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REPRESENTATIONS OF CYCLIC GROUPS IN POSITIVE
CHARACTERISTIC AND WEIERSTRASS SEMIGROUPS

SOTIRIS KARANIKOLOPOULOS AND ARISTIDES KONTOGEORGIS

ABSTRACT. We study thek[G]-module structure of the space of holomorphic differentials
of a curve defined over an algebraically closed field of positive characteristic, for a cyclic
groupG of orderpℓn. We also study the relation to the Weierstrass semigroup forthe case
of Galois Weierstrass points.

1. INTRODUCTION

Let X be a projective nonsingular curve, defined over an algebraically closed fieldK
of positive characteristicp. The study of the curveX is equivalent to the study of the
corresponding function fieldF .

An open question in positive characteristic is the determination of the Galois module
structure of the space of holomorphic differentials ofX . This problem is still open and
only some special cases are known [16],[17],[8],[12],[1] where restrictions are made either
on the ramification type or on the group structure ofG. R.Valentini and M. Madan in [19]
computed the Galois module structure of the space of holomorphic differentials for the
case of a cyclic group actionG, whereG was a cyclicp-group of order either prime top or
a power ofp. One of the aims of this paper is to extend the result of Valentini Madan to the
more general case of a cyclic group that has orderpℓn, (n, p) = 1. We will characterize
the indecomposable summandsV (λ, k) (see section 2 for a precise definition in terms of
the Jordan indecomposable blocks of the generator) and we will decompose the spaceV
of holomorphic differentials as:

(1) V :=

n−1
⊕

λ=0

pℓ
⊕

k=1

V (λ, k)d(λ,k).

The numbersd(λ, k) will be described in terms of the ramification of the extensionF/FG

in theorem 7.
TheG–module structure is expressed in terms of theBoseckinvariants. These are in-

variants introduced by Boseck [2] coming from the construction of bases of holomorphic
differentials. The Boseck invariants have rich connections with other subjects in the liter-
ature: computation of Weierstrass points, [2], [3], [4]; the computation of the rank of the
Hasse–Witt matrix, [9]; the classification of curves with certain rank of the Hasse–Witt
matrix [11]; the study of the Artin–Schreier (sub)extensions of rational functions fields,
[18],etc. Here we choose to focus only on theG module structure as well as on the struc-
ture of the Weierstrass semigroup that is attached to a ramified point.

The complicated notation needed in order to state the main results prevents us from
presenting our main theorem here.

The paper is organized as follows: In section 2 we introduce anotation for the places
that are ramified in extensionF/FP /FG and give a filtration of the module of holomorphic
differentials used in the computations. Next section is devoted to dimension computations
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with the aid of Riemann-Roch formula. In the final section we see the relation to the
Weierstrass semigroup. We tried to relate our results to known results in the literature.
This way we discovered an inaccuracy in the work of Boseck [2]in the case of aZ/pZ-
extension of the rational function field ramified above one point. Finally we extend results
from characteristic zero relating the Galois module structure of the space of holomorphic
differentials and the Weierstrass semigroup attached to a ramified point.

2. NOTATION

LetG = 〈g〉 be a cyclic subgroup of automorphisms acting on the space of holomorphic
differentialsV := H0(X,ΩX). The groupG can be written as a direct product of a group
T = 〈gp

ℓ

〉 of ordern and a cyclicp-groupP = 〈gn〉. We consider the tower of function
fieldsF/FP /FG. Let npℓ = |G|, (n, p) = 1 and consider a primitiven-th root of unity
ζn ∈ K. By Jordan decomposition theory we see that we can decomposeV as a direct
sum ofK[G]-modulesV (λ, k). The modulesV (λ, k) arek-dimensionalK-vector spaces
with basis{v1, . . . , vk} and action given by

(2) gvi = ζλnvi + vi+1 for all 1 ≤ i ≤ k − 1

and
gvk = ζλnvk.

The action of the generatorg onV (λ, k) is given in terms of the matrix:

A :=

















ζλn 1 0 · · · 0

0 ζλn 1
. . .

...
...

. . .
.. .

. . . 0
0 · · · 0 ζλn 1
0 · · · 0 0 ζλn

















.

Observe that for a cyclic groupG of ordernpℓ generated byg the moduleK[G] can be
decomposed asK[G] = ⊕n−1

λ=0V (λ, pℓ). Indeed, the characteristic polynomial ofg acting

onK[G] is up to±1 equal toxnp
ℓ

− 1 = (xn − 1)p
ℓ

, and every root of unity inK appears
as a character inK[G].

Remark 1. The indecomposableK[P ]-modules of a cyclicp-group of orderpℓ and with
generatorσ are given by the quotientsK[P ]/(σ − 1)k, wherek = 1, . . . , pℓ [19]. In our
notation these are the modulesV (0, k) i.e. the indecomposable Jordan forms of dimension
k.

Proposition 2. The indecomposableK[G]-moduleV (λ, k) seen as aK[T ]-module is a
direct sum ofk characters of the formζ 7→ ζp

ℓn. The moduleV (λ, k) seen asK[P ]-
module is indecomposable and isomorphic to the moduleK[P ]/(σ − 1)k.

Proof. We will use the following idea: The action ofG on the indecomposable summand
V (λ, k) is described by the action of the generatorg of G. We would like to view the
moduleV (λ, k) as aP andT module respectively. A generator for theT group is given
by gp

ℓ

. Write the matrixA asA = diag(ζλ) + N whereN is a nilpotentk × k matrix
with k ≤ pℓ. Therefore, the generatorgp

ℓ

of theT group is given by the matrixAp
ℓ

=

diag(ζλp
ℓ

). This means thatV (λ, k) seen as aT module is decomposed as a direct sum of
k characters of the formζ 7→ ζλp

ℓ

. Since(pℓ, n) = 1 raising ann-th root of unity to the
pℓ-power is an automorphism of the group ofn-th roots of one.

On the other hand the action of the generatorgn on the moduleV (λ, k) is given by the
n-th power ofA. We observe first that that all eigenvalues ofAn are1. We will prove
thatAn is similar to the matrixId + N , i.e. a Jordan indecomposable block. Since all
eigenvalues ofAn are1 the characteristic polynomial ofAn is (x − 1)k. The minimal
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polynomial ofAn is (x − 1)d for some integer1 ≤ d ≤ k. SinceA is an indecomposable
Jordan block the minimal polynomial ofA is (x − ζλ)k. On the other hand, since(An −
1)d = 0 we have that(x− ζλ)k divides(xn − 1)d and this is possible only ifd = k. This
implies thatAn is similar to an indecomposable Jordan form of dimensionk. �

2.1. Fields and ramification. We will introduce some notation on the ramification places
in the extensionsF/FP andF/FG. Let us denote bȳP1, . . . , P̄s the places ofFP that are
ramified inF/FP . The places ofF that are abovēPi will be denoted byPi,ν , 1 ≤ ν ≤
pℓ/ei, whereei = pǫi is the common ramification indexe(Pi,ν/P̄i).

The differentDiff(F/FP ) is supported at the placesPi,ν while the discriminantD(F/FP )
is supported at the places̄P1, . . . , P̄s. Let us denote the different exponent at each ramified
placePj by δj . The discriminant is then computed:

D(F/FP ) =

s
∑

j=1

pℓ−ǫjδjP̄j ,

while the different is given by

Diff(F/FP ) =

s
∑

j=1

δj
∑

ν

Pj,ν .

The cyclic group extensionFP /FG is a Kummer extension with Galois groupT and it is
defined by an equation of the form:

(3) FP = FG(y), yn = b, b ∈ FG.

Let Q̄1, . . . , Q̄t be the places ofFG that are ramified in extensionFP /FG. We define
Qi,ν , 1 ≤ ν ≤ n/e′i to be the places ofFP which are abovēQi, wheree′i denotes the
common ramification index,e′i = e(Qi,ν/Q̄i).

Assume that the set of places{Q̄1, . . . , Q̄t0} extend to placesQi,ν of FP that do not
ramify onF/FP and that each placēQi of the places{Q̄t0+1, . . . , Q̄t} extends to places
Qi,ν that ramify inF/FP . The total number of places of the formQi,ν t0 + 1 ≤ i ≤ t
equals

s0 :=

t
∑

i=t0+1

n

e′i
= |{Qi,ν : t0 + 1 ≤ i ≤ t, 1 ≤ ν ≤ n/e′i}|.

We enumerate the places̄Pi such that{P̄s0+1, . . . , P̄s} do not ramify inFP /FG and
{P1, . . . , Ps0} = {Qi,ν : t0 + 1 ≤ i ≤ t, 1 ≤ ν ≤ n/e′i}.

F

P

P1,µ

e1

Pt,µ

et

Ps0+1,ν

es0+1

Ps,ν

es

FP

T

Q1,ν

e′1

Qt0,ν

e′t0

Qt0+1,ν

e′t0+1

Qt,ν

e′t

P̄s0+1 P̄s

FG Q̄1 Q̄t0 Q̄t0+1 Q̄t

We can selectb in eq. (3) such that [19, sec. 2]

(4) divFG(b) = nA+

t
∑

i=1

φiQ̄i,
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where0 < φi < n, A is a divisor ofFG. The ramification indices are given bye′i =
n/(n, φi), and the discriminant is given by

(5) D(FP /FG) =

t
∑

i=1

(

n−
n

e′i

)

Q̄i.

We also defineΦi = φi/(n, φi).

2.2. Modules. Let us now focus on the cyclicp-group extensionF/FP . TheG-module
structure on holomorphic differentials on a cyclicp-group is studied by R. Valentini and
M. Madan in [19]. Letσ := gn be a generator of the cyclic groupP . Recall thatV denotes
the set of holomorphic differentials. Following the article of Valentini Madan we consider
the set of subspacesV i ⊂ V defined by

V i := {ω ∈ V : (σ − 1)iω = 0} for i = 0, . . . , pℓ.

We compute that (the set{v1, . . . , vm} is the basis ofV (µ,m) given in eq. (2)).

V i+1 ∩ V (λ,m) =

{

V (λ,m) if m ≤ i+ 1
〈vm−i, . . . , vm〉 if m > i+ 1

SinceG is a commutative group there is a well defined action ofT = 〈gp
ℓ

〉 on the quotient
spaceV i+1/V i and the natural map

V i+1 → V i+1/V i,

isT -equivariant. The images of the spacesV i+1∩V (λ,m) under this map are0 form ≤ i
and are one dimensional ifm > i.

The spaceV i+1/V i is decomposed into characters of the groupT . Let d(λ, k) be the
number ofV (λ, k) blocks inV . Let c(λ, i), 0 ≤ i ≤ pℓ− 1 be the number of characters of
the formgω = ζλω in V i+1/V i.

We have that
c(λ, i) =

∑

k≥i+1

d(λ, k).

Therefore

d(λ, pℓ) = c(λ, pℓ − 1)(6)

d(λ, k) = c(λ, k − 1)− c(λ, k).

Lemma 3. There is a basis{w0, . . . , wpℓ−1} of F overFP such that:

(1) For 0 ≤ k ≤ pℓ− 1 with p-adic expansionk = ak1 + ak2p+ · · ·+ akℓp
ℓ−1, we have

(σ − 1)kwk = ak1 !a
k
2 ! · · · a

k
n!wk.

(2) Everyω ∈ V can be written as

ω =

pℓ−1
∑

ν=0

cνwνdx

with x, cν ∈ FP and with the additional property that

ω ∈ V i ⇔ ci = ci+1 = · · · = cpℓ−1 = 0.

(3) There are numbersΦ(µ, j) prime top such that

vPµ,ν (wk) = −

ℓ
∑

j=1

akjΦ(µ, j)p
ℓ−j .

Proof. The definition of the basis is given in [19, p.108] while the second assertion is
proved in the same article in the proof of theorem 1. The existence of the numbersΦ(µ, j)
follows by the construction of the extensionF/FP in terms of successive Artin-Schreier
extensions (see [19, sec. 1]). �
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Define the integers:

(7) νµ,k :=

⌊

δµ + vPµ,ν (wk)

eµ

⌋

.

Notice that the valuationvPµ,ν (wk) does not depend on the selection of the placePµ,ν over
P̄µ.

Let τ = gp
ℓ

be a generator of the cyclic groupT . Assume thatτy = ζrny. For each
λ = 0, . . . , n− 1 we select0 ≤ αλ ≤ n− 1 such that

(8) rαλ ≡ λ modn.

Definition 4. Define the Boseck invariants:

Γk,λ :=

t
∑

i=1

〈

−
αλΦi
e′i

〉

+

t
∑

j=t0+1

⌊〈

αλΦj − 1

e′j

〉

+
νj,k
n

⌋

+

s−t+t0
∑

µ=1

⌊νµ,k
n

⌋

.

Remark 5. If n = 1, then

Γk,λ = Γk =
s
∑

µ=1

νµ,k.

This is the Boseck invariant for thep cyclic case, see [2] and [6].
If pℓ = 1 then

Γk,λ = Γλ =
t
∑

j=1

〈

−
αλΦj
e′j

〉

.

This is the Boseck invariant for the the cyclic tame case. These invariants coincide with
the ones introduced by [2], and used by [6], after lettingr = 1, to eq. (8) (this can be done
without loss of the generality).

In next section we will prove the following:

Proposition 6. Recall thatǫi are integers such thatpǫi = e(Pi,ν/P̄i). Consider the integer
r = ℓ−max ǫi. For 0 ≤ k < pℓ − pr, we have

c(λ, k) = gFG − 1 + Γk,λ + Λk,λ.

The integerΛk,λ is given by the following rule: IfΓk,λ = 0 thenΛk,λ = 1. In all other
casesΛk,λ = 0.

For pℓ − pr ≤ k ≤ pℓ − 1 we have

c(λ, k) =

{ 1
pr

(

gET
r
− 1 + Γk.λ

)

if k ≥ pℓ − pr + 1 or λ 6= 0

gFG if k = pℓ − pr andλ = 0.

This will allow us to see:

Theorem 7. If r = 0 then

(9) d(λ, pℓ) = gFG − 1 + Γpℓ,λ + Λpℓ,λ.

For all the values ofr and fork < pℓ − pr we have:

d(λ, k) = Γk−1,λ − Γk,λ +Mk,λ,

where{−1, 0, 1} ∋Mk,λ := Λk−1,λ − Λk,λ.
If k = pℓ − pr thenk − 1 = pℓ − pr − 1 and

d(λ, pℓ − pr) = gFG − 1 + Γk−1,λ + Λk−1,λ − c(λ, pℓ − pr)

=

{

Γk−1,λ −
1
pr Γk,λ + Λk−1,λ, if λ 6= 0

Γk−1,0 + Λk−1,0 − 1, if λ = 0
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For r 6= 0 andpℓ − pr ≤ k ≤ pℓ − 1, we have:

(10) d(λ, k) =







1 if k = pℓ − pr + 1, λ = 0
1
pr

(

gET
r
− 1 + Γk,λ

)

if k = pℓ

0 otherwise

Proof. The proof is a simple application of proposition 6. �

2.3. Computation of c(λ,k). This section is devoted to the proof of proposition 6.

Lemma 8. LetG be a group of orderpℓn acting on the curveX , with only tame ram-
ification, i.e. every point that is ramified has decomposition groupG(P ) ⊂ 〈gp

ℓ

〉. Let
T = 〈gp

ℓ

〉 be the tame cyclic part of the groupG. Consider the integersφi,Φi, αλ, e′i
describing the Kummer extensionF/FT and letgFT denote the genus ofFT . Then the
decomposition of the spaceV of holomorphic differentials is given by

V :=

pℓ
⊕

k=1

n−1
⊕

λ=0

V (λ, k)d
∗(λ,k),

whered∗(0, 1) = 1,

d∗(λ, pℓ) =
1

pℓ

(

gFT − 1 +
t
∑

i=1

〈

−αλΦi
e′i

〉

)

andd∗(λ, k) = 0 in all other cases.

Proof. Group actions on curves without branched points on spaces ofholomorphic differ-
entials were studied by T. Tamagawa [16]. Tamagawa proved that the space of holomorphic
differentials is decomposed as

V := K ⊕K[P ]gX/P−1,

wheregX/P is the genus of the quotient curveX/P .
Actions with tame ramification where studied by E. Kani [5]. Kani proved that:

V := K ⊕K[G]gX/G−1 ⊕ R̃∗
G,

whereR̃∗
G is ak[G]-module such thatnR̃∗

G = R∗
G andR∗

G is a the contragredient module
of the tame ramification module (for precise definition see [5, sec. 1]).

The result of Tamagawa for the action of thep-groupP = 〈gn〉 gives that

(11) V = K ⊕

n−1
⊕

λ=0

V (λ, pℓ)d
∗(λ,pℓ).

The integersd∗(λ, pℓ) can be computed by a careful look at the definition of the tame
ramification module. We will instead compute them using the results of Valentini-Madan
for the extensionF/FT , T = 〈gp

ℓ

〉.
The extensionF/FT is a cyclic Kummer extension with Galois group generated by

σ = gp
ℓ

and it is characterized by the integersφ,Φ, e′i, αλ introduced in section 2.1. For
the module of holomorphic differentials the multiplicitiesmλ of the characterλ given by
the actionσj(v) = ζλjv are equal to

mλ = gFT − 1 +

t
∑

i=1

〈

−αλΦi
e′i

〉

, if λ 6= 0

and

m0 = gFT +

t
∑

i=1

〈

−α0Φi
e′i

〉

= gFT , if λ = 0.
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For the last equality it is enough to notice that as(Φi, e
′
i) = 1 then

∑t
i=1

〈

−α0Φi

e′i

〉

= 0,

since the conditione′i | α0 is equivalent toe′i | 0 for all i’s (see [19, page 115]).
From Tamagawa result we have thatd∗(0, 1) = 1,while for the remainingm0 − 1 =

gFT − 1 representations give us that in both cases (λ = 0 andλ 6= 0) we have

d∗(λ, pℓ) =
1

pℓ

(

gFT − 1 +

t
∑

i=1

〈

−αλΦi
e′i

〉

)

andd∗(λ, k) = 0 in all other cases. Notice that the eigenvalueζλ appearspℓ times in every
componentV (λ, k). �

Remark 9. Applying Riemann-Hurwitz formula, we obtain:

d∗(λ, pℓ) = gFG − 1 +
1

pℓ

t
∑

i=1

〈

−αλΦi
e′i

〉

• If F/FT is unramified, i.e. whene′i = 1 for all i, then this coincides with the
result of Tamagawa, [16].

• If pℓ = 1, i.e. FG = FT , then this coincides with the result of Hurwitz [10,
Theorem 3.5, p. 600], after lettingr = 1, to eq. (8).

Is there a placeP of F that is fully ramified in extensionF/F 〈gn〉? If not then we
consider the placeP with maximal ramification index. Setr = ℓ − max{ǫi}. The wild
decomposition group〈gn〉(P ) at this place is cyclic and we will denote the corresponding
fixed field byEr. CallE the fixed field of the wild part〈gn〉. Then we will have a tower
of fieldsF/Er/E such that in extensionEr/E there is no ramification at all. Notice that
r = 0 andEr = E if and only if there is a placeP fully ramified in extensionF/F 〈gn〉.

For the study of the spacesV k+1/V k, with k = 0, . . . , pℓ − 1, we will distinguish two
cases:
Case 1.k < pℓ − pr.

Lemma 10. Assume thatk < pℓ − pr. If the differentialω =
∑k

ν=0 cνwνdx ∈ V k+1,
representing a class inV k+1/V k, is holomorphic then

ck ∈ LFP

(

divFP (dx) +

s
∑

µ=1

νµ,kP̄µ

)

.

The spaceV k+1/V k is of dimensiongFP − 1 +
∑s

µ=1 νµ,k.

Proof. See the proof of theorem 1 and page 112 in [19]. �

In order to study thek[T ]-module structure of the spaceV we will apply the previous
argument withf in place of theck and we focus our study to the space of differentials
which have poles at

∑s
µ=1 νµ,kPµ, i.e. differentials of the form:

(12) ω = fdx such thatdivFP (fdx) ≥ −

s
∑

µ=1

νµ,kP̄µ.

We may choose the functionx ∈ FP to be a function inFG. Letτ = gp
ℓ

be a generator of
the cyclic groupT . Recall that we assumed thatτy = ζrny and we have selectedαλ such
thatrαλ = λ modn. Assume that

τ(fdx) = ζλfdx.

By eq. (8) we have

τ(f/yαλ) = f/yαλ ,
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sof = hyαλ with h ∈ FG. Therefore, eq. (12) is satisfied if and only if

(13) NFP /FG(div(fdx)) ≥ NFP /FG

(

−

s
∑

µ=1

νµ,kP̄µ

)

.

We compute:

NFP /FG(div(fdx)) = ndivFGh+ αkdivFG(b) + ndivFG(dx) + D(FP /FG).

Remark 11. Whenever we write down a reduced divisorA =
∑

αiPi (i.e. Pi 6= Pj)
with qi ∈ Q we mean the divisor

∑

⌊qi⌋Pi. Notice that ifA =
∑

αiPi is a divisor (with
possible rational coefficients) andB =

∑

βjPj is a divisor with integer coefficients, then
since forα ∈ Q, β ∈ Z ⌊α+ β⌋ = ⌊α⌋+ β we have that

A+B =
∑

⌊αi⌋Pi +
∑

βjPj ,

i.e. we don’t have to write downA+B in reduced form, before taking the integral part of
its coefficients.

Using eq. (4),(5) we see that eq. (13) is equivalent to

div(h) ≥ −divFG(dx)−αλA−
t
∑

j=1

(

αλφj
n

+ 1−
1

e′j

)

Q̄j−
1

n
NFP /FG

(

s
∑

µ=1

νµ,kP̄µ

)

,

i.e. h ∈ L(W + Ek,λ). Notice that the normNFP /FG(Pµ) is just the place ofFG lying
belowPµ. We proved the following

Lemma 12. The subspace ofV k+1/V k of elements whereg acts by multiplication byζλ

is isomorphic to the spaceLFG(W + Ek,λ), whereW is a canonical divisor onFG and

Ek,λ := αλA+

t
∑

j=1

(

αλφj
n

+ 1−
1

e′j

)

Q̄j +
1

n
NFP /FG

(

s
∑

µ=1

νµ,kPµ

)

is an effective divisor.

We will now writeEk,λ as a sum of an integral divisor and of a divisor in reduced form.
We can assume that{Q̄1, . . . , Q̄t0} is the set of ramified places such that their extensions
in FP do not ramified further inF/FP . We will denote by{Q̄t0+1, . . . , Q̄t} the rest of
the ramified places. For thes− (t− t0) places ofFP that are not ramified inFP /FG we
will denote byΠµ the places

∑n
j=1 τPµ.

NowEk,λ can be written:

Ek,λ := αλA+

t0
∑

j=1

(

αλφj
n

+
e′j − 1

e′j

)

Q̄j +

t
∑

j=t0+1

(

αλφj + νj,k
n

+
e′j − 1

e′j

)

Q̄j

+

s−t+t0
∑

µ=1

νµ,k
n

Πµ.

The divisorEk,λ as it is written above is not necessarily in reduced form. We don’t know
whether the divisorA is prime toQ̄i orΠµ. But since it has integer coefficients and since
all the divisors with possibly rational coefficients are prime to each other, we arrive at

Ek,λ := αλA+

t0
∑

j=1

⌊

αλφj
n

+
e′j − 1

e′j

⌋

Q̄j +
t
∑

j=t0+1

⌊

αλφj + νj,k
n

+
e′j − 1

e′j

⌋

Q̄j

+

s−t+t0
∑

µ=1

⌊νµ,k
n

⌋

Πµ.(14)
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Lemma 13. The degree ofEk,λ equals to

deg(Ek,λ) :=

t
∑

i=1

〈

−
αλΦi
e′i

〉

+

t
∑

j=t0+1

⌊〈

αλΦj − 1

e′j

〉

+
νj,k
n

⌋

+

s−t+t0
∑

µ=1

⌊νµ,k
n

⌋

.

Proof. Following Valentini Madan we see that that

(15) deg(A) = −

t
∑

j=1

φj
n

= −

t
∑

j=1

Φj
e′j

(recall thatΦi = φi/(φi, n)).

degEk,λ =

t0
∑

j=1

〈

−
αλΦj
e′j

〉

+

t
∑

j=t0+1

(⌊

αλφj + νj,k
n

+
e′j − 1

e′j

⌋

−
αλΦj
e′j

)

+

s−t+t0
∑

µ=1

⌊νµ,k
n

⌋

.

We will use

αλΦj
e′j

=

⌊

αλΦj
e′j

⌋

+

〈

αλΦj
e′j

〉

,

We have
⌊

αλφj + νj,k
n

+
e′j − 1

e′j

⌋

−
αλΦj
e′j

=

=

〈

−
αλΦj
e′j

〉

+

⌊

αλΦj + e′j − 1

e′j
+
νj,k
n

⌋

+

⌊

−
αλΦj
e′j

⌋

=

=

〈

−
αλΦj
e′j

〉

+

⌊⌊

αλΦj + e′j − 1

e′j

⌋

+

〈

αλΦj + e′j − 1

e′j

〉

+
νj,k
n

⌋

+

⌊

−
αλΦj
e′j

⌋

=

=

〈

−
αλΦj
e′j

〉

+

⌈

αλΦj
e′j

⌉

+

⌊〈

αλΦj + e′j − 1

e′j

〉

+
νj,k
n

⌋

+

⌊

−
αλΦj
e′j

⌋

=

=

〈

−
αλΦj
e′j

〉

+

⌊〈

αλΦj − 1

e′j

〉

+
νj,k
n

⌋

.

�

Proposition 14. If k < pℓ − pr, we have

c(λ, k) = dimL(W + Ek,λ) = gFG − 1 + deg(Ek,λ) + Λk,λ

Moreover, if

deg(Ek,λ) = 0

thenΛk,λ = 1. In all other casesΛk,λ = 0.

Proof. By Riemann-Roch theorem and lemma 13 we see that

dimL(W + Ek,λ) = gFG − 1 + degEk,λ + dimL(−Ek,λ).

If the divisordeg(Ek,λ) > 0 thendimL(−Ek,λ) = 0 and the result follows.
Assume now thatdeg(Ek,λ) = 0. SinceEk,λ is effective this means thatEk,λ = 0 and

in this caseΛk,λ = ℓ(0) = 1. �
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Case 2.pℓ− pr ≤ k ≤ pℓ− 1. In this case we will apply the same procedure as we did
in Case 1 and then we will apply lemma 8 for the extensionEr/F

G. Write k = k1 + tpr

with 0 ≤ k1 < pr andt = pℓ−r − 1. Setk0 = tpr = pℓ − pr. Letσ = gn be a generator
for thep-cyclic part ofG. LetV kEr

be the space of holomorphic differentials ofEr that are
annihilated by(σ − 1)k. Valentini-Madan [19, p.111-112] proved that

(16) (σ − 1)k0 : V k+1/V k → V k1+1
Er

/V k1Er

is an isomorphism. We will now consider the extensionEr/F
G and we will apply lemma

8 in order to compute the decomposition into indecomposableG/〈gp
r

〉-modules. Let
c∗(λ, k1) be the number of charactersζ 7→ ζλ in the moduleV k1+1

Er
/V k1Er

. We compute
thatc(λ, k) equals to:

c(λ, k1 + pℓ − pr) = c∗(λ, k1)

=
∑

µ≥k1+1

d∗(λ, µ) =

{

d∗(λ, pℓ), if k1 ≥ 1 or λ 6= 0
d∗(0, pℓ) + 1= gFG , if k1 = 0, andλ = 0

Therefore, fork = pℓ we compute:

d(λ, pℓ) = c(λ, pℓ − 1) = d∗(λ, pℓ) =
1

pr

(

gET
r
− 1 +

t
∑

i=1

〈

−αλΦi
e′i

〉

)

by lemma 8. Moreover forpℓ − pr ≤ k ≤ pℓ − 1 and from eq. (6) and the isomorphism
given in eq. (16) we obtain:

d(λ, k) = c(λ, k − 1)− c(λ, k),

= c∗(λ, k − 1−
(

pℓ − pr
)

)− c∗(λ, k −
(

pℓ − pr
)

)

= d∗(λ, k −
(

pℓ − pr
)

) = 0

unlessk = pℓ − pr + 1 andλ = 0. In this cased∗(0, 1) = 1 = d(0, pℓ − pr + 1).

Remark 15. Notice that whenk ≥ pℓ − pr, thenνµ,k = 0 (see also [19, p. 110]). Thus
Boseck invariants (Definition 4) take now the form

Γk,λ = Γλ =

t
∑

i=1

〈

−αλΦi
e′i

〉

.

With this in mind, we take that

d(λ, pℓ) =
1

pr
(

gET
r
− 1 + Γk,λ

)

.

This completes the proof of theorem 7.

Example 16. Suppose thatFG = FP , i.e.n = 1 then, from eq. (9) and (10) respectively,
we get that the regular representation ofG occurs

d(λ, pℓ) = d(pℓ) =

{

gFG − 1, if r 6= 0
gFG , otherwise

times in the representation ofG in V . This result coincide with the results obtained in [19].

3. RELATION TO THE THEORY OFWEIERSTRASS SEMIGROUPS

Aim of this section is to find a relation between the Galois module structure of the space
of holomorphic differentials and the Weierstrass semigroup attached to a ramified point. In
characteristic zero there are results [10] relating the structure of the Weierstrass semigroup
atP to the subgroupG(P ). For example there is a theorem due to J. Lewittes [7, Th. 5]
which relates the structure of the semigroup to the module structure of holomorphic differ-
entials. Also I. Morrison and H. Pinkham [10] considered thecase of Galois Weierstrass
points, i.e. covers of the formX → P1 with cyclic cover group in characteristic0.
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Let us start with a convenient description of a semigroup: Let Σ ⊂ N be a semigroup
and letd be the least positive number inΣ. For1 ≤ i ≤ d− 1 we denote bybi the smallest
element inΣ congruent toi modd, and defineνi by the equation:

(17) bi = νid+ i,

i.e. νi =
⌊

d
bi

⌋

. The numbersνi equals to the number of gapsak for whichak ≡ i modd,

and the semigroupΣ is characterized by them.
From now onΣ will be the Weierstrass semigroup attached to a pointP . Let f be a

function onX such that(f)∞ = dP . This gives rise to a mapf : X 7→ P1 and we assume
that this map is a Galois cover with Galois groupG(P ). In characteristic0 the groupG(P )
is always cyclic and the space of holomorphic differentialsis described by a theorem due
to Lewittes and Hurwitz [10, th. 1.3, th 3.5].

In this paper we assume thatG(P ) is a cyclic group of ordernpℓ. The following theorem
is a generalization of the theorems of Lewittes and Hurwitz written in the language of
Brauer characters [13].

Proposition 17. LetT be the tame cyclic part ofG(P ). LetL be a complete local ring that
contains then-th roots of unity, letOL be its valuation ring and letmL be the maximal ideal
of OL such thatOL/mL = K. For example we can takeL = W (K)[ζn]. The modular
character ofµ : Greg → OL induced by theK[G]-module of holomorphic differentials
can be written as

µ =
d−1
∑

i=1

µiχ
i,

whereχ is a generator of the character group̂Greg of the cyclic groupGreg = Z/nZ and
µi are equal to the number of gaps atP that are equivalent toi modn.

Proof. The proof we will write is a modification of the characteristic zero proof given in
[10, th. 1.3].

By construction for everyσ ∈ T we haveσ(T ) = T . Let τ be the generator ofT . By
the lemma of Hensel we might assume that there is a local uniformizer t at P such that
σ(t) = ζt whereζ is a primitiven-th root of unity.

Every gapak corresponds by Riemann-Roch theorem to a holomorphic differentialωk
with a root of orderak − 1 atP . Observe that the flag of vector spaces〈ωg, . . . , ωk〉 are
invariant under the action ofG and by a trigonal change of coordinates we might assume
thatωk can be selected in such a way so thatωk = tak−1dt. For this selection ofωk we
have thatτωk = ζakωk and the result follows.

�

This proposition does not describe completely the relationof the semigroup and the
K[G]-module structure since it gives information of the number gaps modulon and not
modulonpℓ as required. Notice that by constructiond := npℓ is the smallest non zero pole
number.

Definition 18. For everyi, 0 ≤ i < npℓ we consider the reductions of ofi modulopℓ and
n respectively, namely:i0 = i modn andi1 = i modpℓ. We will denote by

c̄(i0, i1) = the number of gaps atP that are equivalent toi modnpℓ.

Of course these quantities are related to theµi defined in proposition 17. For ani0 with
0 ≤ i0 < n we have

µi0 =

pℓ−1
∑

i1=0

c̄(i0, i1).

We will give an independent and complete description in terms of the decomposition given
in eq. (1).
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Proposition 19. Let rµ,k be the remainder of the division ofδµ + vPµ,ν (wk) bypℓ, i.e.

(18) rµ,k = δµ + vPµ,ν (wk)− pℓνµ,k.

The holomorphic differentials inV k+1 have roots atPµ,ν of orders

(19) rµ,k + pℓξ, with ξ ∈ {0, 1, . . . ,
s
∑

µ=1

νµ,k − 2} ∪Bµ,k,

whereBµ,k is a subset of natural numbers withgFP elements, all greater than
∑s

µ=1 νµ,k.

The dimension of the space of holomorphic differentials inV k+1 that have roots of order
x such that:

x ≡ rµ,k modpℓ,(20)

x ≡ αλ modn

is equal toc(λ, k) = c̄(aλ + 1, rµ,k + 1).

Proof. By lemma 10 the differential
∑k

ν=0 cνwνdx is holomorphic if the elementsck are
in L := L(divFP (dx) +

∑s
µ=1 νµ,kP̄µ). What are the possible valuations of such ele-

ments at a fixed̄Pµ0? Fixµ0 and consider the divisors:

Aj := divFP (dx) +

s
∑

µ=1,µ6=µ0

νµ,kP̄µ + jP̄µ0 ,

for j < νµ0,k. We have thatL(Aj) ⊂ L(Aνµ0,k
). There is an elementck with vP̄µ0

(ck) =

−vP̄µ0
(divFP (dx)) − j if and only if ℓ(Aj) − ℓ(Aj−1) = 1: Indeed, by using Riemann-

Roch theorem we see that

ℓ(Aj) = gFP − 1 +

s
∑

µ=1,µ6=µ0

νµ,k + j + ℓ



−

s
∑

µ=1,µ6=µ0

νµ,kP̄µ − jP̄µ0



 .

Therefore,

if
s
∑

µ=1,µ6=µ0

νµ,k + j − 1 ≥ 0 thenℓ



−

s
∑

µ=1,µ6=µ0

νµ,kP̄µ − jP̄µ0



 = 0

and ℓ(Aj) − ℓ(Aj−1) = 1 and there is an elementck with valuation atP̄µ0 equal to
−vP̄µ0

(divFP (dx))− j. This proves that possible valuationsv = −vP̄µ0
(divFP (dx))− j

of elements inL at P̄µ0 satisfy

−νµ0,k − vP̄µ0
(divFP (dx)) ≤ v ≤

s
∑

µ=1,µ6=µ0

νµ,k − 1− vP̄µ0
(divFP (dx)),

i.e.

(21) 0 ≤ νµ0,k − j ≤
s
∑

µ=1

νµ,k − 1.

The valuation atPµ0 of the differentialckwkdx of F equals:

(22) pℓvP̄µ0
(ckdx) + δµ0 + vPµ0,ν (wk).

Recall thatδµ0 + vPµ0 ,ν (wk) = rµ0,k + pℓνµ0,k by eq. (18), so (22) becomes

pℓvP̄µ0
(ckdx) + rµ0,k + pℓνµ0,k
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which in turn by using (21) implies that the possible valuations of differentials inV k+1

contain the set

rµ0,k + pℓξ, 0 ≤ ξ <

s
∑

µ=1

νµ,k − 1.

If gFP = 0 then there are no other possible valuations for the elementsck since the above
valuations are different, the corresponding functions arelinear independent and have the
correct dimension given in lemma 10. IfgFP > 0 then there aregFP more possible
valuations, but their exact values can not be easily described. Indeed, notice that always
ℓ(Aj)− ℓ(Aj−1) ≤ 1 by [15, I.4.8].

Using lemma 12 and proposition 14 we compute that the dimension of the differentials
satisfying the conditions given in (20), is equal toc(k, λ).

It is a well known application of the Riemann-Roch theorem that the existence of a
differential with root of ordera− 1 atP implies thata is a gap atP . Therefore if we add
1 to the natural numbers appearing in eq. (19) then we obtain all the gaps atP coming
from holomorphic differentials inV k+1. All of them are equivalent torµ,k + 1 modulo
pℓ. Moreover, ifa is a gap atP then there is a onedimensional subspace ofV such that
the action of the tame part is given byζ 7→ ζa [10, th. 1.3]. This proves the equality
c(λ, k) = c̄(aλ + 1, rµ,k + 1). �

Remark 20. Notice, that now we are able to describe completelyΣ atPµ,ν by the method
introduced by Morrison and H. Pinkham [10] and explained in eq. (17), whenPµ,ν ramifies
completely. Indeed :

(1) The numbersc(λ, k) = c̄(aλ + 1, rµ,k + 1) equal to the number of gapsx + 1
for which x + 1 ≡ i modd and thus from the Chinese remainder theorem are
equivalent toαλ+1 (or equivalently, see (2), toλ+1) andrµ,k+1 modulon and
pℓ respectively.

(2) rµ,k forms a complete system modulopℓ ask takes all the values0, . . . , pℓ − 1,
and thus takes all the values from 1 tod − 1. Moreover, letr = 1 to eq. (8) (we
use this argument widely through this paper). Then, in the same way we see that
αλ forms a complete system modulon, asλ runs through0, . . . , n− 1.

4. THE CASE OF A CYCLICp-GROUP

We will now focus on the case of cyclic extensions of the rational function field of order
pℓ. We will also assume that every ramified place is ramified completely. In this case we
construct explicitly a basis of holomorphic differentialsas follows:

We denote the ramified places ofK(x), by Q̄i = (x − αi), 1 ≤ i ≤ s, since in
a rational function field every ramified place corresponds toan irreducible polynomial,
which is linear since the fieldK is algebraically closed. We set

gk(x) =
s
∏

i=1

(x− αi)
νik .

Definition 21. Fork = 0, 1, . . . , pℓ − 1, we define

Γk :=

s
∑

i=1

νik.

Proposition 22. LetX be a cyclic extension of degreepℓ of the rational function field. The
set

{

ω
(αi)
kν = (x− αi)

ν(k)

gk(x)
−1wkdx : 0 ≤ ν(k) ≤ Γk − 2, 0 ≤ k ≤ pn − 2

}

forms a basis for the set of holomorphic differentials for a cyclic extension of the rational
function field of orderpℓ.
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Proof. We take the basis of [6, Lemma 10], setm = 1 and modify it in order to evaluate
holomorphic differentials in the ramified primes of the extension. The same construction
is given by Garcia in [4, Theorem 2, Claim] where the elementary abelian, totally ramified
case is studied. The proof is identical to the one given there. �

Keep in mind that the natural numberi is a gap atP if and only if there is a holomorphic
differentialω with root atP of orderi− 1.

Lemma 23. The remaindersrµ,i for different values ofi are different modulopℓ and form
a full set of representatives modulopℓ.

Proof. Observe first that the valuations of the functionswk ask runs over0, . . . , pℓ−2 are
all different, since

vPµ,ν (wk) = −

ℓ
∑

j=1

akjΦ(µ, j)p
ℓ−j .

Therefore the valuesδµ + vPµ,ν (wk) = −
∑ℓ
j=1 a

k
jΦ(µ, j)p

ℓ−j take all possible values
modulopℓ. �

Definition 24. For every natural number0 ≤ a < pℓ define byψ(a) the natural number
such that

rψ(a),µ = a.

Such a number exists by lemma 23.

Remark 25. Recall thatrµ,k was defined in eq. (18) to denote the remainder of the division
of δµ + vPµ,ν (wk) by pℓ. Boseck in his seminal paper [2, Satz 18], where theG = Z/pZ
case is studied, states that as ask takes all the values0 ≤ k ≤ p− 2 the remainder of the
Boseck’s basis constructionrµ,k takes all the values0 ≤ rµ,k ≤ p − 2 and thus all the
numbers1, . . . , p− 1 are gaps. This is not entirely correct as we will show in example 28.
The problem appears if there is exactly one ramified place in the Galois extension.

Lemma 26. If all Γk ≥ 2 then all numbers1, . . . , pℓ − 1 are gaps. If there exist Boseck
invariantsΓk = 1, then the set of gaps smaller thanpℓ is exactly the set{rµ,k : 0 ≤ k ≤
pℓ − 2,Γk ≥ 2}.

Proof. As k runs in0 ≤ k ≤ pℓ − 2 the rµ,k run in 0, . . . , pℓ − 2. But theΓk that are
equal to1 have to be excluded since they give not rise to a holomorphic differentials in
proposition 22, see [6, Eq. (21)] and example 28. �

Remark 27. Notice that elementsΓk = 1 can appear only for primesp ≥ Φ(µ, j) and
only if there is only one ramified place.

Example 28. We consider the now the case of an Artin-Schreier extension of the function
field k(x), of the formyp− y = 1/xm. In this extension only the place(x− 0) is ramified
with different exponentδ1 = (m+ 1)(p− 1). The Boseck invariants in this case are

Γk =

⌊

(m+ 1)(p− 1)− km

p

⌋

for k = 0, . . . , p− 2.

The Weierstrass semigroup is known [14] to bemZ+ + pZ+. Let us now find the small
gaps by using lemma 26. Ifp < m then all numbers1, . . . , p− 1 are gaps. Ifp > m then
m is a pole number smaller thanp. Indeed,Γp−2 = 1 and the remainder of the division of
(m+ 1)(p− 1)− (p− 2)m by p is rp−2 = m− 1. But thenrp−2 + 1 = m is not a gap.
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