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Abstract. The focus of this paper is on the analysis of the Conjugate
Gradient method applied to a non-symmetric system of linear equations,
arising from a Fast Fourier Transform-based homogenization method
due to Moulinec and Suquet [1]. Convergence of the method is proven
by exploiting a certain projection operator reflecting physics of the un-
derlying problem. These results are supported by a numerical example,
demonstrating significant improvement of the Conjugate Gradient-based
scheme over the original Moulinec-Suquet algorithm.
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1 Introduction

The last decade has witnessed a rapid development in advanced experimen-
tal techniques and modeling tools for microstructural characterization, typically
provided in the form of pixel- or voxel-based geometry. Such data now allow
for the design of bottom-up predictive models of the overall behavior for a wide
range of engineering materials. Of course, such step necessitates the develop-
ment of specialized algorithms, capable of handling large-scale voxel-based data
in an efficient manner. In the engineering community, perhaps the most success-
ful solver meeting these criteria was proposed by Moulinec and Suquet in [1].
The algorithm is based on the Neumann series expansion of the inverse of an
operator arising in the associated Lippmann-Schwinger equation and exploits
the Fast Fourier Transform to evaluate the action of the operator efficiently for
voxel-based data. In our recent work [2], we have offered a new approach to the
Moulinec-Suquet scheme, by exploiting the trigonometric collocation method due
to Saranen and Vainikko [3]. Here, the Lippman-Schwinger equation is projected
to a space of trigonometric polynomials to yield a non-symmetric system of lin-
ear equations, see Section 2 below. Quite surprisingly, numerical experiments
revealed that the system can be efficiently solved using the standard Conjugate
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Gradient algorithm. The analysis of this phenomenon, as presented in Section 3,
is at the heart of this contribution. The obtained results are further supported
by a numerical example in Section 4 and summarized in Section 5.

The following notation is used throughout the paper. Symbols a, a and A
denote scalar, vector and second-order tensor quantities, respectively, with Greek
subscripts used when referring to the corresponding components, e.g. Aαβ . The
outer product of two vectors is denoted as aba, whereas a �b or A �b represents
the single contraction between vectors (or tensors). A multi-index notation is
employed, in which RN with N � pN1, . . . , Ndq represents RN1�����Nd and |N |

abbreviates
±d
α�1Nα. Block matrices are denoted by capital letters typeset in a

bold serif font, e.g. A P Rd�d�N�N , and the superscript and subscript indexes

are used to refer to the components, such that A � rAkm
αβ s

k,mPsZN

α,β�1,...,d with

sZN �

"
k P Zd : �

Nα
2

  kα ¤
Nα
2
, α � 1, . . . , d

*
.

Sub-matrices of A are denoted as

Aαβ �
�
Akm
αβ

�k,mPsZN

P RN�N , Akm �
�
Akm
αβ

�
α,β�1,...,d

P Rd�d

for α, β � 1, . . . , d and k,m P sZN . Analogously, the block vectors are denoted
by lower case letters, e.g. e P Rd�N and the matrix-by-vector multiplication is
defined as

rAeskα �
ḑ

β�1

¸
mPsZN

Akm
αβ emβ P Rd�N , (1)

with α � 1, . . . , d and k P sZN .

2 Problem setting

Consider a composite material represented by a periodic unit cell

Y �
d¹

α�1

p�Yα, Yαq � Rd.

In the context of linear electrostatics, the associated unit cell problem reads as

∇� epxq � 0, ∇ � jpxq � 0, jpxq � Lpxq � epxq, x P Y (2)

where e is a Y-periodic vectorial electric field, j denotes the corresponding vector
of electric current and L is a second-order positive-definite tensor of electric
conductivity. In addition, the field e is subject to a constraint

xepxqy :�
1

|Y|

»
Y
epxq dx � e0, (3)



where |Y| denotes the d-dimensional measure of Y and e0 � 0 a prescribed
macroscopic electric field.

The original problem (2)–(3) is then equivalent to the periodic Lippmann-
Schwinger integral equation, formally written as

epxq �

»
Y
Γ px� y;L0q �

�
Lpyq �L0

	
� epyqdy � e0, x P Y, (4)

where L0 P Rd�d denotes a homogeneous reference medium. The operator
Γ px,L0q is derived from the Green’s function of the problem (2)–(3) with
Lpxq � L0 and can be simply expressed in the Fourier space

Γ̂ pk;L0q �

$&%0 k � 0
ξ b ξ

ξ �L0 � ξ
ξpkq �

�
kα
Yα

	d
α�1

;k P Zdz0.
(5)

Operator pf � pfpkq stands for the Fourier coefficient of fpxq for the k-th fre-
quency given by

pfpkq � »
Y
fpxqϕ�kpxq dx, ϕkpxq � |Y|� 1

2 exp

�
iπ

ḑ

α�1

xαkα
Yα

�
, (6)

”i” is the imaginary unit (i2 � �1). We refer to [2,4] for additional details.
Note that the linear electrostatics serves here as a model problem; the frame-
work can be directly extended to e.g. elasticity [5], (visco-)plasticity [6] or to
multiferroics [7].

2.1 Discretization via trigonometric collocation

The numerical solution of the Lippmann-Schwinger equation is based on a dis-
cretization of a unit cell Y into a regular periodic grid with N1 � � � � �Nd nodal
points and grid spacings h � p2Y1{N1, . . . , 2Yd{Ndq. The searched field e in (4)
is approximated by a trigonometric polynomial eN in the form (cf. [3, Chapter
10])

epxq � eN pxq �
¸

kPsZN

êkϕkpxq, x P Y, (7)

where êk � pêkαqα�1,...,d designates the Fourier coefficients defined in (6). No-
tice that the trigonometrical polynomials are uniquely determined by a regular
grid data, which makes them well-suited to problems with pixel- or voxel-based
computations.

The trigonometric collocation method is based on the projection of the
Lippmann-Schwinger equation (4) onto the space of the trigonometric polyno-
mials

T N �
! ¸
kPsZN

ckϕk, ck P C
)
, (8)



leading to a to linear system in the form, cf. [2]

pI � Bqe � e0, B � F�1Γ̂FpL � L0q, (9)

where e �
�
ekα
�kPsZN

α�1,...,d
P Rd�N is the unknown vector, I � rδαβδkms

kmPsZN

α,β�1,...,d P

Rd�d�N�N is the identity matrix, expressed as the product of the Kronecker

delta functions δαβ and δkm, and e0 � pe0
αq

kPsZN

α�1,...,d P Rd�N .
All the matrices in (9) exhibit a block-diagonal structure. In particular,

Γ̂ �
�
δkmΓ̂km

αβ

�k,mPsZN

α,β�1,...,d
, L �

�
δkmLkm

αβ

�k,mPsZN

α,β�1,...,d
, L0 �

�
δkmL0

αβ

�k,mPsZN

α,β�1,...,d
,

with Γ̂kk
αβ � Γ̂αβpk;L0q, Lkk

αβ � Lαβpkq and pL0qαβ � L0
αβ . The matrix F imple-

ments the Discrete Fourier Transform and is defined as

F �
�
δαβFkm

�k,mPsZN

α,β�1,...,d
, Fkm �

|Y| 12±d
α�1Nα

exp

�
�

ḑ

α�1

2πi
kαmα

Nα

�
, (10)

with F�1 representing the inverse transform.
It follows from Eq. (1) that the cost of multiplication by B is dominated by

the action of F and F�1, which can be performed in Op|N | log |N |q operations
by the Fast Fourier Transform techniques. This makes the system (9) well-suited
for applying some iterative solution technique. In particular, the original Fast
Fourier Transform-based Homogenization scheme formulated by Moulinec and
Suquet in [1] is based on the Neumann expansion of the matrix inverse pI�Bq�1,
so as to yield the m-th iterate in the form

epmq �
m̧

j�0

p�Bqj e0. (11)

As indicated earlier, our numerical experiments [2] suggest that the system can
be efficiently solved using the Conjugate Gradient method, despite the non-
symmetry of B evident from (9). This observation is studied in more detail in
the next Section.

3 Solution by the Conjugate Gradient method

We start our analysis with recasting the system (9) into a more convenient form,
by employing a certain operator and the associated sub-space introduced later.
Note that for simplicity, the reference conductivity is taken as L0 � λI.

Definition 1. Given λ ¡ 0, we define operator PE � λF�1Γ̂F and associated
sub-space as

E �
 

PEx for x P Rd�N
(
� Rd�N .

Lemma 1. The operator PE is an orthogonal projection.



Proof. First, we will prove that PE is projection, i.e. P2
E � PE . Since F is a

unitary matrix, it is easy to see that

P2
E � pλF�1Γ̂FqpλF�1Γ̂Fq � F�1pλΓ̂q2F. (12)

Hence, in view of the block-diagonal character of Γ̂, it it sufficient to prove the
projection property of sub-matrices pλΓ̂qkk only. This follows using a simple
algebra, recall Eq. (5):

pλΓ̂qkkpλΓ̂qkk �
ξpkq b ξpkq

ξpkq � ξpkq
�
ξpkq b ξpkq

ξpkq � ξpkq
�
ξpkq b ξpkq

ξpkq � ξpkq
� pλΓ̂qkk.

The orthogonality of PE now follows from

P�
E �

�
λF�1Γ̂F

	�
� λF�Γ̂

� �
F�1

��
� λF�1Γ̂F � PE ,

according to a well-known result of linear algebra, e.g. Proposition 1.8 in [8]. [\

Remark 1. It follows from the previous results that the subspace E collects the
non-zero coefficients of trigonometric polynomials T N with zero rotation, which
represent admissible solutions to the unit cell problem defined by (2). Note that
the orthogonal space EK contains the trigonometric representation of constant
fields, cf. [4, Section 12.7].

Lemma 2. The solution e to the linear system (9) admits the decomposition
e � e0 � eE , with eE P E satisfying

PELeE � PELe0 � 0. (13)

Proof. As e P Rd�N , Lemma 1 ensures that it can be decomposed into two
orthogonal parts eE � PEe and eEK � pI � PEqe. Substituting this expression
into (9), and using the identity B � λF�1Γ̂F

�
L
λ � I

�
, we arrive at

1

λ
PELeE � eEK �

1

λ
PELeEK � e0. (14)

Since e0 P EK, we have eEK � e0 and the proof is complete. [\

With these auxiliary results in hand, we are in the position to present our
main result.

Proposition 1. The non-symmetric system of linear equations (9) is solvable
by the Conjugate Gradient method for an initial vector ep0q � e0 � re with re P E.
Moreover, the sequence of iterates is independent of the parameter λ.

Proof (outline). It follows from Lemma 2 that the solution to (9) admits yet
another, optimization-based, characterization in the form

e � e0 � arg min
ēPE

�
1

2

�
Lē, ē

�
Rd�N �

�
Le0, ē

�
Rd�N

�
. (15)



The residual corresponding to the initial vector ep0q equals to

rp0q � e0 � pI � Bq
�
e0 � re� � �

1

λ
PELe0 �

1

λ
PELre P E .

It can be verified that the subspace E is B-invariant, thus pI�BqE � E . Therefore,
the Krylov subspace

KmpI � B, rp0qq � span
 
rp0q, pI � Bqrp0q, . . . , pI � Bqmrp0q

(
� E

for arbitrary m P N. This implies that the residual rpmq and the Conjugate Gra-
dient search direction ppmq at the m-th iteration satisfy rpmq P E and ppmq P E .
Since B is symmetric and positive-definite on E , the convergence of CG algo-
rithm now follows from standard arguments, e.g. Theorem 6.6 in [8]. Observe
that different choices of λ generate identical Krylov subspaces, thus the sequence
of iterates is independent of λ. [\

Remark 2. Note that it is possible to show, using direct calculations based on the
projection properties of PE , that the Biconjugate Gradient algorithm produces
exactly the same sequence of vectors as the Conjugate Gradient method, see [9].

4 Numerical example

To support our theoretical results, we consider a three-dimensional model prob-
lem of electric conduction in a cubic periodic unit cell Y �

±3
α�1p�

1
2 ,

1
2 q, rep-

resenting a two-phase medium with spherical inclusions of 25% volume fraction.
The conductivity parameters are defined as

Lpxq �

$'''&'''%
ρI, }x}2   p 3

16π q
1
3��� 1 0.2 0.2

0.2 1 0.2

0.2 0.2 1

��, otherwise

where ρ ¡ 0 denotes the contrast of phase conductivities. We consider the
macroscopic field e0 � r1, 0, 0s and discretize the unit cell with N � rn, n, ns
nodes3. The conductivity of the homogeneous reference medium L0 P Rd�d is
parametrized as

L0 � λI, λ � 1 � ω � ρω, (16)

where ω � 0.5 delivers the optimal convergence of the original Moulinec-Suquet
Fast-Fourier Transform-based Homogenization (FFTH) algorithm [1].

We first investigate the sensitivity of Conjugate Gradient (CG) algorithm to
the choice of reference medium. The results appear in Fig. 1(a), plotting the

3 In particular, n was taken consequently as 16, 32, 64, 128 and 160 leading up to
3 � 1603 .

� 12.2� 106 unknowns



relative number of iterations for CG against the conductivity of the reference
medium parametrized by ω, recall Eq. (16). As expected, CG solver achieve a
significant improvement over FFTH method as it requires about 40% iterations
of FFTH for a mildly-contrasted composite down to 4% for % � 103. The minor
differences visible especially for ρ � 103 can be therefore attributed to accumula-
tion of round-off errors. These observations fully confirm our theoretical results
presented earlier in Section 3.
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Fig. 1. (a) Relative number of iterations as a function of the reference medium param-
eter ω and (b) computational time as a function of the number of unknowns.

In Fig. 1(b), we present the total computational time4 as a function of the
number of degrees of freedom and the phase ratio ρ. The results confirm that
the computational times scales linearly with the increasing number of degrees of
freedom for both schemes for a fixed ρ [2]. The ratio of the computational time
for CG and FFTH algorithms remains almost constant, which indicates that the
cost of a single iteration of CG and FFTH method is comparable.

In addition, the memory requirements of both schemes are also comparable.
This aspect represents the major advantage of the short-recurrence CG-based
scheme over alternative schemes for non-symmetric systems, such as GMRES.
Finally note that finer discretizations can be treated by a straightforward parallel
implementation.

5 Conclusions

In this work, we have proven the convergence of Conjugate Gradient method for
a non-symmetric system of linear equations arising from periodic unit cell ho-

4 The problem was solved with a MatlabR© in-house code on a machine IntelR©

CoreTM2 Duo 3 GHz CPU, 3.28 GB computing memory with Debian linux 5.0
operating system.



mogenization problem and confirmed it by numerical experiment. The important
conclusions to be pointed out are as follows:

1. The success of the Conjugate Gradient method follows from the projection
properties of operator PE introduced in Definition 1, which reflect the struc-
ture of the underlying physical problem.

2. Contrary to all available extensions of the FFTH scheme, the performance
of the Conjugate Gradient-based method is independent of the choice of
reference medium. This offers an important starting point for further im-
provements of the method.

Apart from the already mentioned parallelization, performance of the scheme
can further be improved by a suitable preconditioning procedure. This topic is
currently under investigation.
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201/09/1544, and by the Grant Agency of the Czech Technical University in
Prague through project No. SGS10/124/OHK1/2T/11.

References

1. H. Moulinec, P. Suquet, A fast numerical method for computing the linear and
nonlinear mechanical properties of composites, Comptes rendus de l’Académie des
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