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EHRHART POLYNOMIALS OF INTEGRAL SIMPLICES
WITH PRIME VOLUMES

AKIHIRO HIGASHITANI

ABSTRACT. For an integral convex polytope P C RY of dimension d, we call §(P) =
(60,01,...,04) its d-vector and vol(P) = Z?:o d; its normalized volume. In this paper,
we will establish the new equalities and inequalities on §-vectors for integral simplices
whose normalized volumes are prime. Moreover, by using those, we will classify all the
possible §-vectors of integral simplices with normalized volume 5 and 7.

INTRODUCTION

One of the most fascinating problems on enumerative combinatorics is to characterize
the d-vectors of integral convex polytopes.

Let P € RY be an integral convex polytope of dimension d, which is a convex polytope
any of whose vertices has integer coordinates. Let 9P denote the boundary of P. Given
a positive integer n, we define

i(P,n) = |nPNZY|, i*(P,n)=n(P\oP)NZ"|,

where nP = {na : @ € P} and |X]| is the cardinality of a finite set X. The enumerative
function i(P,n) is called the Ehrhart polynomial of P, which was studied originally in the
work of Ehrhart [1]. The Ehrhart polynomial has the following fundamental properties:
e i(P,n) is a polynomial in n of degree d. (Thus, in particular, i(P,n) can be defined
for every integer n.)
e i(P,0)=1.
e (loi de réciprocité) i*(P,n) = (—1)%(P, —n) for every integer n > 0.
We refer the reader to [2, Part II] and [7, pp. 235-241] for the introduction to the theory
of Ehrhart polynomials.
We define the sequence dg, 01, d2, . .. of integers by the formula

(1) (1— N4+t (i i(P,n)A") = icw.
n=0 =0

Then, from a fundamental result on generating function ([7, Corollary 4.3.1]), we know
that §; = 0 for every i > d. We call the integer sequence

(P) = (00,01,...,04),
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which appears in (1), the d-vector of P. In addition, by the reciprocity law, one has

N e
nZ::lz (P,n)A\" = (L W&

The d-vector has the following fundamental properties:

0o =1 and §; = ”PQZN‘ — (d—l-l).

dq = |(P\ OP) N Z"|. Hence, we have §; > &,.

Each ¢; is nonnegative ([8]).

If (P\ OP)NZY is nonempty, then one has §; < §; for every 1 <i <d— 1 ([3]).
When d = N, the leading coefficient (Efzo 9i)/d! of i(P,n) is equal to the usual
volume of P ([7, Proposition 4.6.30]). In general, the positive integer vol(P) =
Z?:o d; is said to be the normalized volume of P.

Recently, the d-vectors of integral convex polytopes have been studied intensively. For
example, see [6], [10] and [11].

There are two well-known inequalities on 0-vectors. Let s = max{i : §; # 0}. One is
(2) do+ 0+ 46 <ds+0ds_ 1+ + 54, 0<i<]|s/2],
which is proved in Stanley [9], and another one is
(3) dqg+04—1+-+004—i <o +d+--+0+0ds, 0<i<|(d-1)/2],
which appears in Hibi [3, Remark (1.4)].

When Z?:o d; < 3, the above inequalities (2) and (3) characterize the possible d-vectors
completely ([5]). Moreover, when Z?:o 0; = 4, the possible d-vectors are determined com-
pletely ([4, Theorem 5.1]) by (2) and (3) together with an additional condition. Further-
more, by the proofs of [5, Theorem 0.1] and [4, Theorem 5.1], we know that all the possible
d-vectors can be realized as the d-vectors of integral simplices when Z?:o 6; < 4. However,
unfortunately, it is not true when Z?:o d; = 5. (See [4, Remark 5.2].) Therefore, for the
further classifications of the d-vectors with Zf:(] d; > 5, it is natural to investigate the
d-vectors of integral simplices. In this paper, in particular, we establish some new con-

straints on d-vectors for integral simplices whose normalized volumes are prime numbers.
The following theorem is our main result of this paper.

Theorem 0.1. Let P be an integral simplex of dimension d and 6(P) = (09,01, ..,0q)
its d-vector. Suppose that Z?:o 0; = p is an odd prime number. Let iy,...,i,—1 be the
positive integers such that Z?:o Gith = 14t oottt ith 1 <4y < --0 < ip—1 < d.
Then,

(a) one has
i1 +ip1 =g+ ipo2=" =i 12 tipt)e <d+1;
(b) one has
i +ip >iggy for 1<k<{l<p—1 with k+¢<p-—1.
We prove Theorem 0.1 in Section 1 via the languages of elementary group theory.

As an application of Theorem 0.1, we give a complete characterization of the possible

d-vectors of integral simplices when Z?:o 6; =5 and 7.
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Theorem 0.2. Given a finite sequence (8o, d1,...,04) of nonnegative integers, where 6y =
1 and Z?:O 8; = 5, there exists an integral simplex P C R of dimension d whose §-vector
coincides with (09, d1,...,0q) if and only if i1,...,i4 satisfy i1 +i4g =is+i3 < d+ 1 and
i +1p > tpyp for 1 <k <0 <4 with k+ 40 < 4, where i1,...,44 are the positive integers
such that Y0 6ith = 14+ - 44 with 1 <4y < --- < iy < d.

Theorem 0.3. Given a finite sequence (8o, d1,...,04) of nonnegative integers, where 6y =
1 and Z?:O 8; =7, there exists an integral simplex P C R? of dimension d whose §-vector
coincides with (09,01, . ..,0q) if and only if i1, ..., ig satisfy i1+ig = io+is = i3 +iq4 < d+1
and ig+1ip > ipyg for 1 < k < € <6 with k+¢ < 6, where i1,...,ig are the positive integers
such that Y0 6ith = 14+ - 46 with 1 <4y < --- < ig < d.

By virtue of Theorem 0.1, the “Only if” parts of Theorem 0.2 and 0.3 are obvious. A
proof of the “If” part of Theomre 0.2 is given in Section 2 and that of Theorem 0.3 is
given in Section 3.

Finally, we note that we cannot characterize the possible §-vectors of integral simplices
with higher prime normalized volumes only by Theorem 0.1. In fact, since the volume of
an integral convex polytope containing a unique integer point in its interior has an upper
bound, if p is a sufficiently large prime number, then the integer sequence (1,1,p — 3,1)
cannot be a d-vector of some integral simplex of dimension 3, although (1,1,p — 3,1)
satisfies all the conditions of Theorem 0.1.

1. A PROOF OF THEOREM 0.1

The goal of this section is to give a proof of Theorem 0.1.
First of all, we recall from [2, Part II] the well-known combinatorial technique how to
compute the d-vector of an integral simplex.
Given an integral simplex F in RY of dimension d with the vertices vy, v1,...,vq, We
set
F= {(a,1) e RV+L . aeF},

which is an integral simplex inNRN *+1 of dimension d with the vertices (vo, 1), (v1,1),.. ., (va, 1).
Clearly, we have i(F,n) = i(F,n) for all n. Let

C(F)={rB:BeF,0<rcQ}

Then one has

i(F,n) = H(a,n) €C(F): a GZN}‘.

Each rational point a € C(F) has a unique expression of the form a = Z?:o r;(v;, 1) with
0 <r; € Q. Let S be the set of all points o € C(F) NZN*! of the form a = Z?:o ri(vi, 1),
where r; € Q with 0 < r; < 1. We define the degree of o = Z?:o ri(vi, 1) € C(F) N zZN+1
with deg(a) = Z?:O ri, i.e., the last coordinate of a.

Lemma 1.1. Let §; be the number of integer points o € S with deg(a) = i. Then,

O(F) = (0,01, --,04q)-
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Notice that the elements of S form an abelian group with a unit (0,...,0) € S. For
a and 8 in S with a = Z?:O ri(vi, 1) and B = Z?:o si(vi, 1), where r;,8; € Q with
0 <rj,s; <1, we define the operation in S by setting a® 3 := Z?:o{ri + s;}(v;, 1), where
{r} = r—|r] denotes the fractional part of a rational number r. (Throughout this paper,
in order to distinguish the operation in S from the usual addition, we use the notation &,
which is not a direct sum.)

We prove Theorem 0.1 by using the above notations.

A proof of Theorem 0.1. Let vy, v1,...,vq be the vertices of the integral simplex P and S
the group appearing above. Then, since vol(P) = p is prime, it follows from Lemma 1.1
that the order of S is also prime. In particular, S is a cyclic group.

(a) Write giy, ..., gi,, € S\{(0,...,0)} for (p—1) distinct elements with deg(g;;) = ;
for 1 < j < p-—1, that is, S = {(0,...,0),8iy,---,9,_,}- Then, for each g, there
exists its inverse —g;; in S\ {(0,...,0)}. Let —g;; = gi - If g;; has the expression
9i; = ijo r¢(vq, 1), where ry € Q with 0 < 7, < 1, then its inverse has the expression
gi, = Egzo{l —r¢}(vg, 1). Thus, one has

d d
deg(gi,) + deg( gz qu+{1_7‘q} qu‘i'l_rq =d+1
q=0 q=0
forall1<j<p-—1.
d (1) d (2

For ji,ja € {1,...,p—1} with j1 # ja,let g;; =3 _o7q (vg, 1) and g, = >0 _o7q (vg, 1)
Since S is a cyclic group with a prime order, g; ;, generates S, which implies that we can
write g;;, and gir as follows:

2

J1 J1

iz, = 9ijy O D Giys gy, =91, DDy
S—_———

t

~+

for some integer ¢t € {2,...,p — 1}. Thus, we have

d
Do {1 - rP}) = deg(giy,) + deg(gy )

q=0

d
= deg(giy, © -+~ @9y, )+ deglgy, - = > ({er} + {1 =),

N———— _,—/ =
t t =0

Moreover, g;; @& -+ & gi; = (0,...,0) holds. Thus, we have {prél)} =0forall 0 <g¢q<d.
—_———

p

(1)

Again, since p is prime, it follows that the denominator of each rational number rg ’ must

be p. Hence, if 0 < h(ll) < 1 (resp 0 < {1 rql } < 1), then 0 < {th(]l)} < 1 (resp.

0 < {t(1 - ri )} < 1), so rq )+ {1- } = {t }+ {t(1 7‘((11))} = 1. In addition

obviously, 1f rq = {1 — } =0, then {trq b= {1 — él))} 0, so rq ) + {1 -

rgy = {trg} + {1 >}=0. Thus, deg(g,,) +deg(gy, ) = deg(gy,,) + deg(gy ). i,
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ij, + 1, = ij, +1},. Hence, we obtain
iy = =gy i (= ez gy = = i1 T i) Sd+ L

Our work is to show that i’ =i,_; forall 1 <j < (p—1)/2.
First, we consider ¢j. Suppose that ¢} # i,_;. Then, there is m € {1,...,p — 2} with
iy =i < ip—1. Thus, it follows that

. -/ . ./ . . . . -/ .
tp—1+ i1 =0+ =1+ <2+ lp1 < lp—1 T Ip—1,

a contradiction. Thus, #) must be i,_1. Next, we consider i). Since gil, # gi, and
9i, # 9i, 1, we may consider @ among {iz,...,i,—2}. Then, the same discussion can be
g . g y .
done. Hence, ) = ip_o. Similarly, we have 15 = ip_3,... s p—1y/2 = Upt1)/2-
Therefore, we obtain the desired conditions

11 +ip_1 =12 +ipo=""= i(p—l)/2 + i(p+1)/2 <d+1.

(b) Write giy,..., i, € S\ {(0,...,0)} for ¢ distinct elements with deg(g;,) = i; for
1 <j </ Let A= {gi,...,9,} Then there are k distinct elements h; ,...,h; in
A with deg(h;;) = i; for 1 < j < k satisfying [A| + |B| = k+¢ < p — 1, where B =
{hiy,..., hi,} € A. Moreover, for each g € A®@ B ={a®b:a € Abec B}, g satisfies
deg(g) < iy + i¢. In fact, for g;; € A and hij, € B, if they have the expressions

d d
9i;, = qu(vq, 1) and h;, = Zr;(vq, 1),
q=0 q=0
where g, 7, € Q with 0 <rg,r; < 1, then one has
d d
deg(gi; ® hiy,) = > {rg+re} < (rg+7h) =iy +ij <ix + e,
q=0 q=0

Now, Lemma 1.2 below guarantees that there exist at least k elements in A @ B\ AU
{(0,...,0)}. In addition, each g;; in A satisfies deg(gi;) < i¢ < iy +dp. Thus, we can
say that there exist at least (k + ¢) distinct elements in S\ {(0,...,0)} whose degrees
are at most iy, + 7. From the definition of 41,...,4,_1, this means that iy, + iy > i34y, as
desired. t

Lemma 1.2. Let G be a group with prime order p, where its operation is denoted by +,
and let G* = G\ {0}, where 0 is the unit of G. We choose two subsets (not subgroups) A
and B of G satisfying B C A C G* and |A|+ |B| < p—1 and we set C = G*\ A. Then
one has

(4) [(A+B)nC| =B,
where A+ B={a+b:a€ Abc B}.

Proof. Let A ={ay,...,as} and B = {b1,...,br}. We show the assertion by induction on

k.
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First, we consider k¥ = 1, i.e., B = {b1}. Then, £+ 1 < p—1. For 1 < i < ¢, let
a; + by = a; € G. Then we have

14
(0+b1)+2(ai+b1):<0+Zaz>+b1+ —|—b1—b1+Za
i=1

=1

If we suppose that A+ {b1} € AU {0}, then we have {bl, aj,d,. .., a3 C AU{0}. Since
by, a},db, ..., a), are distinct, one has {by,d},dl,...,a,} = AU{0}. Thus, by +---+b; =0
1,41, %2 ¢ {1 1> %2 z} {0} 1 1
/+1
from the above equality. However, since |G| is prime and [4+1 < p, by + - -+ + b1 € G cannot
—_——

{41
be 0, a contradiction. Hence, A+ {b1} ¢ AU{0}, which implies that [(A+ {b1})NC| > 1.

Next, we consider k > 2. Let B’ = {by,...,b,_1}. Then, by the hypothesis of induction,
one has [(A+B')NC| > k—1. When |(A+ B’)NC| > k—1, the assertion holds. Thus, we
assume that |[(A+ B )NC|=k—1. Let (A+B")NC ={c1,...,ck-1}, where ¢1,...,ck1
are (k — 1) distinct elements, A" = AU {¢1,...,ck—1} and C' = G* \ A’. Then, again
by the hypothesis of induction, one has [(A’ 4+ {bx}) N C’| > 1. This implies that there
exists at least one element ¢, in C’ such that a + b, = ¢, for some a € A’. When a € A,
then ¢, € (A + B) N C’, which says that the assertion holds. Hence, we assume that
a€{ci,...,cx—1}, say, a = cy.

Now, again by the hypothesis of induction, it is easy to see that we have the following
equalities by renumbering c1,...,cx_1 € (A+ B’) N C if necessary:

c1 = a; + by,
c2 = aj, + by,
(5)
Ck—1 = @4y, +bp_1,
where a;,,...,a; , € A. Suppose that the inequality
(6) A+ B)NC| >k
is not satisfied. From (5), one has
ck=a+b, =c1+ by =a; +b1+ b.

Set ¢§ = a;, + by. When ¢| € A, since ¢} +b; € A+ B and ¢| + b = ¢ € C’', one has
cx € (A+ B)NC’, which means that (6) holds. When ¢| € C’, since ¢| = a;, +b, € A+ B,
one has ¢ € (A+ B)NC’, which also means that (6) holds. Moreover, ¢} cannot be 0 since
¢k 7 b1. In addition, ¢} cannot be ¢; since by # bg. Hence, it must be ¢| € {ca,...,ck—1},
say, ¢} = ca. Then, again from (5),

cp =c1+ by =co+ b =a;, + b+ b1.

Set ¢y = a;, + by. Similarly, when ¢4 € A or ¢, € C’, (6) holds. Moreover, ¢, cannot
be 0, ¢; and co. Hence, it must be ¢, € {cs,...,ck_1}, say, ¢4 = c3. By repeating these
discussions, we obtain

cr=cr+by=co+br=-=cp_1+by_2=aqa; , +bp_1+bp_o.
6



Set ¢}, = a;,_, + by_2. However, we have
1 €AUC"'U{0,c1,¢0,...,c6-1} = G,
a contradiction. Thus, the inequality (6) must be satisfied.

Therefore, we obtain the required inequality (4). O
Remark 1.3. (a) When iy +ip_1 = -+ =1i(,_1y/2 +ipq1)/2 = d+1, the 6-vector is shifted
symmetric. Shifted symmetric d-vectors are studied in [6]. Moreover, the theorem [6,
Theorem 2.3] says that if i1 +4,_1 = d+1, then we have i1+ip_1 = --- = ip—1)/2 i (ps1)/2 =
d+1.

(b) The inequalities i1 + i, > i,41 are not new. In fact, for example, when iy < --- < ip_1,
by (2), one has
50 +- 5i1 é 57:],,1 + -+ 57:],,1—7:1'

Thus, we obtain i,_1 — i1 < 4p—2, i.e., i1 + ip—2 > ip—1. Similarly, one has
50 + -+ 5i2 é 57:],,1 + -+ 57:],,1—7:2'

Thus, we obtain i, — i3 < 4,-3. Since i + ip—1 = i2 + ip—2, this is equivalent to
i1 +ip—3 > ip—2. In the same way, we can obtain all inequalities i1 + i¢ > i¢41. On the
other hand, when k£ > 2, there are many new inequalities.

2. THE POSSIBLE 6-VECTORS OF INTEGRAL SIMPLICES WITH Z?:o 0 =5

In this section, we give a proof of the “If” part of Theorem 0.2, i.e., we classify all the
possible §-vectors of integral simplices whose normalized volume is 5.

Let (00,d1,...,04) be a nonnegative integer sequence with dp = 1 and Zf:(] 6 =5
which satisfies i1 +i4 = 10 + i3 < d+ 1, 241 > io and i1 + 19 > i3, where i1,...,74 are the
positive integers such that Z?:o Sitt =14t 4+t with 1 <iy <--- <iy <d. Since
i1+ 14 = iy + i3, we notice that i 4 i3 > i4 (resp. 2is > i4) is equivalent to 2i; > iy (resp.
i1 + 9 > i3). From the conditions §y = 1, Z?:o 0; = b and i1 + 14 = 19 + i3, the possible
sequences are only the following forms:

(i) (1,0,...,0,4,0,...,0);
(i) (1,0,...,0,2,0,...,0,2,0,...,0);

(iii) (1,0,...,0,1,0,...,0,2,0,...,0,1,0,...,0);

(iv) (1,0,...,0,1,0,...,0,1,0,...,0,1,0,...,0,1,0,...,0).

Our work is to find integral simplices whose d-vectors are of the above forms.

To construct integral simplices, we define the following integer matrix, which is called
the Hermite normal form:

(7) A5(d17"'7d4): k co- %D )




where there are d; j’s among the *’s for j = 1,...,4 and the rest of the entries are all 0.
Then, clearly, it must be d; > 0 and dy + --- +d4 < d — 1. By determining dy, ...,ds, we
obtain an integer matrix As(dy,...,ds) and we define the integral simplex Ps(dy,...,dy)
from the matrix as follows:

Ps(dy, ..., dy) = conv({(0,...,0),v1,...,04}) C RY,

where v; is the ith row vector of As(dy,...,ds). The following lemma enables us to compute
d(Ps(dy,...,dy)) easily.

Lemma 2.1 ([4, Corollary 3.1]). If 6(Ps(dy,...,ds)) = (dp,01,...,d4), then we have

d 4
D st =14) ¢,
i=0 i=1
where

8; = E_Z{gj}dj , fori=1,...,4.
7j=1
2.1. The case (i). Let iy =iy = i3 =144 = ¢. Thus,onehasi—1>0and 20 —2<d -1
from our conditions. Hence, we can define P5(0,i — 1,7 — 1,0). Then, by Lemma 2.1,
d(P5(0,i — 1,4 —1,0)) coincides with (i) since s; = s9 = s3 = 84 = —i + 1.

2.2. The case (ii). Let iy = io = i and i3 = i4 = j. Thus, one has 2i > j,2j—2i—2 >0
and i + j — 2 < d — 1. Hence, we can define P5(0,7,2i — j,2j — 2i — 2) and its d-vector
coincides with (ii) since s1 = sy =—j+ 1 and s3 =s4 = —i + 1.

2.3. The case (iii). Leti; =i,iy = i3 = j and iy = k. Thus, one has 2i > j, 3j—3i—2 >0
and 25 —2 < d—1. Hence, we can define P5(0, 2i — j, 7, 3j — 3i—2) and its d-vector coincides
with (iii) since s =—-2j+i+1=—-k+1,s9=s3=—j+ 1 and s4 = —i + 1.

2.4. The case (iv). In this case, one has 2i; > i9,41 + ig > i3,42 + 2i3 — 3i; — 2 > 0 and
i9+1i3—2 < d— 1. Hence, we can define P5(0, 2i1 — iz, 11 +1i9 — i3, 12 + 2i3 — 3i; — 2) and its
d-vector coincides with (iv) since s1 =41 —ig —ig+1 = —ig+ 1,80 = —ig+ 1,83 = —ig+1
and s4 = —i1 + 1.

Remark 2.2. (a) The classification of the case (iv) is essentially given in [6, Lemma 4.3].
(b) The inequalities 2i; > is and i1 + i3 > i3 can be obtained from (2) as we mentioned in
Remark 1.3 (b). Thus, the possible d-vectors of integral simplices with normalized volume
5 can be essentially characterized only by Theorem 0.1 (a) and the inequalities (2).

3. THE POSSIBLE 0-VECTORS OF INTEGRAL SIMPLICES WITH 3% 6, =7

In this section, similarly to the previous one, we give a proof of the “If” part of Theorem
0.3, i.e., we classify all the possible §-vectors of integral simplices whose normalized volume
is 7.

Let (dp,01,...,04) be a nonnegative integer sequence with o = 1 and Z?:o 0 =7
which satisfies 41 + i = 49 + 45 = i3+ 44 < d+ 1, 91 +4 > 441 for 1 <1 < 3 and
2i9 > 14, Where i1,...,1g are the positive integers such that Z?:o Gitt = 1t ... 10
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with 1 <47 < --- <ig < d. Since i1 + ig = i3 + i5 = i3 + 74, we need not consider the
inequalities i1 + i4 > i5, i1 + 15 > g, 19 + i3 > i5, i9 + 14 > ig and 2ig3 > ig. From the
conditions dp = 1, Z?:O 0; = 7 and i1 + ig = i3 + i5 = i3 + 14, the possible sequences are
only the following forms:

(i) (1,0,...,0,6,0,...,0);

(ii) (1,0,...,0,3,0,...,0,3,0,...,0);

(i) (1,0,...,0,1,0,...,0,4,0,...,0,1,0,...,0);

(iv) (1,0,...,0,2,0,...,0,2,0,...,0,2,0,...,0);

(v) (1,0,...,0,1,0,...,0,2,0,...,0,2,0,...,0,1,0,...,0);

(vi) (1,0,...,0,2,0,...,0,1,0,...,0,1,0,...,0,2,0,...,0);

(vii) (1,0,...,0,1,0,...,0,1,...,0,2,0,...,0,1,0,...,0,1,0,...,0);

(viii) (1,0,...,0,1,0,...,0,1,...,0,1,0,...,0,1,0,...,0,1,0,...,0,1,0,...,0).
In the same way as the previous section, we define the following integer matrix:

1

(8) A?(dly"'vdﬁ): koeeeox T )

1

where there are d; j’s among the *’s for j = 1,...,6 and the rest of the entries are all 0.
Then it must be d; > 0 and d; +--- +dg < d — 1. By determining dy, ..., ds, we obtain
the integral simplex

Pr(dy, ..., ds) = conv({(0,...,0),v1,...,04}) C RY,

where v; is the ith row vector of A7(dy,...,ds). Similarly, the following lemma enables us
to compute 6(P7(dy, ..., ds)) easily.

Lemma 3.1 ([4, Corollary 3.1)). If 6(P7(d1,...,ds)) = (0,01,-..,04), then we have

d 6
S st =14 ¢,
=0 i=1

where

. 6 ..

7 i .

S; = ?—Z{%}dj , fori=1,...,6.
7j=1

3.1. The case (i). Let iy = --- = ig = ¢. Thus, one has i —1>0and 2i —2 <d—1
from our conditions. Hence, we can define P7(0,0,7 — 1,7 — 1,0,0). Then, by Lemma 3.1,
d(P7(0,0,i — 1,4 —1,0,0)) coincides with (i) since s; = -+ = s = —i + 1.
3.2. The case (ii). Let iy = --+ = 43 = ¢ and 44 = -+ = ig = j. Thus, one has
j—1>0,20 >752j—2i—2>0and i+j—2 < d— 1. Hence, we can define P7(0, j — i, 2i —
J,2i—37,0,25 —2i —2) and its d-vector coincides with (ii) since s;1 = s9 = s3 = —j + 1 and
S4 =85 =S¢ =—1+ 1.
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3.3. The case (iii). Let iy = d,ip = -+ = i5 = j and ig = k. Thus, one has i +
13 >kk—732>20k—i—12>0,i—1>0and i+ k—2 < d— 1. Hence, we can

define P;(i +j — k,k — j,k —i—1,0,0,7 — 1) and its d-vector coincides with (iii) since
—i+2j—8k —5i4+3j—5k

sp= AR ) o sy = THETER ) = sy = OHBIOR = s =
—21_33_2&—’—1:_]“"1,85:_GZ%W—FTLZ—Z‘—FTLandS(j:_&%]_gk—l—lz—j{-l.

3.4. The case (iv). Let iy = is = i,i3 = i4 = j and i5 = ig = k. Thus, one has
1—1>0i+75>k3k—-3j—1>0and 20 —2j+2k—2=7¢+k—2<d—1. Hence,
we can define P7(0,0,7 — 1,7+ j — k,0,3k — 35 — 1) and its d-vector coincides with (iv)
since s1 =s9g = —1+2j—2k+1=—-k+1,s3=s4=—-1+j—k+1=—j+1and
S5 = sg = —t + 1.

3.5. The case (v). Let iy = ky,i9 = i3 = ko,i4 = i5 = k3 and ig = k4. Thus, one has
2k1 > ko, ko — k1 > 0,k1 + ko > k3,2ks —2k1 —2 > 0 and ko + ks — 2 < d — 1. Hence, we
can define P7(0,2ky — ko, 0, ko — k1, k1 + ko — k3, 2ks — 2k1 — 2) and its J-vector coincides
with (v) since sy = k1 —ky —ks+1=—ky+ 1,89 =83 = —kg+ 1,84 = s5 = —ko + 1 and
s¢ = —k1 + 1.

3.6. The case (vi). Let iy = iy = ky,i3 = ko,i4 = k3 and i5 = ig¢ = k4. Thus, one has
ks—ko—12>0,k1+ky > ks, 2k > k3, ko+2k3—3k1—1 > 0and ko+k3—2 < d—1. Hence,
we can define P7(0, ks — ko — 1, k1 + ko — ks, 2k1 — k3,0, ko + 2ks — 3k1 — 1) and its d-vector
coincides with (vi) since s1 = sg = k1 —ka—ks+1=—ks+ 1,83 =—ks+ 1,84 = —ko+1
and s5; = sg = —k1 + 1.

3.7. The case (vii). Let iy = ky,i2 = ko,i3 = iy = ks,i5 = k4 and ig = k5. Thus, one
has 2]€1 > kg,kl—i-kg > kg,kz—kl > 0,3]€3—2k1—]€2—2 > 0 and 2]€3—2 < d—1. Hence,
we can define P7(0,0,2k; — ko, k1 + ko — ks, ko — k1,3ks — 2k1 — ko — 2) and its d-vector
coincides with (vii) since s1 = k1 —2ks + 1= —ks + 1,89 = ko —2ks + 1= —kg+ 1,53 =
s4g=—ks+1,85 =—kog+1and s = —k; + 1.

3.8. The case (viii). In this case, one has iy + ig > i3,2iy > iy, i3 + 2ig — 2i1 — iy — 2 >
0,2i1 > i9,i1 + i3 > i4 and i3 +i4 —2 < d — 1. Hence, we can define P7(0,41 + is — i3, +
ig — 2i2, 0, 2i2 — i4,i3 + 2i4 - 2i1 - ig — 2) if il + ig > 2i2 and 777(0, 2i1 — iQ,O, 2i2 - il -
13,11 + i3 — 44,13 + 204 — 201 — 9 — 2) i1 + i3 < 2i5. Moreover, each of §-vectors of them
coincides with (Viii) since 51 =1 —i3— 4+ 1=—ig+ 1,850 =00 —t3—14+1=—i5+ 1,
s3=—ig4+1,84=—i3+1, s5s =—is+1and s = —11 + 1.

Remark 3.2. When we discuss the cases of (vi) and (viii), we need the new inequality
2i9 > i4. In fact, for example, the sequence (1,0,2,0,1,1,0,2,0) cannot be the d-vector
of an integral simplex, although this satisfies i1 + 4; > 4;31,0 = 1,...,3. Similarly, the
sequence (1,0,1,1,0,1,0,1,0,1,1,0) also cannot be the d-vector of an integral simplex,
although this satisfies 41 +4; > 4;41,{=1,...,3.
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