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EHRHART POLYNOMIALS OF INTEGRAL SIMPLICES

WITH PRIME VOLUMES

AKIHIRO HIGASHITANI

Abstract. For an integral convex polytope P ⊂ RN of dimension d, we call δ(P) =

(δ0, δ1, . . . , δd) its δ-vector and vol(P) =
∑d

i=0
δi its normalized volume. In this paper,

we will establish the new equalities and inequalities on δ-vectors for integral simplices

whose normalized volumes are prime. Moreover, by using those, we will classify all the

possible δ-vectors of integral simplices with normalized volume 5 and 7.

Introduction

One of the most fascinating problems on enumerative combinatorics is to characterize

the δ-vectors of integral convex polytopes.

Let P ⊂ RN be an integral convex polytope of dimension d, which is a convex polytope

any of whose vertices has integer coordinates. Let ∂P denote the boundary of P. Given

a positive integer n, we define

i(P, n) = |nP ∩ ZN |, i∗(P, n) = |n(P \ ∂P) ∩ ZN |,

where nP = {nα : α ∈ P} and |X| is the cardinality of a finite set X. The enumerative

function i(P, n) is called the Ehrhart polynomial of P, which was studied originally in the

work of Ehrhart [1]. The Ehrhart polynomial has the following fundamental properties:

• i(P, n) is a polynomial in n of degree d. (Thus, in particular, i(P, n) can be defined

for every integer n.)

• i(P, 0) = 1.

• (loi de réciprocité) i∗(P, n) = (−1)di(P,−n) for every integer n > 0.

We refer the reader to [2, Part II] and [7, pp. 235–241] for the introduction to the theory

of Ehrhart polynomials.

We define the sequence δ0, δ1, δ2, . . . of integers by the formula

(1− λ)d+1

(
∞∑

n=0

i(P, n)λn

)
=

∞∑

i=0

δiλ
i.(1)

Then, from a fundamental result on generating function ([7, Corollary 4.3.1]), we know

that δi = 0 for every i > d. We call the integer sequence

δ(P) = (δ0, δ1, . . . , δd),
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which appears in (1), the δ-vector of P. In addition, by the reciprocity law, one has
∞∑

n=1

i∗(P, n)λn =

∑d
i=0 δd−iλ

i+1

(1− λ)d+1
.

The δ-vector has the following fundamental properties:

• δ0 = 1 and δ1 = |P ∩ ZN | − (d+ 1).

• δd = |(P \ ∂P) ∩ ZN |. Hence, we have δ1 ≥ δd.

• Each δi is nonnegative ([8]).

• If (P \ ∂P) ∩ ZN is nonempty, then one has δ1 ≤ δi for every 1 ≤ i ≤ d− 1 ([3]).

• When d = N , the leading coefficient (
∑d

i=0 δi)/d! of i(P, n) is equal to the usual

volume of P ([7, Proposition 4.6.30]). In general, the positive integer vol(P) =∑d
i=0 δi is said to be the normalized volume of P.

Recently, the δ-vectors of integral convex polytopes have been studied intensively. For

example, see [6], [10] and [11].

There are two well-known inequalities on δ-vectors. Let s = max{i : δi 6= 0}. One is

δ0 + δ1 + · · · + δi ≤ δs + δs−1 + · · ·+ δs−i, 0 ≤ i ≤ ⌊s/2⌋,(2)

which is proved in Stanley [9], and another one is

δd + δd−1 + · · · + δd−i ≤ δ1 + δ2 + · · · + δi + δi+1, 0 ≤ i ≤ ⌊(d− 1)/2⌋,(3)

which appears in Hibi [3, Remark (1.4)].

When
∑d

i=0 δi ≤ 3, the above inequalities (2) and (3) characterize the possible δ-vectors

completely ([5]). Moreover, when
∑d

i=0 δi = 4, the possible δ-vectors are determined com-

pletely ([4, Theorem 5.1]) by (2) and (3) together with an additional condition. Further-

more, by the proofs of [5, Theorem 0.1] and [4, Theorem 5.1], we know that all the possible

δ-vectors can be realized as the δ-vectors of integral simplices when
∑d

i=0 δi ≤ 4. However,

unfortunately, it is not true when
∑d

i=0 δi = 5. (See [4, Remark 5.2].) Therefore, for the

further classifications of the δ-vectors with
∑d

i=0 δi ≥ 5, it is natural to investigate the

δ-vectors of integral simplices. In this paper, in particular, we establish some new con-

straints on δ-vectors for integral simplices whose normalized volumes are prime numbers.

The following theorem is our main result of this paper.

Theorem 0.1. Let P be an integral simplex of dimension d and δ(P) = (δ0, δ1, . . . , δd)

its δ-vector. Suppose that
∑d

i=0 δi = p is an odd prime number. Let i1, . . . , ip−1 be the

positive integers such that
∑d

i=0 δit
i = 1 + ti1 + · · · + tip−1 with 1 ≤ i1 ≤ · · · ≤ ip−1 ≤ d.

Then,

(a) one has

i1 + ip−1 = i2 + ip−2 = · · · = i(p−1)/2 + i(p+1)/2 ≤ d+ 1;

(b) one has

ik + iℓ ≥ ik+ℓ for 1 ≤ k ≤ ℓ ≤ p− 1 with k + ℓ ≤ p− 1.

We prove Theorem 0.1 in Section 1 via the languages of elementary group theory.

As an application of Theorem 0.1, we give a complete characterization of the possible

δ-vectors of integral simplices when
∑d

i=0 δi = 5 and 7.
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Theorem 0.2. Given a finite sequence (δ0, δ1, . . . , δd) of nonnegative integers, where δ0 =

1 and
∑d

i=0 δi = 5, there exists an integral simplex P ⊂ Rd of dimension d whose δ-vector

coincides with (δ0, δ1, . . . , δd) if and only if i1, . . . , i4 satisfy i1 + i4 = i2 + i3 ≤ d + 1 and

ik + iℓ ≥ ik+ℓ for 1 ≤ k ≤ ℓ ≤ 4 with k + ℓ ≤ 4, where i1, . . . , i4 are the positive integers

such that
∑d

i=0 δit
i = 1 + ti1 + · · · + ti4 with 1 ≤ i1 ≤ · · · ≤ i4 ≤ d.

Theorem 0.3. Given a finite sequence (δ0, δ1, . . . , δd) of nonnegative integers, where δ0 =

1 and
∑d

i=0 δi = 7, there exists an integral simplex P ⊂ Rd of dimension d whose δ-vector

coincides with (δ0, δ1, . . . , δd) if and only if i1, . . . , i6 satisfy i1+i6 = i2+i5 = i3+i4 ≤ d+1

and ik+iℓ ≥ ik+ℓ for 1 ≤ k ≤ ℓ ≤ 6 with k+ℓ ≤ 6, where i1, . . . , i6 are the positive integers

such that
∑d

i=0 δit
i = 1 + ti1 + · · · + ti6 with 1 ≤ i1 ≤ · · · ≤ i6 ≤ d.

By virtue of Theorem 0.1, the “Only if” parts of Theorem 0.2 and 0.3 are obvious. A

proof of the “If” part of Theomre 0.2 is given in Section 2 and that of Theorem 0.3 is

given in Section 3.

Finally, we note that we cannot characterize the possible δ-vectors of integral simplices

with higher prime normalized volumes only by Theorem 0.1. In fact, since the volume of

an integral convex polytope containing a unique integer point in its interior has an upper

bound, if p is a sufficiently large prime number, then the integer sequence (1, 1, p − 3, 1)

cannot be a δ-vector of some integral simplex of dimension 3, although (1, 1, p − 3, 1)

satisfies all the conditions of Theorem 0.1.

1. A proof of Theorem 0.1

The goal of this section is to give a proof of Theorem 0.1.

First of all, we recall from [2, Part II] the well-known combinatorial technique how to

compute the δ-vector of an integral simplex.

Given an integral simplex F in RN of dimension d with the vertices v0, v1, . . . , vd, we

set

F̃ =
{
(α, 1) ∈ RN+1 : α ∈ F

}
,

which is an integral simplex in RN+1 of dimension d with the vertices (v0, 1), (v1, 1), . . . , (vd, 1).

Clearly, we have i(F , n) = i(F̃ , n) for all n. Let

C(F̃) = {rβ : β ∈ F̃ , 0 ≤ r ∈ Q}.

Then one has

i(F , n) =
∣∣∣
{
(α, n) ∈ C(F̃) : α ∈ ZN

}∣∣∣ .

Each rational point α ∈ C(F̃) has a unique expression of the form α =
∑d

i=0 ri(vi, 1) with

0 ≤ ri ∈ Q. Let S be the set of all points α ∈ C(F̃)∩ZN+1 of the form α =
∑d

i=0 ri(vi, 1),

where ri ∈ Q with 0 ≤ ri < 1. We define the degree of α =
∑d

i=0 ri(vi, 1) ∈ C(F̃) ∩ ZN+1

with deg(α) =
∑d

i=0 ri, i.e., the last coordinate of α.

Lemma 1.1. Let δi be the number of integer points α ∈ S with deg(α) = i. Then,

δ(F) = (δ0, δ1, . . . , δd).
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Notice that the elements of S form an abelian group with a unit (0, . . . , 0) ∈ S. For

α and β in S with α =
∑d

i=0 ri(vi, 1) and β =
∑d

i=0 si(vi, 1), where ri, si ∈ Q with

0 ≤ ri, si < 1, we define the operation in S by setting α⊕β :=
∑d

i=0{ri+ si}(vi, 1), where

{r} = r−⌊r⌋ denotes the fractional part of a rational number r. (Throughout this paper,

in order to distinguish the operation in S from the usual addition, we use the notation ⊕,

which is not a direct sum.)

We prove Theorem 0.1 by using the above notations.

A proof of Theorem 0.1. Let v0, v1, . . . , vd be the vertices of the integral simplex P and S

the group appearing above. Then, since vol(P) = p is prime, it follows from Lemma 1.1

that the order of S is also prime. In particular, S is a cyclic group.

(a) Write gi1 , . . . , gip−1
∈ S \ {(0, . . . , 0)} for (p− 1) distinct elements with deg(gij ) = ij

for 1 ≤ j ≤ p − 1, that is, S = {(0, . . . , 0), gi1 , . . . , gip−1
}. Then, for each gij , there

exists its inverse −gij in S \ {(0, . . . , 0)}. Let −gij = gi′
j
. If gij has the expression

gij =
∑d

q=0 rq(vq, 1), where rq ∈ Q with 0 ≤ rq < 1, then its inverse has the expression

gi′j =
∑d

q=0{1− rq}(vq, 1). Thus, one has

deg(gij ) + deg(gi′j ) =
d∑

q=0

(rq + {1− rq}) ≤
d∑

q=0

(rq + 1− rq) = d+ 1

for all 1 ≤ j ≤ p− 1.

For j1, j2 ∈ {1, . . . , p−1} with j1 6= j2, let gij1 =
∑d

q=0 r
(1)
q (vq, 1) and gij2 =

∑d
q=0 r

(2)
q (vq, 1).

Since S is a cyclic group with a prime order, gij1 generates S, which implies that we can

write gij2 and gi′j2
as follows:

gij2 = gij1 ⊕ · · · ⊕ gij1︸ ︷︷ ︸
t

, gi′j2
= gi′j1

⊕ · · · ⊕ gi′j1︸ ︷︷ ︸
t

for some integer t ∈ {2, . . . , p − 1}. Thus, we have

d∑

q=0

(r(2)q + {1− r(2)q }) = deg(gij2 ) + deg(gi′
j2

)

= deg(gij1 ⊕ · · · ⊕ gij1︸ ︷︷ ︸
t

) + deg(gi′j1
⊕ · · · ⊕ gi′j1︸ ︷︷ ︸

t

) =

d∑

q=0

({tr(1)q }+ {t(1− r(1)q )}).

Moreover, gij1 ⊕ · · · ⊕ gij1︸ ︷︷ ︸
p

= (0, . . . , 0) holds. Thus, we have {pr
(1)
q } = 0 for all 0 ≤ q ≤ d.

Again, since p is prime, it follows that the denominator of each rational number r
(1)
q must

be p. Hence, if 0 < r
(1)
q < 1 (resp. 0 < {1 − r

(1)
q } < 1), then 0 < {tr

(1)
q } < 1 (resp.

0 < {t(1 − r
(1)
q )} < 1), so r

(1)
q + {1 − r

(1)
q } = {tr

(1)
q } + {t(1 − r

(1)
q )} = 1. In addition,

obviously, if r
(1)
q = {1 − r

(1)
q } = 0, then {tr

(1)
q } = {t(1 − r

(1)
q )} = 0, so r

(1)
q + {1 −

r
(1)
q } = {tr

(1)
q }+ {t(1− r

(1)
q )} = 0. Thus, deg(gij1 ) + deg(gi′j1

) = deg(gij2 ) + deg(gi′j2
), i.e.,

4



ij1 + i′j1 = ij2 + i′j2 . Hence, we obtain

i1 + i′1 = · · · = i(p−1)/2 + i′(p−1)/2(= i(p+1)/2 + i′(p+1)/2 = · · · = ip−1 + i′p−1) ≤ d+ 1.

Our work is to show that i′j = ip−j for all 1 ≤ j ≤ (p− 1)/2.

First, we consider i′1. Suppose that i′1 6= ip−1. Then, there is m ∈ {1, . . . , p − 2} with

i′1 = im < ip−1. Thus, it follows that

ip−1 + i′p−1 = i1 + i′1 = i1 + im < i1 + ip−1 ≤ i′p−1 + ip−1,

a contradiction. Thus, i′1 must be ip−1. Next, we consider i′2. Since gi′
2
6= gi1 and

gi′
2
6= gip−1

, we may consider i′2 among {i2, . . . , ip−2}. Then, the same discussion can be

done. Hence, i′2 = ip−2. Similarly, we have i′3 = ip−3, . . . , i
′

(p−1)/2 = i(p+1)/2.

Therefore, we obtain the desired conditions

i1 + ip−1 = i2 + ip−2 = · · · = i(p−1)/2 + i(p+1)/2 ≤ d+ 1.

(b) Write gi1 , . . . , giℓ ∈ S \ {(0, . . . , 0)} for ℓ distinct elements with deg(gij ) = ij for

1 ≤ j ≤ ℓ. Let A = {gi1 , . . . , giℓ}. Then there are k distinct elements hi1 , . . . , hik in

A with deg(hij ) = ij for 1 ≤ j ≤ k satisfying |A| + |B| = k + ℓ ≤ p − 1, where B =

{hi1 , . . . , hik} ⊂ A. Moreover, for each g ∈ A ⊕ B = {a ⊕ b : a ∈ A, b ∈ B}, g satisfies

deg(g) ≤ ik + iℓ. In fact, for gij ∈ A and hij′ ∈ B, if they have the expressions

gij =
d∑

q=0

rq(vq, 1) and hij′ =
d∑

q=0

r′q(vq, 1),

where rq, r
′

q ∈ Q with 0 ≤ rq, r
′

q < 1, then one has

deg(gij ⊕ hij′ ) =

d∑

q=0

{rq + r′q} ≤

d∑

q=0

(rq + r′q) = ij + ij′ ≤ ik + iℓ.

Now, Lemma 1.2 below guarantees that there exist at least k elements in A ⊕ B \ A ∪

{(0, . . . , 0)}. In addition, each gij in A satisfies deg(gij ) ≤ iℓ ≤ ik + iℓ. Thus, we can

say that there exist at least (k + ℓ) distinct elements in S \ {(0, . . . , 0)} whose degrees

are at most ik + iℓ. From the definition of i1, . . . , ip−1, this means that ik + iℓ ≥ ik+ℓ, as

desired. �

Lemma 1.2. Let G be a group with prime order p, where its operation is denoted by +,

and let G∗ = G \ {0}, where 0 is the unit of G. We choose two subsets (not subgroups) A

and B of G satisfying B ⊂ A ⊂ G∗ and |A| + |B| ≤ p− 1 and we set C = G∗ \ A. Then

one has

|(A+B) ∩ C| ≥ |B|,(4)

where A+B = {a+ b : a ∈ A, b ∈ B}.

Proof. Let A = {a1, . . . , aℓ} and B = {b1, . . . , bk}. We show the assertion by induction on

k.
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First, we consider k = 1, i.e., B = {b1}. Then, ℓ + 1 ≤ p − 1. For 1 ≤ i ≤ ℓ, let

ai + b1 = a′i ∈ G. Then we have

(0 + b1) +

ℓ∑

i=1

(ai + b1) =

(
0 +

ℓ∑

i=1

ai

)
+ b1 + · · · + b1︸ ︷︷ ︸

ℓ+1

= b1 +

ℓ∑

i=1

a′i.

If we suppose that A+ {b1} ⊂ A ∪ {0}, then we have {b1, a
′

1, a
′

2, . . . , a
′

ℓ} ⊂ A ∪ {0}. Since

b1, a
′

1, a
′

2, . . . , a
′

ℓ are distinct, one has {b1, a
′

1, a
′

2, . . . , a
′

ℓ} = A∪{0}. Thus, b1 + · · ·+ b1︸ ︷︷ ︸
ℓ+1

= 0

from the above equality. However, since |G| is prime and l+1 < p, b1 + · · ·+ b1︸ ︷︷ ︸
ℓ+1

∈ G cannot

be 0, a contradiction. Hence, A+ {b1} 6⊂ A∪{0}, which implies that |(A+ {b1})∩C| ≥ 1.

Next, we consider k ≥ 2. Let B′ = {b1, . . . , bk−1}. Then, by the hypothesis of induction,

one has |(A+B′)∩C| ≥ k−1. When |(A+B′)∩C| > k−1, the assertion holds. Thus, we

assume that |(A+B′)∩C| = k− 1. Let (A+B′)∩C = {c1, . . . , ck−1}, where c1, . . . , ck−1

are (k − 1) distinct elements, A′ = A ∪ {c1, . . . , ck−1} and C ′ = G∗ \ A′. Then, again

by the hypothesis of induction, one has |(A′ + {bk}) ∩ C ′| ≥ 1. This implies that there

exists at least one element ck in C ′ such that a+ bk = ck for some a ∈ A′. When a ∈ A,

then ck ∈ (A + B) ∩ C ′, which says that the assertion holds. Hence, we assume that

a ∈ {c1, . . . , ck−1}, say, a = c1.

Now, again by the hypothesis of induction, it is easy to see that we have the following

equalities by renumbering c1, . . . , ck−1 ∈ (A+B′) ∩ C if necessary:




c1 = ai1 + b1,

c2 = ai2 + b2,
...

ck−1 = aik−1
+ bk−1,

(5)

where ai1 , . . . , aik−1
∈ A. Suppose that the inequality

|(A+B) ∩ C| ≥ k(6)

is not satisfied. From (5), one has

ck = a+ bk = c1 + bk = ai1 + b1 + bk.

Set c′1 = ai1 + bk. When c′1 ∈ A, since c′1 + b1 ∈ A + B and c′1 + b1 = ck ∈ C ′, one has

ck ∈ (A+B)∩C ′, which means that (6) holds. When c′1 ∈ C ′, since c′1 = ai1 + bk ∈ A+B,

one has c′1 ∈ (A+B)∩C ′, which also means that (6) holds. Moreover, c′1 cannot be 0 since

ck 6= b1. In addition, c′1 cannot be c1 since b1 6= bk. Hence, it must be c′1 ∈ {c2, . . . , ck−1},

say, c′1 = c2. Then, again from (5),

ck = c1 + bk = c2 + b1 = ai2 + b2 + b1.

Set c′2 = ai2 + b1. Similarly, when c′2 ∈ A or c′2 ∈ C ′, (6) holds. Moreover, c′2 cannot

be 0, c1 and c2. Hence, it must be c′2 ∈ {c3, . . . , ck−1}, say, c
′

2 = c3. By repeating these

discussions, we obtain

ck = c1 + bk = c2 + b1 = · · · = ck−1 + bk−2 = aik−1
+ bk−1 + bk−2.

6



Set c′k−1 = aik−1
+ bk−2. However, we have

c′k−1 6∈ A ∪ C ′ ∪ {0, c1, c2, . . . , ck−1} = G,

a contradiction. Thus, the inequality (6) must be satisfied.

Therefore, we obtain the required inequality (4). �

Remark 1.3. (a) When i1+ ip−1 = · · · = i(p−1)/2+ i(p+1)/2 = d+1, the δ-vector is shifted

symmetric. Shifted symmetric δ-vectors are studied in [6]. Moreover, the theorem [6,

Theorem 2.3] says that if i1+ip−1 = d+1, then we have i1+ip−1 = · · · = i(p−1)/2+i(p+1)/2 =

d+ 1.

(b) The inequalities i1+ iℓ ≥ iℓ+1 are not new. In fact, for example, when i1 < · · · < ip−1,

by (2), one has

δ0 + · · ·+ δi1 ≤ δip−1
+ · · ·+ δip−1−i1 .

Thus, we obtain ip−1 − i1 ≤ ip−2, i.e., i1 + ip−2 ≥ ip−1. Similarly, one has

δ0 + · · ·+ δi2 ≤ δip−1
+ · · ·+ δip−1−i2 .

Thus, we obtain ip−1 − i2 ≤ ip−3. Since i1 + ip−1 = i2 + ip−2, this is equivalent to

i1 + ip−3 ≥ ip−2. In the same way, we can obtain all inequalities i1 + iℓ ≥ iℓ+1. On the

other hand, when k ≥ 2, there are many new inequalities.

2. The possible δ-vectors of integral simplices with
∑d

i=0 δi = 5

In this section, we give a proof of the “If” part of Theorem 0.2, i.e., we classify all the

possible δ-vectors of integral simplices whose normalized volume is 5.

Let (δ0, δ1, . . . , δd) be a nonnegative integer sequence with δ0 = 1 and
∑d

i=0 δi = 5

which satisfies i1 + i4 = i2 + i3 ≤ d+ 1, 2i1 ≥ i2 and i1 + i2 ≥ i3, where i1, . . . , i4 are the

positive integers such that
∑d

i=0 δit
i = 1+ ti1 + · · ·+ ti4 with 1 ≤ i1 ≤ · · · ≤ i4 ≤ d. Since

i1 + i4 = i2 + i3, we notice that i1 + i3 ≥ i4 (resp. 2i2 ≥ i4) is equivalent to 2i1 ≥ i2 (resp.

i1 + i2 ≥ i3). From the conditions δ0 = 1,
∑d

i=0 δi = 5 and i1 + i4 = i2 + i3, the possible

sequences are only the following forms:

(i) (1, 0, . . . , 0, 4, 0, . . . , 0);

(ii) (1, 0, . . . , 0, 2, 0, . . . , 0, 2, 0, . . . , 0);

(iii) (1, 0, . . . , 0, 1, 0, . . . , 0, 2, 0, . . . , 0, 1, 0, . . . , 0);

(iv) (1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0).

Our work is to find integral simplices whose δ-vectors are of the above forms.

To construct integral simplices, we define the following integer matrix, which is called

the Hermite normal form:

A5(d1, . . . , d4) =




1
. . .

1

∗ · · · ∗ 5

1
. . .

1




,(7)

7



where there are dj j’s among the ∗’s for j = 1, . . . , 4 and the rest of the entries are all 0.

Then, clearly, it must be dj ≥ 0 and d1 + · · · + d4 ≤ d− 1. By determining d1, . . . , d4, we

obtain an integer matrix A5(d1, . . . , d4) and we define the integral simplex P5(d1, . . . , d4)

from the matrix as follows:

P5(d1, . . . , d4) = conv({(0, . . . , 0), v1, . . . , vd}) ⊂ Rd,

where vi is the ith row vector of A5(d1, . . . , d4). The following lemma enables us to compute

δ(P5(d1, . . . , d4)) easily.

Lemma 2.1 ([4, Corollary 3.1]). If δ(P5(d1, . . . , d4)) = (δ0, δ1, . . . , δd), then we have

d∑

i=0

δit
i = 1 +

4∑

i=1

t1−si ,

where

si =

 i

5
−

4∑

j=1

{
ij

5

}
dj

 , for i = 1, . . . , 4.

2.1. The case (i). Let i1 = i2 = i3 = i4 = i. Thus, one has i− 1 ≥ 0 and 2i− 2 ≤ d− 1

from our conditions. Hence, we can define P5(0, i − 1, i − 1, 0). Then, by Lemma 2.1,

δ(P5(0, i − 1, i− 1, 0)) coincides with (i) since s1 = s2 = s3 = s4 = −i+ 1.

2.2. The case (ii). Let i1 = i2 = i and i3 = i4 = j. Thus, one has 2i ≥ j, 2j− 2i− 2 ≥ 0

and i + j − 2 ≤ d − 1. Hence, we can define P5(0, i, 2i − j, 2j − 2i − 2) and its δ-vector

coincides with (ii) since s1 = s2 = −j + 1 and s3 = s4 = −i+ 1.

2.3. The case (iii). Let i1 = i, i2 = i3 = j and i4 = k. Thus, one has 2i ≥ j, 3j−3i−2 ≥ 0

and 2j−2 ≤ d−1. Hence, we can define P5(0, 2i−j, i, 3j−3i−2) and its δ-vector coincides

with (iii) since s1 = −2j + i+ 1 = −k + 1, s2 = s3 = −j + 1 and s4 = −i+ 1.

2.4. The case (iv). In this case, one has 2i1 ≥ i2, i1 + i2 ≥ i3, i2 + 2i3 − 3i1 − 2 ≥ 0 and

i2+ i3−2 ≤ d−1. Hence, we can define P5(0, 2i1− i2, i1+ i2− i3, i2+2i3−3i1−2) and its

δ-vector coincides with (iv) since s1 = i1− i2− i3+1 = −i4+1, s2 = −i3+1, s3 = −i2+1

and s4 = −i1 + 1.

Remark 2.2. (a) The classification of the case (iv) is essentially given in [6, Lemma 4.3].

(b) The inequalities 2i1 ≥ i2 and i1+ i2 ≥ i3 can be obtained from (2) as we mentioned in

Remark 1.3 (b). Thus, the possible δ-vectors of integral simplices with normalized volume

5 can be essentially characterized only by Theorem 0.1 (a) and the inequalities (2).

3. The possible δ-vectors of integral simplices with
∑d

i=0 δi = 7

In this section, similarly to the previous one, we give a proof of the “If” part of Theorem

0.3, i.e., we classify all the possible δ-vectors of integral simplices whose normalized volume

is 7.

Let (δ0, δ1, . . . , δd) be a nonnegative integer sequence with δ0 = 1 and
∑d

i=0 δi = 7

which satisfies i1 + i6 = i2 + i5 = i3 + i4 ≤ d + 1, i1 + il ≥ il+1 for 1 ≤ l ≤ 3 and

2i2 ≥ i4, where i1, . . . , i6 are the positive integers such that
∑d

i=0 δit
i = 1 + ti1 + · · · + ti6
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with 1 ≤ i1 ≤ · · · ≤ i6 ≤ d. Since i1 + i6 = i2 + i5 = i3 + i4, we need not consider the

inequalities i1 + i4 ≥ i5, i1 + i5 ≥ i6, i2 + i3 ≥ i5, i2 + i4 ≥ i6 and 2i3 ≥ i6. From the

conditions δ0 = 1,
∑d

i=0 δi = 7 and i1 + i6 = i2 + i5 = i3 + i4, the possible sequences are

only the following forms:

(i) (1, 0, . . . , 0, 6, 0, . . . , 0);

(ii) (1, 0, . . . , 0, 3, 0, . . . , 0, 3, 0, . . . , 0);

(iii) (1, 0, . . . , 0, 1, 0, . . . , 0, 4, 0, . . . , 0, 1, 0, . . . , 0);

(iv) (1, 0, . . . , 0, 2, 0, . . . , 0, 2, 0, . . . , 0, 2, 0, . . . , 0);

(v) (1, 0, . . . , 0, 1, 0, . . . , 0, 2, 0, . . . , 0, 2, 0, . . . , 0, 1, 0, . . . , 0);

(vi) (1, 0, . . . , 0, 2, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 2, 0, . . . , 0);

(vii) (1, 0, . . . , 0, 1, 0, . . . , 0, 1, . . . , 0, 2, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0);

(viii) (1, 0, . . . , 0, 1, 0, . . . , 0, 1, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0).

In the same way as the previous section, we define the following integer matrix:

A7(d1, . . . , d6) =




1
. . .

1

∗ · · · ∗ 7

1
. . .

1




,(8)

where there are dj j’s among the ∗’s for j = 1, . . . , 6 and the rest of the entries are all 0.

Then it must be dj ≥ 0 and d1 + · · · + d6 ≤ d − 1. By determining d1, . . . , d6, we obtain

the integral simplex

P7(d1, . . . , d6) = conv({(0, . . . , 0), v1, . . . , vd}) ⊂ Rd,

where vi is the ith row vector of A7(d1, . . . , d6). Similarly, the following lemma enables us

to compute δ(P7(d1, . . . , d6)) easily.

Lemma 3.1 ([4, Corollary 3.1]). If δ(P7(d1, . . . , d6)) = (δ0, δ1, . . . , δd), then we have

d∑

i=0

δit
i = 1 +

6∑

i=1

t1−si ,

where

si =

 i

7
−

6∑

j=1

{
ij

7

}
dj

 , for i = 1, . . . , 6.

3.1. The case (i). Let i1 = · · · = i6 = i. Thus, one has i − 1 ≥ 0 and 2i − 2 ≤ d − 1

from our conditions. Hence, we can define P7(0, 0, i− 1, i− 1, 0, 0). Then, by Lemma 3.1,

δ(P7(0, 0, i − 1, i − 1, 0, 0)) coincides with (i) since s1 = · · · = s6 = −i+ 1.

3.2. The case (ii). Let i1 = · · · = i3 = i and i4 = · · · = i6 = j. Thus, one has

j− i ≥ 0, 2i ≥ j, 2j−2i−2 ≥ 0 and i+ j−2 ≤ d−1. Hence, we can define P7(0, j− i, 2i−

j, 2i− j, 0, 2j − 2i− 2) and its δ-vector coincides with (ii) since s1 = s2 = s3 = −j+1 and

s4 = s5 = s6 = −i+ 1.
9



3.3. The case (iii). Let i1 = i, i2 = · · · = i5 = j and i6 = k. Thus, one has i +

j ≥ k, k − j ≥ 0, k − i − 1 ≥ 0, i − 1 ≥ 0 and i + k − 2 ≤ d − 1. Hence, we can

define P7(i + j − k, k − j, k − i − 1, 0, 0, i − 1) and its δ-vector coincides with (iii) since

s1 =
−4i+j−4k

7 +1 = −j+1, s2 =
−i+2j−8k

7 +1 = −k+1, s3 =
−5i+3j−5k

7 +1 = −j+1, s4 =
−2i−3j−2k

7 + 1 = −j + 1, s5 =
−6i−2j+k

7 + 1 = −i+ 1 and s6 =
−3i−j−3k

7 + 1 = −j + 1.

3.4. The case (iv). Let i1 = i2 = i, i3 = i4 = j and i5 = i6 = k. Thus, one has

i − 1 ≥ 0, i + j ≥ k, 3k − 3j − 1 ≥ 0 and 2i − 2j + 2k − 2 = i + k − 2 ≤ d − 1. Hence,

we can define P7(0, 0, i − 1, i + j − k, 0, 3k − 3j − 1) and its δ-vector coincides with (iv)

since s1 = s2 = −i + 2j − 2k + 1 = −k + 1, s3 = s4 = −i + j − k + 1 = −j + 1 and

s5 = s6 = −i+ 1.

3.5. The case (v). Let i1 = k1, i2 = i3 = k2, i4 = i5 = k3 and i6 = k4. Thus, one has

2k1 ≥ k2, k2 − k1 ≥ 0, k1 + k2 ≥ k3, 2k3 − 2k1 − 2 ≥ 0 and k2 + k3 − 2 ≤ d− 1. Hence, we

can define P7(0, 2k1 − k2, 0, k2 − k1, k1 + k2 − k3, 2k3 − 2k1 − 2) and its δ-vector coincides

with (v) since s1 = k1 − k2 − k3 + 1 = −k4 + 1, s2 = s3 = −k3 + 1, s4 = s5 = −k2 + 1 and

s6 = −k1 + 1.

3.6. The case (vi). Let i1 = i2 = k1, i3 = k2, i4 = k3 and i5 = i6 = k4. Thus, one has

k3−k2−1 ≥ 0, k1+k2 ≥ k3, 2k1 ≥ k3, k2+2k3−3k1−1 ≥ 0 and k2+k3−2 ≤ d−1. Hence,

we can define P7(0, k3 − k2− 1, k1+ k2− k3, 2k1− k3, 0, k2 +2k3− 3k1− 1) and its δ-vector

coincides with (vi) since s1 = s2 = k1 − k2 − k3 +1 = −k4 +1, s3 = −k3 +1, s4 = −k2 +1

and s5 = s6 = −k1 + 1.

3.7. The case (vii). Let i1 = k1, i2 = k2, i3 = i4 = k3, i5 = k4 and i6 = k5. Thus, one

has 2k1 ≥ k2, k1 + k2 ≥ k3, k2 − k1 ≥ 0, 3k3 − 2k1 − k2 − 2 ≥ 0 and 2k3 − 2 ≤ d− 1. Hence,

we can define P7(0, 0, 2k1 − k2, k1 + k2 − k3, k2 − k1, 3k3 − 2k1 − k2 − 2) and its δ-vector

coincides with (vii) since s1 = k1 − 2k3 + 1 = −k5 + 1, s2 = k2 − 2k3 + 1 = −k4 + 1, s3 =

s4 = −k3 + 1, s5 = −k2 + 1 and s1 = −k1 + 1.

3.8. The case (viii). In this case, one has i1 + i2 ≥ i3, 2i2 ≥ i4, i3 + 2i4 − 2i1 − i2 − 2 ≥

0, 2i1 ≥ i2, i1 + i3 ≥ i4 and i3 + i4 − 2 ≤ d− 1. Hence, we can define P7(0, i1 + i2 − i3, i1 +

i3 − 2i2, 0, 2i2 − i4, i3 + 2i4 − 2i1 − i2 − 2) if i1 + i3 ≥ 2i2 and P7(0, 2i1 − i2, 0, 2i2 − i1 −

i3, i1 + i3 − i4, i3 + 2i4 − 2i1 − i2 − 2) i1 + i3 ≤ 2i2. Moreover, each of δ-vectors of them

coincides with (viii) since s1 = i1 − i3 − i4 + 1 = −i6 + 1, s2 = i2 − i3 − i4 + 1 = −i5 + 1,

s3 = −i4 + 1, s4 = −i3 + 1, s5 = −i2 + 1 and s6 = −i1 + 1.

Remark 3.2. When we discuss the cases of (vi) and (viii), we need the new inequality

2i2 ≥ i4. In fact, for example, the sequence (1, 0, 2, 0, 1, 1, 0, 2, 0) cannot be the δ-vector

of an integral simplex, although this satisfies i1 + il ≥ il+1, l = 1, . . . , 3. Similarly, the

sequence (1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0) also cannot be the δ-vector of an integral simplex,

although this satisfies i1 + il ≥ il+1, l = 1, . . . , 3.
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