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REPRESENTATIONS OF CYCLIC GROUPS IN POSITIVE
CHARACTERISTIC AND WEIERSTRASS SEMIGROUPS

SOTIRIS KARANIKOLOPOULOS AND ARISTIDES KONTOGEORGIS

ABSTRACT. We study thek[G]-module structure of the space of holomorphic differestial
of a curve defined over an algebraically closed field of pasitharacteristic, for a cyclic
groupG of orderp®n. We also study the relation to the Weierstrass semigroughéocase
of Galois Weierstrass points.

1. INTRODUCTION

Let X be a projective nonsingular curve, defined over an algedigiclosed fieldK
of positive characteristip. The study of the curveX is equivalent to the study of the
corresponding function field'.

An open question in positive characteristic is the deteatidm of the Galois module
structure of the space of holomorphic differentials’6f This problem is still open and
only some special cases are known [16],[17],[8],[12],[ Hjere restrictions are made either
on the ramification type or on the group structurezofR.Valentini and M. Madan i [19]
computed the Galois module structure of the space of holphodifferentials for the
case of a cyclic group actiai, whereGG was a cyclig-group of order either prime tpor
a power ofp. One of the aims of this paper is to extend the result of Valektadan to the
more general case of a cyclic group that has ogder (n,p) = 1. We will characterize
the indecomposable summaridé), ) (see sectiohl2 for a precise definition in terms of
the Jordan indecomposable blocks of the generator) and ivdegompose the spadé
of holomorphic differentials as:

(1) V=P PV kI,

k
The numberg/(\, k) will be described in terms of the ramification of the extensity F¢
in theoreniV.

The G—-module structure is expressed in terms of Buseckinvariants. These are in-
variants introduced by Bosedki [2] coming from the constarcof bases of holomorphic
differentials. The Boseck invariants have rich conneciaith other subjects in the liter-
ature: computation of Weierstrass points, [2], [3], [4]e ttomputation of the rank of the
Hasse—-Witt matrix,[[9]; the classification of curves withrtain rank of the Hasse—Witt
matrix [11]; the study of the Artin—Schreier (sub)extemsiof rational functions fields,
[18],etc. Here we choose to focus only on thenodule structure as well as on the struc-
ture of the Weierstrass semigroup that is attached to a eahpfint.

The complicated notation needed in order to state the maiitseprevents us from
presenting our main theorem here.

The paper is organized as follows: In secfidn 2 we introdunetation for the places
that are ramified in extensidi/ F'*’ / ¢ and give a filtration of the module of holomorphic
differentials used in the computations. Next section it to dimension computations
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with the aid of Riemann-Roch formula. In the final section vee she relation to the
Weierstrass semigroup. We tried to relate our results tavkn@sults in the literature.
This way we discovered an inaccuracy in the work of Boseckri2he case of &/pZ-
extension of the rational function field ramified above onmpd-inally we extend results
from characteristic zero relating the Galois module strreebf the space of holomorphic
differentials and the Weierstrass semigroup attached aoniied point.

2. NOTATION

LetG = (g) be a cyclic subgroup of automorphisms acting on the spacelofitorphic
differentialsV := H°(X, Qx). The groupG can be written as a direct product of a group
T= (gpl> of ordern and a cyclicp-groupP = (¢™). We consider the tower of function
fields F/FP/FC. Letnp’ = |G|, (n,p) = 1 and consider a primitive-th root of unity
¢, € K. By Jordan decomposition theory we see that we can deconip@sea direct
sum of K[G]-modulesV (), k). The moduled/ (), k) arek-dimensional -vector spaces
with basis{vy, ..., v} and action given by

() gu; = Cﬁvi +ogqforalll <i<k-—1
and
A
gui = Cnvk.

The action of the generatgron V (), k) is given in terms of the matrix:

C,)l‘ 1 0O --- 0

0 ¢ 1 :

A= .0
o ---. 0 0 §7)1\

Observe that for a cyclic grou@ of ordernp’ generated by the modulek [G] can be
decomposed aK'[G] = @K;})V(A,pé). Indeed, the characteristic polynomialghcting
on K[G] is up to£1 equal tog™?’ — 1 = (™ — 1)1”[, and every root of unity i’ appears
as a character iK [G].

Remark 1. The indecomposabl& [P]-modules of a cyclig-group of ordep’ and with
generator are given by the quotient&[P]/(c — 1)*, wherek = 1,...,p’ [19]. In our
notation these are the modulég0, k) i.e. the indecomposable Jordan forms of dimension
k.

Proposition 2. The indecomposabl& [G]-moduleV (), k) seen as aK[T]-module is a

direct sum ofk characters of the forng — ¢?'". The moduld/ (A, k) seen asK[P]-
module is indecomposable and isomorphic to the mogijle] /(o — 1)*.

Proof. We will use the following idea: The action ¢f on the indecomposable summand
V (A, k) is described by the action of the generagoof G. We would like to view the
moduleV (A, k) as aP andT module respectively. A generator for tiiegroup is given
by gpg. Write the matrix4 as A = diag(¢*) + N whereN is a nilpotentk x k matrix
with & < p’. Therefore, the generat@?l of theT" group is given by the matrix?’ =
diag((APl). This means that’ (A, k) seen as & module is decomposed as a direct sum of
k characters of the forrg — §*1’£. Since(p’, n) = 1 raising ann-th root of unity to the
p’-power is an automorphism of the groupreth roots of one.

On the other hand the action of the genergtbon the modulé/ (A, k) is given by the
n-th power of A. We observe first that that all eigenvaluesAsf are1. We will prove
that A™ is similar to the matriXid + N, i.e. a Jordan indecomposable block. Since all
eigenvalues ofA” are1 the characteristic polynomial o™ is (z — 1)*. The minimal
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polynomial of A™ is (x — 1)¢ for some integet < d < k. SinceA is an indecomposable
Jordan block the minimal polynomial of is (z — ¢*)*. On the other hand, sinded™ —
1)¢ = 0 we have thatz — ¢*)* divides(z™ — 1)? and this is possible only if = k. This
implies thatA™ is similar to an indecomposable Jordan form of dimengion d

2.1. Fields and ramification. We will introduce some notation on the ramification places
in the extension®’/ ¥ andF/F“. Let us denote by, , . . ., P, the places of ' that are
ramified in F/FF. The places of* that are abové; will be denoted byP; ,, 1 < v <
p’/e;, wheree; = p<i is the common ramification indeXP;, /P;).
The dlﬁerenﬂ)lff(F/FP) is supported at the placé},, while the discriminanD (F//F'*)
is supported at the placéy, . . ., P,. Let us denote the different exponent at each ramified
placeP; by J;. The dlscrlmlnant is then computed:

D(F/FT) pr <6 Pj,

while the different is given by

Diff(F/F?) = 25 > P

The cyclic group extensioR” / F¢ is a Kummer extension with Galois grodpand it is
defined by an equation of the form:

3) FP =FC(y), y*=b, beF°

LetQy,...,Q; be the places of “ that are ramified in extensiafi” /F'“. We define
Qiv, 1 < v < n/é) to be the places of'” which are abov&);, wheree! denotes the
common ramification index,, = e(Qi../Q:).

Assume that the set of placég), ..., Q. } extend to places); , of F'¥' that do not
ramify on F'/ ¥’ and that each plad@; of the placeQ¢,1,- .., Q:} extends to places
Q. that ramify in F//F'¥. The total number of places of the for@y , to + 1 < i <t
equals

t
S0 1= Z E/:|{QZ—7V:t0+1§i§t,1§1/§n/e’i}|.
i=tg+1 *

We enumerate the place’ such that{P,,1,..., P,} do not ramify in F*/F¢ and
{Pl,,Pbo}:{Qz,l,to—i-l §2§t,1 Sugn/e;}

P A Pi, Pyt P,
P el et €sg+1 €s
P Qry Qto Qrostn Q1 JZR— P,
T €y 620 €£0+1 e

FG Ql ................. Qto Qt0+1 ................. Qt

We can seledt in eq. [3) such thaf[19, sec. 2]

t

i=1
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where0 < ¢; < n, A is a divisor of . The ramification indices are given by =
n/(n, ¢;), and the discriminant is given by

(5) D(FP [FC) = g (n - E) Q.

We also defin@; = ¢;/(n, ¢;).

2.2. Modules. Let us now focus on the cyclig-group extensior#’/ F¥'. The G-module
structure on holomorphic differentials on a cycligroup is studied by R. Valentini and
M. Madan in [19]. Lets := ¢" be a generator of the cyclic group Recall tha” denotes
the set of holomorphic differentials. Following the aridf Valentini Madan we consider
the set of subspacés’ c V defined by

Vi={weV:(o-1)w=0}fori=0,...,p"
We compute that (the s€by, . . ., v, } is the basis o¥/ (1, m) given in eq. [(2)).

{V()\,m) if m<i+1

i+1 _
Vi nv,m) = (Um—iy-eyUm) fm>i+1

SinceG is a commutative group there is a well defined actiofi’ of (gp€> on the quotient
spaceV*1 /v and the natural map

Vi+1 N Vi-ﬁ-l/vi,
is T-equivariant. The images of the spad€s ' NV (\, m) under this map arefor m < i
and are one dimensionalit > i.

The spacd/i*!/V is decomposed into characters of the gr@upLet d(\, k) be the
number ofV/ (A, k) blocks inV. Letc(),4), 0 < i < p — 1 be the number of characters of
the formgw = (Pw in Vit+1 V7,

We have that

c(A i)=Y d(\k).

E>it1
Therefore
(6) dAp") = c(\p'-1)
dNEkE) = c\E—1)—c(\ k).
Lemma 3. There is a basigwy, ..., w,:_,} of F over F¥ such that:

ro <k < p*—1with p-adic expansiot = a7 +a5p+---+asp*—*, we have
1) For0 < k < p* — 1 with p-ad p k K pakp kpt=1 h
(o — l)kwk = a]f!ag! e aﬁ!wk.

(2) Everyw € V can be written as

p'—1

w= Z CL W, dx
v=0
with z, ¢, € F¥ and with the additional property that

wEVi(bci:ci+1:---:cpz,1:0.

(3) There are number®(u, j) prime top such that
¢
v, (wp) = = > af®(u, )p" .
j=1

Proof. The definition of the basis is given ih [19, p.108] while themsd assertion is
proved in the same article in the proof of theorem 1. The erist of the numberB(u, j)
follows by the construction of the extensidtf F'*" in terms of successive Artin-Schreier
extensions (se€[19, sec. 1]). O
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Define the integers:

o +vp, , (W)
(7) Vik o= {“— .
€u
Notice that the valuationp, , (w,) does not depend on the selection of the plBgg over
P,.

Letr = gpe be a generator of the cyclic grodp Assume thaty = (/y. For each
A=0,...,n—1weselech) < a) <n —1suchthat

(8) ray = A modn.
Definition 4. Define the Boseck invariants:

T L i Oé,\(I)i i Oé/\q)j—l Vjk gy mG
=2 T ) 2 T )| [~

i=1 z j=to+1 J

Remark 5. If n = 1, then

S
Fk7/\ :Fk = E Vu,k-
p=1

This is the Boseck invariant for thecyclic case, see [2] andl[6].

If p* =1 then
t
a)d,;

j=1 J

This is the Boseck invariant for the the cyclic tame case. s€hrvariants coincide with
the ones introduced by|[2], and used by [6], after letting 1, to eq. [B) (this can be done
without loss of the generality).

In next section we will prove the following:

Proposition 6. Recall that; are integers such that = ¢(P;,/P;). Consider the integer
r={—maxe;. For0 <k < p’—p", we have

c(M\E)=gpe —1+Tkx+ A

The integerA , is given by the following rule: [f'; » = 0thenA, » = 1. In all other
cases\y , = 0.
For p* — p” < k < p* — 1 we have

C()\k): p%(gE;[‘—l—l—Fk./\) ?szpé—p7:+10r)\7éo
’ e if k =p’—p and\ = 0.

This will allow us to see:
Theorem 7. If » = 0 then
(9) d(\,p") = gre — 1+ Tpe s + Ape .
For all the values of and fork < p* — p” we have:

d(A\ k) =Tk_1.x — Tix + Mgz,

where{—1,0,1} > My » := Ag—1.» — A .

If k =p’ —p"thenk — 1 =p* —p" — 1 and

dAp" —p") = grpo —14+Th_1x+ Ak—1n — (N p" —p")

B Tr_ia — p—lTFk,A +Ap—1n, FAF£O
B Pr_10+Ag—10—1, ifA=0
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For r # 0 andp’ — p” < k < p’ — 1, we have:
1 fk=p—p +1,A=0
(10) d(\ k) = lr (9pr —1+Tgy) ifk=p
O otherwise
Proof. The proof is a simple application of propositign 6. O

2.3. Computation of c(\, k). This section is devoted to the proof of proposifidon 6.

Lemma 8. Let G be a group of ordep’n acting on the curveX, with only tame ram-
ification, i.e. every point that is ramified has decompogitipoup G(P) C <g”£>. Let
T = (gp€> be the tame cyclic part of the group. Consider the integer$;, ®;, a,, €/
describing the Kummer extensidty F7 and letg,r denote the genus df”. Then the
decomposition of the spad€ of holomorphic differentials is given by
2

V= VA kSR

1 0

bS]
1
AR

™~
Il
>
Il

whered*(0,1) =1

d*()\,p)—ll <gFT—1+Z<

andd*(\, k) = 0in all other cases.

)

Proof. Group actions on curves without branched points on spadaglofmorphic differ-
entials were studied by T. Tamagawal[16]. Tamagawa prowadtb space of holomorphic
differentials is decomposed as

V=K@ K[P]9x/r~1

wheregx, p is the genus of the quotient curyg/ P.
Actions with tame ramification where studied by E. Kani [5hari{ proved that:
V=Ko K[G]?*/' @ Ry,
whereRy, is ak[G]-module such that R, = R, and Ry is a the contragredient module
of the tame ramification module (for precise definition seesge. 1]).
The result of Tamagawa for the action of thgroupP = (¢") gives that
n—1
(11) V=Ka@vphHt o,
A=0
The integersi* (A, p*) can be computed by a careful look at the definition of the tame
ramification module. We will instead compute them using #sults of Valentini-Madan
for the extensiod/FT, T = (gP").

The extension?’/F7 is a cyclic Kummer extension with Galois group generated by
o= gpi' and it is characterized by the integersp, ¢/, «, introduced in section 2.1. For
the module of holomorphic differentials the multipliciie:) of the charactei given by
the actions? (v) = (M are equal to

;)\ .
mA_gFT—1+Z< O;A >,|f)\7é0

=1 g

and

—apP;
mg = gFT+Z< 0 >

= JgpT, |f>\—0
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For the last equality it is enough to notice that(@s, e}) = 1 thean.:1 <*i+‘1’> =0,

since the conditiom; | «y is equivalent te | 0 for all i’s (see[19, page 115]).
From Tamagawa result we have th#{(0, 1) = 1,while for the remainingny — 1 =
grr — 1 representations give us that in both cases-(0 and\ # 0) we have

1 i —Oé,\(I)'
d*()\,PZ)ZE (9FT—1+Z< el Z>)
i=1 @

andd*(\, k) = 0in all other cases. Notice that the eigenvajdeppearg’ times in every
componenV/ (A, k). O

Remark 9. Applying Riemann-Hurwitz formula, we obtain:

1 i —04/\(1)‘
d*(A7pe)=ch—1+Z72< = >
=1

%

o If F/FT is unramified, i.e. wher, = 1 for all 4, then this coincides with the
result of Tamagawa, [16].

o If p* = 1,i.e. F¢ = FT, then this coincides with the result of Hurwifz ]10,
Theorem 3.5, p. 600], after letting= 1, to eq. [8).

Is there a place” of F that is fully ramified in extensiod’/F{9")? If not then we
consider the plac® with maximal ramification index. Set= ¢ — max{¢;}. The wild
decomposition grougg™)(P) at this place is cyclic and we will denote the corresponding
fixed field by E,.. Call E the fixed field of the wild par{g™). Then we will have a tower
of fields F'/ E,./ E such that in extensioR,. /E there is no ramification at all. Notice that
r =0andE, = E if and only if there is a plac® fully ramified in extension/ F{9").

For the study of the spac&s"*! /V*, with k = 0,...,p" — 1, we will distinguish two
cases:

Case 1.k < p' —p".

Lemma 10. Assume that < p’ — p’. If the differentialy = ¢ _ ¢, w,de € VF+,
representing a class iir**1 /V*, is holomorphic then

¢y € Lpp <diVFP (dz) + Z I/lu_’kP#) .

p=1
The spacé/**! /V* is of dimensioypr — 1+ 327 _ vy
Proof. See the proof of theorem 1 and page 112in [19]. O
In order to study thé:[T']-module structure of the spaéewe will apply the previous

argument withf in place of thec, and we focus our study to the space of differentials
which have poles &) _, v, 1Py, i.e. differentials of the form:

(12) w = fdz such thatlivpr (fdz) > = > v, 1P,
pu=1

We may choose the functiane F to be a function inf'. Letr = gpl be a generator of
the cyclic groupl’. Recall that we assumed thag = ¢y and we have selected, such
thatray = A modn. Assume that

7(fdz) = ¢ fda.

By eq. [8) we have
T(f/y™) = f 1y,
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sof = hy® with h € F&. Therefore, eq[{12) is satisfied if and only if

(13) NFP/FG (le(fdw)) Z NFP/FG <— Z Vlhkpﬂ> .
pn=1

We compute:
Npepe(div(fdr)) = ndivpeh + adivpe (b) + ndivpe (dz) + D(FT/F%).

Remark 11. Whenever we write down a reduced divisdr= > o, P; (i.e. P; # P;))
with ¢; € Q we mean the divisoy _ |¢; | P;. Notice thatifA = " «,; P; is a divisor (with
possible rational coefficients) a8l = > 3; P; is a divisor with integer coefficients, then
since fora € Q, 5 € Z |a + 8] = |a| + B we have that

A+B=> |a] P+ B8P,

i.e. we don't have to write dowd + B in reduced form, before taking the integral part of
its coefficients.

Using eq. [(4)[(b) we see that ef. {13) is equivalent to

. arg; 1 - 1 5 _
div(h) > —divpe (dz) —ayA— le ( 41— €> Qj=—Nprpe <; yu,kpu> :

i.e. h € L(W + Ej, ). Notice that the normNr , pc (P, ) is just the place of lying
below P,,. We proved the following

Lemma 12. The subspace df**!/V* of elements wherg acts by multiplication by *
is isomorphic to the spackrc (W + Ej »), whereW is a canonical divisor orF< and

t s
axQ; 1\ = 1
Ek7/\ = a)A + E (—/:;bj +1-— e—,) Qj + ;NFP/FG < E VlhkPM>
J

j=1 pn=1
is an effective divisor.

We will now write £, » as a sum of an integral divisor and of a divisor in reduced form
We can assume thdt)y, ..., Q;, } is the set of ramified places such that their extensions
in F¥ do not ramified further i/ FX. We will denote by{Q;,+1, .. .,Q:} the rest of
the ramified places. For the— (t — ¢,) places ofF'”’ that are not ramified id'”” / F< we
will denote byII, the placei _,TP,.

Now E. » can be written:

to Oé¢ OLQ/) +l/ /_1
2D j A k =
Epx = aAA+Zl<TJ+ J )Q]wL Z ( J L2 4 7 )Qj
]:

Jj=to+1

s—t+to

+ Yk qp
2

The divisorEy, , as it is written above is not necessarily in reduced form. \afg'tcknow
whether the divisoH is prime toQ); orII,,. But since it has integer coefficients and since
all the divisors with possibly rational coefficients arenpeito each other, we arrive at

to ’
axg; arxe; +vjr € —1] -
E = A E halast' E ) )
A ) +j:1 \‘ " + J QJ + \‘ + 69 QJ

Jj=to+1
s—t+to

(14) + Z |28 .
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Lemma 13. The degree oF, » equals to

t

ard; i Oz,\q)j —1 Vjk gy Vik
deg(Ek.) := Z < o > + Z — o )t T Z {TJ '
J

i=1 4 Jj=to+1

Proof. Following Valentini Madan we see that that

t ¢ t (I)
(15) deg(A):fz#:,Ze_Z
Jj=1 j=1 7

(recall that®; = ¢;/(¢:, n)).

to t /
oD axp; +vi e —1 o)
deg By = g < A,]>+ E <{ A®; Pk 4 j, J )\,j>
€ j n e €5

Jj=1 J

s—t+to v
k
+ Y {—“ J
p=1 "

We will use

We have

] { 4 Yik D%
: : e’ n ;
®; O, arx®;+e; -1 ok d;
Cap Ao e
J J J J
a,\<I)- Ot)\(I)' -1 Vik
J J

Proposition 14. If k < p* — p”, we have

(AN E)=dim L(W + Ei ) = gpe — 1 + deg(Ex ) + Ak
Moreover, if
deg(Erx) =0
thenAj » = 1. In all other cases\; , = 0.
Proof. By Riemann-Roch theorem and lemma 13 we see that
dim L(W + Ex ») = gre — 1 + deg By » + dim L(—Ej »).

If the divisordeg(Ey ») > 0 thendim L(—Ej ) = 0 and the result follows.
Assume now thadeg(F%, ) = 0. SinceEy}, » is effective this means thd;, , = 0 and
in this case\;, » = £(0) = 1. O
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Case 2.p" — p” < k < p* — 1. In this case we will apply the same procedure as we did
in Case 1 and then we will apply lemrh 8 for the extendipri 'S, Write k = ky + tp”
with 0 < k; < p” andt = p~" — 1. Setky = tp” = p* — p". Leto = ¢" be a generator
for thep-cyclic part of G. Let Vg’T be the space of holomorphic differentialsiof that are
annihilated by(c — 1)*. Valentini-Madan[[19, p.111-112] proved that
(16) (0 — Do VI Vh vty

is an isomorphism. We will now consider the extensigry /¢ and we will apply lemma
in order to compute the decomposition into indecomposéblg”” )-modules. Let
c*(\, k1) be the number of charactegs— ¢* in the modulevgj“/vgj. We compute
thatc(\, k) equals to:
C()\a kl + pé - pT) = c ()\a kl)

d*(\, p°) if by >10rA#0

- Z d*()‘7ﬂ) = { * 4 ’ _ H _ _
ot d*(0,p") + 1=gpe, ifk; =0, and\=0

Therefore, fork = p* we compute:

t
% 1 — (I)i
d(\p) =c(\p'—1)=d (Mpé):Z? <9E3—1+Z< 2 >)
=1 ?

by lemméd8. Moreover fop’ — p” < k < p* — 1 and from eq.[{(B) and the isomorphism
given in eq. [(Ib) we obtain:

d0nEk) = e\ k—1)—c(\ k),
= FNE=1-0( ' —p")—cNEk—(p"—p"))
= dM\k— (" ")) =
unlessk = p* — p” + 1 and\ = 0. In this casel*(0,1) = 1 = d(0,p* —p" + 1).

Remark 15. Notice that wherk > p‘ — p", thenv,, , = 0 (see also[19, p. 110]). Thus
Boseck invariants (Definitidl 4) take now the form

: oan®
N
s == 3 (700,

i=1 v

With this in mind, we take that
d(\,p') = ]% (gEZ" —1+4Tgn).
This completes the proof of theorérn 7.
Example 16. Suppose thaF“ = F'*, i.e.n = 1 then, from eq.[{9) and(10) respectively,
we get that the regular representatiorGbbccurs

N o gpcfl,ifT?éO
d(Avp ) - d(p ) - { gpa, otherwise

times in the representation 6fin V. This result coincide with the results obtainedin/[19].

3. RELATION TO THE THEORY OFWEIERSTRASS SEMIGROUPS

Aim of this section is to find a relation between the Galois medtructure of the space
of holomorphic differentials and the Weierstrass semigrattached to a ramified point. In
characteristic zero there are results [10] relating thecsitire of the Weierstrass semigroup
at P to the subgrou=(P). For example there is a theorem due to J. Lewiftées [7, Th. 5]
which relates the structure of the semigroup to the modulettre of holomorphic differ-
entials. Also I. Morrison and H. Pinkharn [10] considered thse of Galois Weierstrass
points, i.e. covers of the fortY — P! with cyclic cover group in characteristic
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Let us start with a convenient description of a semigroup:X.e_ N be a semigroup
and letd be the least positive numberih Forl < i < d — 1 we denote by, the smallest
element inX congruent ta modd, and define/; by the equation:

i.e.y; = {biJ The numberg; equals to the number of gapg for which a;, = ¢ modd,

and the semigroul is characterized by them.

From now onX will be the Weierstrass semigroup attached to a péint_et f be a
function onX such that f).. = dP. This gives rise to amap: X — P! and we assume
that this map is a Galois cover with Galois gratipP). In characteristi© the groupG(P)
is always cyclic and the space of holomorphic differentisldescribed by a theorem due
to Lewittes and Hurwitz 10, th. 1.3, th 3.5].

In this paper we assume th@t P) is a cyclic group of ordenp’. The following theorem
is a generalization of the theorems of Lewittes and Hurwititten in the language of
Brauer characters [13].

Proposition 17. LetT be the tame cyclic part @¥(P). Let L be a complete local ring that
contains the:-th roots of unity, let;, be its valuation ring and let:;, be the maximal ideal
of 0, such thatd,/m; = K. For example we can take = W (K)[(,]. The modular

character ofu : Gree — O induced by theK [G]-module of holomorphic differentials

can be written as
d—1
p=>_ mx',
=1

wherey is a generator of the character grouﬁreg of the cyclic groupGyes = Z/nZ and
u; are equal to the number of gaps Atthat are equivalent té modn.

Proof. The proof we will write is a modification of the charactestiero proof given in
[10, th. 1.3].

By construction for every € T we haves(T) = T. Let be the generator ¢f. By
the lemma of Hensel we might assume that there is a local nmifer¢ at P such that
o(t) = (t where( is a primitiven-th root of unity.

Every gapa;. corresponds by Riemann-Roch theorem to a holomorphiadiitel wy,
with a root of orderm;, — 1 at P. Observe that the flag of vector spages, . .. ,wy) are
invariant under the action @ and by a trigonal change of coordinates we might assume
thatw;, can be selected in such a way so that= t*~1dt. For this selection ofs;, we
have thatrw, = (**w; and the result follows.

O

This proposition does not describe completely the relatibthe semigroup and the
K[G]-module structure since it gives information of the numbepgmodulo: and not
modulonp’ as required. Notice that by constructién= np’ is the smallest non zero pole
number.

Definition 18. For everyi, 0 < i < np’ we consider the reductions of bfmodulop’ and
n respectively, namelyiy = i modn andi; = i modp’. We will denote by

&(ig,i1) = the number of gaps @ that are equivalent tbmodnp®.

Of course these quantities are related toithdefined in proposition17. For ap with

0 < ip < nwe have
p'-1
Pig = Z c(io, i1)-
i1 =0
We will give an independent and complete description in seofithe decomposition given

ineq. ().



12 SOTIRIS KARANIKOLOPOULOS AND ARISTIDES KONTOGEORGIS

Proposition 19. Letr, ;. be the remainder of the division &f + vp, , (wy) byp?, i.e.
(18) Tuk = Op +vp, , (Wi) —péymk.

The holomorphic differentials ilr**! have roots at, ,, of orders

(19) ruk & With§ € {0, 1, vk — 2} U By,

p=1
whereB,, i, is a subset of natural numbers wiglz» elements, all greater thaﬁjzzl Vy k-
The dimension of the space of holomorphic differentialg #* that have roots of order
z such that:
(20) T = Tuk modp?,

= o) modn
is equal toc(\, k) = é(ax + 1,7,k + 1).

Proof. By lemmd10 the di1’“ferentia£’j:0 c,wy,dz is holomorphic if the elements; are
in . = L(divpr(dz) + >n=1VukEy). What are the possible valuations of such ele-
ments at a fixed’,,? Fix 4o and consider the divisors:

A; = divpr(dz) + Z Ve Py + 5Py,

w=1,u#po

for j < wu,.x. We have thal.(A;) C L(Ay, ,). Thereis an elemeny, with vp, (cr) =
—vp, (divpr(dz)) — jif and only if /(A;) — £(A;—1) = 1: Indeed, by using Riemann-
Roch theorem we see that

UA) =gpe =1+ Y var+i+l|— D vurPu— b
n=1,p7po n=1,p7#po
Therefore,
it > vurtj—1>0thent | — > v, xP,— P, | =0
n=1,p7po n=1,p7#po

and?(A;) — ¢(A;—1) = 1 and there is an elemenj, with valuation atP,, equal to
—vp, (divpr(dz)) — j. This proves that possible valuations= —vp, (diver(dz)) —j
of elements inZ at P,,, satisfy

S

~Vpo,k = Up, (divpr (dz)) < v < Z Vpk — 1 —vp, (divpr (dr)),

pu=1,p7#po
ie.
S
(21) Ogyﬂo,kfjgzy,u,kfl-
p=1

The valuation af’,, of the differentialwydz of F' equals:
(22) pfvﬁuo (de:r) + 5#0 + VPyo v (wk)
Recall thav,,, +vp, , (Wk) = Tk + p*vpo.1 DY €q. [I8), so(22) becomes

pl’ljp% (del’) + T,k T+ peyuoak
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which in turn by using[(21) implies that the possible valaas of differentials inl/*+!
contain the set

Tpo,k +Pé§a0 < € < Z Vpk — 1.
pn=1
If grr = 0 then there are no other possible valuations for the elemgrsisice the above
valuations are different, the corresponding functionsliaear independent and have the
correct dimension given in lemniall0. ¢f-» > 0 then there argy-» more possible
valuations, but their exact values can not be easily de=drilndeed, notice that always
0(Aj) — £(Aj—1) < 1 by [15, 1.4.8].

Using lemma&P and propositidnl14 we compute that the direrfithe differentials
satisfying the conditions given il (R0), is equalid;, \).

It is a well known application of the Riemann-Roch theoremt tthe existence of a
differential with root of orden — 1 at P implies thata is a gap atP. Therefore if we add
1 to the natural numbers appearing in €ig.] (19) then we obthiheagaps atP coming
from holomorphic differentials in7*+1. All of them are equivalent te,, ,, + 1 modulo
p’. Moreover, ifa is a gap atP then there is a onedimensional subspac® afuch that
the action of the tame part is given Qy— (* [10, th. 1.3]. This proves the equality
(AN k) =¢lax+ 1,7 r +1). O

Remark 20. Notice, that now we are able to describe completebt P, , by the method
introduced by Morrison and H. Pinkham [10] and explainedjn{@1), whenp, ,, ramifies
completely. Indeed :

(1) The numbers(\, k) = é(ax + 1,7, + 1) equal to the number of gaps+ 1
for which z + 1 = i modd and thus from the Chinese remainder theorem are
equivalent tax, + 1 (or equivalently, see (2), td+ 1) andr,, 1, + 1 modulon and
pt respectively.

(2) .., forms a complete system moduytb ask takes all the values, ..., p" — 1,
and thus takes all the values from 1doe- 1. Moreover, letr = 1 to eq. [8) (we
use this argument widely through this paper). Then, in tmeesavay we see that
ay, forms a complete system moduilpasa runs throughy, ..., n — 1.

4. THE CASE OF A CYCLICp-GROUP

We will now focus on the case of cyclic extensions of the raidunction field of order
p’. We will also assume that every ramified place is ramified detely. In this case we
construct explicitly a basis of holomorphic differentiatsfollows:

We denote the ramified places &f(z), by Q; = (z — i), 1 < i < s, since in
a rational function field every ramified place correspondandrreducible polynomial,
which is linear since the fiel& is algebraically closed. We set

S
(@) = [ [ (& — i)

i=1

Definition 21. Fork = 0,1, ...,p" — 1, we define
Fk = Z Vik-
=1

Proposition 22. Let X be a cyclic extension of degrgéof the rational function field. The
set

{w,(cii) = (z— ai)”(k)gk(z)_lwkdx 0<v® <1y — 2,0<k<p"— 2}

forms a basis for the set of holomorphic differentials foryalic extension of the rational
function field of ordep’.
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Proof. We take the basis of [6, Lemma 10], set= 1 and modify it in order to evaluate
holomorphic differentials in the ramified primes of the exdion. The same construction
is given by Garcia in([4, Theorem 2, Claim] where the elemgraaelian, totally ramified
case is studied. The proof is identical to the one given there d

Keep in mind that the natural numhds a gap af” if and only if there is a holomorphic
differentialw with root atP of orderi — 1.

Lemma 23. The remainders,, ; for different values of are different modul@’ and form
a full set of representatives modul6.

Proof. Observe first that the valuations of the functiamsask runs oven, . .., p‘ —2 are
all different, since

14
v, (W) ==Y afd(p, j)p .
j=1

Therefore the values, + vp, , (wr) = — Zle ak®(p, j)p*~ take all possible values

modulop®. O

Definition 24. For every natural numbér < a < p‘ define byy(a) the natural number
such that

Ty(a),n = A

Such a number exists by lemind 23.

Remark 25. Recall that,, ,, was defined in eq[(18) to denote the remainder of the division
of 8, + vp, , (wi) by p*. Boseck in his seminal papér [2, Satz 18], whereGhe Z/pZ
case is studied, states that ascdakes all the value8 < k£ < p — 2 the remainder of the
Boseck’s basis construction, ;, takes all the value8 < r,; < p — 2 and thus all the
numbersl, ...,p — 1 are gaps. This is not entirely correct as we will show in exia2g.

The problem appears if there is exactly one ramified plackerGalois extension.

Lemma 26. If all I, > 2 then all numberd, ... ,p" — 1 are gaps. If there exist Boseck
invariantsT';, = 1, then the set of gaps smaller thahis exactly the sefr,, . : 0 < k <
¢ _

Proof. As k runs in0 < k < p® — 2 ther,, runin0,...,p° — 2. But thel';, that are
equal tol have to be excluded since they give not rise to a holomorpfferentials in
propositior 22, seé¢[6, Eq. (21)] and exaniple 28. O

Remark 27. Notice that elements;, = 1 can appear only for primgs > ®(u,j) and
only if there is only one ramified place.

Example 28. We consider the now the case of an Artin-Schreier extenditmedunction
field k(z), of the formy? —y = 1/2™. In this extension only the plage — 0) is ramified
with different exponent; = (m + 1)(p — 1). The Boseck invariants in this case are

r, — {(m—i—l)(p—l)—k:m

J fork=0,...,p—2.
p

The Weierstrass semigroup is known|[14] toh& . + pZ,. Let us now find the small
gaps by using lemnia 6. #f < m then all numbers, ..., p — 1 are gaps. Ip > m then
m is a pole number smaller than Indeed[',_» = 1 and the remainder of the division of
(m+1)(p—1)—(p—2)mbypisr,_o =m— 1. Butthenr,_, +1 = m is nota gap.
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