EHRHART POLYNOMIALS OF INTEGRAL SIMPLICES WITH PRIME VOLUMES

AKIHIRO HIGASHITANI

ABSTRACT. For an integral convex polytope $\mathcal{P} \subset \mathbb{R}^N$ of dimension d, we call $\delta(\mathcal{P}) = (\delta_0, \delta_1, \ldots, \delta_d)$ its δ -vector and $\operatorname{vol}(\mathcal{P}) = \sum_{i=0}^d \delta_i$ its normalized volume. In this paper, we will establish the new equalities and inequalities on δ -vectors for integral simplices whose normalized volumes are prime. Moreover, by using those, we will classify all the possible δ -vectors of integral simplices with normalized volume 5 and 7.

INTRODUCTION

One of the most fascinating problems on enumerative combinatorics is to characterize the δ -vectors of integral convex polytopes.

Let $\mathcal{P} \subset \mathbb{R}^N$ be an *integral* convex polytope of dimension d, which is a convex polytope any of whose vertices has integer coordinates. Let $\partial \mathcal{P}$ denote the boundary of \mathcal{P} . Given a positive integer n, we define

$$i(\mathcal{P},n) = |n\mathcal{P} \cap \mathbb{Z}^N|, \quad i^*(\mathcal{P},n) = |n(\mathcal{P} \setminus \partial \mathcal{P}) \cap \mathbb{Z}^N|,$$

where $n\mathcal{P} = \{n\alpha : \alpha \in \mathcal{P}\}$ and |X| is the cardinality of a finite set X. The enumerative function $i(\mathcal{P}, n)$ is called the *Ehrhart polynomial* of \mathcal{P} , which was studied originally in the work of Ehrhart [1]. The Ehrhart polynomial has the following fundamental properties:

- $i(\mathcal{P}, n)$ is a polynomial in *n* of degree *d*. (Thus, in particular, $i(\mathcal{P}, n)$ can be defined for *every* integer *n*.)
- $i(\mathcal{P}, 0) = 1.$
- (loi de réciprocité) $i^*(\mathcal{P}, n) = (-1)^d i(\mathcal{P}, -n)$ for every integer n > 0.

We refer the reader to [2, Part II] and [7, pp. 235–241] for the introduction to the theory of Ehrhart polynomials.

We define the sequence $\delta_0, \delta_1, \delta_2, \ldots$ of integers by the formula

(1)
$$(1-\lambda)^{d+1}\left(\sum_{n=0}^{\infty}i(\mathcal{P},n)\lambda^n\right) = \sum_{i=0}^{\infty}\delta_i\lambda^i.$$

Then, from a fundamental result on generating function ([7, Corollary 4.3.1]), we know that $\delta_i = 0$ for every i > d. We call the integer sequence

$$\delta(\mathcal{P}) = (\delta_0, \delta_1, \dots, \delta_d),$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 52B20; Secondary 52B12.

Keywords: Integral simplex, Ehrhart polynomial, δ -vector.

The author is supported by JSPS Research Fellowship for Young Scientists.

which appears in (1), the δ -vector of \mathcal{P} . In addition, by the reciprocity law, one has

$$\sum_{n=1}^{\infty} i^*(\mathcal{P}, n) \lambda^n = \frac{\sum_{i=0}^d \delta_{d-i} \lambda^{i+1}}{(1-\lambda)^{d+1}}.$$

The δ -vector has the following fundamental properties:

- $\delta_0 = 1$ and $\delta_1 = |\mathcal{P} \cap \mathbb{Z}^N| (d+1)$.
- $\delta_d = |(\mathcal{P} \setminus \partial \mathcal{P}) \cap \mathbb{Z}^N|$. Hence, we have $\delta_1 \ge \delta_d$.
- Each δ_i is nonnegative ([8]).
- If $(\mathcal{P} \setminus \partial \mathcal{P}) \cap \mathbb{Z}^N$ is nonempty, then one has $\delta_1 \leq \delta_i$ for every $1 \leq i \leq d-1$ ([3]).
- When d = N, the leading coefficient $(\sum_{i=0}^{d} \delta_i)/d!$ of $i(\mathcal{P}, n)$ is equal to the usual volume of \mathcal{P} ([7, Proposition 4.6.30]). In general, the positive integer vol $(\mathcal{P}) = \sum_{i=0}^{d} \delta_i$ is said to be the *normalized volume* of \mathcal{P} .

Recently, the δ -vectors of integral convex polytopes have been studied intensively. For example, see [6], [10] and [11].

There are two well-known inequalities on δ -vectors. Let $s = \max\{i : \delta_i \neq 0\}$. One is

(2)
$$\delta_0 + \delta_1 + \dots + \delta_i \le \delta_s + \delta_{s-1} + \dots + \delta_{s-i}, \quad 0 \le i \le \lfloor s/2 \rfloor,$$

which is proved in Stanley [9], and another one is

(3)
$$\delta_d + \delta_{d-1} + \dots + \delta_{d-i} \le \delta_1 + \delta_2 + \dots + \delta_i + \delta_{i+1}, \quad 0 \le i \le \lfloor (d-1)/2 \rfloor,$$

which appears in Hibi [3, Remark (1.4)].

When $\sum_{i=0}^{d} \delta_i \leq 3$, the above inequalities (2) and (3) characterize the possible δ -vectors completely ([5]). Moreover, when $\sum_{i=0}^{d} \delta_i = 4$, the possible δ -vectors are determined completely ([4, Theorem 5.1]) by (2) and (3) together with an additional condition. Furthermore, by the proofs of [5, Theorem 0.1] and [4, Theorem 5.1], we know that all the possible δ -vectors can be realized as the δ -vectors of integral simplices when $\sum_{i=0}^{d} \delta_i \leq 4$. However, unfortunately, it is not true when $\sum_{i=0}^{d} \delta_i = 5$. (See [4, Remark 5.2].) Therefore, for the further classifications of the δ -vectors with $\sum_{i=0}^{d} \delta_i \geq 5$, it is natural to investigate the δ -vectors of integral simplices. In this paper, in particular, we establish some new constraints on δ -vectors for integral simplices whose normalized volumes are prime numbers. The following theorem is our main result of this paper.

Theorem 0.1. Let \mathcal{P} be an integral simplex of dimension d and $\delta(\mathcal{P}) = (\delta_0, \delta_1, \ldots, \delta_d)$ its δ -vector. Suppose that $\sum_{i=0}^{d} \delta_i = p$ is an odd prime number. Let i_1, \ldots, i_{p-1} be the positive integers such that $\sum_{i=0}^{d} \delta_i t^i = 1 + t^{i_1} + \cdots + t^{i_{p-1}}$ with $1 \leq i_1 \leq \cdots \leq i_{p-1} \leq d$. Then,

(a) one has

$$i_1 + i_{p-1} = i_2 + i_{p-2} = \dots = i_{(p-1)/2} + i_{(p+1)/2} \le d+1;$$

(b) one has

$$i_k + i_\ell \ge i_{k+\ell}$$
 for $1 \le k \le \ell \le p-1$ with $k+\ell \le p-1$.

We prove Theorem 0.1 in Section 1 via the languages of elementary group theory.

As an application of Theorem 0.1, we give a complete characterization of the possible δ -vectors of integral simplices when $\sum_{i=0}^{d} \delta_i = 5$ and 7.

Theorem 0.2. Given a finite sequence $(\delta_0, \delta_1, \ldots, \delta_d)$ of nonnegative integers, where $\delta_0 = 1$ and $\sum_{i=0}^{d} \delta_i = 5$, there exists an integral simplex $\mathcal{P} \subset \mathbb{R}^d$ of dimension d whose δ -vector coincides with $(\delta_0, \delta_1, \ldots, \delta_d)$ if and only if i_1, \ldots, i_4 satisfy $i_1 + i_4 = i_2 + i_3 \leq d + 1$ and $i_k + i_\ell \geq i_{k+\ell}$ for $1 \leq k \leq \ell \leq 4$ with $k + \ell \leq 4$, where i_1, \ldots, i_4 are the positive integers such that $\sum_{i=0}^{d} \delta_i t^i = 1 + t^{i_1} + \cdots + t^{i_4}$ with $1 \leq i_1 \leq \cdots \leq i_4 \leq d$.

Theorem 0.3. Given a finite sequence $(\delta_0, \delta_1, \ldots, \delta_d)$ of nonnegative integers, where $\delta_0 = 1$ and $\sum_{i=0}^{d} \delta_i = 7$, there exists an integral simplex $\mathcal{P} \subset \mathbb{R}^d$ of dimension d whose δ -vector coincides with $(\delta_0, \delta_1, \ldots, \delta_d)$ if and only if i_1, \ldots, i_6 satisfy $i_1 + i_6 = i_2 + i_5 = i_3 + i_4 \leq d + 1$ and $i_k + i_\ell \geq i_{k+\ell}$ for $1 \leq k \leq \ell \leq 6$ with $k+\ell \leq 6$, where i_1, \ldots, i_6 are the positive integers such that $\sum_{i=0}^{d} \delta_i t^i = 1 + t^{i_1} + \cdots + t^{i_6}$ with $1 \leq i_1 \leq \cdots \leq i_6 \leq d$.

By virtue of Theorem 0.1, the "Only if" parts of Theorem 0.2 and 0.3 are obvious. A proof of the "If" part of Theorem 0.2 is given in Section 2 and that of Theorem 0.3 is given in Section 3.

Finally, we note that we cannot characterize the possible δ -vectors of integral simplices with higher prime normalized volumes only by Theorem 0.1. In fact, since the volume of an integral convex polytope containing a unique integer point in its interior has an upper bound, if p is a sufficiently large prime number, then the integer sequence (1, 1, p - 3, 1)cannot be a δ -vector of some integral simplex of dimension 3, although (1, 1, p - 3, 1)satisfies all the conditions of Theorem 0.1.

1. A proof of Theorem 0.1

The goal of this section is to give a proof of Theorem 0.1.

First of all, we recall from [2, Part II] the well-known combinatorial technique how to compute the δ -vector of an integral simplex.

Given an integral simplex \mathcal{F} in \mathbb{R}^N of dimension d with the vertices v_0, v_1, \ldots, v_d , we set

$$\widetilde{\mathcal{F}} = \left\{ (\alpha, 1) \in \mathbb{R}^{N+1} : \alpha \in \mathcal{F} \right\},\$$

which is an integral simplex in \mathbb{R}^{N+1} of dimension d with the vertices $(v_0, 1), (v_1, 1), \ldots, (v_d, 1)$. Clearly, we have $i(\mathcal{F}, n) = i(\widetilde{\mathcal{F}}, n)$ for all n. Let

$$\mathcal{C}(\widetilde{\mathcal{F}}) = \{ r\beta : \beta \in \widetilde{\mathcal{F}}, 0 \le r \in \mathbb{Q} \}.$$

Then one has

$$i(\mathcal{F}, n) = \left| \left\{ (\alpha, n) \in \mathcal{C}(\widetilde{\mathcal{F}}) : \alpha \in \mathbb{Z}^N \right\} \right|.$$

Each rational point $\alpha \in \mathcal{C}(\widetilde{\mathcal{F}})$ has a unique expression of the form $\alpha = \sum_{i=0}^{d} r_i(v_i, 1)$ with $0 \leq r_i \in \mathbb{Q}$. Let S be the set of all points $\alpha \in \mathcal{C}(\widetilde{\mathcal{F}}) \cap \mathbb{Z}^{N+1}$ of the form $\alpha = \sum_{i=0}^{d} r_i(v_i, 1)$, where $r_i \in \mathbb{Q}$ with $0 \leq r_i < 1$. We define the degree of $\alpha = \sum_{i=0}^{d} r_i(v_i, 1) \in \mathcal{C}(\widetilde{\mathcal{F}}) \cap \mathbb{Z}^{N+1}$ with $\deg(\alpha) = \sum_{i=0}^{d} r_i$, i.e., the last coordinate of α .

Lemma 1.1. Let δ_i be the number of integer points $\alpha \in S$ with $\deg(\alpha) = i$. Then,

$$\delta(\mathcal{F}) = (\delta_0, \delta_1, \dots, \delta_d).$$

Notice that the elements of S form an abelian group with a unit $(0, \ldots, 0) \in S$. For α and β in S with $\alpha = \sum_{i=0}^{d} r_i(v_i, 1)$ and $\beta = \sum_{i=0}^{d} s_i(v_i, 1)$, where $r_i, s_i \in \mathbb{Q}$ with $0 \leq r_i, s_i < 1$, we define the operation in S by setting $\alpha \oplus \beta := \sum_{i=0}^{d} \{r_i + s_i\}(v_i, 1)$, where $\{r\} = r - \lfloor r \rfloor$ denotes the fractional part of a rational number r. (Throughout this paper, in order to distinguish the operation in S from the usual addition, we use the notation \oplus , which is not a direct sum.)

We prove Theorem 0.1 by using the above notations.

A proof of Theorem 0.1. Let v_0, v_1, \ldots, v_d be the vertices of the integral simplex \mathcal{P} and S the group appearing above. Then, since $\operatorname{vol}(\mathcal{P}) = p$ is prime, it follows from Lemma 1.1 that the order of S is also prime. In particular, S is a cyclic group.

(a) Write $g_{i_1}, \ldots, g_{i_{p-1}} \in S \setminus \{(0, \ldots, 0)\}$ for (p-1) distinct elements with $\deg(g_{i_j}) = i_j$ for $1 \leq j \leq p-1$, that is, $S = \{(0, \ldots, 0), g_{i_1}, \ldots, g_{i_{p-1}}\}$. Then, for each g_{i_j} , there exists its inverse $-g_{i_j}$ in $S \setminus \{(0, \ldots, 0)\}$. Let $-g_{i_j} = g_{i'_j}$. If g_{i_j} has the expression $g_{i_j} = \sum_{q=0}^d r_q(v_q, 1)$, where $r_q \in \mathbb{Q}$ with $0 \leq r_q < 1$, then its inverse has the expression $g_{i'_j} = \sum_{q=0}^d \{1 - r_q\}(v_q, 1)$. Thus, one has

$$\deg(g_{i_j}) + \deg(g_{i'_j}) = \sum_{q=0}^d (r_q + \{1 - r_q\}) \le \sum_{q=0}^d (r_q + 1 - r_q) = d + 1$$

for all $1 \leq j \leq p - 1$.

For $j_1, j_2 \in \{1, \ldots, p-1\}$ with $j_1 \neq j_2$, let $g_{i_{j_1}} = \sum_{q=0}^d r_q^{(1)}(v_q, 1)$ and $g_{i_{j_2}} = \sum_{q=0}^d r_q^{(2)}(v_q, 1)$. Since S is a cyclic group with a prime order, $g_{i_{j_1}}$ generates S, which implies that we can write $g_{i_{j_2}}$ and $g_{i'_{j_2}}$ as follows:

$$g_{i_{j_2}} = \underbrace{g_{i_{j_1}} \oplus \dots \oplus g_{i_{j_1}}}_{t}, \quad g_{i'_{j_2}} = \underbrace{g_{i'_{j_1}} \oplus \dots \oplus g_{i'_{j_1}}}_{t}$$

for some integer $t \in \{2, \ldots, p-1\}$. Thus, we have

$$\sum_{q=0}^{d} (r_q^{(2)} + \{1 - r_q^{(2)}\}) = \deg(g_{i_{j_2}}) + \deg(g_{i'_{j_2}})$$
$$= \deg(\underbrace{g_{i_{j_1}} \oplus \dots \oplus g_{i_{j_1}}}_{t}) + \deg(\underbrace{g_{i'_{j_1}} \oplus \dots \oplus g_{i'_{j_1}}}_{t}) = \sum_{q=0}^{d} (\{tr_q^{(1)}\} + \{t(1 - r_q^{(1)})\}).$$

Moreover, $\underbrace{g_{i_{j_1}} \oplus \cdots \oplus g_{i_{j_1}}}_{p} = (0, \dots, 0)$ holds. Thus, we have $\{pr_q^{(1)}\} = 0$ for all $0 \le q \le d$.

Again, since p is prime, it follows that the denominator of each rational number $r_q^{(1)}$ must be p. Hence, if $0 < r_q^{(1)} < 1$ (resp. $0 < \{1 - r_q^{(1)}\} < 1$), then $0 < \{tr_q^{(1)}\} < 1$ (resp. $0 < \{t(1 - r_q^{(1)})\} < 1$), so $r_q^{(1)} + \{1 - r_q^{(1)}\} = \{tr_q^{(1)}\} + \{t(1 - r_q^{(1)})\} = 1$. In addition, obviously, if $r_q^{(1)} = \{1 - r_q^{(1)}\} = 0$, then $\{tr_q^{(1)}\} = \{t(1 - r_q^{(1)})\} = 0$, so $r_q^{(1)} + \{1 - r_q^{(1)}\} = \{tr_q^{(1)}\} + \{t(1 - r_q^{(1)})\} = 0$, so $r_q^{(1)} + \{1 - r_q^{(1)}\} = \{tr_q^{(1)}\} + \{t(1 - r_q^{(1)})\} = 0$. Thus, $\deg(g_{i_{j_1}}) + \deg(g_{i_{j_1}}) = \deg(g_{i_{j_2}}) + \deg(g_{i_{j_2}})$, i.e., $i_{j_1} + i'_{j_1} = i_{j_2} + i'_{j_2}$. Hence, we obtain

$$i_1 + i'_1 = \dots = i_{(p-1)/2} + i'_{(p-1)/2} (= i_{(p+1)/2} + i'_{(p+1)/2} = \dots = i_{p-1} + i'_{p-1}) \le d+1.$$

Our work is to show that $i'_j = i_{p-j}$ for all $1 \le j \le (p-1)/2$.

First, we consider i'_1 . Suppose that $i'_1 \neq i_{p-1}$. Then, there is $m \in \{1, \ldots, p-2\}$ with $i'_1 = i_m < i_{p-1}$. Thus, it follows that

$$i_{p-1} + i'_{p-1} = i_1 + i'_1 = i_1 + i_m < i_1 + i_{p-1} \le i'_{p-1} + i_{p-1},$$

a contradiction. Thus, i'_1 must be i_{p-1} . Next, we consider i'_2 . Since $g_{i'_2} \neq g_{i_1}$ and $g_{i'_2} \neq g_{i_{p-1}}$, we may consider i'_2 among $\{i_2, \ldots, i_{p-2}\}$. Then, the same discussion can be done. Hence, $i'_2 = i_{p-2}$. Similarly, we have $i'_3 = i_{p-3}, \ldots, i'_{(p-1)/2} = i_{(p+1)/2}$.

Therefore, we obtain the desired conditions

$$i_1 + i_{p-1} = i_2 + i_{p-2} = \dots = i_{(p-1)/2} + i_{(p+1)/2} \le d+1.$$

(b) Write $g_{i_1}, \ldots, g_{i_\ell} \in S \setminus \{(0, \ldots, 0)\}$ for ℓ distinct elements with $\deg(g_{i_j}) = i_j$ for $1 \leq j \leq \ell$. Let $A = \{g_{i_1}, \ldots, g_{i_\ell}\}$. Then there are k distinct elements h_{i_1}, \ldots, h_{i_k} in A with $\deg(h_{i_j}) = i_j$ for $1 \leq j \leq k$ satisfying $|A| + |B| = k + \ell \leq p - 1$, where $B = \{h_{i_1}, \ldots, h_{i_k}\} \subset A$. Moreover, for each $g \in A \oplus B = \{a \oplus b : a \in A, b \in B\}$, g satisfies $\deg(g) \leq i_k + i_\ell$. In fact, for $g_{i_j} \in A$ and $h_{i_{j'}} \in B$, if they have the expressions

$$g_{i_j} = \sum_{q=0}^d r_q(v_q, 1)$$
 and $h_{i_{j'}} = \sum_{q=0}^d r'_q(v_q, 1),$

where $r_q, r'_q \in \mathbb{Q}$ with $0 \leq r_q, r'_q < 1$, then one has

$$\deg(g_{i_j} \oplus h_{i_{j'}}) = \sum_{q=0}^d \{r_q + r'_q\} \le \sum_{q=0}^d (r_q + r'_q) = i_j + i_{j'} \le i_k + i_\ell.$$

Now, Lemma 1.2 below guarantees that there exist at least k elements in $A \oplus B \setminus A \cup \{(0,\ldots,0)\}$. In addition, each g_{i_j} in A satisfies $\deg(g_{i_j}) \leq i_{\ell} \leq i_k + i_{\ell}$. Thus, we can say that there exist at least $(k + \ell)$ distinct elements in $S \setminus \{(0,\ldots,0)\}$ whose degrees are at most $i_k + i_{\ell}$. From the definition of i_1,\ldots,i_{p-1} , this means that $i_k + i_{\ell} \geq i_{k+\ell}$, as desired. \Box

Lemma 1.2. Let G be a group with prime order p, where its operation is denoted by +, and let $G^* = G \setminus \{0\}$, where 0 is the unit of G. We choose two subsets (not subgroups) A and B of G satisfying $B \subset A \subset G^*$ and $|A| + |B| \le p - 1$ and we set $C = G^* \setminus A$. Then one has

$$(4) \qquad \qquad |(A+B) \cap C| \ge |B|,$$

where $A + B = \{a + b : a \in A, b \in B\}.$

Proof. Let $A = \{a_1, \ldots, a_\ell\}$ and $B = \{b_1, \ldots, b_k\}$. We show the assertion by induction on k.

First, we consider k = 1, i.e., $B = \{b_1\}$. Then, $\ell + 1 \leq p - 1$. For $1 \leq i \leq \ell$, let $a_i + b_1 = a'_i \in G$. Then we have

$$(0+b_1) + \sum_{i=1}^{\ell} (a_i+b_1) = \left(0 + \sum_{i=1}^{\ell} a_i\right) + \underbrace{b_1 + \dots + b_1}_{\ell+1} = b_1 + \sum_{i=1}^{\ell} a'_i.$$

If we suppose that $A + \{b_1\} \subset A \cup \{0\}$, then we have $\{b_1, a'_1, a'_2, \ldots, a'_\ell\} \subset A \cup \{0\}$. Since $b_1, a'_1, a'_2, \dots, a'_\ell$ are distinct, one has $\{b_1, a'_1, a'_2, \dots, a'_\ell\} = A \cup \{0\}$. Thus, $\underbrace{b_1 + \dots + b_1}_{\ell} = 0$

from the above equality. However, since |G| is prime and l+1 < p, $\underbrace{b_1 + \cdots + b_1}_{l \to l} \in G$ cannot

be 0, a contradiction. Hence, $A + \{b_1\} \not\subset A \cup \{0\}$, which implies that $|(A + \{b_1\}) \cap C| \ge 1$.

Next, we consider $k \ge 2$. Let $B' = \{b_1, \ldots, b_{k-1}\}$. Then, by the hypothesis of induction, one has $|(A+B')\cap C| \geq k-1$. When $|(A+B')\cap C| > k-1$, the assertion holds. Thus, we assume that $|(A + B') \cap C| = k - 1$. Let $(A + B') \cap C = \{c_1, \dots, c_{k-1}\}$, where c_1, \dots, c_{k-1} are (k-1) distinct elements, $A' = A \cup \{c_1, \ldots, c_{k-1}\}$ and $C' = G^* \setminus A'$. Then, again by the hypothesis of induction, one has $|(A' + \{b_k\}) \cap C'| \ge 1$. This implies that there exists at least one element c_k in C' such that $a + b_k = c_k$ for some $a \in A'$. When $a \in A$, then $c_k \in (A+B) \cap C'$, which says that the assertion holds. Hence, we assume that $a \in \{c_1, \ldots, c_{k-1}\}, \text{ say, } a = c_1.$

Now, again by the hypothesis of induction, it is easy to see that we have the following equalities by renumbering $c_1, \ldots, c_{k-1} \in (A + B') \cap C$ if necessary:

(5)
$$\begin{cases} c_1 = a_{i_1} + b_1, \\ c_2 = a_{i_2} + b_2, \\ \vdots \\ c_{k-1} = a_{i_{k-1}} + b_{k-1}, \end{cases}$$

where $a_{i_1}, \ldots, a_{i_{k-1}} \in A$. Suppose that the inequality

$$(6) \qquad \qquad |(A+B) \cap C| \ge k$$

is not satisfied. From (5), one has

$$c_k = a + b_k = c_1 + b_k = a_{i_1} + b_1 + b_k.$$

Set $c'_1 = a_{i_1} + b_k$. When $c'_1 \in A$, since $c'_1 + b_1 \in A + B$ and $c'_1 + b_1 = c_k \in C'$, one has $c_k \in (A+B) \cap C'$, which means that (6) holds. When $c'_1 \in C'$, since $c'_1 = a_{i_1} + b_k \in A + B$, one has $c'_1 \in (A+B) \cap C'$, which also means that (6) holds. Moreover, c'_1 cannot be 0 since $c_k \neq b_1$. In addition, c'_1 cannot be c_1 since $b_1 \neq b_k$. Hence, it must be $c'_1 \in \{c_2, \ldots, c_{k-1}\}$, say, $c'_1 = c_2$. Then, again from (5),

$$c_k = c_1 + b_k = c_2 + b_1 = a_{i_2} + b_2 + b_1.$$

Set $c'_2 = a_{i_2} + b_1$. Similarly, when $c'_2 \in A$ or $c'_2 \in C'$, (6) holds. Moreover, c'_2 cannot be 0, c_1 and c_2 . Hence, it must be $c'_2 \in \{c_3, \ldots, c_{k-1}\}$, say, $c'_2 = c_3$. By repeating these discussions, we obtain

$$c_k = c_1 + b_k = c_2 + b_1 = \dots = c_{k-1} + b_{k-2} = a_{i_{k-1}} + b_{k-1} + b_{k-2}$$

Set $c'_{k-1} = a_{i_{k-1}} + b_{k-2}$. However, we have

$$c'_{k-1} \notin A \cup C' \cup \{0, c_1, c_2, \dots, c_{k-1}\} = G,$$

a contradiction. Thus, the inequality (6) must be satisfied.

Therefore, we obtain the required inequality (4).

Remark 1.3. (a) When $i_1 + i_{p-1} = \cdots = i_{(p-1)/2} + i_{(p+1)/2} = d+1$, the δ -vector is shifted symmetric. Shifted symmetric δ -vectors are studied in [6]. Moreover, the theorem [6, Theorem 2.3] says that if $i_1+i_{p-1} = d+1$, then we have $i_1+i_{p-1} = \cdots = i_{(p-1)/2}+i_{(p+1)/2} = d+1$.

(b) The inequalities $i_1 + i_\ell \ge i_{\ell+1}$ are not new. In fact, for example, when $i_1 < \cdots < i_{p-1}$, by (2), one has

 $\delta_0 + \dots + \delta_{i_1} \le \delta_{i_{p-1}} + \dots + \delta_{i_{p-1}-i_1}.$

Thus, we obtain $i_{p-1} - i_1 \leq i_{p-2}$, i.e., $i_1 + i_{p-2} \geq i_{p-1}$. Similarly, one has

 $\delta_0 + \dots + \delta_{i_2} \le \delta_{i_{p-1}} + \dots + \delta_{i_{p-1}-i_2}.$

Thus, we obtain $i_{p-1} - i_2 \leq i_{p-3}$. Since $i_1 + i_{p-1} = i_2 + i_{p-2}$, this is equivalent to $i_1 + i_{p-3} \geq i_{p-2}$. In the same way, we can obtain all inequalities $i_1 + i_{\ell} \geq i_{\ell+1}$. On the other hand, when $k \geq 2$, there are many new inequalities.

2. The possible δ -vectors of integral simplices with $\sum_{i=0}^{d} \delta_i = 5$

In this section, we give a proof of the "If" part of Theorem 0.2, i.e., we classify all the possible δ -vectors of integral simplices whose normalized volume is 5.

Let $(\delta_0, \delta_1, \ldots, \delta_d)$ be a nonnegative integer sequence with $\delta_0 = 1$ and $\sum_{i=0}^d \delta_i = 5$ which satisfies $i_1 + i_4 = i_2 + i_3 \leq d + 1$, $2i_1 \geq i_2$ and $i_1 + i_2 \geq i_3$, where i_1, \ldots, i_4 are the positive integers such that $\sum_{i=0}^d \delta_i t^i = 1 + t^{i_1} + \cdots + t^{i_4}$ with $1 \leq i_1 \leq \cdots \leq i_4 \leq d$. Since $i_1 + i_4 = i_2 + i_3$, we notice that $i_1 + i_3 \geq i_4$ (resp. $2i_2 \geq i_4$) is equivalent to $2i_1 \geq i_2$ (resp. $i_1 + i_2 \geq i_3$). From the conditions $\delta_0 = 1$, $\sum_{i=0}^d \delta_i = 5$ and $i_1 + i_4 = i_2 + i_3$, the possible sequences are only the following forms:

- (i) $(1, 0, \ldots, 0, 4, 0, \ldots, 0);$
- (ii) $(1, 0, \ldots, 0, 2, 0, \ldots, 0, 2, 0, \ldots, 0);$
- (iii) $(1, 0, \dots, 0, 1, 0, \dots, 0, 2, 0, \dots, 0, 1, 0, \dots, 0);$
- (iv) $(1, 0, \dots, 0, 1, 0, \dots, 0, 1, 0, \dots, 0, 1, 0, \dots, 0, 1, 0, \dots, 0)$.

Our work is to find integral simplices whose δ -vectors are of the above forms.

To construct integral simplices, we define the following integer matrix, which is called the *Hermite normal form*:

where there are d_j j's among the *'s for j = 1, ..., 4 and the rest of the entries are all 0. Then, clearly, it must be $d_j \ge 0$ and $d_1 + \cdots + d_4 \le d - 1$. By determining d_1, \ldots, d_4 , we obtain an integer matrix $A_5(d_1, \ldots, d_4)$ and we define the integral simplex $\mathcal{P}_5(d_1, \ldots, d_4)$ from the matrix as follows:

$$\mathcal{P}_5(d_1,\ldots,d_4) = \operatorname{conv}(\{(0,\ldots,0),v_1,\ldots,v_d\}) \subset \mathbb{R}^d$$

where v_i is the *i*th row vector of $A_5(d_1, \ldots, d_4)$. The following lemma enables us to compute $\delta(\mathcal{P}_5(d_1, \ldots, d_4))$ easily.

Lemma 2.1 ([4, Corollary 3.1]). If $\delta(\mathcal{P}_5(d_1, ..., d_4)) = (\delta_0, \delta_1, ..., \delta_d)$, then we have

$$\sum_{i=0}^{d} \delta_i t^i = 1 + \sum_{i=1}^{4} t^{1-s_i},$$

where

$$s_i = \left\lfloor \frac{i}{5} - \sum_{j=1}^4 \left\{ \frac{ij}{5} \right\} d_j \right\rfloor, \quad for \ i = 1, \dots, 4.$$

2.1. The case (i). Let $i_1 = i_2 = i_3 = i_4 = i$. Thus, one has $i - 1 \ge 0$ and $2i - 2 \le d - 1$ from our conditions. Hence, we can define $\mathcal{P}_5(0, i - 1, i - 1, 0)$. Then, by Lemma 2.1, $\delta(\mathcal{P}_5(0, i - 1, i - 1, 0))$ coincides with (i) since $s_1 = s_2 = s_3 = s_4 = -i + 1$.

2.2. The case (ii). Let $i_1 = i_2 = i$ and $i_3 = i_4 = j$. Thus, one has $2i \ge j$, $2j - 2i - 2 \ge 0$ and $i + j - 2 \le d - 1$. Hence, we can define $\mathcal{P}_5(0, i, 2i - j, 2j - 2i - 2)$ and its δ -vector coincides with (ii) since $s_1 = s_2 = -j + 1$ and $s_3 = s_4 = -i + 1$.

2.3. The case (iii). Let $i_1 = i, i_2 = i_3 = j$ and $i_4 = k$. Thus, one has $2i \ge j, 3j-3i-2 \ge 0$ and $2j-2 \le d-1$. Hence, we can define $\mathcal{P}_5(0, 2i-j, i, 3j-3i-2)$ and its δ -vector coincides with (iii) since $s_1 = -2j + i + 1 = -k + 1, s_2 = s_3 = -j + 1$ and $s_4 = -i + 1$.

2.4. The case (iv). In this case, one has $2i_1 \ge i_2, i_1 + i_2 \ge i_3, i_2 + 2i_3 - 3i_1 - 2 \ge 0$ and $i_2 + i_3 - 2 \le d - 1$. Hence, we can define $\mathcal{P}_5(0, 2i_1 - i_2, i_1 + i_2 - i_3, i_2 + 2i_3 - 3i_1 - 2)$ and its δ -vector coincides with (iv) since $s_1 = i_1 - i_2 - i_3 + 1 = -i_4 + 1, s_2 = -i_3 + 1, s_3 = -i_2 + 1$ and $s_4 = -i_1 + 1$.

Remark 2.2. (a) The classification of the case (iv) is essentially given in [6, Lemma 4.3]. (b) The inequalities $2i_1 \ge i_2$ and $i_1 + i_2 \ge i_3$ can be obtained from (2) as we mentioned in Remark 1.3 (b). Thus, the possible δ -vectors of integral simplices with normalized volume 5 can be essentially characterized only by Theorem 0.1 (a) and the inequalities (2).

3. The possible δ -vectors of integral simplices with $\sum_{i=0}^{d} \delta_i = 7$

In this section, similarly to the previous one, we give a proof of the "If" part of Theorem 0.3, i.e., we classify all the possible δ -vectors of integral simplices whose normalized volume is 7.

Let $(\delta_0, \delta_1, \ldots, \delta_d)$ be a nonnegative integer sequence with $\delta_0 = 1$ and $\sum_{i=0}^d \delta_i = 7$ which satisfies $i_1 + i_6 = i_2 + i_5 = i_3 + i_4 \leq d + 1$, $i_1 + i_l \geq i_{l+1}$ for $1 \leq l \leq 3$ and $2i_2 \geq i_4$, where i_1, \ldots, i_6 are the positive integers such that $\sum_{i=0}^d \delta_i t^i = 1 + t^{i_1} + \cdots + t^{i_6}$ with $1 \leq i_1 \leq \cdots \leq i_6 \leq d$. Since $i_1 + i_6 = i_2 + i_5 = i_3 + i_4$, we need not consider the inequalities $i_1 + i_4 \geq i_5$, $i_1 + i_5 \geq i_6$, $i_2 + i_3 \geq i_5$, $i_2 + i_4 \geq i_6$ and $2i_3 \geq i_6$. From the conditions $\delta_0 = 1$, $\sum_{i=0}^d \delta_i = 7$ and $i_1 + i_6 = i_2 + i_5 = i_3 + i_4$, the possible sequences are only the following forms:

- (i) $(1, 0, \ldots, 0, 6, 0, \ldots, 0);$
- (ii) $(1, 0, \ldots, 0, 3, 0, \ldots, 0, 3, 0, \ldots, 0);$
- (iii) $(1, 0, \dots, 0, 1, 0, \dots, 0, 4, 0, \dots, 0, 1, 0, \dots, 0);$
- (iv) $(1, 0, \dots, 0, 2, 0, \dots, 0, 2, 0, \dots, 0, 2, 0, \dots, 0);$
- (v) $(1, 0, \dots, 0, 1, 0, \dots, 0, 2, 0, \dots, 0, 2, 0, \dots, 0, 1, 0, \dots, 0);$
- (vi) $(1, 0, \dots, 0, 2, 0, \dots, 0, 1, 0, \dots, 0, 1, 0, \dots, 0, 2, 0, \dots, 0);$
- (vii) $(1, 0, \dots, 0, 1, 0, \dots, 0, 1, \dots, 0, 2, 0, \dots, 0, 1, 0, \dots, 0, 1, 0, \dots, 0);$
- (viii) $(1, 0, \dots, 0, 1, 0, \dots, 0, 1, \dots, 0, 1, 0, \dots, 0, 1, 0, \dots, 0, 1, 0, \dots, 0, 1, 0, \dots, 0)$.

In the same way as the previous section, we define the following integer matrix:

(8)
$$A_7(d_1,\ldots,d_6) = \begin{pmatrix} 1 & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ * & \cdots & * & 7 & & \\ & & & 1 & & \\ & & & & \ddots & \\ & & & & & 1 \end{pmatrix},$$

where there are d_j j's among the *'s for j = 1, ..., 6 and the rest of the entries are all 0. Then it must be $d_j \ge 0$ and $d_1 + \cdots + d_6 \le d - 1$. By determining d_1, \ldots, d_6 , we obtain the integral simplex

$$\mathcal{P}_7(d_1,\ldots,d_6) = \operatorname{conv}(\{(0,\ldots,0),v_1,\ldots,v_d\}) \subset \mathbb{R}^d$$

where v_i is the *i*th row vector of $A_7(d_1, \ldots, d_6)$. Similarly, the following lemma enables us to compute $\delta(\mathcal{P}_7(d_1, \ldots, d_6))$ easily.

Lemma 3.1 ([4, Corollary 3.1]). If $\delta(\mathcal{P}_7(d_1, \dots, d_6)) = (\delta_0, \delta_1, \dots, \delta_d)$, then we have $\sum_{i=1}^{d} \delta_i t^i - 1 + \sum_{i=1}^{6} t^{1-s_i}$

$$\sum_{i=0}^{a} \delta_i t^i = 1 + \sum_{i=1}^{6} t^{1-i}$$

where

$$s_i = \left\lfloor \frac{i}{7} - \sum_{j=1}^6 \left\{ \frac{ij}{7} \right\} d_j \right\rfloor, \quad for \ i = 1, \dots, 6.$$

3.1. The case (i). Let $i_1 = \cdots = i_6 = i$. Thus, one has $i - 1 \ge 0$ and $2i - 2 \le d - 1$ from our conditions. Hence, we can define $\mathcal{P}_7(0, 0, i - 1, i - 1, 0, 0)$. Then, by Lemma 3.1, $\delta(\mathcal{P}_7(0, 0, i - 1, i - 1, 0, 0))$ coincides with (i) since $s_1 = \cdots = s_6 = -i + 1$.

3.2. The case (ii). Let $i_1 = \cdots = i_3 = i$ and $i_4 = \cdots = i_6 = j$. Thus, one has $j - i \ge 0, 2i \ge j, 2j - 2i - 2 \ge 0$ and $i + j - 2 \le d - 1$. Hence, we can define $\mathcal{P}_7(0, j - i, 2i - j, 2i - j, 0, 2j - 2i - 2)$ and its δ -vector coincides with (ii) since $s_1 = s_2 = s_3 = -j + 1$ and $s_4 = s_5 = s_6 = -i + 1$.

3.3. The case (iii). Let $i_1 = i, i_2 = \dots = i_5 = j$ and $i_6 = k$. Thus, one has $i + j \ge k, k - j \ge 0, k - i - 1 \ge 0, i - 1 \ge 0$ and $i + k - 2 \le d - 1$. Hence, we can define $\mathcal{P}_7(i + j - k, k - j, k - i - 1, 0, 0, i - 1)$ and its δ -vector coincides with (iii) since $s_1 = \frac{-4i + j - 4k}{7} + 1 = -j + 1, s_2 = \frac{-i + 2j - 8k}{7} + 1 = -k + 1, s_3 = \frac{-5i + 3j - 5k}{7} + 1 = -j + 1, s_4 = \frac{-2i - 3j - 2k}{7} + 1 = -j + 1, s_5 = \frac{-6i - 2j + k}{7} + 1 = -i + 1$ and $s_6 = \frac{-3i - j - 3k}{7} + 1 = -j + 1$.

3.4. The case (iv). Let $i_1 = i_2 = i$, $i_3 = i_4 = j$ and $i_5 = i_6 = k$. Thus, one has $i-1 \ge 0, i+j \ge k, 3k-3j-1 \ge 0$ and $2i-2j+2k-2=i+k-2 \le d-1$. Hence, we can define $\mathcal{P}_7(0, 0, i-1, i+j-k, 0, 3k-3j-1)$ and its δ -vector coincides with (iv) since $s_1 = s_2 = -i+2j-2k+1 = -k+1, s_3 = s_4 = -i+j-k+1 = -j+1$ and $s_5 = s_6 = -i+1$.

3.5. The case (v). Let $i_1 = k_1, i_2 = i_3 = k_2, i_4 = i_5 = k_3$ and $i_6 = k_4$. Thus, one has $2k_1 \ge k_2, k_2 - k_1 \ge 0, k_1 + k_2 \ge k_3, 2k_3 - 2k_1 - 2 \ge 0$ and $k_2 + k_3 - 2 \le d - 1$. Hence, we can define $\mathcal{P}_7(0, 2k_1 - k_2, 0, k_2 - k_1, k_1 + k_2 - k_3, 2k_3 - 2k_1 - 2)$ and its δ -vector coincides with (v) since $s_1 = k_1 - k_2 - k_3 + 1 = -k_4 + 1, s_2 = s_3 = -k_3 + 1, s_4 = s_5 = -k_2 + 1$ and $s_6 = -k_1 + 1$.

3.6. The case (vi). Let $i_1 = i_2 = k_1$, $i_3 = k_2$, $i_4 = k_3$ and $i_5 = i_6 = k_4$. Thus, one has $k_3 - k_2 - 1 \ge 0$, $k_1 + k_2 \ge k_3$, $2k_1 \ge k_3$, $k_2 + 2k_3 - 3k_1 - 1 \ge 0$ and $k_2 + k_3 - 2 \le d - 1$. Hence, we can define $\mathcal{P}_7(0, k_3 - k_2 - 1, k_1 + k_2 - k_3, 2k_1 - k_3, 0, k_2 + 2k_3 - 3k_1 - 1)$ and its δ -vector coincides with (vi) since $s_1 = s_2 = k_1 - k_2 - k_3 + 1 = -k_4 + 1$, $s_3 = -k_3 + 1$, $s_4 = -k_2 + 1$ and $s_5 = s_6 = -k_1 + 1$.

3.7. The case (vii). Let $i_1 = k_1, i_2 = k_2, i_3 = i_4 = k_3, i_5 = k_4$ and $i_6 = k_5$. Thus, one has $2k_1 \ge k_2, k_1 + k_2 \ge k_3, k_2 - k_1 \ge 0, 3k_3 - 2k_1 - k_2 - 2 \ge 0$ and $2k_3 - 2 \le d - 1$. Hence, we can define $\mathcal{P}_7(0, 0, 2k_1 - k_2, k_1 + k_2 - k_3, k_2 - k_1, 3k_3 - 2k_1 - k_2 - 2)$ and its δ -vector coincides with (vii) since $s_1 = k_1 - 2k_3 + 1 = -k_5 + 1, s_2 = k_2 - 2k_3 + 1 = -k_4 + 1, s_3 = s_4 = -k_3 + 1, s_5 = -k_2 + 1$ and $s_1 = -k_1 + 1$.

3.8. The case (viii). In this case, one has $i_1 + i_2 \ge i_3, 2i_2 \ge i_4, i_3 + 2i_4 - 2i_1 - i_2 - 2 \ge 0, 2i_1 \ge i_2, i_1 + i_3 \ge i_4$ and $i_3 + i_4 - 2 \le d - 1$. Hence, we can define $\mathcal{P}_7(0, i_1 + i_2 - i_3, i_1 + i_3 - 2i_2, 0, 2i_2 - i_4, i_3 + 2i_4 - 2i_1 - i_2 - 2)$ if $i_1 + i_3 \ge 2i_2$ and $\mathcal{P}_7(0, 2i_1 - i_2, 0, 2i_2 - i_1 - i_3, i_1 + i_3 - i_4, i_3 + 2i_4 - 2i_1 - i_2 - 2)$ $i_1 + i_3 \le 2i_2$. Moreover, each of δ -vectors of them coincides with (viii) since $s_1 = i_1 - i_3 - i_4 + 1 = -i_6 + 1$, $s_2 = i_2 - i_3 - i_4 + 1 = -i_5 + 1$, $s_3 = -i_4 + 1, s_4 = -i_3 + 1, s_5 = -i_2 + 1$ and $s_6 = -i_1 + 1$.

Remark 3.2. When we discuss the cases of (vi) and (viii), we need the new inequality $2i_2 \ge i_4$. In fact, for example, the sequence (1, 0, 2, 0, 1, 1, 0, 2, 0) cannot be the δ -vector of an integral simplex, although this satisfies $i_1 + i_l \ge i_{l+1}, l = 1, \ldots, 3$. Similarly, the sequence (1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0) also cannot be the δ -vector of an integral simplex, although this satisfies $i_1 + i_l \ge i_{l+1}, l = 1, \ldots, 3$.

References

 E. Ehrhart, "Polynômes Arithmétiques et Méthode des Polyèdres en Combinatoire," Birkhäuser, Boston/Basel/Stuttgart, 1977.

- [2] T. Hibi, "Algebraic Combinatorics on Convex Polytopes," Carslaw Publications, Glebe NSW, Australia, 1992.
- [3] T. Hibi, A lower bound theorem for Ehrhart polynomials of convex polytopes, Adv. in Math. 105 (1994), 162 – 165.
- [4] T. Hibi, A. Higashitani and N. Li, Hermite normal forms and δ-vector, to appear in J. Comb. Theory Ser. A, also available at arXiv:1009.6023v1.
- [5] T. Hibi, A. Higashitani and Y. Nagazawa, Ehrhart polynomials of convex polytopes with small volume, European J. Combinatorics 32 (2011), 226–232.
- [6] A. Higashitani, Shifted symmetric δ-vectors of convex polytopes, Discrete Math. 310 (2010), 2925– 2934.
- [7] R. P. Stanley, "Enumerative Combinatorics, Volume 1," Wadsworth & Brooks/Cole, Monterey, Calif., 1986.
- [8] R. P. Stanley, Decompositions of rational convex polytopes, Annals of Discrete Math. 6 (1980), 333 342.
- [9] R. P. Stanley, On the Hilbert function of a graded Cohen–Macaulay domain, J. Pure and Appl. Algebra 73 (1991), 307 – 314.
- [10] A. Stapledon, Inequalities and Ehrhart δ -vectors, Trans. Amer. Math. Soc. **361** (2009), 5615–5626.
- [11] A. Stapledon, Additive number theorem and inequalities in Ehrhart theory, arXiv:0904.3035v1 [math.CO].

AKIHIRO HIGASHITANI, DEPARTMENT OF PURE AND APPLIED MATHEMATICS, GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY, OSAKA UNIVERSITY, TOYONAKA, OSAKA 560-0043, JAPAN *E-mail address*: a-higashitani@cr.math.sci.osaka-u.ac.jp