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Abstract. The general concept of nonlinear self-adjointness of differential
equations is introduced. It includes the linear self-adjointness as a par-
ticular case. Moreover, it embraces the strict self-adjointness and quasi
self-adjointness introduced earlier by the author. It is shown that the equa-
tions possessing the nonlinear self-adjointness can be written equivalently in
a strictly self-adjoint form by using appropriate multipliers. All linear equa-
tions possess the property of nonlinear self-adjointness, and hence can be
rewritten in a nonlinear strictly self-adjoint. For example, the heat equation
ut −∆u = 0 becomes strictly self-adjoint after multiplying by u−1. Conser-
vation laws associated with symmetries can be constructed for all differen-
tial equations and systems having the property of nonlinear self-adjointness.
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1 Preliminaries

The concept of self-adjointness of nonlinear equations was introduced [1]
for constructing conservation laws associated with symmetries of differential
equations. To extend the possibilities of the new method for constructing
conservation laws [2] the notion of quasi self-adjointness was used in [3]. I
suggest here the general concept of nonlinear self-adjointness. It embraces
the strict self-adjointness and quasi self-adjointness introduced earlier as
well as the usual linear self-adjointness. Moreover, it will be shown that all
linear equations possess the property of nonlinear self-adjointness.

It is demonstrated that the equations possessing the nonlinear self-
adjointness can be written equivalently in a strictly self-adjoint form by
using appropriate multipliers. Consequently, any linear equation can be
rewritten in an equivalent nonlinear form which is strictly self-adjoint. For
example, the heat equation ut −∆u = 0 becomes strictly self-adjoint if we
rewrite it in the form u−1(ut −∆u) = 0.
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The construction of conservation laws demonstrates a practical signifi-
cance of the nonlinear self-adjointness. Namely, conservation laws can be

associated with symmetries for all linear and nonlinear self-adjoint differ-

ential equations.

1.1 Notation

Let x = (x1, . . . , xn) be independent variables. We consider two sets of
dependent variables, u = (u1, . . . , um) and v = (v1, . . . , vm) with respective
partial derivatives

u(1) = {uα
i }, u(2) = {uα

ij}, . . . , u(s) = {uα
i1···is

}

and
v(1) = {vαi }, v(2) = {vαij}, . . . , v(s) = {vαi1···is},

where

uα
i = Di(u

α) , uα
ij = DiDj(u

α) , uα
i1···is

= Di1 · · ·Dis(u
α),

vαi = Di(v
α) , vαij = DiDj(v

α) , vαi1···is = Di1 · · ·Dis(v
α).

Here and in what follows Di denotes the operator of total differentiation:

Di =
∂

∂xi
+uα

i

∂

∂uα
+ vαi

∂

∂vα
+uα

ij

∂

∂uα
j

+ vαij
∂

∂vαj
+uα

ijk

∂

∂uα
jk

+ vαijk
∂

∂vαjk
+ · · · .

1.2 Adjoint equations

We will consider systems of m differential equations (linear or non-linear)

Fα

(

x, u, u(1), . . . , u(s)

)

= 0, α = 1, . . . , m, (1)

with m dependent variables. The adjoint equations to equations (1) are
written [1]

F ∗

α(x, u, v, u(1), v(1), . . . , u(s), v(s)) = 0, α = 1, . . . , m, (2)

with the adjoint operator F ∗

α defined by

F ∗

α(x, u, v, u(1), v(1), . . . , u(s), v(s)) =
δL

δuα
, (3)

where L the formal Lagrangian for equations (1) given by

L =
m
∑

β=1

vβFβ(x, u, u(1), . . . , u(s)) (4)

2



and δ/δuα is the variational derivative

δ

δuα
=

∂

∂uα
+

∞
∑

s=1

(−1)sDi1 · · ·Dis

∂

∂uα
i1···is

·

For a linear equation L[u] = 0 the adjoint operator defined by (3) is identical
with the classical adjoint operator L∗[v] determined by the equation vL[u]−
uL∗[v] = Di(p

i).
The adjointness of linear operators L is a symmetric relation, namely

(L∗)∗ = L. Nonlinear equations do not possess this property so that, in
general, (F ∗)∗ 6= F.

1.3 Self-adjointness

A linear operator L is said to be self-adjoint if L∗ = L. Then we also say that
the equation L[u] = 0 is self-adjoint. Thus, the self-adjointness of a linear
equation L[u] = 0 means that the adjoint equation L∗[v] = 0 coincides with
L[u] = 0 upon the substitution

v = u. (5)

This property has been extended to nonlinear equations [1] by the following
definition.
Definition 1. Equation (1) is self-adjoint if the adjoint equation (2) be-
comes equivalent to the original equation (1) upon the substitution (5).

For example, the Korteweg-de Vries (KdV) equation ut = uxxx + uux is
self-adjoint. Indeed, its adjoint equation (2) has the form vt = vxxx + uvx
and coincides with the KdV equation upon setting v = u.

The concept of quasi self-adjointness introduced in [3] generalizes Defi-
nition 1 by replacing (5) with the substitution of the form

v = ϕ(u), ϕ′(u) 6= 0. (6)

Thus, equation (1) is quasi self-adjoint if the adjoint equation (2) becomes
equivalent to equation (1) upon the substitution (6). Let us consider as an
example the equation

ut − u2uxx = 0 (7)

describing the nonlinear heat conduction in solid hydrogen 1. Its adjoint
equation (2) is

vt + 4uvuxx + u2vxx + 4uuxvx + 2vu2
x = 0.

1It is recalled that (7) is related to the classical 1+1-dimensional heat equation by a
differential substitution [4] or a reciprocal transformation [5]. This connection, together
with its extensions, allows the analytic solution of certain moving boundary problems in
nonlinear heat conduction [6].
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It becomes equivalent to equation (7) not after the substitution (5) but after
the following substitution of the form (6):

v = u−2 . (8)

1.4 Theorem on conservation laws

We will use the following statement proved in [2].
Theorem 1. Any infinitesimal symmetry (Lie point, Lie-Bäcklund, nonlo-
cal)

X = ξi(x, u, u(1), . . .)
∂

∂xi
+ ηα(x, u, u(1), . . .)

∂

∂uα

of equations (1) leads to a conservation law Di(C
i) = 0 constructed by the

formula

C i = ξiL+W α
[ ∂L

∂uα
i

−Dj

( ∂L

∂uα
ij

)

+DjDk

( ∂L

∂uα
ijk

)

− . . .
]

(9)

+Dj

(

W α
)

[ ∂L

∂uα
ij

−Dk

( ∂L

∂uα
ijk

)

+ . . .
]

+DjDk

(

W α
)

[ ∂L

∂uα
ijk

− . . .
]

,

where W α = ηα− ξjuα
j and L is the formal Lagrangian (4). In applying the

formula (9) the formal Lagrangian L should be written in the symmetric
form with respect to all mixed derivatives uα

ij, uα
ijk, . . . .

2 Definition and main properties of nonlin-

ear self-adjointness

2.1 Heuristic discussion

Definition (4) of the formal Lagrangian L shows that the vector (9) in-
volves the ‘non-physical’ variable v. Therefore the validity of the conser-
vation equation Di(C

i) = 0 requires that we should take into account not
only equations (1) but also the adjoint equations (2). But if the system (1)
is quasi self-adjoint (in particular self-adjoint), one can eliminate v via the
substitution (6) and obtain a conservation law for equations (1).

However, the quasi self-adjointness is not the only case when the vari-
ables v can eliminated from the conserved vector (9). Let us note first of
all that we can relax the condition ϕ′(u) 6= 0 in (6) since it is used only to
guarantee the equivalence of equation (2) to equation (1) after eliminating
v by setting v = ϕ(u). In constructing conservation laws, it is important
only that v does not vanish identically, because otherwise L = 0 and (9)
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gives the trivial vector C i = 0. Therefore we can replace condition ϕ′(u) 6= 0
(6) with the weaker condition ϕ(u) 6= 0. Secondly, the substitution (6) can
be replaced with a more general substitution where ϕ involves not only the
variable u but also its derivatives as well as the independent variables x.
This will be a differential substitution

vα = ϕα(x, u, u(1), . . .), α = 1, . . . , m. (10)

The only requirement is that not all ϕα vanish. Moreover, ϕ may involve
nonlocal variables, e.g. D−1

i (uα). Then it is more convenient to determine
v implicitly by

Φα(x, u, u(1), . . . ; v, v(1), . . .) = 0, α = 1, . . . , m. (11)

2.2 Definition

In this paper we will consider the substitutions (10) that do not involve the
derivatives and use the following definition of nonlinear self-adjointness.
Definition 2. The system (1) is said to be self-adjoint if the adjoint system
(2) is satisfied for all solutions u of equations (1) upon a substitution

vα = ϕα(x, u), α = 1, . . . , m, (12)

such that
ϕ(x, u) 6= 0. (13)

In other words, the following equations hold:

F ∗

α

(

x, u, ϕ(x, u), . . . , u(s), ϕ(s)

)

= λβ
α Fβ

(

x, u, . . . , u(s)

)

, α = 1, . . . , m,
(14)

where λβ
α are undetermined coefficients. Here ϕ is the m-dimensional vector

ϕ = (ϕ1, . . . , ϕm) and ϕ(σ) are its derivatives,

ϕ(σ) = {Di1 · · ·Diσ

(

ϕα(x, u)
)

}, σ = 1, . . . , s.

Eq. (13) means that not all components ϕα(x, u) of the vector ϕ vanish
simultaneously.

2.3 Properties

Proposition 1. The system (1) is self-adjoint in the sense of Definition
2 if and only of there exist functions vα given by (12) and satisfying the
condition (13) that solve the adjoint system (2) for all solutions u(x) of
equations (1).
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Proposition 2. Any linear equation is self-adjoint.
Proof. This is a consequence of the fact that the adjoint equation L∗[v] = 0
to the linear equation L[u] = 0 does not involve the variable u. Therefore
any non-vanishing solution v = ϕ(x) of the adjoint equation gives a vector
function (12) which is independent of u and hence satisfies the requirement
of Definition 2.

In the case of one dependent variable, i.e. m = 1, we can easily prove
the following.
Proposition 3. Equation (1) is self-adjoint in the sense of Definition 2 if
and only if it becomes self-adjoint in the sense of Definition 1 upon rewriting
in the equivalent form

µ(x, u)F
(

x, u, u(1), . . . , u(s)

)

= 0, µ(x, u) 6= 0, (15)

with an appropriate multiplier µ(x, u). In particular, any linear equation
can be made self-adjoint in the sense of Definition 1.
Proof. The computation reveals the following relation between the multi-
plier (15) and the substitution (12):

ϕ(x, u) = uµ(x, u). (16)

Namely, if equation (1) is self-adjoint in the sense of Definition 2 with the
substitution (12), then equation (15) whose multiplier µ is determined by
(16) is self-adjoint in the restricted sense of Definition 1, and visa versa.

2.4 Example: the Kompaneets equation

Let us write the Kompaneets equation [7] in the form

ut =
1

x2
Dx

[

x4(ux + u+ u2)
]

. (17)

The reckoning shows that the adjoint equation to equation (17),

vt + x2vxx − x2(1 + 2u)vx + 2(x+ 2xu− 1)v = 0,

does not have a solution of the form (6) but it has the solution of the form
(12), namely

v = x2.

Hence, equation (17) is not quasi self-adjoint, but it is self-adjoint in the
sense of Definition 2. Equation (16) provides the multiplier µ = x2/u. Hence
the Kompaneets equation becomes self-adjoint in the sense of Definition 1
if we write it in the form

x2

u
ut =

1

u
Dx

[

x4(ux + u+ u2)
]

. (18)
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3 Time-dependent conservation laws for the

KP equation

We will use the KP equation (Kadomtsev-Petviashvili [8])

utx − uuxx − u2
x − uxxxx = uyy (19)

written as the system (see, e.g. [9], p. 241, and the references therein)

ut − uux − uxxx − ωy = 0, ωx − uy = 0. (20)

3.1 Self-adjointness

The formal Lagrangian (4) for equations (20) is written

L = v(ut − uux − uxxx − ωy) + z(ωx − uy) (21)

and equation (3) yields the following adjoint system to the system (20):

vt − uvx − vxxx − zy = 0, zx − vy = 0. (22)

Equations (22) become identical with the KP equations (20) upon the sub-
stitution

v = u, z = ω. (23)

It means that the system (20) is self-adjoint.

3.2 Symmetries

The system (20) admits the infinite-dimensional Lie algebra spanned by the
operators

Xf = 3f
∂

∂t
+ (f ′x+

1

2
f ′′y2)

∂

∂x
+ 2f ′y

∂

∂y

−
[

2f ′u+ f ′′x+
1

2
f ′′′y2

] ∂

∂u
−

[

3f ′ω + f ′′yu+ f ′′′xy +
1

6
f (4)y3

] ∂

∂ω
,

(24)

Xg = 2g
∂

∂y
+ g′y

∂

∂x
− g′′y

∂

∂u
−
[

g′u+ g′′x+
1

2
g′′′y2

] ∂

∂ω
, (25)

Xh = h
∂

∂x
− h′

∂

∂u
− h′′y

∂

∂ω
, (26)

where f, g, h are three arbitrary functions of t. We will ignore the obvious
symmetry

Xα = α(t)
∂

∂ω
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describing the addition to ω an arbitrary function of t.
Note, that the operators (24)-(26) considered without the term ∂

∂ω
span

the infinite-dimensional Lie algebra of symmetries of the KP equation (19).
They coincide (up to normalizing coefficients) with the symmetries of the
KP equation that were first obtained by F. Schwarz in 1982 (see also [10],
[11] and the references therein).

3.3 Conservation laws

Noether’s theorem is not applicable to the system (20). But Theorem 1 from
Section 1.4 is applicable. Applying formula (9) to the formal Lagrangian
(21) and to the symmetry (24), then eliminating v, z by the substitution
(23) we obtain the conservation law

[

Dt(C
1) +Dx(C

2) +Dy(C
3)
]

(20) = 0 (27)

with the following components of the conserved vector C = (C1, C2, C3) :

C1 = −
1

2
f ′u2 −

(

xf ′′ +
1

2
y2f ′′′

)

u,

C2 =

(

uuxx +
1

3
u3 −

1

2
u2
x −

1

2
ω2

)

f ′ +

(

xuxx +
1

2
xu2 − ux

)

f ′′

+
1

4

(

y2u2 + 2y2uxx − 4xyω
)

f ′′′ −
1

6
y3ωf (4),

C3 = uωf ′ + xωf ′′ +

(

xyu+
1

2
y2ω

)

f ′′′ +
1

6
y3uf (4).

(28)

The conservation equation (27) for the vector (28) has the form

Dt(C
1) +Dx(C

2) +Dy(C
3)

=

(

uf ′ + xf ′′ +
1

2
y2f ′′′

)

(uxxx + uux + ωy − ut)

+

(

ωf ′ + xyf ′′′ +
1

6
y3f (4)

)

(uy − ωx).

(29)

Since f = f(t) is an arbitrary function, (28) provides an infinite set of
conserved vectors. Note that the subscript (20) in Eq. (27) refers to re-
striction on the solution manifold of Eqs. (20). I did not find the conserved
vector (28) with arbitrary f(t) in previous publications, e.g. in [12]. The
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symmetries (25) and (26) lead to the conserved vectors

C1 = yug′′,

C2 =

(

xω − yuxx −
1

2
yu2

)

g′′ +
1

2
y2ωg′′′,

C3 = −(xu + yω)g′′ −
1

2
y2ug′′′

(30)

and

C1 = uh′,

C2 = yωh′′ −

(

uxx +
1

2
u2

)

h′,

C3 = −ωh′ − yuh′′,

(31)

respectively.

4 Conservation laws for linear equations

One can obtain conserved vector by formula (9) for any linear equation be-
cause linear equations are self adjoint according to Proposition 2. Consider,
e.g. the heat equation

ut −∆u = 0 (32)

with any number of spatial variables x = (x1, . . . , xn). Applying formula (9)
to X = u ∂

∂u
we obtain the conservation law [Dt(τ) +∇ · χ](32) = 0 with

τ = ϕ(t, x)u, χ = u∇ϕ(t, x)− ϕ(t, x)∇u, (33)

where v = ϕ(t, x) is an arbitrary solution of the adjoint equation vt+∆v = 0
to equation (32). The conserved vector (33) embraces the conserved vectors
associated with all other symmetries of equation (32). In particular, the
projective symmetry

X = t2
∂

∂t
+ txi ∂

∂xi
−

|x|2 + 2nt

4
u
∂

∂u

of equation (32) gives the conserved vector

τ =
|x|2 − 2nt

4
u, χi =

xi

2
u−

|x|2 − 2nt

4
ui .

It corresponds to (33) with the particular solution v = (|x|2 − 2nt)/4 of the
adjoint equation. In one-dimensional case (n = 1), it is shown in [13] by
direct calculation that all conserved vectors for the heat equation ut = uxx

have the form (33). See also [14].
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