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LOWER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY
MODULES AND THEIR ASSOCIATED PRIMES

M. AGHAPOURNAHR! AND A. VAHIDI?

ABSTRACT. Let R be a commutative Noetherian ring with non-zero identity, a an ideal of R, M a finite
R—module and X an arbitrary R—module. In this paper, we study relations between finiteness of local
cohomology and generalized local cohomology modules in several cases. We characterize the membership
of generalized local cohomology modules in a certain Serre class from lower bounds and we found the
least integer such that these modules belong to that Serre class. Let n be a non-negative integer, we

prove that |J Suppg(Hi(M, X)) = U SuppR(Hé+AnnRM(X)) = U Suppg(Exth(M/aM, X)) and
i<n i<n i<n
if Hi(M,X) = 0 for all i < n then Assg(H7(M, X)) = Assp(Exty(M/aM, X)), these imply that if

Supp g (H% (M, X)) is finite for all i < n, then the finiteness of Assr(H?(M, X)) is equivalent to the
finiteness of Assg(Ext(M/aM, X)).

1. INTRODUCTION

Throughout R is a commutative noetherian ring. a an ideal of R, M a finite (i.e., finitely generated)

R-module and X an arbitrary R—module. The generalized local cohomology modules

H: (M, X) = lim Extl(M/a"M, X).

was introduced by J. Herzog [12]. This concept was studied in the articles [20], [4], [I2] and [21]. Note
that this is in fact a generalization of the usual local cohomology, because if M = R, then Hfl(R, N) =
HQ(N ). Important problems concerning local cohomology are vanishing, finiteness, artinianness and
finiteness of associated primes results (see [14]).

Recall that a subclass of the class of all modules is called Serre class, if it is closed under taking
submodules, quotients and extensions. Examples are given by the class of finite modules, Artinian
modules and weakly Laskerian modules. For unexplained terminology we refer to [5] and [6].

In Section 2, it is shown that for a Serrre subcategory S, if Exty "(M,H (X)) is in S for all r,
0 <r < n. Then H (M, X) is in S that provides the following equivalent conditions:

(i) H:(X) isin S for all 4, 0 < i < n.
(i) H:(M, X) is in S for all 4, 0 < i < n, and for any finite R-module M.

We also discuss the relation between finiteness of HE™ (M, X) and Ext (M, H. (X)) under some con-
dition on s and t. Some applications of it are indicated.

In the third section, In theorem 3.1 and corollary 3.3 we are interested in finding least integer such
that generalized local cohomology modules belong to a certain Serre class that we introduced it in

2, Difinition 2.1] and in consequence for a positive integer n, we prove that [J Supp g (HL (M, X)) =
<n

U Suppr(Hhy ann, 20(X)) = U Suppg(Exty(M/aM, X)) and if H,(M,X) = 0 for all i < n then
i<n i<n
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Assgr(H?(M, X)) = Assg(Exth(M/aM, X)), which implies that if Suppg(H:(M, X)) is finite for all
i < m, then the finiteness of Assp(H} (M, X)) is equivalent to the finiteness of Assgp(Ext’y(M/aM, X)).
We are however avoiding the use of spectral sequences completely in this work, even if we can show

some of our results with this technique. So we provide a more elementary treatment.
2. FINITENESS RESULTS
Lemma 2.1. Let M and X be respectively finite and arbitrary R—modules and a be an ideal of R. Then
(a) if Suppr(M) N Suppr(X) C V(a). Then for all i > 0, we have
H: (M, X) = Ext'ls (M, X).
(b) If f : R — S is a flat ring homomorphism, then
Hi(M,X)®rS = H.g(M @55, X @rS).
Proof. (i) There is a minimal injective resolution E® of X such that Suppg(E?) C Supp(X) for all i > 0.
Since Supp g (Hompg(M, E%)) C Suppg(M) N Suppgr(X) C V(a), Homg(M, E?) is a-torsion. Therefore,
for all ¢ > 0,
H,(M,X) = HY(Tu(Homp(M,E*)))

H'(Hompg(M, E*))
= Exth(M,X),

as we desired.

ii) It is easy and we leave it to the reader. O
(i) y

Theorem 2.2. Let M be a finite R-module and X be an arbitrary R-module such that Exty, " (M, Hy (X))
isin S for allr, 0 <r < n. Then Hy (M, X) is in S.

Proof. We prove by using induction on n. Let n = 0, X = X/T'q(X) and consider the exact sequence
0— Ta(X) = X — X = 0. Since T'q(X) =0, T'e(M,T4(X)) 2 T'y(M, X) from [13, Lemma 2.1]. Now,
by the above lemma, we get Homp(M, (X)) 2 T4 (M, X).

Suppose that n > 0 and that n — 1 is settled. Let X = X/I'4(X) and L = E(X)/X where E(X) is an
injective hull of X. Since I'q(X) = 0 = T'(E(X)), Ta(M, X) = 0 = I'y(M, E(X)) by [13, Lemma 2.1].
Applying the derived functors of I'q(—) and T'q(M, —) to the exact sequence 0 — X — E(X) — L — 0,

we obtain, for all ¢ > 0, the isomorphisms:
H YD) 2 HY(X) and HS Y(M, L) =H,(M,X).
Note that, for all », 0 < r < n — 1, we have

Extyy 7T (MH (L)) = Extly ) (MHT(X))
>~ Extpy "TY(MHP(X)

from the above isomorphisms. Thus Hﬁ_l(M ,L) is in S by the induction hypothesis on L. Therefore
H?(M, X) belongs to S. From the exact sequence 0 — I'q(X) — X — X — 0, we get the exact sequence

oo ExtT (M, Ta(X)) — HP(M, X) — H(M,X) —> ...

which shows that Hy (M, X) isin S. O
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Corollary 2.3. (¢f. [16] Theorem 3.3] ) Let M be a finite R—-module and X be an arbitrary R—module
such that Exty " (M, Hy (X)) is weakly Laskerian for all v, 0 < r < n. Then Hy (M, X) is weakly Laskerian
and so for any submodule T of Hy (M, X)) the set Ass(Hy (M, X)/T) is finite.

Definition 2.4. (see [1l Definition 2.1] and [2| Definition 3.1]) Let M be a Serre subcategory of the
category of R—modules. We say that M is a Melkersson subcategory with respect to the ideal a if for any
a—torsion R-module X, 0 :x a is in M implies that X is in M. M 1is called Melkersson subcategory

when it is a Melkersson subcategory with respect to all ideals of R.

To see some examples of Melkersson subcategories, we refer the reader to [I, Examples 2.4 and 2.5].

The first author and Melkersson in [I, Theorem 2.9 (i)<(vi)] proved the following corollary for Melk-
ersson subcategories but we prove it for any Serre subcategories, also Mafi in [16], Lemma 3.1] proved
it in special case for weakly Laskerian modules using spectral sequences argument, while it is a simple
conclusion of theorem

Corollary 2.5. Let X be an R-module and n be a non-negative integer. Then the following statements
are equivalent.
(i) HL(X) is in S for all i, 0 < i
(ii) H'(M,X) is in' S for all i, 0

<n.
<t < n, and for any finite R—module M .

Theorem 2.6. Let M be a finite R—module, X be an arbitrary R—module and s,t be non-negative integers.
Assume also that:
(i) HSTY(M, X) is in S,
(i) Exty (M, HY (X)) s in S for all v, 1 <r < t, and
(i) Bxts "N (M, HL(X)) is in S for allr, 1 <r <s—1.
Then Exti(M,H. (X)) is in S.
Proof. We prove by induction on t. Let t = 0 and X = X/T'q(X). By Theorem 2 H:™ (M, X) belongs

to S since Ext$, '~ (M, H5 (X)) is in S for all r, 0 < r < s— 1. Applying the derived functor of T'y(M, —)
to the short exact sequence 0 — I'q(X) — X — X — 0, we obtain the long exact sequence

s — TN (M, X) — HY(M, To(X)) — HY (M, X) — -+

which shows that Hj (M, T'4(X)) is in S. Thus Extx(M, (X)) belongs to S by Lemma 21} a).

Now, Suppose that ¢ > 0 and that t— 1 is settled. Let X = X/T4(X) and L = E(X)/X where E(X) is
an injective hull of X. Since I'y(X) =0 = I'y(E(X)), T'a(M, X) = 0 = T'o(M, E(X)) by [13, Lemma 2.1].
Applying the derived functors of I'q(—) and T'q(M, —) to the exact sequence 0 — X — E(X) — L — 0,
we obtain, for all ¢ > 0, the isomorphisms:

Hi-Y(L) 2 H{(X) 2 H{(X) and HY(M,L)=H.(M,X).
By the above isomorphisms, we have

Exty " (M, TV (L) = Exty (M HTT(X)

forr,1<r<t—1, and

Exty "1 (M HYVT(L) 2 Bxegy T (M HT(X)
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for r, 1 <r < s—1 which are in § by assumptions (ii) and (iii).
On the other hand, by the exact sequence 0 — I'y(X) — X — X — 0 and Lemma [Z1{a), we get the

long exact sequence
C— HIPY(M, X)) — HIT (M, X) — Exty (M, To(X)) — - -

which shows that H3™ (M, X) is in S by assumptions (i) and (ii). That is HS*~Y (M, L) is in S. Now,
by the induction hypothesis on L, Ext (M, H, ™ (L)) belongs to S. Therefore Ext, (M, H: (X)) is in S

which terminates the induction argument. The proof is completed. 0

Corollary 2.7. Let M be a finite R—module and X be an arbitrary R—module. Assume that n is a
non-negative integer such that Ext{{i(M, H: (X)) is in S for all i, j with0<i<n—1 and j =n,n+1.
Then Hy (M, X) is in S if and only if Homp (M, H7 (X)) is in S.

Proof. (=) Apply Theorem 26 with s = 0 and ¢ = n.
(<) Apply Theorem -

The following remark is another proof for corollary 27 using [3l, Proposition 3.1]. Also it is the study of
finiteness of kernel and the cokernel of the natural homomorphism f : H7 (M, X) — Hompg (M, H} (X)).

Remark 2.8. Let M be a finite R—module and X be an arbitrary R—-module. Let a be an ideal of R, n be
a non-negative integer and S be a Serre subcategory of the category of R—modules. Consider the natural
homomorphism
f:Hy (M, X) — Hompg(M,H}(X)).

(a) If Ext’s 7 (M, HL(X)) belongs to S for all j < n, then Ker f belongs to S.

(b) If Ext;l;l*j (M,H.(X)) belongs to S for all j < n, then Coker f belongs to S.

(c) If Ext;j(M H’(X)) belongs to S for t = n,n+ 1 and for all j < n, then Ker f and Coker f both
belong to S. Thus Hy (M, X) belongs to S if and only if Hompg (M, Hy (M)) belongs to S.

Proof. We apply [3, Proposition 3.1] with FX = Homp(M,X) , and GX = TI'q(X). Observe that
FG(=)=Tq4(M,—-). O

It is clear from the above remark that, if Exty 7 (M, HZ(X)) = 0 for all j < n, then f is injective and
if Ext?;l*j (M,H(X)) = 0 for all j < n, then f is surjective. If both of this condition fulfilled together,
then f if an isomorphism. See also 2.11]

Corollary 2.9. Let X be an R-module and s,t be non-negative integers such that Hfl(X) is in S for all
i, 0<i<t—1lort+1<r<s+t. Then HST' (M, X) is in S if and only if Exth (M, H: (X)) is in S.

Proof. (=) This follows from Theorem [20]
(<) Apply Theorem 22 with n = s + ¢. O

Theorem 2.10. Let M be a finite R—module, X be an arbitrary R—-module and s,t be non-negative
integers. Assume also that:
(i) Exty " (M HL(X)) =0 forallr, 1<r<t—1ort+1<r<s-+t,
(il) Exti™ (M, HY (X)) =0 forallr, 1 <r <t, and
(iti) Bxty "N (M, HE(X)) =0 forallr, 1 <r <s—1.
Then we have HEY (M, X) = Exth (M, H. (X)).
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Proof. We prove by using induction on t. Let ¢ = 0. We have HS ™ (M, X/T'(X)) = 0 = HS(M, X/T4(X))
from hypothesis (iii) and (i), and Theorem with § = 0. Now the assertion follows by the long exact

sequence
cee—> Hifl(M, X/To(X)) — Extir(M,T4(X)) — H (M, X) — H (M, X/To(X)) — - -

obtained from the short exact sequence 0 — I'q(X) — X — X/T'4(X) — 0.
Assume that ¢ > 0 and that ¢ — 1 is settled. This is sufficiently similar to that of Theorem to be
omitted. We leave the proof to the reader. O

Yassemi in [21, Example 3.6] have given an example to show that the R-modules Hy (M, X) and

Homp(M,H7 (X)) are not always equal. We show that with some condition they are isomorph.

Corollary 2.11. (cf. [13, Proposition 2.3(ii)]) Let M be a finite R—module, X be an arbitrary R-module
and n be a non-negative integer such that Extzgi(M, H:(X)) = 0 for all i, j with 0 < i <n—1 and
j=n,n+1. Then we have H} (M, X) = Homg(M,H(X)).

Proof. Apply Theorem 2.0 with s = 0 and ¢ = n. O

Corollary 2.12. Suppose that M is a finite R—module, X is an R—module, and n,m are non-negative
integers such that n < m. Assume also that H.(X) = 0 for all i, i # n (resp. 0 < i < n—1 or
n+1<i<m). Then we have H;™ (M, X) = Ext'o (M, H? (X)) for all i, i > 0 (resp. 0 <i < m —n).

Proof. For all 4, i > 0 (resp. 0 < i < m — n), apply Theorem 2T0 with s = ¢ and ¢t = n. O

Corollary 2.13. Let M be a finite R—module with pd (M) < 0o and X be an arbitrary R—module. Then
the following statements hold true.

(a) HY(M,X) =0 for all i, i > pdg(M) + cd(a, X).

(b) HRdROD+ed(@X) (hr x) o ExtPdn ) HEA@X) (X)),

Proof. (i) Let n and r be non-negative integers such that n > pdp(M) + cd(a, X) and 0 < r < n. If
r > cd(a, X), then Exty " (M,Hy (X)) = 0. Otherwise n —r > pdz(M) and so Exty "(M,H (X)) = 0.
Thus Hy (M, X)) = 0 by Theorem [2.21

(ii) By apply Theorem with s = pd(M) and ¢ = cd(a, M), the assertion follows. O

Corollary 2.14. Let M and X be two finite R—modules. Assume that d = dimg(X) and p = pdp(X)
are finite. Then HEYY (M, X)) is an a—cofinite artinian R-module.

Proof. This is immediate by [19, Proposition 5.1] and corollary [213] (b). O

3. LOWER BOUNDS FOR FINITENESS OF GENERALZED LOCAL COHOMOLOGY MODULES

The first author and Melkersson in [I, Difinition 2.6 and Example 2.8] introduced the concept of
regular sequences on a module with respect to Serre classes that recovered Poor sequences, filter regular
sequences, generalized regular sequences and sequences in dimension> s on a module where s is a non-
negative integer. They also found the relation of these notion on a finite module and the membership
of the local cohomology modules in Melkersson subcategories . See [I, Theorem 2.9 (i)<(vii)]. Here for
given R—modules M and X we prove a similar characterization for generalized local cohomolgy module
H: (M, X) in Melkersson subcategories. Coung and Hoang in [I0, Theorem 3.1] proved Part [(i)¢(v)] of

the following theorem in the special case of Artinianness when R is a local ring.
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Theorem 3.1. Let M be a finite R—module and X be an arbitrary R—module. Assume also that n is a
non-negative integer and M is a Melkersson subcategory with respect to a of the category of R—modules.
Then the following statements are equivalent.

(i) HL(M,X) is in M for all i, 0 < i <n (for all 7) .

(i) Hiyanm () (X) is in M for all i, 0 <4 < n (for all 7).
(iii) Exth(M/aM,X) is in M for all i, 0 <4 < n (for all 7).
(iv) H'(zy,...,z; X) is in M for all i, 0 < i < n (for all 1), where a + Ann(M) = (z1,...,z,) .

When X s finite these conditions are also equivalent to:

(v) There is a sequence of length n in a+ Ann(M) that is M-regular on X (the same thing for all n).

Proof. (i) = (i). Since H:(M, X) = erAnn(M) (M, X) for all 7, the assertion holds from Corollary 2.5

(i) = (ii). We use induction on n. Let n = 0. Since I'y(M, X) 2 To(M,T(X)) =2 Hompg(M, T (X)),
T ann(v) (Fa(X)) is in M (see [I, Theorem 2.9]). Thus '} ann(ar) (X) is in M.

Assume that n > 0 and that n — 1 is settled. By the induction hypothesis, H3+AHH(M)(X) is in M
for all i, 0 < i < n —1. Apply Theorem with s = 0 and ¢t = n for the ideal a + Ann(M) to see
that Homp (M, Hiy onn(ar) (X)) is in M. Thus annan (Hgpannan (X)) 18 in M and so Hgy ppn(ar) (X)
belongs to M. This completes the induction argument.

(ii) < (iii) & (iv) < (v). Follows from [I, Theorem 2.9 (i) < (iii) < (v) < (vii)]. O

Chu and Tang in [8, Proposition 2.4] proved the following corollary in the local case while it is an
immediate result of theorem B](i)«< (ii)] even in general case. See also [10, Corrollary 3.2], [I1, Theorem
2.2] and [18, Corrollary 2.6].

Corollary 3.2. Lett > 1 and M, X be two finite R-modules, Supp r(H: (M, X)) € Max(R) hold for all
i <t if and only if Hi (M, X) is Artinian for alli < t. In particular, If dim(R/a) = 0 then H:(M, X) is

Artinian for all i.

Proof. Use Theorem B](i)< (ii)] when M is the category of zero dimensional R—module and note that

a zero dimensional Noetherian R—module is Artinian. O

Let X be a finite R—module, a be an ideal of R and M be a Melkersson subcategory with respect
to a such that X/aX is not in M. In [I, Lemma 2.14, Difinition 2.15], the authors proved that every
sequence in a which is M-regular on X can be extend to maximal one and all maximal M-regular on X
in a have the same length. They denote this common length by M—depth,(M). They also proved that
it is the least integer such that H.(X), Ext%(R/a, X) or Koszol cohomology with respect to a are not
in M ( see [I, Theorem 2.18]). Using the Melkersson subcategories of [I, Example 2.4] this notion gives
ordinary depth, filter-depth, generalized depth and s-depth where s is a non-negative integer. See [I]
Example 2.16] and [7], Difinition 3.1]. In the following we prove that M — depth(a + Ann(M), X) is the
least integer such that H. (M, X) , Extlz(M/aM, X) or Koszol cohomology with respect to a 4+ Ann(M)
are not in M. This generalize the result of Bijan-Zadeh [4, Proposition 5.5] when we consider M = {0}.
In the case of Artinianness and finiteness of support it recover [8, Theorem 2.2], [I0, Theorem 3.1], [9
Theorem 4.1] and [I7, Theorem 2.8]. Note that all of these Theorems are in local case while our corollary

is in general case.
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Corollary 3.3. Let M, X be finite R—modules, and M be a Melkersson subcategory with respect to a of
C(R) such that X/(a+ Ann(M))X is not in M. Then

(a) M —depth(a + Ann(M), X) = inf{i : H:(M, X) ¢ M}.

(b) M — depth(a + Ann(M), X) = inf{i : Exth(M/aM, X) ¢ M}.

(¢c) M —depth(a+Ann(M), X) = inf{i: H (z1,...,2; X) ¢ M where a+ Ann(M) = (21,...,2,)}.

Proof. Follows from Theorem B.11 O

Remark 3.4. Theorem [Z1] and corollary can be applied to each Melkersson subcategory mentioned

in [1L Example 2.4 and 2.5] resulting in each case in a number of equivalent conditions

Corollary 3.5. inf{i : H(X) ¢ M} < inf{i : H\(M,X) ¢ M} and the equality hold whenever
Ann(M) C a, e.g., M is faithful.

Proof. 1t is easy to see that M — depth(a, X) < M — depth(a + Ann(M), X) so by [I, Example 2.18
(a)]and B3 the result follows. O

Part (a) of the following corollary in local case has been proved in [0, Lemma 2.8] by Cuong and Hoang

when X is finite R—module but in our proof X is an arbitrary R—module and R is non-local ring.

Corollary 3.6. Let M be a finite R—module then
(a) U Suppr(Ho(M, X)) = U Suppr(Hoyanny (X)) = U Suppr(Extr(M/aM, X)) for every

<n <n <n
R-module X and every positive integer n.

(b) If X is a finite R—module, then |J SuppR(Hg(M,X)) is a closed set for each positive integer n.
i<n
In particular | Suppr(Hy (M, X)) is a closed set.

Proof. (a) Respectively by Lemma [2ZIIb), Theorem Bl and [I, Theorem 2.9 (i)« (ii)«>(iii)] we have

pé¢ U Suppp(Hi(M, X)) & H (M, X), = 0 Vi <n
<n
= HfuRp (My, Xp) =0 Vi <n
At HilRp+Anan M, (Xp) =0 Vi<n
= Hg—l—AnnR M(X)p =0 Vi<n
< b ¢ 9 SuppR(qu+AnnR M(X))
and

hé L<J SuppR(HZJFA““RM(X)) At Het anng m(X)p =0 Vi<n
= HzcllRp—l—Anan M, (Xp) =0 Vi<n
= Ethfzp (Rp/aRy + Anng, My, X,) =0 Vi<n
& Exty, (My/aRy My, Xy) =0 Vi<n
< Ext%(M/aM,X)p:() Vi<mn
& p¢ U Suppg(Extyp(M/aM, X))

<n

as we desired.
(b) Use this fact that the support of a finite R—module is a closed set, then use [5, Theorem 3.3.1] and
part (a). O
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The vanishing of generalized local cohomology modules from upper bounds needs special condition
and in all of them M must has finite projective dimension for example see [21, Theorem 2.5 and 3.7] , [8]
Theorem 3.1] or corollary 213 (a). However, the following result together with corollary (a) shows
that there is a union of finitely many supports of generalized local cohomology modules so that the other

supports can be viewed as its subset even if M has infinite projective dimension.
Corollary 3.7. Let M be a finite R-module and n = ara(a + Anng M) then

Supp (g (M, X)) € ) Suppa(Hiy anng (X))

i<n

for alli > 0.

Cuong and Hoang in [I0, Theorem 2.4] proved the following theorem when X is a finite module and

n = grade(a + Anng M, X). Our proof is more general and its method is completely different.

Theorem 3.8. Let M be a finite R—module and a be an ideal of R. Let X be an arbitrary R—module
such that Hy(M, X) = 0 for all i < n (in particular, when X is finite and n = grade(a + Anng M, X))
then

Ass(Hy (M, X)) = Ass(Exty(M/aM, X))
Proof. We first prove by using induction on n that
Homp(R/a,Hy (M, X)) = Extyp(M/aM, X).
Let n =0, since T'y(M, X) = Homp(M,T'1(X)) so we have

Homp(R/a,Tq(M,X)) = Homp

Homp

R/a,Hompg(M,T4(X))
R/a®@p M,T(X))
M/aM, Ty(X))
M/aM, X).

IR

Homp

o~ o~~~

1%

HOHlR

Suppose that n > 0 and that n — 1 is settled. Let F be an injective hull of X and L = E/X. By
hypothesis I'q (M, X) = 0, it follows by B.I[(i)<>(ii)] that T'ayapnnar)(X) = 0. Thus Tay apnarn(E) = 0.
Therefore Hompg(R/(a + Ann(M)), E) = 0 and again by using B][(i)<(ii)] we have I'y(M, E) = 0. So
by [1, Theorem 2.9 (ii)«<(iii)] it follows that Hompg(M/aM,E) = 0. Applying the derived functors of
I'a(M,—) and Hompg(M/aM, —) to the exact sequence 0 - X — E — L — 0, we obtain, for all ¢ > 0,

the isomorphisms:
H Y (M, L) = H,{(M,X) and Extly'(M/aM, L) = Exth(M/aM, X).
Note that, from the above isomorphisms we get H, ' (M, L) = 0 for all i < n — 1. Therefore by induction
hypothesis
Homp(R/a, HZ ™' (M, L)) = Exty ' (M/aM, L).
Now using the above isomorphisms we have
Homp(R/a,Hy (M, X)) 2 Exti(M/aM, X).
Since Hy (M, X) is a—torsion it follows

Ass(H} (M, X)) = Ass(Hompg(R/a, H; (M, X))) = Ass(Extp(M/aM, X))
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which terminates the induction argument. The proof is completed.
|

In [ Theorem 4.5], part (a) of the following corollary has been proved when X is a finite module
and R is local ring. We generalize the statement by removing all conditions on X and R. Moreover the
finiteness of Assg(Hy (M, X)) under the assumption in (¢) has been proved in [9] Theorem 4.5](in local
case) and [I7, Theorem 2.4] when X is a finite module. See also [I5] Theorem 3.1]. Here we prove, for
an arbitrary module X under the assumption in (c), that the finiteness of Assr(Hj (M, X)) is equivalent
to the finiteness of Assg(Extyh(M/aM, X)).

Corollary 3.9. Let X be an R-module and let n be a positive integer.
Put P, = U?;Ol Supp g (Exth(M/aM, X)). Then
(a) Assgp(Extp(M/aM,X))U P, = Assg(H; (M, X)) U P,.
(b) Assp(H3 (M, X)) C Assp(Extip(M/aM,X))UP,.

(
(c) If HL(M, X) has finite support for all i < n, then Assgr(H™(M, X)) is a finite set if and only if

a

Assp(Exty(M/aM, X)) is a finite set.

Proof. (a) Ifp ¢ U Supp g (H: (M, X)), then by B.8

<n
Assg, (Ext}%p (My/aM,, X,)) = Assg, (H"Rp (M,, X,)).

a

Now it is clear that, p is not in the left side if and only if it is not in the right side by corollary 3.0l (a).
(b) Follows from (a).
(c) Use part (a) and corollary 3.6l (a). O
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