this condition is satisfied for all $y \in[0,1]$. The substance of the proof lies in showing that for any point $y \in[0,1]$, for which the positive upper cylinder density condition is satisfied, we have $\operatorname{dim}_{\mathcal{H}} \mathcal{D}_{y}(\varphi) \geq s(\varphi)$.

Definition 5.1 (Positive upper cylinder density). Suppose we have an expanding Markov map with a corresponding iterated function system $\left\{\phi_{i}\right\}_{i \in \mathcal{A}}$. Given $y \in \bar{\Lambda}, n \in \mathbb{N}$ and $r>0$ we define,

$$
C(y, n, r):=\left\{\phi_{\tau}([0,1]): \tau \in \mathcal{A}^{n}, \phi_{\tau}([0,1]) \subset B(y, r)\right\} .
$$

We shall say that the iterated function system $\left\{\phi_{i}\right\}_{i \in \mathcal{A}}$ has positive upper cylinder density at y if there is a family of natural numbers $\left(\lambda_{r}\right)_{r \in \mathbb{R}_{+}}$with $\lim _{r \rightarrow 0} \lambda_{r}=\infty$ and $\lim \sup _{r \rightarrow 0} \lambda_{r}^{-1} \log r<0$, for which

$$
\limsup _{r \rightarrow 0} r^{-1} \sum_{A \in C\left(y, \lambda_{r}, r\right)} \operatorname{diam}(A)>0 .
$$

Proposition 5.1. Let T be an expanding Markov map with associated iterated function system $\left\{\phi_{i}\right\}_{i \in \mathcal{A}}$. Suppose that $\left\{\phi_{i}\right\}_{i \in \mathcal{A}}$ has positive upper cylinder density at $y \in \bar{\Lambda}$. Then for each non-negative potential $\varphi: \Lambda \rightarrow \mathbb{R}$ which satisfies the tempered distortion condition we have $\operatorname{dim}_{\mathcal{H}} \mathcal{D}_{y}(\varphi) \geq s(\varphi)$.

Combining Proposition 5.1 with Lemmas 5.1 and 5.2 completes the proof of the lower bound in Theorems 3 and 4 , respectively.

Lemma 5.1. Let T be an expanding Markov map. Then the corresponding iterated function system $\left\{\phi_{i}\right\}_{i \in \mathcal{A}}$ has positive upper cylinder density at every $y \in \Lambda$.

Proof. Suppose that $y \in \Lambda$. Then there exists some $\omega \in \Sigma$ such that $y \in$ $\phi_{\omega \mid n}([0,1])$ for all $n \in \mathbb{N}$. We shall define $\left(\lambda_{r}\right)_{r \in \mathbb{R}_{+}}$by

$$
\lambda_{r}:=\min \left\{n \in \mathbb{N}: 2 \operatorname{diam}\left(\phi_{\omega \mid n}([0,1])\right) \leq r\right\}
$$

Clearly $\lim _{r \rightarrow 0} \lambda_{r}=\infty$. Moreover,

$$
r<2 \operatorname{diam}\left(\phi_{\omega \mid \lambda_{r}-1}([0,1])\right) \leq 2 \zeta^{-\lambda_{r}+1}
$$

so $\lim \sup _{r \rightarrow \infty} \lambda_{r}^{-1} \log r \leq-\log \xi<0$.
Given any $n \in \mathbb{N}$ choose $r_{n}:=2 \operatorname{diam}\left(\phi_{\omega \mid n}([0,1])\right)$. Clearly $\lambda_{r_{n}}=n$ and $\phi_{\omega \mid n}([0,1]) \in C\left(y, n, r_{n}\right)$. Hence,

$$
\limsup _{r \rightarrow 0} r^{-1} \sum_{A \in C\left(y, \lambda_{r}, r\right)} \operatorname{diam}(A) \geq \frac{1}{2} .
$$

Lemma 5.2. Suppose T is an expanding Markov map with $\bar{\Lambda}=[0,1]$. Then the corresponding iterated function system $\left\{\phi_{i}\right\}_{i \in \mathcal{A}}$ has positive upper cylinder density at every $y \in[0,1]$.

Proof. Suppose T satisfies $\bar{\Lambda}=[0,1]$. Then for any $n \in \mathbb{N}$ we have

$$
\begin{equation*}
[0,1] \subseteq \bar{\Lambda} \subseteq \bar{\Lambda} \subseteq \overline{\bigcup_{\omega \in \mathcal{A}^{n}} \phi_{\omega}(\Lambda) \subseteq \bigcup_{\omega \in \mathcal{A}^{n}} \phi_{\omega}([0,1])} \tag{5.1}
\end{equation*}
$$

We define $\left(\lambda_{r}\right)_{r \in \mathbb{R}_{+}}$by

$$
\lambda_{r}:=\left\lceil\frac{-\log r+\log 2}{\log \xi}\right\rceil .
$$

Clearly $\lim _{r \rightarrow 0} \lambda_{r}=\infty$ and $\limsup p_{r \rightarrow 0} \lambda_{r}^{-1} \log r=-\log \xi<0$.
Suppose $y \in\left[0, \frac{1}{2}\right]$. Given any $r<\frac{1}{2}$ and any $\omega \in \mathcal{A}^{\lambda_{r}}$ we have

$$
\begin{equation*}
\operatorname{diam}\left(\phi_{\omega}([0,1])\right) \leq \xi^{-\lambda_{r}}<r / 2 \tag{5.2}
\end{equation*}
$$

Now $C(y, n, r)$ contains all but the right most member of

$$
\mathcal{I}:=\left\{\phi_{\omega}([0,1]): \phi_{\omega}([0,1]) \cap[y, y+r) \neq \emptyset\right\},
$$

if such a member exists. By 5.1) $\sum_{A \in \mathcal{I}} \operatorname{diam}(A) \geq r$, so by 5.2 we have,

$$
\begin{equation*}
\sum_{A \in C\left(y, \lambda_{r}, r\right)} \operatorname{diam}(A) \geq r / 2 \tag{5.3}
\end{equation*}
$$

By symmetry 5.3 also holds for $y \in\left[\frac{1}{2}, 1\right]$.
Letting $r \rightarrow 0$ proves the lemma.
Before going into details we shall give a brief outline of the proof of Proposition 5.1. We begin by taking $s<s(\varphi)$ and extracting a certain finite set of words \mathcal{B} such that $P_{\mathcal{B}}(-s(\phi+\varphi))>0$. In addition, we take a Bernoulli measure μ supported on $\mathcal{B}^{\mathbb{N}}$ with $h(\mu)=t \int(\phi+\varphi) d \mu$ for some $t>s$. We then construct a tree structure, iteratively, in the following way. Let Γ_{q-1} be the finite collection of words in the tree at stage $q-1$ and
γ_{q-1} denote the length of those words. At stage q we take α_{q} so large that $\alpha_{q}^{-1} \max \left\{S_{\gamma_{q-1}}(\psi)(\omega), S_{\gamma_{q-1}}(\varphi)(\omega): \omega \in \Gamma_{q}\right\}$ is negligible. We then take a ball of radius $B\left(y, r_{q}\right)$ so that $r_{q}<\exp \left(-\alpha_{q} \int \varphi d \mu\right)$ and $B\left(y, r_{q}\right)$ contains a collection of disjoint cylinder sets who's total width is comparable to r_{q}, corresponding to a finite collection of words \mathcal{R}_{q} of length λ_{q}. This is made possible by the upper cylinder density condition. We then choose β_{q} so that $\exp \left(-\beta_{q} \int \varphi d \mu\right)$ is greater than, but comparable with, $r_{q} . \Gamma_{q}$ consists of all continuations of Γ_{q-1} of length $\gamma_{q}:=\beta_{q}+\lambda_{q}$ so that $\beta_{q} \mid \omega \in \mathcal{R}_{q}$ and ω_{ν} is chosen freely from \mathcal{B} for all $\gamma_{q-1}<\nu \leq \beta_{q}$. Having constructed our tree we shall define S to be a certain subset of its limit points for which $\omega \mid \beta_{q}$ behaves "typically" with respect to μ for each q. Given $\omega \in$ S we have $S_{\beta_{q}}(\varphi)(\pi(\omega)) \approx \beta_{q} \int \varphi d \mu<-\log r_{q}$ so $\beta_{q}|\omega| \gamma_{q} \in \mathcal{R}_{q}$ implies $\left|T^{\beta_{q}}(\pi(\omega))-y\right|<\exp \left(-S_{\beta_{q}}(\varphi)(\pi(\omega))\right)$. Hence $\pi(S) \subset \mathcal{D}_{y}(\varphi)$. At each stage β_{q}, S consists of approximately $\beta_{q} h(\mu)$ intervals of diameter approximately $\exp \left(-\beta_{q} \int \psi d \mu\right)$. Moreover, for all $\omega \in S, \beta_{q}|\omega| \gamma_{q} \in \mathcal{R}_{q}$. The total diameter of cylinders corresponding to words from \mathcal{R}_{q} is about $r_{q} \approx \exp \left(-\beta_{q} \int \varphi d \mu\right)$, and so at stage $\gamma_{q} S$ consists of approximately $\beta_{q} h(\mu)$ intervals of diameter roughly $\exp \left(-\beta_{q} \int(\psi+\varphi) d \mu\right)$, giving an optimal covering exponent of $t>s$. The fact that $\beta_{q} \geq \alpha_{q}$ will be shown to imply that we cannot obtain a cover which is more efficient, and as such $\operatorname{dim}_{\mathcal{H}} \pi(S) \geq t$.

Proof of Proposition 5.1. Choose $s<s(\varphi)$ so that $P(-s(\phi+\varphi))>0$. Without loss of generality we may assume that $s>0$. Now take $\epsilon \in(0, P(-s(\phi+$ $\varphi))$). Since $\lim _{n \rightarrow \infty} \rho_{n}=0$, it follows from the definition of pressure that for all sufficiently large n we have,

$$
\begin{equation*}
\sum_{\omega \in \mathcal{A}^{n}} \exp \left(S_{n}(-s(\psi+\varphi))(\omega)\right)>e^{\epsilon n+2 n s \rho_{n}} \tag{5.4}
\end{equation*}
$$

Consequently, for all sufficiently large n we have,

$$
\begin{equation*}
\sum_{\tau \in \mathcal{A}^{n}} e^{-s\left(S_{n}(\psi)(\tau)+S_{n}(\phi)(\tau)\right)}>e^{\epsilon n} \tag{5.5}
\end{equation*}
$$

By choosing some large k we obtain,

$$
\begin{equation*}
\sum_{\tau \in \mathcal{A}^{k}} e^{-s\left(S_{k}(\psi)(\tau)+S_{k}(\phi)(\tau)\right)}>6 . \tag{5.6}
\end{equation*}
$$

Thus, there exists some finite subset $\mathcal{F} \subseteq \mathcal{A}^{k}$ with

$$
\begin{equation*}
\sum_{\tau \in \mathcal{F}} e^{-s\left(S_{k}(\psi)(\tau)+S_{k}(\phi)(\tau)\right)}>6 . \tag{5.7}
\end{equation*}
$$

Note that $s>0$ and for each $\tau \in \mathcal{F}, S_{k}(\psi)(\tau)>0$ and $S_{k}(\varphi)(\tau)>0$, so $e^{-s\left(S_{k}(\psi)(\tau)+S_{k}(\phi)(\tau)\right)} \in(0,1)$ for every $\tau \in \mathcal{F}$.

The finite set \mathcal{F} inherits an order $<_{*}$ from the order on $[0,1]$ in a natural way by $\tau_{1}<_{*} \tau_{2}$ if and only if $\sup \phi_{\tau_{1}}([0,1]) \leq \inf \phi_{\tau_{2}}([0,1])$. Partition \mathcal{F} into two disjoint sets \mathcal{F}_{1} and \mathcal{F}_{2} so that if $\tau \in \mathcal{F}_{1}$ then its succesor under
$<_{*}$ is in \mathcal{F}_{2} and if $\tau \in \mathcal{F}_{2}$ then its succesor under $<_{*}$ is in \mathcal{F}_{1}. Clearly we may choose one $m \in\{1,2\}$ so that

$$
\begin{equation*}
\sum_{\tau \in \mathcal{F}_{m}} e^{-s\left(S_{k}(\psi)(\tau)+S_{k}(\phi)(\tau)\right)} \geq \frac{1}{2} \sum_{\tau \in \mathcal{F}} e^{-s\left(S_{k}(\psi)(\tau)+S_{k}(\phi)(\tau)\right)}>3 . \tag{5.8}
\end{equation*}
$$

Since $s>0, S_{k}(\psi)(\tau)>0$ and $S_{k}(\varphi)(\tau) \geq 0, e^{-s\left(S_{k}(\psi)(\tau)+S_{k}(\phi)(\tau)\right)}<1$ for every $\tau \in \mathcal{F}$. Thus we may remove both the smallest and the largest element from \mathcal{F}_{m}, under the order $<_{*}$, to obtain a set $\mathcal{B} \subset \mathcal{F}_{m}$ satisfying

$$
\begin{equation*}
\sum_{\tau \in \mathcal{B}} e^{-s\left(S_{k}(\psi)(\tau)+S_{k}(\phi)(\tau)\right)}>1 . \tag{5.9}
\end{equation*}
$$

Let $c:=\max \left\{S_{k}(\psi)(\tau)+S_{k}(\varphi)(\tau): \tau \in \mathcal{F}\right\}>0$. Given any $\omega_{1}, \omega_{2} \in \mathcal{A}^{n}$ and $\tau_{1}, \tau_{2} \in \mathcal{B}$ with either $\omega_{1} \neq \omega_{2}$ or $\tau_{1} \neq \tau_{2}$, or both, we have,

$$
\begin{equation*}
|x-y| \geq \max \left\{e^{-S_{n}(\psi)\left(\omega_{1}\right)-c}, e^{-S_{n}(\psi)\left(\omega_{2}\right)-c}\right\} \tag{5.10}
\end{equation*}
$$

for all $x \in\left(\phi_{\omega_{1}} \circ \phi_{\tau_{1}}\right)([0,1])$ and $y \in\left(\phi_{\omega_{1}} \circ \phi_{\tau_{1}}\right)([0,1])$. When $\omega_{1} \neq \omega_{2}$ this follows from the fact that \mathcal{B} contains neither the maximal nor the minimal element of \mathcal{F} under $<_{*}$. When $\omega_{1}=\omega_{2}$ but $\tau_{1} \neq \tau_{2}$ this follows from the fact that since $\tau_{1}, \tau_{2} \in \mathcal{B} \subset \mathcal{F}_{m}, \tau_{1}$ cannot be the successor of τ_{2} and τ_{2} cannot be the successor of τ_{1}.

Since \mathcal{B} is finite and for each $\omega \in \Sigma S_{k}(\psi)(\omega) \geq k \log \xi$ and $S_{k}(\psi)(\omega) \geq 0$, we may take $t \in(s, 1)$ satisfying

$$
\begin{equation*}
\sum_{\tau \in \mathcal{B}} e^{-t\left(S_{k}(\psi)(\tau)+S_{k}(\phi)(\tau)\right)}=1 . \tag{5.11}
\end{equation*}
$$

We define a k-th level Bernoulli measure μ on $\mathcal{B}^{\mathbb{N}}$ by defining $p(\tau)$ for $\tau \in$ \mathcal{A}^{k} by $p(\tau):=e^{-t\left(S_{k}(\psi)(\tau)+S_{k}(\phi)(\tau)\right)}$ and setting $\mu\left(\left[\tau_{1}, \cdots, \tau_{n}\right]\right)=p_{\tau_{1}} \cdots p_{\tau_{n}}$ for each $\left(\tau_{1}, \cdots, \tau_{n}\right) \in \mathcal{B}^{n}$. We define,

$$
\begin{aligned}
\mathbb{E}\left(S_{k}(\psi)\right) & :=\sum_{\tau \in \mathcal{B}} p(\tau) S_{k}(\psi)(\tau) \\
\mathbb{E}\left(S_{k}(\varphi)\right) & :=\sum_{\tau \in \mathcal{B}} p(\tau) S_{k}(\varphi)(\tau) .
\end{aligned}
$$

Choose a decreasing sequence $\left\{\delta_{q}\right\}_{q \in \mathbb{N}} \subset \mathbb{R}_{>0}$ so that $\prod_{q \in \mathbb{N}}\left(1-\delta_{q}\right)>0$. Take $q \in \mathbb{N}$. By Kolmogorov's strong law of large numbers combined with Egorov's theorem there exists set $S_{q} \subseteq \mathcal{B}^{\mathbb{N}}$ with $\mu\left(S_{q}\right)>1-\delta_{q}$ and $N(q) \in \mathbb{N}$ such that for all $\omega=\left(\omega_{\nu}\right)_{\nu \in \mathbb{N}} \in S_{q}$ with $\omega_{\nu} \in \mathcal{B}$ for each $\nu \in \mathbb{N}$ and all
$n \geq N(q)$ we have,
(5.12) $\frac{1}{n} \sum_{\nu=1}^{n} S_{k}(\psi)\left(\omega_{\nu}\right)<\mathbb{E}\left(S_{k}(\psi)\right)+\frac{1}{q}$

$$
\frac{1}{n} \sum_{\nu=1}^{n} S_{k}(\varphi)\left(\omega_{\nu}\right)<\mathbb{E}\left(S_{k}(\varphi)\right)+\frac{1}{q}
$$

$$
\begin{equation*}
\frac{1}{n} \sum_{\nu=1}^{n} \log p_{\omega_{\nu}}<\sum_{\tau \in \mathcal{B}} p(\tau) \log p(\tau)+\frac{1}{q} \tag{5.14}
\end{equation*}
$$

$$
=-t\left(\mathbb{E}\left(S_{k}(\psi)\right)+\mathbb{E}\left(S_{k}(\varphi)\right)\right)+\frac{1}{q}
$$

$$
<-t\left(\frac{1}{n} \sum_{\nu=1}^{n} S_{k}(\psi)\left(\omega_{\nu}\right)+\mathbb{E}\left(S_{k}(\varphi)\right)\right)+\frac{2}{q}
$$

$$
\leq-t\left(\frac{1}{n} S_{n k}(\psi)\left(\omega_{\nu}\right)_{\nu=1}^{n}+\mathbb{E}\left(S_{k}(\varphi)\right)\right)+\frac{2}{q} .
$$

Clearly we may assume that $(N(q))_{q \in \mathbb{N}}$ is increasing and $N(1) \geq 2$.
Now fix

$$
\begin{aligned}
& \zeta \in\left(0, \limsup _{r \rightarrow 0} r^{-1} \sum_{A \in C\left(y, \lambda_{r}, r\right)} \operatorname{diam}(A)\right), \\
& d \in\left(\limsup _{r \rightarrow 0} \lambda_{r}^{-1} \log r, 0\right) .
\end{aligned}
$$

We shall now give an inductive construction consisting of a quadruple of rapidly increasing sequences of natural numbers $\left(\alpha_{q}\right)_{q \in \mathbb{N} \cup\{0\}},\left(\beta_{q}\right)_{q \in \mathbb{N} \cup\{0\}}$, $\left(\gamma_{q}\right)_{q \in \mathbb{N} \cup\{0\}},\left(\lambda_{q}\right)_{q \in \mathbb{N} \cup\{0\}}$, a sequence of positive real numbers $\left(r_{q}\right)_{q \in \mathbb{N} \cup\{0\}}$ and a pair of sequences of finite sets of words $\left(\mathcal{R}_{q}\right)_{q \in \mathbb{N} \cup\{0\}}$ and $\left(\Gamma_{q}\right)_{q \in \mathbb{N} \cup\{0\}}$. First set $\alpha_{0}=\beta_{0}=\gamma_{0}=0, \lambda_{0}=1$ and $\Lambda_{0}=\Gamma_{0}=\emptyset$. For each $q \in \mathbb{N}$ we define
$\alpha_{q}:=10 k q^{2} \gamma_{q-1} N(q) N(q+1)\left\lceil\log \zeta^{-1} c\left(3+2 \rho_{\lambda_{q-1}}\right) \max \left\{S_{\gamma_{q-1}}(\psi)(\tau)+S_{\gamma_{q-1}}(\varphi)(\tau): \tau \in \Gamma_{q-1}\right\}\right\rceil$.
Note that since Γ_{q-1} is finite α_{q} is well defined.
We then choose $r_{q}>0$ so that,

$$
\begin{equation*}
-\log r_{q}>k^{-1}\left(\alpha_{q}-\gamma_{q-1}\right)\left(\mathbb{E}\left(S_{k}(\varphi)\right)+\frac{1}{q}\right)+\gamma_{q-1} c+q \tag{5.15}
\end{equation*}
$$

and also

$$
\sum_{A \in C\left(y, \lambda_{r_{q}}, r_{q}\right)} \operatorname{diam}(A)>\zeta r_{q}
$$

and $\lambda_{r}^{-1} \log r<d$.

Let $\lambda_{q}:=\lambda_{r_{q}}$. We may choose \mathcal{R}_{q} to be a finite set of words $\tau \in \mathcal{A}^{\lambda_{q}}$ so that for each $\tau \in \mathcal{R}_{q} \phi_{\tau}([0,1]) \subset B\left(y, r_{q}\right)$ and

$$
\sum_{\tau \in \mathcal{R}_{q}} \operatorname{diam}\left(\phi_{\tau}([0,1])\right)>\zeta r_{q} .
$$

Let β_{q} be the largest integer satisfying $k \mid\left(\beta_{q}-\gamma_{q-1}\right)$ and

$$
\begin{equation*}
-\log r_{q}>k^{-1}\left(\beta_{q}-\gamma_{q-1}\right)\left(\mathbb{E}\left(S_{k}(\varphi)\right)+\frac{1}{q}\right)+\gamma_{q-1} c+q \tag{5.16}
\end{equation*}
$$

We let $\gamma_{q}:=\beta_{q}+\lambda_{q}$. We define Γ_{q} by,

$$
\Gamma_{q}:=\left\{\omega \in \mathcal{A}^{\gamma_{q}}: \omega\left|\gamma_{q-1} \in \Gamma_{q-1}, \gamma_{q-1}\right| \omega\left|\beta_{q} \in \mathcal{B}^{k^{-1}\left(\beta_{q}-\gamma_{q-1}\right)}, \beta_{q}\right| \omega \mid \gamma_{q} \in \mathcal{R}_{q}\right\} .
$$

Note that since $\mathcal{B}, \Gamma_{q-1}$ and \mathcal{R}_{q} are finite, so is Γ_{q}.
We inductively define a sequence of measures \mathcal{W}_{q} supported on Γ_{q}.
For each $\omega \in \mathcal{A}^{n}$ and $\tau \in \mathcal{R}_{q}$ we let

$$
q(\omega, \tau):=\frac{\operatorname{diam}\left(\phi_{\omega} \circ \phi_{\tau}([0,1])\right)}{\sum_{\tau \in \mathcal{R}_{q}} \operatorname{diam}\left(\phi_{\omega} \circ \phi_{\tau}([0,1])\right)} .
$$

Now by the definition of Γ_{q}, each $\omega^{q} \in \Gamma_{q}$ is of the form $\omega^{q}=\left(\omega^{q-1}, \kappa_{1}^{q}, \cdots, \kappa_{k^{-1}\left(\beta_{q}-\gamma_{q-1}\right)}, \tau_{q}\right)$ where $\omega^{q-1} \in \Gamma_{q-1}, \kappa_{\nu}^{q} \in \mathcal{B}$ for $\nu=1, \cdots, k^{-1}\left(\beta_{q}-\gamma_{q-1}\right)$ and $\tau_{q} \in \mathcal{R}_{q}$. We set,
$\mathcal{W}_{q}\left(\omega^{q}\right)=\mathcal{W}_{q-1}\left(\left[\omega^{q-1}\right]\right)\left(\prod_{\nu=1}^{k^{-1}\left(\beta_{q}-\gamma_{q-1}\right)} p\left(\kappa_{\nu}\right)\right) q\left(\left(\omega^{q-1}, \kappa_{1}^{q}, \cdots, \kappa_{k^{-1}\left(\beta_{q}-\gamma_{q-1}\right)}\right), \tau_{q}\right)$
Define $\Gamma:=\left\{\omega \in \Sigma: \omega \mid \gamma_{q} \in \Gamma_{q}\right.$ for all $\left.q \in \mathbb{N}\right\}$ and extend the sequence $\left(\mathcal{W}_{q}\right)_{q \in \mathbb{N}}$ to a measure \mathcal{W} on Γ in the natural way.

We let $S \subseteq \Gamma$ denote the subset,

$$
\begin{equation*}
S:=\left\{\omega \in \Gamma:\left[\gamma_{q-1}|\omega| \beta_{q}\right] \cap S_{q} \neq \emptyset \text { for all } q \in \mathbb{N}\right\} . \tag{5.17}
\end{equation*}
$$

Lemma 5.3. For all $\omega \in S$ and $n \in \mathbb{N}$ we have $\pi(\omega) \in \phi_{\omega \mid n}((0,1))$.
Proof. Suppose for a contradiction that $\omega \in S$ and for some $N \in \mathbb{N} \pi(\omega) \notin$ $\phi_{\omega \mid N}((0,1))$. Then for all $n \geq N$ we have $\pi(\omega) \in \phi_{\omega \mid n}(\{0,1\})=\partial \phi_{\omega \mid n}([0,1])$. However, given $N \in \mathbb{N}$ we may choose q with $\gamma_{q}>N$. Then $\omega_{\gamma_{q}+1} \in \mathcal{B}$ by the construction of S. Consequently $\phi_{\gamma_{q}+1}([0,1])$ is in neither the left most, nor the right most interval amongst,

$$
\left\{\phi_{\omega \mid \kappa(l)} \circ \phi_{\tau}([0,1]): \tau \in \mathcal{F}\right\} .
$$

Hence, $\pi(\omega) \notin \partial \phi_{\omega \mid \gamma_{q}}([0,1])$.
Lemma 5.4. $\pi(S) \subseteq \mathcal{D}_{y}(\varphi)$.

Proof. Take $\omega \in S$. By Lemma 5.3 we have $\pi(\omega) \in \phi_{\omega \mid n}((0,1)) \subseteq V_{\omega \mid n}$ and hence $S_{n}(\varphi)(\omega) \leq S_{n}(\varphi)(\omega \mid n)$ for all $n \in \mathbb{N}$ and in particular for each $q \in \mathbb{N}$,

$$
\begin{aligned}
S_{\beta_{q}}(\varphi)(\omega) & \leq S_{\beta_{q}}(\varphi)\left(\omega \mid \beta_{q}\right) \\
& \leq S_{\beta_{q}-\gamma_{q-1}}(\varphi)\left(\gamma_{q-1}|\omega| \beta_{q}\right)+c \gamma_{q-1} \\
& \leq \sum_{\nu=1}^{k^{-1}\left(\beta_{q}-\gamma_{q-1}\right)} S_{k}(\varphi)\left(\gamma_{q-1}+(\nu-1) k|\omega| \gamma_{q-1}+\nu k\right)+c \gamma_{q-1}
\end{aligned}
$$

By (5.13) combined with the fact that $\left[\gamma_{q-1}|\omega| \beta_{q}\right] \cap S_{q} \neq \emptyset$,

$$
S_{\beta_{q}}(\varphi)(\omega) \leq k^{-1}\left(\beta_{q}-\gamma_{q-1}\right)\left(\mathbb{E}\left(S_{k}(\varphi)\right)+\frac{1}{q}\right)+c \gamma_{q-1} .
$$

Thus, by the definition of r_{q} we have, $r_{q}<e^{-S_{\beta_{q}}(\varphi)(\omega)}$.

$$
T^{\beta_{q}}(\pi(\omega))=\pi\left(\sigma^{\beta_{q}}(\omega)\right) \in \phi_{\beta_{q}|\omega| \gamma_{q}}([0,1])
$$

Since $\omega \in S \subseteq \Gamma, \beta_{q}|\omega| \gamma_{q} \in \mathcal{R}_{q}$ and hence

$$
T^{\beta_{q}}(\pi(\omega)) \in \phi_{\beta_{q}|\omega| \gamma_{q}}([0,1]) \subseteq B\left(y, r_{q}\right) \subseteq B\left(y, e^{-S_{\beta_{q}}(\varphi)(\omega)}\right)
$$

Since this holds for all $q \in \mathbb{N}, \pi(\omega) \in \mathcal{F}_{y}(\varphi)$.
Lemma 5.5. Suppose $\omega \in S$. Given $q \in \mathbb{N}$ and $\gamma_{q-1}<n \leq \beta_{q}$ we have,

$$
\begin{array}{r}
-\log \mathcal{W}_{q}([\omega \mid n]) \geq t\left(S_{n}(\psi)(\omega \mid n)+k^{-1}\left(n-\gamma_{q-1}\right) \mathbb{E}\left(S_{k}(\varphi)\right)\right) \\
-\frac{3 \gamma_{q-1}}{q-1}-2 \gamma_{q-1} \rho_{\lambda_{q-1}}-\frac{2 n}{q}-N(q) c, \\
-\log \mathcal{W}_{q}\left(\left[\omega \mid \gamma_{q}\right]\right) \geq t S_{\gamma_{q}}(\psi)\left(\omega \mid \gamma_{q}\right)-\frac{3 \gamma_{q}}{q}-2 \gamma_{q} \rho_{\lambda_{q}} .
\end{array}
$$

Proof. We prove the lemma by induction. The lemma is trivial for $q=0$. Now suppose that

$$
-\log \mathcal{W}_{q-1}\left(\left[\omega \mid \gamma_{q}\right]\right) \geq t S_{\gamma_{q-1}}(\psi)\left(\omega \mid \gamma_{q-1}\right)-\frac{3 \gamma_{q-1}}{q-1}-2 \gamma_{q-1} \rho_{\lambda_{q-1}}
$$

Take $\gamma_{q-1}<n \leq \beta_{q}$ consider $\ell(n):=\left\lfloor k^{-1}\left(n-\gamma_{q-1}\right)\right\rfloor$. If $\ell(n)<N(q)$ then clearly

$$
\begin{aligned}
& S_{n}(\psi)(\omega \mid n) \leq S_{\gamma_{q-1}}(\psi)\left(\omega \mid \gamma_{q-1}\right)+S_{n-\gamma_{q}}(\psi)\left(\gamma_{q-1}|\omega| n\right) \\
& \leq S_{\gamma_{q}}(\psi)\left(\omega \mid \gamma_{q-1}\right)+N(q) c \\
& k^{-1}\left(n-\gamma_{q-1}\right) \mathbb{E}\left(S_{k}(\varphi)\right) \leq N(q) c
\end{aligned}
$$

Since $t<1$ and $N(q-1) \leq N(q)$ it follows from the inductive hypothesis together with the definition of \mathcal{W}_{q} that,

$$
\begin{aligned}
-\log \mathcal{W}_{q}([\omega \mid n]) \geq & -\log \mathcal{W}_{q-1}\left(\left[\omega \mid \gamma_{q-1}\right]\right) \\
\geq & t\left(S_{n}(\psi)(\omega \mid n)+k^{-1}\left(n-\gamma_{q-1}\right) \mathbb{E}\left(S_{k}(\varphi)\right)\right) \\
& -\frac{3 \gamma_{q-1}}{q-1}-2 \gamma_{q-1} \rho_{\lambda_{q-1}}-2 N(q) c .
\end{aligned}
$$

On the other hand, if $\ell(n) \geq N(q)$ then by equation (5.14) together with $\left[\gamma_{q-1}|\omega| \beta_{q}\right] \cap S_{q} \neq \emptyset$ we have

$$
\begin{aligned}
\sum_{\nu=k^{-1} \gamma_{q-1}}^{k^{-1} \gamma_{q}+\ell(n)-1} \log p\left(\omega_{k \nu+1}, \cdots, \omega_{k \nu+k}\right)< & -t\left(S_{k \ell(n)}(\psi)\left(\gamma_{q-1}|\omega| \gamma_{q-1}+k \ell(n)\right)+\ell(n) \mathbb{E}\left(S_{k}(\varphi)\right)\right)+\frac{2 n}{q} \\
< & -t\left(S_{n-\gamma_{q-1}}(\psi)\left(\omega \mid n-\gamma_{q-1}\right)+k^{-1}\left(n-\gamma_{q-1}\right) \mathbb{E}\left(S_{k}(\varphi)\right)\right) \\
& +2 c+\frac{2 n}{q} .
\end{aligned}
$$

Moreover, by the defintion of \mathcal{W}_{q} we have,

$$
\begin{aligned}
-\log \mathcal{W}_{q}([\omega \mid n]) \geq & -\log \mathcal{W}_{q-1}\left(\left[\omega \mid \gamma_{q-1}\right]\right)-\sum_{\nu=0}^{\ell(n)-1} \log p\left(\omega_{k \nu+1}, \cdots, \omega_{k \nu+k}\right) \\
\geq & t\left(S_{\gamma_{q-1}}(\psi)\left(\omega \mid \gamma_{q-1}\right)+S_{n-\gamma_{q-1}}(\psi)\left(\omega \mid n-\gamma_{q-1}\right)+k^{-1}\left(n-\gamma_{q-1}\right) \mathbb{E}\left(S_{k}(\varphi)\right)\right) \\
& --\frac{3 \gamma_{q-1}}{q-1}-2 \gamma_{q-1} \rho_{\lambda_{q-1}}-2 c-\frac{2 n}{q} \\
\geq & t\left(S_{n}(\psi)(\omega \mid n)+k^{-1}\left(n-\gamma_{q-1}\right) \mathbb{E}\left(S_{k}(\varphi)\right)\right) \\
& -\frac{3 \gamma_{q-1}}{q-1}-2 \gamma_{q-1} \rho_{\lambda_{q-1}}-N(q) c-\frac{2 n}{q}
\end{aligned}
$$

In particular we have

$$
\begin{aligned}
-\log \mathcal{W}_{q}\left(\left[\omega \mid \beta_{q}\right]\right) \geq & t\left(S_{\beta_{q}}(\psi)\left(\omega \mid \beta_{q}\right)+k^{-1}\left(\beta_{q}-\gamma_{q-1}\right) \mathbb{E}\left(S_{k}(\varphi)\right)\right) \\
& -\frac{3 \gamma_{q-1}}{q-1}-2 \gamma_{q-1} \rho_{\lambda_{q-1}}-N(q) c-\frac{2 \beta_{q}}{q} .
\end{aligned}
$$

Note that,

$$
\begin{aligned}
-\log \mathcal{W}_{q}\left(\left[\omega \mid \gamma_{q}\right]\right) & =-\log \mathcal{W}_{q}\left(\left[\omega \mid \beta_{q}\right]\right)-\log q\left(\omega\left|\beta_{q}, \beta_{q}\right| \omega \mid \gamma_{q}\right) \\
& =-\log \mathcal{W}_{q}\left(\left[\omega \mid \beta_{q}\right]\right)-\log \left(\frac{\operatorname{diam}\left(\phi_{\omega \mid \gamma_{q}}([0,1])\right)}{\sum_{\tau \in \mathcal{R}_{q}} \operatorname{diam}\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])\right)}\right) \\
& \geq-\log \mathcal{W}_{q}\left(\left[\omega \mid \beta_{q}\right]\right)-t \log \left(\frac{\operatorname{diam}\left(\phi_{\omega \mid \gamma_{q}}([0,1])\right)}{\sum_{\tau \in \mathcal{R}_{q}} \operatorname{diam}\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])\right)}\right) .
\end{aligned}
$$

Clearly,

$$
-\log \operatorname{diam}\left(\phi_{\omega \mid \gamma_{q}}([0,1])\right) \geq S_{\gamma_{q}}(\psi)\left(\omega \mid \gamma_{q}\right)-\gamma_{q} \rho_{\gamma_{q}}
$$

Moreover,

$$
\begin{aligned}
\sum_{\tau \in \mathcal{R}_{q}} \operatorname{diam}\left(\phi_{\omega \mid \beta_{q} \circ \tau}([0,1])\right) & \geq \sum_{\tau \in \mathcal{R}_{q}} \exp \left(-S_{\gamma_{q}}(\psi)\left(\omega \mid \beta_{q}, \tau\right)\right) \\
& \geq e^{-S_{\beta_{q}}(\psi)\left(\omega \mid \beta_{q}\right)} \sum_{\tau \in \mathcal{R}_{q}} e^{-S_{\lambda_{q}}(\psi)(\tau)} \\
& \geq e^{-S_{\beta_{q}}(\psi)\left(\omega \mid \beta_{q}\right)-\lambda_{q} \rho_{\lambda_{q}}} \sum_{\tau \in \mathcal{R}_{q}} \operatorname{diam}\left(\phi_{\tau}([0,1])\right) \\
& \geq e^{-S_{\beta_{q}}(\psi)\left(\omega \mid \beta_{q}\right)-\lambda_{q} \rho_{\lambda_{q}}} \zeta r_{q} .
\end{aligned}
$$

Note that from the definition of β_{q} and c we have,

$$
-\log r_{q} \leq k^{-1}\left(\beta_{q}-\gamma_{q-1}\right) \mathbb{E}\left(S_{k}(\varphi)\right)+c\left(\gamma_{q-1}+1\right)+q
$$

Combining these inequalities we see that,

$$
\begin{aligned}
-\log \mathcal{W}_{q}\left(\left[\omega \mid \gamma_{q}\right]\right) \geq & t S_{\gamma_{q}}(\psi)\left(\omega \mid \gamma_{q}\right)-\gamma_{q} \rho_{\gamma_{q}}-N(q) c-\frac{2 \beta_{q}}{q} \\
& -\frac{3 \gamma_{q-1}}{q-1}-2 \gamma_{q-1} \rho_{\lambda_{q-1}}-\lambda_{q} \rho_{\lambda_{q}}-c\left(\gamma_{q-1}+1\right)-q+\log \zeta \\
\geq & t S_{\gamma_{q}}(\psi)\left(\omega \mid \gamma_{q}\right)-\frac{3 \gamma_{q}}{q}-2 \gamma_{q} \rho_{\lambda_{q}}
\end{aligned}
$$

since $\gamma_{q} \geq \beta_{q} \geq \alpha_{q}$ and by the definition of α_{q},

$$
\alpha_{q}>q\left(\frac{3 \gamma_{q-1}}{q-1}+2 \gamma_{q-1} \rho_{\lambda_{q-1}}+c\left(\gamma_{q-1}+1\right)+q-\log \zeta\right) .
$$

We define a Borel measure μ by $\mu(A):=\mathcal{W}\left(S \cap \pi^{-1}(A)\right)$ for Borel sets $A \subseteq[0,1]$.
Lemma 5.6. $\mu([0,1])>0$.
Proof. This follows immediately from the fact that

$$
\mathcal{W}(S) \geq \prod_{q \in \mathbb{N}}\left(1-\delta_{q}\right)>0
$$

Lemma 5.7. For all $\omega \in S$ we have

$$
\liminf _{r \rightarrow 0} \frac{\log \mu(B(\pi(\omega), r))}{\log r} \geq t
$$

Proof. For the proof of Lemma 5.7 we shall require some additional notation. Given a pair of functions f and g, depending on $q \in \mathbb{N}$ and $r \in(0,1)$, we shall write,

$$
\begin{equation*}
f(q, r) \geq g(q, r)-\eta(q, r) \tag{5.18}
\end{equation*}
$$

to denote that for each $\epsilon>0$ there exists an $N \in \mathbb{N}$ and a $\delta>0$ such that given any $(q, r) \in \mathbb{N} \times(0,1)$ with $q>N$ and $r<\delta$ we have

$$
\begin{equation*}
f(q, r) \geq g(q, r)-\epsilon . \tag{5.19}
\end{equation*}
$$

Note that by 5.15 $r_{q}<e^{-q}$ for all $q \in \mathbb{N}$ and by Definition 5.1 this implies that $\lim _{q \rightarrow \infty} \lambda_{q}=\lim _{q \rightarrow \infty} \lambda_{r_{q}}=\infty$ and hence $\lim _{q \rightarrow \infty} \rho_{\lambda_{q}}=0$. Thus for any function $g: \mathbb{N} \times(0,1) \rightarrow \mathbb{R}$,

$$
g(q, r)-\rho_{\lambda_{q}} \geq g(q, r)-\eta(q, r) .
$$

Similarly, it follows from the definition of β_{q} that

$$
g(q, r)-c N(q) N(q+1) \beta_{q}^{-1} \geq g(q, r)-\eta(q, r) .
$$

Firstly we show that for any $x=\pi(\omega)$ with $\omega \in S B(x, r)$ and $r>0$ for which there exists $q \in \mathbb{N}$ and $l \in \mathbb{N}$ with $\gamma_{q-1} \leq l<\beta_{q}$ such that

$$
B(x, r) \cap \pi(S) \subseteq \phi_{\omega \mid l}([0,1]) \text { but } B(x, r) \cap \pi(S) \nsubseteq \quad \phi_{\omega \mid l+1}([0,1])
$$

satisfies

$$
\begin{equation*}
\frac{\log \mu(B(x, r))}{\log r} \geq t-\eta(q, r) \tag{5.20}
\end{equation*}
$$

Indeed, as $B(x, r) \cap \pi(S) \subseteq \phi_{\omega \mid l}([0,1])$ it follows from Lemma 5.5 that,

$$
\begin{aligned}
-\log \mu(B(x, r)) & \geq-\log \mathcal{W}([\omega \mid l]) \\
& =-\log \mathcal{W}_{q}([\omega \mid l]) \\
& \geq t S_{l}(\psi)(\omega \mid l)-\frac{3 \gamma_{q-1}}{q-1}-2 \gamma_{q-1} \rho_{\lambda_{q-1}}-\frac{2 l}{q}-N(q) c \\
& =-\log \mathcal{W}_{q}([\omega \mid l]) \\
& \geq t S_{l}(\psi)(\omega \mid l)-\frac{6 l}{q-1}-2 l \rho_{\lambda_{q-1}}
\end{aligned}
$$

since $l \geq \gamma_{q-1}>q N(q) c$. Since $S_{l}(\psi)(\omega \mid l) \geq l \log \xi$ this implies

$$
\frac{\log \mu(B(x, r))}{S_{l}(\psi)(\omega \mid l)} \geq t-\log \xi^{-1}\left(\frac{6}{q-1}+2 \rho_{\lambda_{q-1}}\right)
$$

However, $B(x, r) \cap \pi(S) \nsubseteq \phi_{\omega \mid l+1}([0,1])$ and hence $B(x, r) \cap \pi(S) \nsubseteq$ $\phi_{\omega \mid \kappa(l)}([0,1])$ where $\kappa(l):=k\left\lceil k^{-1}(l+1)\right\rceil$. It follows that $B(x, r) \cap \pi(S)$ intersects $\phi_{\tau \mid \kappa(l)}([0,1])$, for some $\tau \in S$, as well as $\phi_{\omega \mid \kappa(l)}([0,1])$. Since $\kappa(l) \leq \beta_{q}$ and $\omega, \tau \in S,(\kappa(l)-k)|\omega| \kappa(l),(\kappa(l)-k)|\tau| \kappa(l) \in \mathcal{B}$. Thus, by (5.10),

$$
\begin{aligned}
r & \geq \frac{1}{2} e^{-S_{n}(\psi)(\omega \mid \kappa(l)-k)-c} \\
& \geq e^{-S_{n}(\psi)(\omega \mid l)-c-\log 2}
\end{aligned}
$$

Thus,

$$
\frac{\log \mu(B(x, r))}{\log r} \geq\left(1+\frac{c+\log 2}{\log r}\right)\left(t-\log \xi^{-1}\left(\frac{6}{q-1}+2 \rho_{\lambda_{q-1}}\right)\right)
$$

which implies the first claim (5.20).
Secondly, we show that given $\omega \in S, x \in[0,1]$ and $r>0$ for which $B(x, r) \cap \pi(S) \subseteq \phi_{\omega \mid \beta_{q}}([0,1])$ and yet $B(x, r) \cap \pi(S) \nsubseteq \phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])$ for any $\tau \in \mathcal{R}_{q}$ we have,

$$
\begin{equation*}
\frac{\log \mu(B(x, r))}{\log r} \geq t-\eta(q, r) . \tag{5.21}
\end{equation*}
$$

From the proof of Lemma 5.5 we have,

$$
\begin{aligned}
-\log \mathcal{W}_{q}\left(\left[\omega \mid \beta_{q}\right]\right) \geq & t\left(S_{\beta_{q}}(\psi)\left(\omega \mid \beta_{q}\right)+k^{-1}\left(\beta_{q}-\gamma_{q-1}\right) \mathbb{E}\left(S_{k}(\varphi)\right)\right) \\
& -\frac{3 \gamma_{q-1}}{q-1}-2 \gamma_{q-1} \rho_{\lambda_{q-1}}-N(q) c-\frac{2 \beta_{q}}{q} \\
-\log r_{q} \leq & k^{-1}\left(\beta_{q}-\gamma_{q-1}\right) \mathbb{E}\left(S_{k}(\varphi)\right)+c\left(\gamma_{q-1}+1\right)+q \\
\sum_{\tau \in \mathcal{R}_{q}} \operatorname{diam}\left(\phi_{\omega \mid \beta_{q} \circ \tau}([0,1])\right) \geq & e^{-S_{\beta_{q}}(\psi)\left(\omega \mid \beta_{q}\right)-\lambda_{q} \rho_{\lambda_{q}}} \zeta r_{q} .
\end{aligned}
$$

Suppose $r>r_{q}$. Then by the first two inequalities together with the fact that $B(x, r) \subseteq \phi_{\omega \mid \beta_{q}}([0,1])$ we have

$$
\begin{aligned}
-\log \mu(B(x, r)) & \geq-\log \mathcal{W}_{q}\left(\left[\omega \mid \beta_{q}\right]\right) \\
& \geq-t \log r-\left(\frac{3 \gamma_{q-1}}{q-1}+2 \gamma_{q-1} \rho_{\lambda_{q-1}}+N(q) c+\frac{2 \beta_{q}}{q}+c\left(\gamma_{q-1}+1\right)+q\right)
\end{aligned}
$$

Note also that $B(x, r) \subseteq \phi_{\omega \mid \beta_{q}}([0,1])$ implies $-\log r>\beta_{q} \log \xi>\gamma_{q-1} \log \xi$ and hence,

$$
\begin{aligned}
\frac{\log \mu(B(x, r))}{\log r} & \geq t-\log \xi^{-1}\left(\frac{3}{q-1}+2 \rho_{\lambda_{q-1}}+\frac{N(q) c+c\left(\gamma_{q-1}+1\right)+q}{\beta_{q}}+\frac{2}{q}\right) \\
& \geq t-\eta(q, r)
\end{aligned}
$$

Now suppose that $r \leq r_{q}$ and let \mathcal{T} denote the following collection,

$$
\mathcal{T}:=\left\{\tau \in \mathcal{R}_{q}: \frac{\operatorname{diam}\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1]) \cap B(x, r)\right)}{\operatorname{diam}\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])\right)}>\frac{1}{2}\right\} .
$$

We also define $B_{\mathcal{T}}(x, r) \subseteq B(x, r)$ by,

$$
B_{\mathcal{T}}(x, r):=\bigcup_{\tau \in \mathcal{T}} \phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])
$$

From the definition of μ and \mathcal{W} we see that for each $\tau \in \mathcal{R}_{q}$ we have,

$$
\begin{aligned}
\mu\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])\right) & \leq \mathcal{W}_{q}\left(\left[\omega \mid \beta_{q}, \tau\right]\right) \\
& \leq \mathcal{W}_{q}\left(\left[\omega \mid \beta_{q}\right]\right) \cdot \frac{\operatorname{diam}\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])\right)}{\sum_{\tau \in \mathcal{R}_{q}} \operatorname{diam}\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])\right)} .
\end{aligned}
$$

Hence, as $t<1$,

$$
\begin{aligned}
\mu\left(B_{\mathcal{T}}(x, r)\right) & \leq \sum_{\tau \in \mathcal{T}} \mu\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])\right) \\
& \leq \mathcal{W}_{q}\left(\left[\omega \mid \beta_{q}\right]\right) \cdot \frac{\sum_{\tau \in \mathcal{T}} \operatorname{diam}\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])\right)}{\sum_{\tau \in \mathcal{R}_{q}} \operatorname{diam}\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])\right)} \\
& \leq \mathcal{W}_{q}\left(\left[\omega \mid \beta_{q}\right]\right)\left(\frac{\sum_{\tau \in \mathcal{T}} \operatorname{diam}\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])\right)}{\sum_{\tau \in \mathcal{R}_{q}} \operatorname{diam}\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])\right)}\right)^{t} \\
& \leq 2 \mathcal{W}_{q}\left(\left[\omega \mid \beta_{q}\right]\right)\left(\sum_{\tau \in \mathcal{R}_{q}} \operatorname{diam}\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])\right)\right)^{-t} r^{t} .
\end{aligned}
$$

Piecing the previous inequalities together with the observations from the proof of Lemma 5.5 we obtain

$$
\begin{gathered}
-\log \mu\left(B_{\mathcal{T}}(x, r)\right) \\
\geq-t \log r-\left(\frac{3 \gamma_{q-1}}{q-1}+2 \gamma_{q-1} \rho_{\lambda_{q-1}}+N(q) c+\frac{2 \beta_{q}}{q}+c\left(\gamma_{q-1}+1\right)+q+\lambda_{q} \rho_{\lambda_{q}}-\log \zeta-\log 2\right) .
\end{gathered}
$$

Now $\lambda_{q}<d \log r_{q} \leq d \log r$, where $d<0$ is the constant as appears in the positive upper cylinder density condition. Hence,

$$
\begin{equation*}
\frac{\log \mu\left(B_{\mathcal{T}}(x, r)\right)}{\log r} \tag{5.22}
\end{equation*}
$$

$$
\begin{aligned}
& \geq t-\log \xi^{-1}\left(\frac{3}{q-1}+2 \rho_{\lambda_{q-1}}+\frac{N(q) c+c\left(\gamma_{q-1}+1\right)+q-\log \zeta+\log 2}{\beta_{q}}+\frac{2}{q}\right)+d \rho_{\lambda_{q}} \\
& \geq t-\eta(q, r) .
\end{aligned}
$$

Consider the set $\mathcal{C}:=\left\{\tau \in \mathcal{R}_{q}: \phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1]) \cap B(x, r) \neq \emptyset, \tau \notin \mathcal{T}\right\}$. It is clear that \mathcal{C} contains at most two elements, with $\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])$ containing either $\inf B(x, r)$ or $\sup B(x, r)$. We shall show that for $\tau \in \mathcal{C}$ we have,

$$
\begin{equation*}
\frac{\log \mu\left(\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}\right)([0,1]) \cap B(x, r)\right)}{\log r} \geq t-\eta(q, r) . \tag{5.23}
\end{equation*}
$$

Take $\tau \in \mathcal{C}$ and assume that $\sup B(x, r) \in \phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])$ ie. $\quad \phi_{\omega \mid \beta_{q}} \circ$ $\phi_{\tau}([0,1])$ intersects the right hand boundary of $B(x, r)$. Since $\tau \notin \mathcal{T}$ we have $\operatorname{diam}\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1]) \cap B(x, r)\right)<\frac{1}{2} \operatorname{diam}\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])\right)$. Choose $\tilde{\omega} \in$ S such that $\pi(\tilde{\omega})$ is on the right hand side of $\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1]) \cap B(x, r) \cap \pi(S)$. Define $\tilde{r}:=\left|\pi(\tilde{\omega})-\inf \left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}\right)([0,1])\right|$, and consider $B(\pi(\tilde{\omega}), \tilde{r})$. Since $\pi(\tilde{\omega})$ is on the right hand side of $\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}\right)([0,1]) \cap B(x, r) \cap \pi(S)$ and

$$
\operatorname{diam}\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1]) \cap B(x, r)\right)<\frac{1}{2} \operatorname{diam}\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])\right),
$$

we have

$$
\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}\right)([0,1]) \cap B(x, r) \cap \pi(S) \subseteq B(\pi(\tilde{\omega}), \tilde{r}) \subseteq\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}\right)([0,1])
$$

and $\tilde{\omega} \mid \gamma_{q}=\left(\omega \mid \beta_{q}, \tau\right)$.
We consider two cases. First suppose that $B(\pi(\tilde{\omega}), \tilde{r}) \subseteq \phi_{\tilde{\omega} \mid \beta_{q+1}}([0,1])$. It follows from Lemma 5.5 that,

$$
\begin{aligned}
-\log \mu(B(\pi(\tilde{\omega}), \tilde{r})) \geq & -\log \mathcal{W}_{q+1}\left(\left[\tilde{\omega} \mid \beta_{q+1}\right]\right) \\
\geq & t\left(S_{\beta_{q+1}}(\psi)\left(\omega \mid \beta_{q+1}\right)+k^{-1}\left(\beta_{q+1}-\gamma_{q-1}\right) \exp \left(S_{k}(\varphi)\right)\right) \\
& -\frac{3 \gamma_{q}}{q}-2 \gamma_{q} \rho_{\lambda_{q}}-\frac{2 \beta_{q+1}}{q+1}-N(q+1) c \\
\geq & t \beta_{q+1} \log \xi-\left(k \log \xi+c N(q+1)+\frac{5 \beta_{q+1}}{q}+2 \beta_{q+1} \rho_{\lambda_{q}}\right) .
\end{aligned}
$$

Hence,
$\frac{-\log \mu\left(\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}\right)([0,1]) \cap B(x, r)\right)}{\beta_{q+1} \log \xi} \geq t-\log \xi^{-1}\left(\frac{k \log \xi+c N(q+1)}{\beta_{q+1}}+\frac{5}{q}+2 \rho_{\lambda_{q}}\right)$.
Since $B(x, r) \cap \pi(S) \nsubseteq\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau^{\prime}}\right)([0,1])$ for any $\tau^{\prime} \in \mathcal{R}_{q}$, it follows from (5.10) that

$$
\begin{align*}
-\log r & \leq-\max \left\{S_{\gamma_{q}}(\psi)\left(\tau^{\prime}\right): \tau^{\prime} \in \Gamma_{q}\right\}-c \tag{5.24}\\
& \leq \alpha_{q+1} \log \xi<\beta_{q+1} \log \xi .
\end{align*}
$$

Thus,

$$
\begin{aligned}
\frac{\log \mu\left(\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}\right)([0,1]) \cap B(x, r)\right)}{\log r} & \geq t-\log \xi^{-1}\left(\frac{k \log \xi+c N(q+1)}{\beta_{q+1}}+\frac{5}{q}+2 \rho_{\lambda_{q}}\right) \\
& \geq t-\eta(q, r) .
\end{aligned}
$$

Now suppose that $B(\pi(\tilde{\omega}), \tilde{r}) \nsubseteq \phi_{\tilde{\omega} \mid \beta_{q+1}}([0,1])$. Then we may apply (5.20) to obtain

$$
\begin{equation*}
\frac{\log \mu(B(\pi(\tilde{\omega}, \tilde{r}))}{\log \tilde{r}} \geq t-\eta(q+1, \tilde{r}) . \tag{5.25}
\end{equation*}
$$

Clearly $\tilde{r}<2 r$ and so $\lim _{r \rightarrow \infty} \frac{\log \tilde{r}}{\log r} \geq 1$ and hence,

$$
\frac{\log \mu\left(\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}\right)([0,1]) \cap B(x, r)\right)}{\log r} \geq t-\eta(q, r)
$$

By symmetry the same holds if $\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}([0,1])$ intersects the left hand boundary of $B(x, r)$. This proves the claim (5.23).

Recall that,

$$
B(x, r) \cap \pi(S) \subseteq B_{\mathcal{T}}(x, r) \cup\left(\bigcup_{\tau \in \mathcal{C}}\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}\right)([0,1]) \cap B(x, r)\right) .
$$

Noting that $\# \mathcal{C} \leq 2$ we obtain,

$$
\begin{aligned}
\mu(B(x, r)) & \leq \mu\left(B_{\mathcal{T}}(x, r)\right)+\sum_{\tau \in \mathcal{C}} \mu\left(\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}\right)([0,1]) \cap B(x, r)\right) \\
& \leq 3 \max \left\{\mu\left(B_{\mathcal{T}}(x, r)\right)\right\} \cup\left\{\mu\left(\left(\phi_{\omega \mid \beta_{q}} \circ \phi_{\tau}\right)([0,1]) \cap B(x, r)\right): \tau \in \mathcal{C}\right\}
\end{aligned}
$$

By combining with (5.22) and (5.23),

$$
\frac{\log \mu(B(x, r))-\log 3}{\log r} \geq t-\eta(q, r)
$$

which implies (5.21).
To complete the proof of the Lemma we fix $\omega \in S$, let $x=\pi(\omega)$ and consider a ball $B(\pi(\omega), r)$ of radius $r>0$. Now choose $q(r) \in \mathbb{N}$ so that

$$
B(x, r) \cap \pi(S) \subseteq \phi_{\omega \mid \gamma_{q(r)-1}}([0,1]) \text { but } B(x, r) \cap \pi(S) \quad \nsubseteq \quad \phi_{\omega \mid \gamma_{q(r)}}([0,1])
$$

Now either $B(x, r) \cap \pi(S) \nsubseteq \phi_{\omega \mid \beta_{q(r)}}([0,1])$, in which case we apply (5.20) or $B(x, r) \cap \pi(S) \nsubseteq \phi_{\omega \mid \beta_{q(r)}}([0,1])$ in which case we apply (5.21). In both cases we obtain,

$$
\begin{equation*}
\frac{\log \mu(B(x, r))}{\log r} \geq t-\eta(q(r), r) \tag{5.26}
\end{equation*}
$$

By (5.24) whenver $q(r) \leq Q$ we have

$$
r \geq \exp \left(-\max \left\{S_{\gamma_{Q}}(\psi)\left(\tau^{\prime}\right): \tau^{\prime} \in \Gamma_{Q}\right\}-c\right)>0
$$

Hence, $\lim _{r \rightarrow 0} q(r)=\infty$. Therefore, by (5.26) we have

$$
\begin{equation*}
\liminf _{r \rightarrow 0} \frac{\log \mu(B(\pi(\omega), r))}{\log r} \geq t \tag{5.27}
\end{equation*}
$$

To complete the proof of Proposition 5.1 we recall the following standard Lemma.

Lemma 5.8. Let ν be a finite Borel measure on some metric space X. Suppose we have $J \subseteq X$ with $\nu(J)>0$ such that for all $x \in J$

$$
\liminf _{r \rightarrow 0} \frac{\log \nu(B(x, r))}{\log r} \geq d
$$

Then $\operatorname{dim}_{\mathcal{H}} J \geq d$.
Proof. See [F2, Proposition 2.2].
Thus by Lemmas 5.7 and 5.6 we have

$$
\operatorname{dim}_{\mathcal{H}} \pi(S) \geq t>s
$$

Hence, by Lemma 5.4 the Hausdorff dimension of $\mathcal{D}_{y}(\varphi)$ is at least s. Since this for all $s<s(\varphi)$, we have

$$
\operatorname{dim}_{\mathcal{H}} \mathcal{D}_{y}(\varphi) \geq s(\varphi)
$$

6. Proof of Theorem 5

Proof of Theorem 5. We begin by defining a sequence $\left(r_{n}\right)_{n \in \mathbb{N}}$ by

$$
\begin{equation*}
r_{n}:=\min \left\{\left(2+\sum_{q \in \mathbb{N}} e^{-q / n}\right)^{-n^{2}} \cdot e^{-2 n^{2}}, \frac{1}{2}(\Phi(n)-\Phi(n+1))\right\} \tag{6.1}
\end{equation*}
$$

Note that since Φ is strictly decreasing each $r_{n}>0$. Now take $n_{0}>$ 2 so that $\Phi\left(n_{0}\right)<\left(1-2^{1-\beta^{-1}}\right)$ and $\sum_{n \geq n_{0}} e^{-\beta n}<1$. For each $n \geq$ n_{0} we choose some closed interval $V_{n} \subset\left(\Phi_{n+1}, \Phi_{n}\right)$ of length r_{n}, which is always possible, since $r_{n}<\Phi(n)-\Phi(n+1)$. Note that since each $r_{n}<e^{-n}$ we have $\sum_{n \geq n_{0}} r_{n}^{\beta} \leq \sum_{n \geq n_{0}} e^{-\beta n}<1$. Hence, $r_{1}=r_{2}:=$ $2^{-\beta^{-1}}\left(1-\sum_{n \geq n_{0}} r_{n}^{\beta}\right)^{\beta^{-1}}>0$. Note also that $1-\Phi\left(n_{0}\right)>2^{1-\beta^{-1}}>2 r_{1}$. Thus, we may choose two disjoint closed intervals V_{1}, V_{2} of width $r_{1}=r_{2}$ contained within $\left(\Phi\left(n_{0}\right), 1\right)$.

We now let $\mathcal{A}:=\left\{n \in \mathbb{N}: n \geq n_{0}\right\} \cup\{1,2\}$. Define $T: \bigcup_{n \in \mathcal{A}} V_{n} \rightarrow[0,1]$ to be the unique expanding Markov map which maps each of the intervals $\left\{V_{n}\right\}_{n \in \mathcal{A}}$ onto $[0,1]$ in an affine and orientation preserving way. First note that,

$$
\begin{equation*}
\sum_{n \in \mathcal{A}} \operatorname{diam}\left(V_{n}\right)^{\beta}=r_{1}^{\beta}+r_{2}^{\beta}+\sum_{n \geq n_{0}} r_{n}^{\beta}=1 . \tag{6.2}
\end{equation*}
$$

Thus, $\operatorname{dim}_{\mathcal{H}} \Lambda=\beta$ by Moran's formula.
Take $n \geq n_{0}$ and consider $\mathcal{S}_{0}^{(n)}(\Phi):=\left\{x \in \Lambda:\left|T^{n}(x)\right|<\Phi(n)\right\}$. Since T is orientation preserving it follows from the construction of T that we can cover $S_{n}(\Phi)$ with sets of the form $V_{\omega}=\cap_{j=0}^{n} T^{-j} V_{\omega_{j}}$ where $\omega \in \mathcal{C}_{n}:=$ $\left\{\omega \in \mathcal{A}^{n+1}: \omega_{n+1} \geq n\right\}$. Since T is piecewise linear we have $\operatorname{diam} V_{\omega}=$ $\prod_{j=1}^{n+1} r_{\omega_{j}}$ for each $\omega \in \mathcal{A}^{n+1}$. It follows that for any $m>n_{0}$ we may cover $\mathcal{S}_{0}(\Phi)$ with the family $\bigcup_{n \geq m}\left\{V_{\omega}: \omega \in \mathcal{C}_{n}\right\}$.

Now take $\epsilon>0$. For all $n>\epsilon^{-1}$ we have,

$$
\begin{aligned}
\sum_{\omega \in \mathcal{C}_{n}}\left(\operatorname{diam} V_{\omega}\right)^{\epsilon} & \leq \sum_{\omega \in \mathcal{C}_{n}}\left(r_{\omega_{1}} \cdots r_{\omega_{n}}\right)^{\epsilon} \\
& =\left(\sum_{n \in \mathcal{A}} r_{n}^{\epsilon}\right)^{n} \cdot \sum_{q \geq n} r_{n}^{\epsilon} \\
& \leq\left(2+\sum_{q \in \mathbb{N}} e^{-\epsilon q}\right)^{n} \cdot \sum_{k \geq n}\left(\left(2+\sum_{q \in \mathbb{N}} e^{-q / k}\right)^{-k^{2}} \cdot e^{-2 k^{2}}\right)^{\epsilon} \\
& \leq\left(2+\sum_{q \in \mathbb{N}} e^{-\epsilon q}\right)^{n} \cdot\left(2+\sum_{q \in \mathbb{N}} e^{-q / n}\right)^{-n^{2} \epsilon} \cdot \sum_{k \geq n} e^{-2 k n \epsilon} \\
& \leq\left(2+\sum_{q \in \mathbb{N}} e^{-\epsilon q}\right)^{n} \cdot\left(2+\sum_{q \in \mathbb{N}} e^{-q / n}\right)^{-n} \cdot e^{-n} \sum_{k \geq n} e^{-k} \\
& \leq e^{-n} \sum_{k \in \mathbb{N}} e^{-k} .
\end{aligned}
$$

Thus, for all $m>\epsilon^{-1}$ we have,

$$
\sum_{n \geq m} \sum_{\omega \in \mathcal{C}_{n}}\left(\operatorname{diam} V_{\omega}\right)^{\epsilon} \leq \sum_{n \geq m} e^{-n} \sum_{k \in \mathbb{N}} e^{-k} \leq\left(\sum_{k \in \mathbb{N}} e^{-k}\right)^{2}<\infty
$$

Since $\lim _{m \rightarrow \infty} \sup \left\{\operatorname{diam} V_{\omega}: \omega \in \mathcal{C}_{n}\right\}=0$ it follows that $\operatorname{dim}_{\mathcal{H}} S_{0}(\Phi)<\epsilon$. As this holds for all $\epsilon>0$ we have $\operatorname{dim}_{\mathcal{H}} S_{0}(\Phi)=0$.

We note that by Corollary $2 s(\alpha)>0$ for all $\alpha \in \mathbb{R}_{>0}$.

7. Remarks

Both Theorems 3 and 4 may be extended in a number of ways with some minor alterations of the proof.

Given $\Phi: \mathbb{N} \times \Lambda \rightarrow(0,1)$ we define

$$
\mathcal{S}_{y}(\Phi):=\bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m}\left\{x \in \Lambda:\left|T^{n}(x)-y\right|<\Phi(n, x)\right\} .
$$

Theorems 3 and 4 both deal with the case where Φ is multiplicative, ie. $\Phi(n+m, x)=\Phi\left(n, T^{m}(x)\right) \cdot \Phi(m, x)$, for all $n, m \in \mathbb{N} \cup\{0\}$ and $x \in \Lambda$. Indeed, when Φ is multiplicative, we may take $\varphi: x \mapsto-\log \Phi(0, x)$ so that $\Phi(n, x)=\exp \left(-S_{n}(\varphi)(x)\right)$ and $\mathcal{S}_{y}(\Phi)=\mathcal{D}_{y}(\varphi)$.

We say that Φ is almost multiplicative if there exists some constant $C>1$ such that,

$$
C^{-1}<\frac{\Phi\left(n, T^{m}(x)\right) \cdot \Phi(m, x)}{\Phi(n+m, x)}<C
$$

for all $n, m \in \mathbb{N}$ and $x \in \Lambda$. Examples include the norms of certain matrix products (see [FL, [Y]). Given $\omega \in \mathcal{A}^{n}$ we let $\Phi(\omega):=\sup \left\{\Phi(n, x): x \in V_{\omega}\right\}$. Following Feng and Lau [FL one may define a pressure function, $P(s, \Phi) \rightarrow$ \mathbb{R} by

$$
P(s, \Phi):=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\omega \in \mathcal{A}^{n}}\left(\Phi(\omega) \cdot\left\|\psi_{\omega}^{\prime}\right\|_{\infty}\right)^{s},
$$

and let $s(\Phi):=\inf \{s: P(s, \Phi) \leq 0\}$. Technical modifications to the proof of Theorems 3 and 4 show that whenever T is a countable Markov map and Φ is almost multiplicative, $\operatorname{dim}_{\mathcal{H}} \mathcal{S}_{y}(\Phi)=s(\Phi)$ for all $y \in \Lambda$, and if $\bar{\Lambda}=[0,1]$ then $\operatorname{dim}_{\mathcal{H}} \mathcal{S}_{y}(\Phi)=s(\Phi)$ for all $y \in \bar{\Lambda}$.

Instead of considering the sets $\mathcal{D}_{y}(\varphi)$ we can consider sets of the form,

$$
\mathcal{L}_{y}(\varphi):=\left\{x \in \Lambda: \limsup _{n \rightarrow \infty} \frac{\log d\left(T^{n}(x), y\right)}{S_{n}(\varphi)(x)}=-1\right\} .
$$

When T is a countable Markov map we have $\operatorname{dim}_{\mathcal{H}} \mathcal{L}_{y}(\varphi)=\operatorname{dim}_{\mathcal{H}} \mathcal{D}_{y}(\varphi)=$ $s(\varphi)$ for all $y \in \Lambda$ and when T is a countable Markov map satisfying $\bar{\Lambda}=[0,1]$ we have $\operatorname{dim}_{\mathcal{H}} \mathcal{L}_{y}(\varphi)=\operatorname{dim}_{\mathcal{H}} \mathcal{D}_{y}(\varphi)=s(\varphi)$ for all $y \in[0,1]$. To prove the upper bound we note that $\mathcal{L}_{y}(\varphi) \subset \operatorname{dim}_{\mathcal{H}} \mathcal{D}_{y}((1-\delta) \varphi)$ for all $\delta \in(0,1)$ and $\lim _{\delta \rightarrow 0} \operatorname{dim}_{\mathcal{H}} \mathcal{D}_{y}((1-\delta) \varphi)=\lim _{\delta \rightarrow 0} s((1-\delta) \varphi)=s(\varphi)$. To prove the lower bound requires a technical adaptation of the proof of Proposition 5.1, removing those points x for which $T^{n}(x)$ moves too close to y.

One can also consider what happens when we replace assumption (1) in Definition 2.1 with the weaker assumption that T is modelled by a subshift of finite type. If the corresponding matrix is finitely primitive (see MU2, Section 2.1]) then one may adapt the proofs of Theorems 3 and 4 with only mino modifications. However, to determine the dimension of $\mathcal{D}_{y}(\varphi)$ for an arbitrary countable subshift of finite type would require further innovation.

References

[B] A. S. Besicovitch, Sets of fractional dimension (IV): On rational approximation to real numbers, J. London Math. Soc. 9 (1934).
[CK] N. Chernov, D. Y. Kleinbock, Dynamical Borel-Cantelli lemmas for Gibbs measures, Israel J. Math. 122 (2001).
[D] D. Dolgopyat Limit theorems for partially hyperbolic systems. Trans. Amer. Math. Soc. 356 (2004).
[F1] K. Falconer, Fractal geometry: Mathematical foundations and applications. Second edition. John Wiley and Sons, Inc., Hoboken, NJ, (2003).
[F2] K. Falconer, Techniques in Fractal Geometry. John Wiley and Sons, Ltd., Chichester, (1997).
[FL] D. J. Feng and K. S. Lau, The pressure function for products of non-negative matrices. Math. Res. Lett. 9 (2002).
[HV1] R. Hill, S. Velani, The ergodic theory of shrinking targets. Invent. Math. 119 (1995).
[HV2] R. Hill, S. Velani, Metric Diophantine approximation in Julia sets of expanding rational maps. Inst. Hautes Études Sci. Publ. Math. No. 85 (1997).
[HV3] R. Hill, S. Velani, A zero-infinity law for well-approximable points in Julia sets. Ergodic Theory Dynam. Systems 22 (2002).
[IY] G. Iommi, Y. Yayama, Almost-additive thermodynamic formalism for countable Markov shifts, (2011).
[J] V. Jarńik, Diophantische approximationen und Hausdorffsches Mass. Math. Sb. 36 (1929).
[BBJJ] Bing Li, BaoWei Wang, Jun Wu, Jian Xu, The shrinking target problem in the dynamical system of continued fractions, (2011), preprint.
[M] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995).
[MU1] D. Mauldin, M. Urbański, Dimensions and measures in infinite iterated function systems. Proc. London Math. Soc. (3) 73 (1996).
[MU2] D. Mauldin, M. Urbański, Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets, Cambridge (2003).
[U] M. Urbański, Diophantine analysis of conformal iterated function systems. Monatsh. Math. 137 (2002).

Henry WJ Reeve, Department of Mathematics, The University of Bristol, University Walk, Clifton, Bristol, BS8 1TW, UK

E-mail address: henrywjreeve@googlemail.com

