EHRHART POLYNOMIALS OF INTEGRAL SIMPLICES WITH PRIME VOLUMES

AKIHIRO HIGASHITANI

Abstract

For an integral convex polytope $\mathcal{P} \subset \mathbb{R}^{N}$ of dimension d, we call $\delta(\mathcal{P})=$ $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{d}\right)$ its δ-vector and $\operatorname{vol}(\mathcal{P})=\sum_{i=0}^{d} \delta_{i}$ its normalized volume. In this paper, we will establish the new equalities and inequalities on δ-vectors for integral simplices whose normalized volumes are prime. Moreover, by using those, we will classify all the possible δ-vectors of integral simplices with normalized volume 5 and 7 .

Introduction

One of the most fascinating problems on enumerative combinatorics is to characterize the δ-vectors of integral convex polytopes.

Let $\mathcal{P} \subset \mathbb{R}^{N}$ be an integral convex polytope of dimension d, which is a convex polytope any of whose vertices has integer coordinates. Let $\partial \mathcal{P}$ denote the boundary of \mathcal{P}. Given a positive integer n, we define

$$
i(\mathcal{P}, n)=\left|n \mathcal{P} \cap \mathbb{Z}^{N}\right|, \quad i^{*}(\mathcal{P}, n)=\left|n(\mathcal{P} \backslash \partial \mathcal{P}) \cap \mathbb{Z}^{N}\right|
$$

where $n \mathcal{P}=\{n \alpha: \alpha \in \mathcal{P}\}$ and $|X|$ is the cardinality of a finite set X. The enumerative function $i(\mathcal{P}, n)$ is called the Ehrhart polynomial of \mathcal{P}, which was studied originally in the work of Ehrhart [1]. The Ehrhart polynomial has the following fundamental properties:

- $i(\mathcal{P}, n)$ is a polynomial in n of degree d. (Thus, in particular, $i(\mathcal{P}, n)$ can be defined for every integer n.)
- $i(\mathcal{P}, 0)=1$.
- (loi de réciprocité) $i^{*}(\mathcal{P}, n)=(-1)^{d} i(\mathcal{P},-n)$ for every integer $n>0$.

We refer the reader to [2, Part II] and [7, pp. 235-241] for the introduction to the theory of Ehrhart polynomials.

We define the sequence $\delta_{0}, \delta_{1}, \delta_{2}, \ldots$ of integers by the formula

$$
\begin{equation*}
(1-\lambda)^{d+1}\left(\sum_{n=0}^{\infty} i(\mathcal{P}, n) \lambda^{n}\right)=\sum_{i=0}^{\infty} \delta_{i} \lambda^{i} . \tag{1}
\end{equation*}
$$

Then, from a fundamental result on generating function ([7, Corollary 4.3.1]), we know that $\delta_{i}=0$ for every $i>d$. We call the integer sequence

$$
\delta(\mathcal{P})=\left(\delta_{0}, \delta_{1}, \ldots, \delta_{d}\right)
$$

[^0]which appears in (1), the δ-vector of \mathcal{P}. In addition, by the reciprocity law, one has
$$
\sum_{n=1}^{\infty} i^{*}(\mathcal{P}, n) \lambda^{n}=\frac{\sum_{i=0}^{d} \delta_{d-i} \lambda^{i+1}}{(1-\lambda)^{d+1}}
$$

The δ-vector has the following fundamental properties:

- $\delta_{0}=1$ and $\delta_{1}=\left|\mathcal{P} \cap \mathbb{Z}^{N}\right|-(d+1)$.
- $\delta_{d}=\left|(\mathcal{P} \backslash \partial \mathcal{P}) \cap \mathbb{Z}^{N}\right|$. Hence, we have $\delta_{1} \geq \delta_{d}$.
- Each δ_{i} is nonnegative ([8]).
- If $(\mathcal{P} \backslash \partial \mathcal{P}) \cap \mathbb{Z}^{N}$ is nonempty, then one has $\delta_{1} \leq \delta_{i}$ for every $1 \leq i \leq d-1$ ([3]).
- When $d=N$, the leading coefficient $\left(\sum_{i=0}^{d} \delta_{i}\right) / d$! of $i(\mathcal{P}, n)$ is equal to the usual volume of \mathcal{P} ([7, Proposition 4.6.30]). In general, the positive integer $\operatorname{vol}(\mathcal{P})=$ $\sum_{i=0}^{d} \delta_{i}$ is said to be the normalized volume of \mathcal{P}.
Recently, the δ-vectors of integral convex polytopes have been studied intensively. For example, see [6], [10] and [11].

There are two well-known inequalities on δ-vectors. Let $s=\max \left\{i: \delta_{i} \neq 0\right\}$. One is

$$
\begin{equation*}
\delta_{0}+\delta_{1}+\cdots+\delta_{i} \leq \delta_{s}+\delta_{s-1}+\cdots+\delta_{s-i}, \quad 0 \leq i \leq\lfloor s / 2\rfloor, \tag{2}
\end{equation*}
$$

which is proved in Stanley [9], and another one is

$$
\begin{equation*}
\delta_{d}+\delta_{d-1}+\cdots+\delta_{d-i} \leq \delta_{1}+\delta_{2}+\cdots+\delta_{i}+\delta_{i+1}, \quad 0 \leq i \leq\lfloor(d-1) / 2\rfloor, \tag{3}
\end{equation*}
$$

which appears in Hibi [3, Remark (1.4)].
When $\sum_{i=0}^{d} \delta_{i} \leq 3$, the above inequalities (2) and (3) characterize the possible δ-vectors completely ([5]). Moreover, when $\sum_{i=0}^{d} \delta_{i}=4$, the possible δ-vectors are determined completely ([4, Theorem 5.1]) by (2) and (3) together with an additional condition. Furthermore, by the proofs of [5, Theorem 0.1] and [4, Theorem 5.1], we know that all the possible δ-vectors can be realized as the δ-vectors of integral simplices when $\sum_{i=0}^{d} \delta_{i} \leq 4$. However, unfortunately, it is not true when $\sum_{i=0}^{d} \delta_{i}=5$. (See [4, Remark 5.2].) Therefore, for the further classifications of the δ-vectors with $\sum_{i=0}^{d} \delta_{i} \geq 5$, it is natural to investigate the δ-vectors of integral simplices. In this paper, in particular, we establish some new constraints on δ-vectors for integral simplices whose normalized volumes are prime numbers. The following theorem is our main result of this paper.

Theorem 0.1. Let \mathcal{P} be an integral simplex of dimension d and $\delta(\mathcal{P})=\left(\delta_{0}, \delta_{1}, \ldots, \delta_{d}\right)$ its δ-vector. Suppose that $\sum_{i=0}^{d} \delta_{i}=p$ is an odd prime number. Let i_{1}, \ldots, i_{p-1} be the positive integers such that $\sum_{i=0}^{d} \delta_{i} t^{i}=1+t^{i_{1}}+\cdots+t^{i_{p-1}}$ with $1 \leq i_{1} \leq \cdots \leq i_{p-1} \leq d$. Then,
(a) one has

$$
i_{1}+i_{p-1}=i_{2}+i_{p-2}=\cdots=i_{(p-1) / 2}+i_{(p+1) / 2} \leq d+1 ;
$$

(b) one has

$$
i_{k}+i_{\ell} \geq i_{k+\ell} \text { for } 1 \leq k \leq \ell \leq p-1 \text { with } k+\ell \leq p-1
$$

We prove Theorem 0.1 in Section 1 via the languages of elementary group theory.
As an application of Theorem 0.1, we give a complete characterization of the possible δ-vectors of integral simplices when $\sum_{i=0}^{d} \delta_{i}=5$ and 7 .

Theorem 0.2. Given a finite sequence $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{d}\right)$ of nonnegative integers, where $\delta_{0}=$ 1 and $\sum_{i=0}^{d} \delta_{i}=5$, there exists an integral simplex $\mathcal{P} \subset \mathbb{R}^{d}$ of dimension d whose δ-vector coincides with $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{d}\right)$ if and only if i_{1}, \ldots, i_{4} satisfy $i_{1}+i_{4}=i_{2}+i_{3} \leq d+1$ and $i_{k}+i_{\ell} \geq i_{k+\ell}$ for $1 \leq k \leq \ell \leq 4$ with $k+\ell \leq 4$, where i_{1}, \ldots, i_{4} are the positive integers such that $\sum_{i=0}^{d} \delta_{i} t^{i}=1+t^{i_{1}}+\cdots+t^{i_{4}}$ with $1 \leq i_{1} \leq \cdots \leq i_{4} \leq d$.

Theorem 0.3. Given a finite sequence $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{d}\right)$ of nonnegative integers, where $\delta_{0}=$ 1 and $\sum_{i=0}^{d} \delta_{i}=7$, there exists an integral simplex $\mathcal{P} \subset \mathbb{R}^{d}$ of dimension d whose δ-vector coincides with $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{d}\right)$ if and only if i_{1}, \ldots, i_{6} satisfy $i_{1}+i_{6}=i_{2}+i_{5}=i_{3}+i_{4} \leq d+1$ and $i_{k}+i_{\ell} \geq i_{k+\ell}$ for $1 \leq k \leq \ell \leq 6$ with $k+\ell \leq 6$, where i_{1}, \ldots, i_{6} are the positive integers such that $\sum_{i=0}^{d} \delta_{i} t^{i}=1+t^{i_{1}}+\cdots+t^{i_{6}}$ with $1 \leq i_{1} \leq \cdots \leq i_{6} \leq d$.

By virtue of Theorem 0.1, the "Only if" parts of Theorem 0.2 and 0.3 are obvious. A proof of the "If" part of Theomre 0.2 is given in Section 2 and that of Theorem 0.3 is given in Section 3.

Finally, we note that we cannot characterize the possible δ-vectors of integral simplices with higher prime normalized volumes only by Theorem 0.1. In fact, since the volume of an integral convex polytope containing a unique integer point in its interior has an upper bound, if p is a sufficiently large prime number, then the integer sequence ($1,1, p-3,1$) cannot be a δ-vector of some integral simplex of dimension 3, although ($1,1, p-3,1$) satisfies all the conditions of Theorem 0.1.

1. A proof of Theorem 0.1

The goal of this section is to give a proof of Theorem 0.1.
First of all, we recall from [2, Part II] the well-known combinatorial technique how to compute the δ-vector of an integral simplex.

Given an integral simplex \mathcal{F} in \mathbb{R}^{N} of dimension d with the vertices $v_{0}, v_{1}, \ldots, v_{d}$, we set

$$
\widetilde{\mathcal{F}}=\left\{(\alpha, 1) \in \mathbb{R}^{N+1}: \alpha \in \mathcal{F}\right\},
$$

which is an integral simplex in \mathbb{R}^{N+1} of dimension d with the vertices $\left(v_{0}, 1\right),\left(v_{1}, 1\right), \ldots,\left(v_{d}, 1\right)$. Clearly, we have $i(\mathcal{F}, n)=i(\widetilde{\mathcal{F}}, n)$ for all n. Let

$$
\mathcal{C}(\widetilde{\mathcal{F}})=\{r \beta: \beta \in \widetilde{\mathcal{F}}, 0 \leq r \in \mathbb{Q}\} .
$$

Then one has

$$
i(\mathcal{F}, n)=\left|\left\{(\alpha, n) \in \mathcal{C}(\widetilde{\mathcal{F}}): \alpha \in \mathbb{Z}^{N}\right\}\right|
$$

Each rational point $\alpha \in \mathcal{C}(\widetilde{\mathcal{F}})$ has a unique expression of the form $\alpha=\sum_{i=0}^{d} r_{i}\left(v_{i}, 1\right)$ with $0 \leq r_{i} \in \mathbb{Q}$. Let S be the set of all points $\alpha \in \mathcal{C}(\widetilde{\mathcal{F}}) \cap \mathbb{Z}^{N+1}$ of the form $\alpha=\sum_{i=0}^{d} r_{i}\left(v_{i}, 1\right)$, where $r_{i} \in \mathbb{Q}$ with $0 \leq r_{i}<1$. We define the degree of $\alpha=\sum_{i=0}^{d} r_{i}\left(v_{i}, 1\right) \in \mathcal{C}(\widetilde{\mathcal{F}}) \cap \mathbb{Z}^{N+1}$ with $\operatorname{deg}(\alpha)=\sum_{i=0}^{d} r_{i}$, i.e., the last coordinate of α.

Lemma 1.1. Let δ_{i} be the number of integer points $\alpha \in S$ with $\operatorname{deg}(\alpha)=i$. Then,

$$
\delta(\mathcal{F})=\left(\delta_{0}, \delta_{1}, \ldots, \delta_{d}\right)
$$

Notice that the elements of S form an abelian group with a unit $(0, \ldots, 0) \in S$. For α and β in S with $\alpha=\sum_{i=0}^{d} r_{i}\left(v_{i}, 1\right)$ and $\beta=\sum_{i=0}^{d} s_{i}\left(v_{i}, 1\right)$, where $r_{i}, s_{i} \in \mathbb{Q}$ with $0 \leq r_{i}, s_{i}<1$, we define the operation in S by setting $\alpha \oplus \beta:=\sum_{i=0}^{d}\left\{r_{i}+s_{i}\right\}\left(v_{i}, 1\right)$, where $\{r\}=r-\lfloor r\rfloor$ denotes the fractional part of a rational number r. (Throughout this paper, in order to distinguish the operation in S from the usual addition, we use the notation \oplus, which is not a direct sum.)

We prove Theorem 0.1 by using the above notations.
A proof of Theorem 0.1. Let $v_{0}, v_{1}, \ldots, v_{d}$ be the vertices of the integral simplex \mathcal{P} and S the group appearing above. Then, since $\operatorname{vol}(\mathcal{P})=p$ is prime, it follows from Lemma 1.1 that the order of S is also prime. In particular, S is a cyclic group.
(a) Write $g_{i_{1}}, \ldots, g_{i_{p-1}} \in S \backslash\{(0, \ldots, 0)\}$ for $(p-1)$ distinct elements with $\operatorname{deg}\left(g_{i_{j}}\right)=i_{j}$ for $1 \leq j \leq p-1$, that is, $S=\left\{(0, \ldots, 0), g_{i_{1}}, \ldots, g_{i_{p-1}}\right\}$. Then, for each $g_{i_{j}}$, there exists its inverse $-g_{i_{j}}$ in $S \backslash\{(0, \ldots, 0)\}$. Let $-g_{i_{j}}=g_{i_{j}^{\prime}}$. If $g_{i_{j}}$ has the expression $g_{i_{j}}=\sum_{q=0}^{d} r_{q}\left(v_{q}, 1\right)$, where $r_{q} \in \mathbb{Q}$ with $0 \leq r_{q}<1$, then its inverse has the expression $g_{i_{j}^{\prime}}=\sum_{q=0}^{d}\left\{1-r_{q}\right\}\left(v_{q}, 1\right)$. Thus, one has

$$
\operatorname{deg}\left(g_{i_{j}}\right)+\operatorname{deg}\left(g_{i_{j}^{\prime}}\right)=\sum_{q=0}^{d}\left(r_{q}+\left\{1-r_{q}\right\}\right) \leq \sum_{q=0}^{d}\left(r_{q}+1-r_{q}\right)=d+1
$$

for all $1 \leq j \leq p-1$.
For $j_{1}, j_{2} \in\{1, \ldots, p-1\}$ with $j_{1} \neq j_{2}$, let $g_{i_{j_{1}}}=\sum_{q=0}^{d} r_{q}^{(1)}\left(v_{q}, 1\right)$ and $g_{i_{j_{2}}}=\sum_{q=0}^{d} r_{q}^{(2)}\left(v_{q}, 1\right)$. Since S is a cyclic group with a prime order, $g_{i_{j_{1}}}$ generates S, which implies that we can write $g_{i_{j_{2}}}$ and $g_{i_{j_{2}}^{\prime}}$ as follows:

$$
g_{i_{j_{2}}}=\underbrace{g_{i_{j_{1}}} \oplus \cdots \oplus g_{i_{j_{1}}}}_{t}, \quad g_{i_{j_{2}}^{\prime}}=\underbrace{g_{i_{j_{1}}^{\prime} \oplus \cdots \oplus g_{i_{j_{1}}^{\prime}}}}_{t}
$$

for some integer $t \in\{2, \ldots, p-1\}$. Thus, we have

$$
\begin{aligned}
& \sum_{q=0}^{d}\left(r_{q}^{(2)}+\left\{1-r_{q}^{(2)}\right\}\right)=\operatorname{deg}\left(g_{i_{j_{2}}}\right)+\operatorname{deg}\left(g_{i_{j_{2}^{\prime}}}\right) \\
& \quad=\operatorname{deg}(\underbrace{g_{i_{j_{1}}} \oplus \cdots \oplus g_{i_{j_{1}}}}_{t})+\operatorname{deg}(\underbrace{g_{i_{j_{1}}} \oplus \cdots \oplus g_{i_{j_{1}}^{\prime}}}_{t})=\sum_{q=0}^{d}\left(\left\{t r_{q}^{(1)}\right\}+\left\{t\left(1-r_{q}^{(1)}\right)\right\}\right) .
\end{aligned}
$$

Moreover, $\underbrace{g_{i_{j_{1}}} \oplus \cdots \oplus g_{i_{j_{1}}}}_{p}=(0, \ldots, 0)$ holds. Thus, we have $\left\{p r_{q}^{(1)}\right\}=0$ for all $0 \leq q \leq d$. Again, since p is prime, it follows that the denominator of each rational number $r_{q}^{(1)}$ must be p. Hence, if $0<r_{q}^{(1)}<1$ (resp. $0<\left\{1-r_{q}^{(1)}\right\}<1$), then $0<\left\{t r_{q}^{(1)}\right\}<1$ (resp. $\left.0<\left\{t\left(1-r_{q}^{(1)}\right)\right\}<1\right)$, so $r_{q}^{(1)}+\left\{1-r_{q}^{(1)}\right\}=\left\{t r_{q}^{(1)}\right\}+\left\{t\left(1-r_{q}^{(1)}\right)\right\}=1$. In addition, obviously, if $r_{q}^{(1)}=\left\{1-r_{q}^{(1)}\right\}=0$, then $\left\{t r_{q}^{(1)}\right\}=\left\{t\left(1-r_{q}^{(1)}\right)\right\}=0$, so $r_{q}^{(1)}+\{1-$ $\left.r_{q}^{(1)}\right\}=\left\{\operatorname{tr}_{q}^{(1)}\right\}+\left\{t\left(1-r_{q}^{(1)}\right)\right\}=0$. Thus, $\operatorname{deg}\left(g_{i_{j_{1}}}\right)+\operatorname{deg}\left(g_{i_{j_{1}}^{\prime}}\right)=\operatorname{deg}\left(g_{i_{j_{2}}}\right)+\operatorname{deg}\left(g_{i_{j_{2}}}\right)$, i.e.,
$i_{j_{1}}+i_{j_{1}}^{\prime}=i_{j_{2}}+i_{j_{2}}^{\prime}$. Hence, we obtain

$$
i_{1}+i_{1}^{\prime}=\cdots=i_{(p-1) / 2}+i_{(p-1) / 2}^{\prime}\left(=i_{(p+1) / 2}+i_{(p+1) / 2}^{\prime}=\cdots=i_{p-1}+i_{p-1}^{\prime}\right) \leq d+1
$$

Our work is to show that $i_{j}^{\prime}=i_{p-j}$ for all $1 \leq j \leq(p-1) / 2$.
First, we consider i_{1}^{\prime}. Suppose that $i_{1}^{\prime} \neq i_{p-1}$. Then, there is $m \in\{1, \ldots, p-2\}$ with $i_{1}^{\prime}=i_{m}<i_{p-1}$. Thus, it follows that

$$
i_{p-1}+i_{p-1}^{\prime}=i_{1}+i_{1}^{\prime}=i_{1}+i_{m}<i_{1}+i_{p-1} \leq i_{p-1}^{\prime}+i_{p-1}
$$

a contradiction. Thus, i_{1}^{\prime} must be i_{p-1}. Next, we consider i_{2}^{\prime}. Since $g_{i_{2}^{\prime}} \neq g_{i_{1}}$ and $g_{i_{2}^{\prime}} \neq g_{i_{p-1}}$, we may consider i_{2}^{\prime} among $\left\{i_{2}, \ldots, i_{p-2}\right\}$. Then, the same discussion can be done. Hence, $i_{2}^{\prime}=i_{p-2}$. Similarly, we have $i_{3}^{\prime}=i_{p-3}, \ldots, i_{(p-1) / 2}^{\prime}=i_{(p+1) / 2}$.

Therefore, we obtain the desired conditions

$$
i_{1}+i_{p-1}=i_{2}+i_{p-2}=\cdots=i_{(p-1) / 2}+i_{(p+1) / 2} \leq d+1
$$

(b) Write $g_{i_{1}}, \ldots, g_{i_{\ell}} \in S \backslash\{(0, \ldots, 0)\}$ for ℓ distinct elements with $\operatorname{deg}\left(g_{i_{j}}\right)=i_{j}$ for $1 \leq j \leq \ell$. Let $A=\left\{g_{i_{1}}, \ldots, g_{i_{\ell}}\right\}$. Then there are k distinct elements $h_{i_{1}}, \ldots, h_{i_{k}}$ in A with $\operatorname{deg}\left(h_{i_{j}}\right)=i_{j}$ for $1 \leq j \leq k$ satisfying $|A|+|B|=k+\ell \leq p-1$, where $B=$ $\left\{h_{i_{1}}, \ldots, h_{i_{k}}\right\} \subset A$. Moreover, for each $g \in A \oplus B=\{a \oplus b: a \in A, b \in B\}, g$ satisfies $\operatorname{deg}(g) \leq i_{k}+i_{\ell}$. In fact, for $g_{i_{j}} \in A$ and $h_{i_{j^{\prime}}} \in B$, if they have the expressions

$$
g_{i_{j}}=\sum_{q=0}^{d} r_{q}\left(v_{q}, 1\right) \quad \text { and } \quad h_{i_{j^{\prime}}}=\sum_{q=0}^{d} r_{q}^{\prime}\left(v_{q}, 1\right)
$$

where $r_{q}, r_{q}^{\prime} \in \mathbb{Q}$ with $0 \leq r_{q}, r_{q}^{\prime}<1$, then one has

$$
\operatorname{deg}\left(g_{i_{j}} \oplus h_{i_{j^{\prime}}}\right)=\sum_{q=0}^{d}\left\{r_{q}+r_{q}^{\prime}\right\} \leq \sum_{q=0}^{d}\left(r_{q}+r_{q}^{\prime}\right)=i_{j}+i_{j^{\prime}} \leq i_{k}+i_{\ell}
$$

Now, Lemma 1.2 below guarantees that there exist at least k elements in $A \oplus B \backslash A \cup$ $\{(0, \ldots, 0)\}$. In addition, each $g_{i_{j}}$ in A satisfies $\operatorname{deg}\left(g_{i_{j}}\right) \leq i_{\ell} \leq i_{k}+i_{\ell}$. Thus, we can say that there exist at least $(k+\ell)$ distinct elements in $S \backslash\{(0, \ldots, 0)\}$ whose degrees are at most $i_{k}+i_{\ell}$. From the definition of i_{1}, \ldots, i_{p-1}, this means that $i_{k}+i_{\ell} \geq i_{k+\ell}$, as desired.

Lemma 1.2. Let G be a group with prime order p, where its operation is denoted by + , and let $G^{*}=G \backslash\{0\}$, where 0 is the unit of G. We choose two subsets (not subgroups) A and B of G satisfying $B \subset A \subset G^{*}$ and $|A|+|B| \leq p-1$ and we set $C=G^{*} \backslash A$. Then one has

$$
\begin{equation*}
|(A+B) \cap C| \geq|B| \tag{4}
\end{equation*}
$$

where $A+B=\{a+b: a \in A, b \in B\}$.
Proof. Let $A=\left\{a_{1}, \ldots, a_{\ell}\right\}$ and $B=\left\{b_{1}, \ldots, b_{k}\right\}$. We show the assertion by induction on k.

First, we consider $k=1$, i.e., $B=\left\{b_{1}\right\}$. Then, $\ell+1 \leq p-1$. For $1 \leq i \leq \ell$, let $a_{i}+b_{1}=a_{i}^{\prime} \in G$. Then we have

$$
\left(0+b_{1}\right)+\sum_{i=1}^{\ell}\left(a_{i}+b_{1}\right)=\left(0+\sum_{i=1}^{\ell} a_{i}\right)+\underbrace{b_{1}+\cdots+b_{1}}_{\ell+1}=b_{1}+\sum_{i=1}^{\ell} a_{i}^{\prime} .
$$

If we suppose that $A+\left\{b_{1}\right\} \subset A \cup\{0\}$, then we have $\left\{b_{1}, a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{\ell}^{\prime}\right\} \subset A \cup\{0\}$. Since $b_{1}, a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{\ell}^{\prime}$ are distinct, one has $\left\{b_{1}, a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{\ell}^{\prime}\right\}=A \cup\{0\}$. Thus, $\underbrace{b_{1}+\cdots+b_{1}}_{\ell+1}=0$ from the above equality. However, since $|G|$ is prime and $l+1<p, \underbrace{b_{1}+\cdots+b_{1}}_{\ell+1} \in G$ cannot be 0 , a contradiction. Hence, $A+\left\{b_{1}\right\} \not \subset A \cup\{0\}$, which implies that $\left|\left(A+\left\{b_{1}\right\}\right) \cap C\right| \geq 1$.

Next, we consider $k \geq 2$. Let $B^{\prime}=\left\{b_{1}, \ldots, b_{k-1}\right\}$. Then, by the hypothesis of induction, one has $\left|\left(A+B^{\prime}\right) \cap C\right| \geq k-1$. When $\left|\left(A+B^{\prime}\right) \cap C\right|>k-1$, the assertion holds. Thus, we assume that $\left|\left(A+B^{\prime}\right) \cap C\right|=k-1$. Let $\left(A+B^{\prime}\right) \cap C=\left\{c_{1}, \ldots, c_{k-1}\right\}$, where c_{1}, \ldots, c_{k-1} are $(k-1)$ distinct elements, $A^{\prime}=A \cup\left\{c_{1}, \ldots, c_{k-1}\right\}$ and $C^{\prime}=G^{*} \backslash A^{\prime}$. Then, again by the hypothesis of induction, one has $\left|\left(A^{\prime}+\left\{b_{k}\right\}\right) \cap C^{\prime}\right| \geq 1$. This implies that there exists at least one element c_{k} in C^{\prime} such that $a+b_{k}=c_{k}$ for some $a \in A^{\prime}$. When $a \in A$, then $c_{k} \in(A+B) \cap C^{\prime}$, which says that the assertion holds. Hence, we assume that $a \in\left\{c_{1}, \ldots, c_{k-1}\right\}$, say, $a=c_{1}$.

Now, again by the hypothesis of induction, it is easy to see that we have the following equalities by renumbering $c_{1}, \ldots, c_{k-1} \in\left(A+B^{\prime}\right) \cap C$ if necessary:

$$
\left\{\begin{array}{l}
c_{1}=a_{i_{1}}+b_{1} \tag{5}\\
c_{2}=a_{i_{2}}+b_{2} \\
\vdots \\
c_{k-1}=a_{i_{k-1}}+b_{k-1}
\end{array}\right.
$$

where $a_{i_{1}}, \ldots, a_{i_{k-1}} \in A$. Suppose that the inequality

$$
\begin{equation*}
|(A+B) \cap C| \geq k \tag{6}
\end{equation*}
$$

is not satisfied. From (5), one has

$$
c_{k}=a+b_{k}=c_{1}+b_{k}=a_{i_{1}}+b_{1}+b_{k} .
$$

Set $c_{1}^{\prime}=a_{i_{1}}+b_{k}$. When $c_{1}^{\prime} \in A$, since $c_{1}^{\prime}+b_{1} \in A+B$ and $c_{1}^{\prime}+b_{1}=c_{k} \in C^{\prime}$, one has $c_{k} \in(A+B) \cap C^{\prime}$, which means that (6) holds. When $c_{1}^{\prime} \in C^{\prime}$, since $c_{1}^{\prime}=a_{i_{1}}+b_{k} \in A+B$, one has $c_{1}^{\prime} \in(A+B) \cap C^{\prime}$, which also means that (6) holds. Moreover, c_{1}^{\prime} cannot be 0 since $c_{k} \neq b_{1}$. In addition, c_{1}^{\prime} cannot be c_{1} since $b_{1} \neq b_{k}$. Hence, it must be $c_{1}^{\prime} \in\left\{c_{2}, \ldots, c_{k-1}\right\}$, say, $c_{1}^{\prime}=c_{2}$. Then, again from (5),

$$
c_{k}=c_{1}+b_{k}=c_{2}+b_{1}=a_{i_{2}}+b_{2}+b_{1} .
$$

Set $c_{2}^{\prime}=a_{i_{2}}+b_{1}$. Similarly, when $c_{2}^{\prime} \in A$ or $c_{2}^{\prime} \in C^{\prime}$, (6) holds. Moreover, c_{2}^{\prime} cannot be $0, c_{1}$ and c_{2}. Hence, it must be $c_{2}^{\prime} \in\left\{c_{3}, \ldots, c_{k-1}\right\}$, say, $c_{2}^{\prime}=c_{3}$. By repeating these discussions, we obtain

$$
c_{k}=c_{1}+b_{k}=c_{2}+b_{1}=\cdots=\underset{6}{c_{k-1}}+b_{k-2}=a_{i_{k-1}}+b_{k-1}+b_{k-2} .
$$

Set $c_{k-1}^{\prime}=a_{i_{k-1}}+b_{k-2}$. However, we have

$$
c_{k-1}^{\prime} \notin A \cup C^{\prime} \cup\left\{0, c_{1}, c_{2}, \ldots, c_{k-1}\right\}=G,
$$

a contradiction. Thus, the inequality (6) must be satisfied.
Therefore, we obtain the required inequality (4).
Remark 1.3. (a) When $i_{1}+i_{p-1}=\cdots=i_{(p-1) / 2}+i_{(p+1) / 2}=d+1$, the δ-vector is shifted symmetric. Shifted symmetric δ-vectors are studied in [6]. Moreover, the theorem [6, Theorem 2.3] says that if $i_{1}+i_{p-1}=d+1$, then we have $i_{1}+i_{p-1}=\cdots=i_{(p-1) / 2}+i_{(p+1) / 2}=$ $d+1$.
(b) The inequalities $i_{1}+i_{\ell} \geq i_{\ell+1}$ are not new. In fact, for example, when $i_{1}<\cdots<i_{p-1}$, by (2), one has

$$
\delta_{0}+\cdots+\delta_{i_{1}} \leq \delta_{i_{p-1}}+\cdots+\delta_{i_{p-1}-i_{1}} .
$$

Thus, we obtain $i_{p-1}-i_{1} \leq i_{p-2}$, i.e., $i_{1}+i_{p-2} \geq i_{p-1}$. Similarly, one has

$$
\delta_{0}+\cdots+\delta_{i_{2}} \leq \delta_{i_{p-1}}+\cdots+\delta_{i_{p-1}-i_{2}}
$$

Thus, we obtain $i_{p-1}-i_{2} \leq i_{p-3}$. Since $i_{1}+i_{p-1}=i_{2}+i_{p-2}$, this is equivalent to $i_{1}+i_{p-3} \geq i_{p-2}$. In the same way, we can obtain all inequalities $i_{1}+i_{\ell} \geq i_{\ell+1}$. On the other hand, when $k \geq 2$, there are many new inequalities.
2. The possible δ-vectors of integral simplices with $\sum_{i=0}^{d} \delta_{i}=5$

In this section, we give a proof of the "If" part of Theorem 0.2, i.e., we classify all the possible δ-vectors of integral simplices whose normalized volume is 5 .

Let $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{d}\right)$ be a nonnegative integer sequence with $\delta_{0}=1$ and $\sum_{i=0}^{d} \delta_{i}=5$ which satisfies $i_{1}+i_{4}=i_{2}+i_{3} \leq d+1,2 i_{1} \geq i_{2}$ and $i_{1}+i_{2} \geq i_{3}$, where i_{1}, \ldots, i_{4} are the positive integers such that $\sum_{i=0}^{d} \delta_{i} t^{i}=1+t^{i_{1}}+\cdots+t^{i_{4}}$ with $1 \leq i_{1} \leq \cdots \leq i_{4} \leq d$. Since $i_{1}+i_{4}=i_{2}+i_{3}$, we notice that $i_{1}+i_{3} \geq i_{4}$ (resp. $2 i_{2} \geq i_{4}$) is equivalent to $2 i_{1} \geq i_{2}$ (resp. $i_{1}+i_{2} \geq i_{3}$). From the conditions $\delta_{0}=1, \sum_{i=0}^{d} \delta_{i}=5$ and $i_{1}+i_{4}=i_{2}+i_{3}$, the possible sequences are only the following forms:
(i) $(1,0, \ldots, 0,4,0, \ldots, 0)$;
(ii) $(1,0, \ldots, 0,2,0, \ldots, 0,2,0, \ldots, 0)$;
(iii) $(1,0, \ldots, 0,1,0, \ldots, 0,2,0, \ldots, 0,1,0, \ldots, 0)$;
(iv) $(1,0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots, 0)$.

Our work is to find integral simplices whose δ-vectors are of the above forms.
To construct integral simplices, we define the following integer matrix, which is called the Hermite normal form:

$$
A_{5}\left(d_{1}, \ldots, d_{4}\right)=\left(\begin{array}{ccccccc}
1 & & & & & & \tag{7}\\
& \ddots & & & & & \\
& & 1 & & & & \\
* & \cdots & * & 5 & & & \\
& & & & 1 & & \\
& & & & & \ddots & \\
& & & & & & 1
\end{array}\right)
$$

where there are $d_{j} j$'s among the $*$'s for $j=1, \ldots, 4$ and the rest of the entries are all 0 . Then, clearly, it must be $d_{j} \geq 0$ and $d_{1}+\cdots+d_{4} \leq d-1$. By determining d_{1}, \ldots, d_{4}, we obtain an integer matrix $A_{5}\left(d_{1}, \ldots, d_{4}\right)$ and we define the integral simplex $\mathcal{P}_{5}\left(d_{1}, \ldots, d_{4}\right)$ from the matrix as follows:

$$
\mathcal{P}_{5}\left(d_{1}, \ldots, d_{4}\right)=\operatorname{conv}\left(\left\{(0, \ldots, 0), v_{1}, \ldots, v_{d}\right\}\right) \subset \mathbb{R}^{d}
$$

where v_{i} is the i th row vector of $A_{5}\left(d_{1}, \ldots, d_{4}\right)$. The following lemma enables us to compute $\delta\left(\mathcal{P}_{5}\left(d_{1}, \ldots, d_{4}\right)\right)$ easily.

Lemma 2.1 ([4, Corollary 3.1]). If $\delta\left(\mathcal{P}_{5}\left(d_{1}, \ldots, d_{4}\right)\right)=\left(\delta_{0}, \delta_{1}, \ldots, \delta_{d}\right)$, then we have

$$
\sum_{i=0}^{d} \delta_{i} t^{i}=1+\sum_{i=1}^{4} t^{1-s_{i}}
$$

where

$$
s_{i}=\left\lfloor\frac{i}{5}-\sum_{j=1}^{4}\left\{\frac{i j}{5}\right\} d_{j}\right\rfloor, \quad \text { for } i=1, \ldots, 4 .
$$

2.1. The case (i). Let $i_{1}=i_{2}=i_{3}=i_{4}=i$. Thus, one has $i-1 \geq 0$ and $2 i-2 \leq d-1$ from our conditions. Hence, we can define $\mathcal{P}_{5}(0, i-1, i-1,0)$. Then, by Lemma 2.1, $\delta\left(\mathcal{P}_{5}(0, i-1, i-1,0)\right)$ coincides with (i) since $s_{1}=s_{2}=s_{3}=s_{4}=-i+1$.
2.2. The case (ii). Let $i_{1}=i_{2}=i$ and $i_{3}=i_{4}=j$. Thus, one has $2 i \geq j, 2 j-2 i-2 \geq 0$ and $i+j-2 \leq d-1$. Hence, we can define $\mathcal{P}_{5}(0, i, 2 i-j, 2 j-2 i-2)$ and its δ-vector coincides with (ii) since $s_{1}=s_{2}=-j+1$ and $s_{3}=s_{4}=-i+1$.
2.3. The case (iii). Let $i_{1}=i, i_{2}=i_{3}=j$ and $i_{4}=k$. Thus, one has $2 i \geq j, 3 j-3 i-2 \geq 0$ and $2 j-2 \leq d-1$. Hence, we can define $\mathcal{P}_{5}(0,2 i-j, i, 3 j-3 i-2)$ and its δ-vector coincides with (iii) since $s_{1}=-2 j+i+1=-k+1, s_{2}=s_{3}=-j+1$ and $s_{4}=-i+1$.
2.4. The case (iv). In this case, one has $2 i_{1} \geq i_{2}, i_{1}+i_{2} \geq i_{3}, i_{2}+2 i_{3}-3 i_{1}-2 \geq 0$ and $i_{2}+i_{3}-2 \leq d-1$. Hence, we can define $\mathcal{P}_{5}\left(0,2 i_{1}-i_{2}, i_{1}+i_{2}-i_{3}, i_{2}+2 i_{3}-3 i_{1}-2\right)$ and its δ-vector coincides with (iv) since $s_{1}=i_{1}-i_{2}-i_{3}+1=-i_{4}+1, s_{2}=-i_{3}+1, s_{3}=-i_{2}+1$ and $s_{4}=-i_{1}+1$.

Remark 2.2. (a) The classification of the case (iv) is essentially given in [6, Lemma 4.3]. (b) The inequalities $2 i_{1} \geq i_{2}$ and $i_{1}+i_{2} \geq i_{3}$ can be obtained from (2) as we mentioned in Remark 1.3 (b). Thus, the possible δ-vectors of integral simplices with normalized volume 5 can be essentially characterized only by Theorem 0.1 (a) and the inequalities (2).

3. The possible δ-vectors of integral simplices with $\sum_{i=0}^{d} \delta_{i}=7$

In this section, similarly to the previous one, we give a proof of the "If" part of Theorem 0.3 , i.e., we classify all the possible δ-vectors of integral simplices whose normalized volume is 7 .

Let $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{d}\right)$ be a nonnegative integer sequence with $\delta_{0}=1$ and $\sum_{i=0}^{d} \delta_{i}=7$ which satisfies $i_{1}+i_{6}=i_{2}+i_{5}=i_{3}+i_{4} \leq d+1, i_{1}+i_{l} \geq i_{l+1}$ for $1 \leq l \leq 3$ and $2 i_{2} \geq i_{4}$, where i_{1}, \ldots, i_{6} are the positive integers such that $\sum_{i=0}^{\bar{d}} \delta_{i} t^{i}=1+t^{i_{1}}+\cdots+t^{i_{6}}$
with $1 \leq i_{1} \leq \cdots \leq i_{6} \leq d$. Since $i_{1}+i_{6}=i_{2}+i_{5}=i_{3}+i_{4}$, we need not consider the inequalities $i_{1}+i_{4} \geq i_{5}, i_{1}+i_{5} \geq i_{6}, i_{2}+i_{3} \geq i_{5}, i_{2}+i_{4} \geq i_{6}$ and $2 i_{3} \geq i_{6}$. From the conditions $\delta_{0}=1, \sum_{i=0}^{d} \delta_{i}=7$ and $i_{1}+i_{6}=i_{2}+i_{5}=i_{3}+i_{4}$, the possible sequences are only the following forms:
(i) $(1,0, \ldots, 0,6,0, \ldots, 0)$;
(ii) $(1,0, \ldots, 0,3,0, \ldots, 0,3,0, \ldots, 0)$;
(iii) $(1,0, \ldots, 0,1,0, \ldots, 0,4,0, \ldots, 0,1,0, \ldots, 0)$;
(iv) $(1,0, \ldots, 0,2,0, \ldots, 0,2,0, \ldots, 0,2,0, \ldots, 0)$;
(v) $(1,0, \ldots, 0,1,0, \ldots, 0,2,0, \ldots, 0,2,0, \ldots, 0,1,0, \ldots, 0)$;
(vi) $(1,0, \ldots, 0,2,0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots, 0,2,0, \ldots, 0)$;
(vii) $(1,0, \ldots, 0,1,0, \ldots, 0,1, \ldots, 0,2,0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots, 0)$;
(viii) $(1,0, \ldots, 0,1,0, \ldots, 0,1, \ldots, 0,1,0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots, 0,1,0, \ldots, 0)$.

In the same way as the previous section, we define the following integer matrix:

$$
A_{7}\left(d_{1}, \ldots, d_{6}\right)=\left(\begin{array}{ccccccc}
1 & & & & & & \tag{8}\\
& \ddots & & & & & \\
& & 1 & & & & \\
* & \cdots & * & 7 & & & \\
& & & & 1 & & \\
& & & & & \ddots & \\
& & & & & & 1
\end{array}\right)
$$

where there are $d_{j} j$'s among the $*$'s for $j=1, \ldots, 6$ and the rest of the entries are all 0 . Then it must be $d_{j} \geq 0$ and $d_{1}+\cdots+d_{6} \leq d-1$. By determining d_{1}, \ldots, d_{6}, we obtain the integral simplex

$$
\mathcal{P}_{7}\left(d_{1}, \ldots, d_{6}\right)=\operatorname{conv}\left(\left\{(0, \ldots, 0), v_{1}, \ldots, v_{d}\right\}\right) \subset \mathbb{R}^{d}
$$

where v_{i} is the i th row vector of $A_{7}\left(d_{1}, \ldots, d_{6}\right)$. Similarly, the following lemma enables us to compute $\delta\left(\mathcal{P}_{7}\left(d_{1}, \ldots, d_{6}\right)\right)$ easily.
Lemma $3.1\left(\left[4\right.\right.$, Corollary 3.1]). If $\delta\left(\mathcal{P}_{7}\left(d_{1}, \ldots, d_{6}\right)\right)=\left(\delta_{0}, \delta_{1}, \ldots, \delta_{d}\right)$, then we have

$$
\sum_{i=0}^{d} \delta_{i} t^{i}=1+\sum_{i=1}^{6} t^{1-s_{i}}
$$

where

$$
s_{i}=\left\lfloor\frac{i}{7}-\sum_{j=1}^{6}\left\{\frac{i j}{7}\right\} d_{j}\right\rfloor, \quad \text { for } i=1, \ldots, 6
$$

3.1. The case (i). Let $i_{1}=\cdots=i_{6}=i$. Thus, one has $i-1 \geq 0$ and $2 i-2 \leq d-1$ from our conditions. Hence, we can define $\mathcal{P}_{7}(0,0, i-1, i-1,0,0)$. Then, by Lemma 3.1, $\delta\left(\mathcal{P}_{7}(0,0, i-1, i-1,0,0)\right)$ coincides with (i) since $s_{1}=\cdots=s_{6}=-i+1$.
3.2. The case (ii). Let $i_{1}=\cdots=i_{3}=i$ and $i_{4}=\cdots=i_{6}=j$. Thus, one has $j-i \geq 0,2 i \geq j, 2 j-2 i-2 \geq 0$ and $i+j-2 \leq d-1$. Hence, we can define $\mathcal{P}_{7}(0, j-i, 2 i-$ $j, 2 i-j, 0,2 j-2 i-2)$ and its δ-vector coincides with (ii) since $s_{1}=s_{2}=s_{3}=-j+1$ and $s_{4}=s_{5}=s_{6}=-i+1$.
3.3. The case (iii). Let $i_{1}=i, i_{2}=\cdots=i_{5}=j$ and $i_{6}=k$. Thus, one has $i+$ $j \geq k, k-j \geq 0, k-i-1 \geq 0, i-1 \geq 0$ and $i+k-2 \leq d-1$. Hence, we can define $\mathcal{P}_{7}(i+j-k, k-j, k-i-1,0,0, i-1)$ and its δ-vector coincides with (iii) since $s_{1}=\frac{-4 i+j-4 k}{7}+1=-j+1, s_{2}=\frac{-i+2 j-8 k}{7}+1=-k+1, s_{3}=\frac{-5 i+3 j-5 k}{7}+1=-j+1, s_{4}=$ $\frac{-2 i-3 j-2 k}{7}+1=-j+1, s_{5}=\frac{-6 i-2 j+k}{7}+1=-i+1$ and $s_{6}=\frac{-3 i-j-3 k}{7}+1=-j+1$.
3.4. The case (iv). Let $i_{1}=i_{2}=i, i_{3}=i_{4}=j$ and $i_{5}=i_{6}=k$. Thus, one has $i-1 \geq 0, i+j \geq k, 3 k-3 j-1 \geq 0$ and $2 i-2 j+2 k-2=i+k-2 \leq d-1$. Hence, we can define $\mathcal{P}_{7}(0,0, i-1, i+j-k, 0,3 k-3 j-1)$ and its δ-vector coincides with (iv) since $s_{1}=s_{2}=-i+2 j-2 k+1=-k+1, s_{3}=s_{4}=-i+j-k+1=-j+1$ and $s_{5}=s_{6}=-i+1$.
3.5. The case (v). Let $i_{1}=k_{1}, i_{2}=i_{3}=k_{2}, i_{4}=i_{5}=k_{3}$ and $i_{6}=k_{4}$. Thus, one has $2 k_{1} \geq k_{2}, k_{2}-k_{1} \geq 0, k_{1}+k_{2} \geq k_{3}, 2 k_{3}-2 k_{1}-2 \geq 0$ and $k_{2}+k_{3}-2 \leq d-1$. Hence, we can define $\mathcal{P}_{7}\left(0,2 k_{1}-k_{2}, 0, k_{2}-k_{1}, k_{1}+k_{2}-k_{3}, 2 k_{3}-2 k_{1}-2\right)$ and its δ-vector coincides with (v) since $s_{1}=k_{1}-k_{2}-k_{3}+1=-k_{4}+1, s_{2}=s_{3}=-k_{3}+1, s_{4}=s_{5}=-k_{2}+1$ and $s_{6}=-k_{1}+1$.
3.6. The case (vi). Let $i_{1}=i_{2}=k_{1}, i_{3}=k_{2}, i_{4}=k_{3}$ and $i_{5}=i_{6}=k_{4}$. Thus, one has $k_{3}-k_{2}-1 \geq 0, k_{1}+k_{2} \geq k_{3}, 2 k_{1} \geq k_{3}, k_{2}+2 k_{3}-3 k_{1}-1 \geq 0$ and $k_{2}+k_{3}-2 \leq d-1$. Hence, we can define $\mathcal{P}_{7}\left(0, k_{3}-k_{2}-1, k_{1}+k_{2}-k_{3}, 2 k_{1}-k_{3}, 0, k_{2}+2 k_{3}-3 k_{1}-1\right)$ and its δ-vector coincides with (vi) since $s_{1}=s_{2}=k_{1}-k_{2}-k_{3}+1=-k_{4}+1, s_{3}=-k_{3}+1, s_{4}=-k_{2}+1$ and $s_{5}=s_{6}=-k_{1}+1$.
3.7. The case (vii). Let $i_{1}=k_{1}, i_{2}=k_{2}, i_{3}=i_{4}=k_{3}, i_{5}=k_{4}$ and $i_{6}=k_{5}$. Thus, one has $2 k_{1} \geq k_{2}, k_{1}+k_{2} \geq k_{3}, k_{2}-k_{1} \geq 0,3 k_{3}-2 k_{1}-k_{2}-2 \geq 0$ and $2 k_{3}-2 \leq d-1$. Hence, we can define $\mathcal{P}_{7}\left(0,0,2 k_{1}-k_{2}, k_{1}+k_{2}-k_{3}, k_{2}-k_{1}, 3 k_{3}-2 k_{1}-k_{2}-2\right)$ and its δ-vector coincides with (vii) since $s_{1}=k_{1}-2 k_{3}+1=-k_{5}+1, s_{2}=k_{2}-2 k_{3}+1=-k_{4}+1, s_{3}=$ $s_{4}=-k_{3}+1, s_{5}=-k_{2}+1$ and $s_{1}=-k_{1}+1$.
3.8. The case (viii). In this case, one has $i_{1}+i_{2} \geq i_{3}, 2 i_{2} \geq i_{4}, i_{3}+2 i_{4}-2 i_{1}-i_{2}-2 \geq$ $0,2 i_{1} \geq i_{2}, i_{1}+i_{3} \geq i_{4}$ and $i_{3}+i_{4}-2 \leq d-1$. Hence, we can define $\mathcal{P}_{7}\left(0, i_{1}+i_{2}-i_{3}, i_{1}+\right.$ $\left.i_{3}-2 i_{2}, 0,2 i_{2}-i_{4}, i_{3}+2 i_{4}-2 i_{1}-i_{2}-2\right)$ if $i_{1}+i_{3} \geq 2 i_{2}$ and $\mathcal{P}_{7}\left(0,2 i_{1}-i_{2}, 0,2 i_{2}-i_{1}-\right.$ $\left.i_{3}, i_{1}+i_{3}-i_{4}, i_{3}+2 i_{4}-2 i_{1}-i_{2}-2\right) i_{1}+i_{3} \leq 2 i_{2}$. Moreover, each of δ-vectors of them coincides with (viii) since $s_{1}=i_{1}-i_{3}-i_{4}+1=-i_{6}+1, s_{2}=i_{2}-i_{3}-i_{4}+1=-i_{5}+1$, $s_{3}=-i_{4}+1, s_{4}=-i_{3}+1, s_{5}=-i_{2}+1$ and $s_{6}=-i_{1}+1$.

Remark 3.2. When we discuss the cases of (vi) and (viii), we need the new inequality $2 i_{2} \geq i_{4}$. In fact, for example, the sequence ($1,0,2,0,1,1,0,2,0$) cannot be the δ-vector of an integral simplex, although this satisfies $i_{1}+i_{l} \geq i_{l+1}, l=1, \ldots, 3$. Similarly, the sequence ($1,0,1,1,0,1,0,1,0,1,1,0$) also cannot be the δ-vector of an integral simplex, although this satisfies $i_{1}+i_{l} \geq i_{l+1}, l=1, \ldots, 3$.

References

[1] E. Ehrhart, "Polynômes Arithmétiques et Méthode des Polyèdres en Combinatoire," Birkhäuser, Boston/Basel/Stuttgart, 1977.
[2] T. Hibi, "Algebraic Combinatorics on Convex Polytopes," Carslaw Publications, Glebe NSW, Australia, 1992.
[3] T. Hibi, A lower bound theorem for Ehrhart polynomials of convex polytopes, Adv. in Math. 105 (1994), 162 - 165.
[4] T. Hibi, A. Higashitani and N. Li, Hermite normal forms and δ-vector, to appear in J. Comb. Theory Ser. A, also available at arXiv:1009.6023v1.
[5] T. Hibi, A. Higashitani and Y. Nagazawa, Ehrhart polynomials of convex polytopes with small volume, European J. Combinatorics 32 (2011), 226-232.
[6] A. Higashitani, Shifted symmetric δ-vectors of convex polytopes, Discrete Math. 310 (2010), 29252934.
[7] R. P. Stanley, "Enumerative Combinatorics, Volume 1," Wadsworth \& Brooks/Cole, Monterey, Calif., 1986.
[8] R. P. Stanley, Decompositions of rational convex polytopes, Annals of Discrete Math. 6 (1980), 333 342.
[9] R. P. Stanley, On the Hilbert function of a graded Cohen-Macaulay domain, J. Pure and Appl. Algebra 73 (1991), $307-314$.
[10] A. Stapledon, Inequalities and Ehrhart δ-vectors, Trans. Amer. Math. Soc. 361 (2009), 5615-5626.
[11] A. Stapledon, Additive number theorem and inequalities in Ehrhart theory, arXiv:0904.3035v1 [math.CO].

Akihiro Higashitani, Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan E-mail address: a-higashitani@cr.math.sci.osaka-u.ac.jp

[^0]: 2000 Mathematics Subject Classification: Primary 52B20; Secondary 52B12.
 Keywords: Integral simplex, Ehrhart polynomial, δ-vector.
 The author is supported by JSPS Research Fellowship for Young Scientists.

