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LOWER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY

MODULES AND THEIR ASSOCIATED PRIMES

M. AGHAPOURNAHR1 AND A. VAHIDI2

Abstract. Let R be a commutative Noetherian ring with non-zero identity, a an ideal of R, M a finite

R–module and X an arbitrary R–module. In this paper, we study relations between finiteness of local

cohomology and generalized local cohomology modules in several cases. We characterize the membership

of generalized local cohomology modules in a certain Serre class from lower bounds and we found the

least integer such that these modules belong to that Serre class. Let n be a non-negative integer, we

prove that
⋃

i<n

SuppR(Hi
a(M,X)) =

⋃

i<n

SuppR(Hi
a+AnnR M

(X)) =
⋃

i<n

SuppR(Exti
R
(M/aM,X)) and

if Hi
a(M,X) = 0 for all i < n then AssR(Hn

a (M,X)) = AssR(Extn
R
(M/aM,X)), these imply that if

SuppR(Hi
a(M,X)) is finite for all i < n, then the finiteness of AssR(Hn

a (M,X)) is equivalent to the

finiteness of AssR(Extn
R
(M/aM,X)).

1. Introduction

Throughout R is a commutative noetherian ring. a an ideal of R, M a finite (i.e., finitely generated)

R–module and X an arbitrary R–module. The generalized local cohomology modules

Hi
a(M,X) ∼= lim

−→
n

ExtiR(M/anM,X).

was introduced by J. Herzog [12]. This concept was studied in the articles [20], [4], [12] and [21]. Note

that this is in fact a generalization of the usual local cohomology, because if M = R, then Hi
a(R,N) =

Hi
a(N). Important problems concerning local cohomology are vanishing, finiteness, artinianness and

finiteness of associated primes results (see [14]).

Recall that a subclass of the class of all modules is called Serre class, if it is closed under taking

submodules, quotients and extensions. Examples are given by the class of finite modules, Artinian

modules and weakly Laskerian modules. For unexplained terminology we refer to [5] and [6].

In Section 2, it is shown that for a Serrre subcategory S, if Extn−r
R (M,Hr

a(X)) is in S for all r,

0 6 r 6 n. Then Hn
a (M,X) is in S that provides the following equivalent conditions:

(i) Hi
a(X) is in S for all i, 0 6 i 6 n.

(ii) Hi
a(M,X) is in S for all i, 0 6 i 6 n, and for any finite R–module M .

We also discuss the relation between finiteness of Hs+t
a (M,X) and ExtsR(M,Ht

a(X)) under some con-

dition on s and t. Some applications of it are indicated.

In the third section, In theorem 3.1 and corollary 3.3 we are interested in finding least integer such

that generalized local cohomology modules belong to a certain Serre class that we introduced it in

[2, Difinition 2.1] and in consequence for a positive integer n, we prove that
⋃
i<n

SuppR(H
i
a(M,X)) =

⋃
i<n

SuppR(H
i
a+AnnR M (X)) =

⋃
i<n

SuppR(Ext
i
R(M/aM,X)) and if Hi

a(M,X) = 0 for all i < n then
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2 M. AGHAPOURNAHR AND A. VAHIDI

AssR(H
n
a (M,X)) = AssR(Ext

n
R(M/aM,X)), which implies that if SuppR(H

i
a(M,X)) is finite for all

i < n, then the finiteness of AssR(H
n
a (M,X)) is equivalent to the finiteness of AssR(Ext

n
R(M/aM,X)).

We are however avoiding the use of spectral sequences completely in this work, even if we can show

some of our results with this technique. So we provide a more elementary treatment.

2. Finiteness results

Lemma 2.1. Let M and X be respectively finite and arbitrary R–modules and a be an ideal of R. Then

(a) if SuppR(M) ∩ SuppR(X) ⊆ V(a). Then for all i ≥ 0, we have

Hi
a(M,X) ∼= ExtiR(M,X).

(b) If f : R −→ S is a flat ring homomorphism, then

Hi
a(M,X)⊗R S ∼= Hi

aS(M ⊗R S,X ⊗R S).

Proof. (i) There is a minimal injective resolution E• of X such that SuppR(E
i) ⊆ SuppR(X) for all i ≥ 0.

Since SuppR(HomR(M,Ei)) ⊆ SuppR(M) ∩ SuppR(X) ⊆ V(a), HomR(M,Ei) is a–torsion. Therefore,

for all i ≥ 0,

Hi
a(M,X) = Hi(Γa(HomR(M,E•)))

= Hi(HomR(M,E•))

= ExtiR(M,X),

as we desired.

(ii) It is easy and we leave it to the reader. �

Theorem 2.2. Let M be a finite R–module and X be an arbitrary R–module such that Extn−r
R (M,Hr

a(X))

is in S for all r, 0 6 r 6 n. Then Hn
a (M,X) is in S.

Proof. We prove by using induction on n. Let n = 0, X = X/Γa(X) and consider the exact sequence

0 → Γa(X) → X → X → 0. Since Γa(X) = 0, Γa(M,Γa(X)) ∼= Γa(M,X) from [13, Lemma 2.1]. Now,

by the above lemma, we get HomR(M,Γa(X)) ∼= Γa(M,X).

Suppose that n > 0 and that n− 1 is settled. Let X = X/Γa(X) and L = E(X)/X where E(X) is an

injective hull of X. Since Γa(X) = 0 = Γa(E(X)), Γa(M,X) = 0 = Γa(M,E(X)) by [13, Lemma 2.1].

Applying the derived functors of Γa(−) and Γa(M,−) to the exact sequence 0 → X → E(X) → L → 0,

we obtain, for all i > 0, the isomorphisms:

Hi−1
a (L) ∼= Hi

a(X) and Hi−1
a (M,L) ∼= Hi

a(M,X).

Note that, for all r, 0 6 r 6 n− 1, we have

Ext
(n−1)−r

R (M,Hr
a(L))

∼= Ext
(n−1)−r

R (M,Hr+1
a (X))

∼= Ext
n−(r+1)
R (M,Hr+1

a (X))

from the above isomorphisms. Thus Hn−1
a (M,L) is in S by the induction hypothesis on L. Therefore

Hn
a (M,X) belongs to S. From the exact sequence 0 → Γa(X) → X → X → 0, we get the exact sequence

. . . −→ ExtnR(M,Γa(X)) −→ Hn
a (M,X) −→ Hn

a (M,X) −→ . . .

which shows that Hn
a (M,X) is in S. �



FINITENESS PROPERTIES OF GENERALIZED LOCAL COHOMOLOGY MODULES 3

Corollary 2.3. (cf. [16, Theorem 3.3] ) Let M be a finite R–module and X be an arbitrary R–module

such that Extn−r
R (M,Hr

a(X)) is weakly Laskerian for all r, 0 6 r 6 n. Then Hn
a (M,X) is weakly Laskerian

and so for any submodule T of Hn
a (M,X)) the set Ass(Hn

a (M,X)/T ) is finite.

Definition 2.4. (see [1, Definition 2.1] and [2, Definition 3.1]) Let M be a Serre subcategory of the

category of R–modules. We say that M is a Melkersson subcategory with respect to the ideal a if for any

a–torsion R–module X, 0 :X a is in M implies that X is in M. M is called Melkersson subcategory

when it is a Melkersson subcategory with respect to all ideals of R.

To see some examples of Melkersson subcategories, we refer the reader to [1, Examples 2.4 and 2.5].

The first author and Melkersson in [1, Theorem 2.9 (i)⇔(vi)] proved the following corollary for Melk-

ersson subcategories but we prove it for any Serre subcategories, also Mafi in [16, Lemma 3.1] proved

it in special case for weakly Laskerian modules using spectral sequences argument, while it is a simple

conclusion of theorem 2.2.

Corollary 2.5. Let X be an R–module and n be a non-negative integer. Then the following statements

are equivalent.

(i) Hi
a(X) is in S for all i, 0 6 i 6 n.

(ii) Hi
a(M,X) is in S for all i, 0 6 i 6 n, and for any finite R–module M .

Theorem 2.6. Let M be a finite R–module, X be an arbitrary R–module and s, t be non-negative integers.

Assume also that:

(i) Hs+t
a (M,X) is in S,

(ii) Exts+r+1
R (M,Ht−r

a (X)) is in S for all r, 1 ≤ r ≤ t, and

(iii) Exts−r−1
R (M,Ht+r

a (X)) is in S for all r, 1 ≤ r ≤ s− 1.

Then ExtsR(M,Ht
a(X)) is in S.

Proof. We prove by induction on t. Let t = 0 and X = X/Γa(X). By Theorem 2.2, Hs−1
a (M,X) belongs

to S since Exts−1−r
R (M,Hr

a(X)) is in S for all r, 0 6 r 6 s− 1. Applying the derived functor of Γa(M,−)

to the short exact sequence 0 → Γa(X) → X → X → 0, we obtain the long exact sequence

· · · −→ Hs−1
a (M,X) −→ Hs

a(M,Γa(X)) −→ Hs
a(M,X) −→ · · ·

which shows that Hs
a(M,Γa(X)) is in S. Thus ExtsR(M,Γa(X)) belongs to S by Lemma 2.1(a).

Now, Suppose that t > 0 and that t−1 is settled. Let X = X/Γa(X) and L = E(X)/X where E(X) is

an injective hull of X. Since Γa(X) = 0 = Γa(E(X)), Γa(M,X) = 0 = Γa(M,E(X)) by [13, Lemma 2.1].

Applying the derived functors of Γa(−) and Γa(M,−) to the exact sequence 0 → X → E(X) → L → 0,

we obtain, for all i > 0, the isomorphisms:

Hi−1
a (L) ∼= Hi

a(X) ∼= Hi
a(X) and Hi−1

a (M,L) ∼= Hi
a(M,X).

By the above isomorphisms, we have

Exts+r+1
R (M,H(t−1)−r

a (L)) ∼= Exts+r+1
R (M,Ht−r

a (X))

for r, 1 6 r 6 t− 1, and

Exts−r−1
R (M,H(t−1)+r

a (L)) ∼= Exts−r−1
R (M,Ht+r

a (X))
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for r, 1 6 r 6 s− 1 which are in S by assumptions (ii) and (iii).

On the other hand, by the exact sequence 0 → Γa(X) → X → X → 0 and Lemma 2.1(a), we get the

long exact sequence

· · · −→ Hs+t
a (M,X) −→ Hs+t

a (M,X) −→ Exts+t+1
R (M,Γa(X)) −→ · · ·

which shows that Hs+t
a (M,X) is in S by assumptions (i) and (ii). That is Hs+(t−1)

a (M,L) is in S. Now,

by the induction hypothesis on L, ExtsR(M,Ht−1
a (L)) belongs to S. Therefore ExtsR(M,Ht

a(X)) is in S

which terminates the induction argument. The proof is completed. �

Corollary 2.7. Let M be a finite R–module and X be an arbitrary R–module. Assume that n is a

non-negative integer such that Extj−i
R (M,Hi

a(X)) is in S for all i, j with 0 ≤ i ≤ n− 1 and j = n, n+ 1.

Then Hn
a (M,X) is in S if and only if HomR(M,Hn

a (X)) is in S.

Proof. (⇒) Apply Theorem 2.6 with s = 0 and t = n.

(⇐) Apply Theorem 2.2. �

The following remark is another proof for corollary 2.7 using [3, Proposition 3.1]. Also it is the study of

finiteness of kernel and the cokernel of the natural homomorphism f : Hn
a (M,X) −→ HomR(M,Hn

a (X)).

Remark 2.8. Let M be a finite R–module and X be an arbitrary R–module. Let a be an ideal of R, n be

a non-negative integer and S be a Serre subcategory of the category of R–modules. Consider the natural

homomorphism

f : Hn
a (M,X) −→ HomR(M,Hn

a (X)).

(a) If Extn−j
R (M,Hj

a(X)) belongs to S for all j < n, then Ker f belongs to S.

(b) If Extn+1−j
R (M,Hj

a(X)) belongs to S for all j < n, then Coker f belongs to S.

(c) If Extt−j
R (M,Hj

a(X)) belongs to S for t = n, n + 1 and for all j < n, then Ker f and Coker f both

belong to S. Thus Hn
a (M,X) belongs to S if and only if HomR(M,Hn

a (M)) belongs to S.

Proof. We apply [3, Proposition 3.1] with FX = HomR(M,X) , and GX = Γa(X). Observe that

FG(−) = Γa(M,−). �

It is clear from the above remark that, if Extn−j
R (M,Hj

a(X)) = 0 for all j < n, then f is injective and

if Extn+1−j
R (M,Hj

a(X)) = 0 for all j < n, then f is surjective. If both of this condition fulfilled together,

then f if an isomorphism. See also 2.11.

Corollary 2.9. Let X be an R–module and s, t be non-negative integers such that Hi
a(X) is in S for all

i, 0 6 i 6 t− 1 or t+ 1 6 r 6 s+ t. Then Hs+t
a (M,X) is in S if and only if ExtsR(M,Ht

a(X)) is in S.

Proof. (⇒) This follows from Theorem 2.6.

(⇐) Apply Theorem 2.2 with n = s+ t. �

Theorem 2.10. Let M be a finite R–module, X be an arbitrary R–module and s, t be non-negative

integers. Assume also that:

(i) Exts+t−r
R (M,Hr

a(X)) = 0 for all r, 1 ≤ r ≤ t− 1 or t+ 1 ≤ r ≤ s+ t,

(ii) Exts+r+1
R (M,Ht−r

a (X)) = 0 for all r, 1 ≤ r ≤ t, and

(iii) Exts−r−1
R (M,Ht+r

a (X)) = 0 for all r, 1 ≤ r ≤ s− 1.

Then we have Hs+t
a (M,X) ∼= ExtsR(M,Ht

a(X)).
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Proof. We prove by using induction on t. Let t = 0. We have Hs−1
a (M,X/Γa(X)) = 0 = Hs

a(M,X/Γa(X))

from hypothesis (iii) and (i), and Theorem 2.2 with S = 0. Now the assertion follows by the long exact

sequence

· · · −→ Hs−1
a (M,X/Γa(X)) −→ ExtsR(M,Γa(X)) −→ Hs

a(M,X) −→ Hs
a(M,X/Γa(X)) −→ · · ·

obtained from the short exact sequence 0 −→ Γa(X) −→ X −→ X/Γa(X) −→ 0.

Assume that t > 0 and that t− 1 is settled. This is sufficiently similar to that of Theorem 2.6 to be

omitted. We leave the proof to the reader. �

Yassemi in [21, Example 3.6] have given an example to show that the R–modules Hn
a (M,X) and

HomR(M,Hn
a (X)) are not always equal. We show that with some condition they are isomorph.

Corollary 2.11. (cf. [13, Proposition 2.3(ii)]) Let M be a finite R–module, X be an arbitrary R–module

and n be a non-negative integer such that Extj−i
R (M,Hi

a(X)) = 0 for all i, j with 0 6 i 6 n − 1 and

j = n, n+ 1. Then we have Hn
a (M,X) ∼= HomR(M,Hn

a (X)).

Proof. Apply Theorem 2.10 with s = 0 and t = n. �

Corollary 2.12. Suppose that M is a finite R–module, X is an R–module, and n,m are non-negative

integers such that n ≤ m. Assume also that Hi
a(X) = 0 for all i, i 6= n (resp. 0 ≤ i ≤ n − 1 or

n+ 1 ≤ i ≤ m). Then we have Hi+n
a (M,X) ∼= ExtiR(M,Hn

a (X)) for all i, i ≥ 0 (resp. 0 ≤ i ≤ m− n).

Proof. For all i, i ≥ 0 (resp. 0 ≤ i ≤ m− n), apply Theorem 2.10 with s = i and t = n. �

Corollary 2.13. Let M be a finite R–module with pdR(M) < ∞ and X be an arbitrary R–module. Then

the following statements hold true.

(a) Hi
a(M,X) = 0 for all i, i > pdR(M) + cd(a, X).

(b) Hpd
R
(M)+cd(a,X)

a (M,X) ∼= Ext
pd

R
(M)

R (M,Hcd(a,X)
a (X)).

Proof. (i) Let n and r be non-negative integers such that n > pdR(M) + cd(a, X) and 0 ≤ r ≤ n. If

r > cd(a, X), then Extn−r
R (M,Hr

a(X)) = 0. Otherwise n− r > pdR(M) and so Extn−r
R (M,Hr

a(X)) = 0.

Thus Hn
a (M,X) = 0 by Theorem 2.2.

(ii) By apply Theorem 2.10 with s = pd(M) and t = cd(a,M), the assertion follows. �

Corollary 2.14. Let M and X be two finite R–modules. Assume that d = dimR(X) and p = pdR(X)

are finite. Then Hp+d
a (M,X) is an a–cofinite artinian R–module.

Proof. This is immediate by [19, Proposition 5.1] and corollary 2.13 (b). �

3. Lower bounds for finiteness of generalzed local cohomology modules

The first author and Melkersson in [1, Difinition 2.6 and Example 2.8] introduced the concept of

regular sequences on a module with respect to Serre classes that recovered Poor sequences, filter regular

sequences, generalized regular sequences and sequences in dimension> s on a module where s is a non-

negative integer. They also found the relation of these notion on a finite module and the membership

of the local cohomology modules in Melkersson subcategories . See [1, Theorem 2.9 (i)↔(vii)]. Here for

given R–modules M and X we prove a similar characterization for generalized local cohomolgy module

Hi
a(M,X) in Melkersson subcategories. Coung and Hoang in [10, Theorem 3.1] proved Part [(i)↔(v)] of

the following theorem in the special case of Artinianness when R is a local ring.
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Theorem 3.1. Let M be a finite R–module and X be an arbitrary R–module. Assume also that n is a

non-negative integer and M is a Melkersson subcategory with respect to a of the category of R–modules.

Then the following statements are equivalent.

(i) Hi
a(M,X) is in M for all i, 0 6 i < n (for all i) .

(ii) Hi
a+Ann(M)(X) is in M for all i, 0 6 i < n (for all i).

(iii) ExtiR(M/aM,X) is in M for all i, 0 6 i < n (for all i).

(iv) Hi(x1, . . . , xr;X) is in M for all i, 0 6 i < n (for all i), where a+Ann(M) = (x1, . . . , xr) .

When X is finite these conditions are also equivalent to:

(v) There is a sequence of length n in a+Ann(M) that is M–regular on X(the same thing for all n).

Proof. (ii) ⇒ (i). Since Hi
a(M,X) ∼= Hi

a+Ann(M)(M,X) for all i, the assertion holds from Corollary 2.5.

(i) ⇒ (ii). We use induction on n. Let n = 0. Since Γa(M,X) ∼= Γa(M,Γa(X)) ∼= HomR(M,Γa(X)),

ΓAnn(M)(Γa(X)) is in M (see [1, Theorem 2.9]). Thus Γa+Ann(M)(X) is in M.

Assume that n > 0 and that n − 1 is settled. By the induction hypothesis, Hi
a+Ann(M)(X) is in M

for all i, 0 6 i < n − 1. Apply Theorem 2.6 with s = 0 and t = n for the ideal a + Ann(M) to see

that HomR(M,Hn
a+Ann(M)(X)) is in M. Thus ΓAnn(M)(H

n
a+Ann(M)(X)) is in M and so Hn

a+Ann(M)(X)

belongs to M. This completes the induction argument.

(ii) ⇔ (iii) ⇔ (iv) ⇔ (v). Follows from [1, Theorem 2.9 (i) ⇔ (iii) ⇔ (v) ⇔ (vii)]. �

Chu and Tang in [8, Proposition 2.4] proved the following corollary in the local case while it is an

immediate result of theorem 3.1[(i)⇔(ii)] even in general case. See also [10, Corrollary 3.2], [11, Theorem

2.2] and [18, Corrollary 2.6].

Corollary 3.2. Let t > 1 and M,X be two finite R–modules, SuppR(H
i
a(M,X)) ⊆ Max(R) hold for all

i < t if and only if Hi
a(M,X) is Artinian for all i < t. In particular, If dim(R/a) = 0 then Hi

a(M,X) is

Artinian for all i.

Proof. Use Theorem 3.1[(i)⇔(ii)] when M is the category of zero dimensional R–module and note that

a zero dimensional Noetherian R–module is Artinian. �

Let X be a finite R–module, a be an ideal of R and M be a Melkersson subcategory with respect

to a such that X/aX is not in M. In [1, Lemma 2.14, Difinition 2.15], the authors proved that every

sequence in a which is M–regular on X can be extend to maximal one and all maximal M–regular on X

in a have the same length. They denote this common length by M–deptha(M). They also proved that

it is the least integer such that Hi
a(X), ExtiR(R/a, X) or Koszol cohomology with respect to a are not

in M ( see [1, Theorem 2.18]). Using the Melkersson subcategories of [1, Example 2.4] this notion gives

ordinary depth, filter-depth, generalized depth and s-depth where s is a non-negative integer. See [1,

Example 2.16] and [7, Difinition 3.1]. In the following we prove that M− depth(a+ Ann(M), X) is the

least integer such that Hi
a(M,X) , ExtiR(M/aM,X) or Koszol cohomology with respect to a +Ann(M)

are not in M. This generalize the result of Bijan-Zadeh [4, Proposition 5.5] when we consider M = {0}.

In the case of Artinianness and finiteness of support it recover [8, Theorem 2.2], [10, Theorem 3.1], [9,

Theorem 4.1] and [17, Theorem 2.8]. Note that all of these Theorems are in local case while our corollary

is in general case.
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Corollary 3.3. Let M,X be finite R–modules, and M be a Melkersson subcategory with respect to a of

C(R) such that X/(a+Ann(M))X is not in M. Then

(a) M− depth(a +Ann(M), X) = inf{i : Hi
a(M,X) /∈ M}.

(b) M− depth(a +Ann(M), X) = inf{i : ExtiR(M/aM,X) /∈ M}.

(c) M− depth(a+Ann(M), X) = inf{i : Hi(x1, . . . , xr;X) /∈ M where a+Ann(M) = (x1, . . . , xr)}.

Proof. Follows from Theorem 3.1. �

Remark 3.4. Theorem 3.1 and corollary 3.3 can be applied to each Melkersson subcategory mentioned

in [1, Example 2.4 and 2.5] resulting in each case in a number of equivalent conditions

Corollary 3.5. inf{i : Hi
a(X) /∈ M} 6 inf{i : Hi

a(M,X) /∈ M} and the equality hold whenever

Ann(M) ⊆ a, e.g., M is faithful.

Proof. It is easy to see that M − depth(a, X) 6 M − depth(a + Ann(M), X) so by [1, Example 2.18

(a)]and 3.3, the result follows. �

Part (a) of the following corollary in local case has been proved in [9, Lemma 2.8] by Cuong and Hoang

when X is finite R–module but in our proof X is an arbitrary R–module and R is non-local ring.

Corollary 3.6. Let M be a finite R–module then

(a)
⋃
i<n

SuppR(H
i
a(M,X)) =

⋃
i<n

SuppR(H
i
a+AnnR M (X)) =

⋃
i<n

SuppR(Ext
i
R(M/aM,X)) for every

R–module X and every positive integer n.

(b) If X is a finite R–module, then
⋃
i<n

SuppR(H
i
a(M,X)) is a closed set for each positive integer n.

In particular
⋃
i

SuppR(H
i
a(M,X)) is a closed set.

Proof. (a) Respectively by Lemma 2.1(b), Theorem 3.1 and [1, Theorem 2.9 (i)↔(ii)↔(iii)] we have

p /∈
⋃
i<n

SuppR(H
i
a(M,X)) ⇔ Hi

a(M,X)p = 0 ∀i < n

⇔ Hi
aRp

(Mp, Xp) = 0 ∀i < n

⇔ Hi
aRp+AnnRp

Mp
(Xp) = 0 ∀i < n

⇔ Hi
a+AnnR M (X)p = 0 ∀i < n

⇔ p /∈
⋃
i<n

SuppR(H
i
a+AnnR M (X))

and

p /∈
⋃
i<n

SuppR(H
i
a+AnnR M (X)) ⇔ Hi

a+AnnR M (X)p = 0 ∀i < n

⇔ Hi
aRp+AnnRp

Mp
(Xp) = 0 ∀i < n

⇔ ExtiRp
(Rp/aRp +AnnRp

Mp, Xp) = 0 ∀i < n

⇔ ExtiRp
(Mp/aRpMp, Xp) = 0 ∀i < n

⇔ ExtiR(M/aM,X)p = 0 ∀i < n

⇔ p /∈
⋃
i<n

SuppR(Ext
i
R(M/aM,X))

as we desired.

(b) Use this fact that the support of a finite R–module is a closed set, then use [5, Theorem 3.3.1] and

part (a). �
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The vanishing of generalized local cohomology modules from upper bounds needs special condition

and in all of them M must has finite projective dimension for example see [21, Theorem 2.5 and 3.7] , [8,

Theorem 3.1] or corollary 2.13 (a). However, the following result together with corollary 3.6 (a) shows

that there is a union of finitely many supports of generalized local cohomology modules so that the other

supports can be viewed as its subset even if M has infinite projective dimension.

Corollary 3.7. Let M be a finite R–module and n = ara(a+AnnR M) then

SuppR(H
i
a(M,X)) ⊆

⋃

i6n

SuppR(H
i
a+AnnR M (X))

for all i > 0.

Cuong and Hoang in [10, Theorem 2.4] proved the following theorem when X is a finite module and

n = grade(a+AnnR M,X). Our proof is more general and its method is completely different.

Theorem 3.8. Let M be a finite R–module and a be an ideal of R. Let X be an arbitrary R–module

such that Hi
a(M,X) = 0 for all i < n (in particular, when X is finite and n = grade(a + AnnR M,X))

then

Ass(Hn
a (M,X)) = Ass(ExtnR(M/aM,X))

Proof. We first prove by using induction on n that

HomR(R/a,Hn
a (M,X)) ∼= ExtnR(M/aM,X).

Let n = 0, since Γa(M,X) ∼= HomR(M,Γa(X)) so we have

HomR(R/a,Γa(M,X)) ∼= HomR(R/a,HomR(M,Γa(X))

∼= HomR(R/a⊗R M,Γa(X))

∼= HomR(M/aM,Γa(X))

∼= HomR(M/aM,X).

Suppose that n > 0 and that n − 1 is settled. Let E be an injective hull of X and L = E/X . By

hypothesis Γa(M,X) = 0, it follows by 3.1[(i)⇔(ii)] that Γa+Ann(M)(X) = 0. Thus Γa+Ann(M)(E) = 0.

Therefore HomR(R/(a+Ann(M)), E) = 0 and again by using 3.1[(i)⇔(ii)] we have Γa(M,E) = 0. So

by [1, Theorem 2.9 (ii)⇔(iii)] it follows that HomR(M/aM,E) = 0. Applying the derived functors of

Γa(M,−) and HomR(M/aM,−) to the exact sequence 0 → X → E → L → 0, we obtain, for all i > 0,

the isomorphisms:

Hi−1
a (M,L) ∼= Hi

a(M,X) and Exti−1
R (M/aM,L) ∼= ExtiR(M/aM,X).

Note that, from the above isomorphisms we get Hi−1
a (M,L) = 0 for all i < n− 1. Therefore by induction

hypothesis

HomR(R/a,Hn−1
a (M,L)) ∼= Extn−1

R (M/aM,L).

Now using the above isomorphisms we have

HomR(R/a,Hn
a (M,X)) ∼= ExtnR(M/aM,X).

Since Hn
a (M,X) is a–torsion it follows

Ass(Hn
a (M,X)) = Ass(HomR(R/a,Hn

a (M,X))) = Ass(ExtnR(M/aM,X))
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which terminates the induction argument. The proof is completed.

�

In [9, Theorem 4.5], part (a) of the following corollary has been proved when X is a finite module

and R is local ring. We generalize the statement by removing all conditions on X and R. Moreover the

finiteness of AssR(H
n
a (M,X)) under the assumption in (c) has been proved in [9, Theorem 4.5](in local

case) and [17, Theorem 2.4] when X is a finite module. See also [15, Theorem 3.1]. Here we prove, for

an arbitrary module X under the assumption in (c), that the finiteness of AssR(H
n
a (M,X)) is equivalent

to the finiteness of AssR(Ext
n
R(M/aM,X)).

Corollary 3.9. Let X be an R–module and let n be a positive integer.

Put Pn =
⋃n−1

i=0 SuppR(Ext
i
R(M/aM,X)). Then

(a) AssR(Ext
n
R(M/aM,X)) ∪ Pn = AssR(H

n
a (M,X)) ∪ Pn.

(b) AssR(H
n
a (M,X)) ⊂ AssR(Ext

n
R(M/aM,X)) ∪ Pn.

(c) If Hi
a(M,X) has finite support for all i < n, then AssR(H

n
a (M,X)) is a finite set if and only if

AssR(Ext
n
R(M/aM,X)) is a finite set.

Proof. (a) If p /∈
⋃
i<n

SuppR(H
i
a(M,X)), then by 3.8

AssRp
(ExtnRp

(Mp/aMp, Xp)) = AssRp
(Hn

aRp
(Mp, Xp)).

Now it is clear that, p is not in the left side if and only if it is not in the right side by corollary 3.6 (a).

(b) Follows from (a).

(c) Use part (a) and corollary 3.6 (a). �
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