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BRUHAT GRAPHS AND PATTERN AVOIDANCE

CHRISTOPHER CONKLIN AND ALEXANDER WOO

Abstract. We characterize permutations whose Bruhat graphs can be drawn in the
plane. In particular, we show this property, as well as that of having having length at
most a fixed ℓ, is characterized by avoiding finitely many permutations.

1. Introduction

The set of all permutations (of an arbitrary finite number of elements) admits a partial
order known as pattern containment order. This partial order is known to admit infinite
antichains [17, 14]. On the other hand, in almost all cases where the set of permutations
satisfying some property has been characterized by pattern containment, the number of
permutations involved is finite. For some properties, such as in [19, 6, 4], the number of
permutations is moderate to quite large, so this phenomenon seems to involve more than
merely the natural inclination of mathematicians to study simpler examples. Our goal in
this paper is to begin the exploration of one possible explanation for this finiteness.

Associated to each permutation is a directed graph known as the Bruhat graph. (For
definitions see Section 2.) Whenever a permutation π is contained in a permutation σ
(so π ≤ σ in pattern containment order), the Bruhat graph of π is a subgraph of the
Bruhat graph of σ. While not all properties characterized by pattern containment can
be reduced to properties of Bruhat graphs, many of the properties that have been so
characterized, especially those coming from algebraic geometry or representation theory,
have a graph theoretic description. For example, the permutations w avoiding 3412 and
4231 are exactly the ones whose Bruhat graphs are regular, meaning that they have
the same number of edges at each vertex; these are also the ones associated to smooth
Schubert varieties [13, 10].

In this paper we show that the property of having Coxeter length at most ℓ is char-
acterized by avoidance of finitely many patterns for any ℓ. Having length at most ℓ is a
property of the Bruhat graph, since the Coxeter length is the length of the longest di-
rected path in the graph. We were first drawn to this question by the our characterization
of permutations whose Bruhat graphs are planar. We show these are the permutations
that avoid 321 and have length at most 3, and their Bruhat graphs are either a single
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point, a single edge, (the edge graph of) a square, or a cube. Using specifics of our the-
orem on length, we show by computer calculation that having a planar Bruhat graph is
characterized by avoiding 29 permutations.

The motivation for considering Bruhat graphs is the Graph Minor Theorem, a deep and
surprising result of Robertson and Seymour [16] stating that graph minor order, the partial
order on graphs generated by deleting and contracting edges, has no infinite antichains.
In particular, the graphs satisfying any property which is preserved under deletion and
contraction are characterized by avoiding finitely many graphs. An important special case
of the Graph Minor Theorem is the one involving the class of graphs which can be drawn
without crossings on a surface of genus g [15], and the original inspiration for graph minor
theory was Kuratowski’s Theorem, which characterizes graphs that cannot be drawn in
the plane. Our results in this paper can therefore be seen as potential first steps towards
using graph minor theory to establish either directly or by analogy a possible finiteness
result for pattern avoidance under yet unknown hypotheses involving Bruhat graphs.

We were particularly inspired by the question of Billey andWeed [6] concerning whether,
for a fixed integer k, having Kazhdan–Lusztig polynomial Pid,σ(1) ≤ k is characterized
by the permutation σ avoiding some finite list of patterns. (Billey and Braden previously
showed in [3] that this property is characterized by avoiding a possibly infinite set of
patterns.) This Kazhdan–Lusztig polynomial is known to be a property depending only
on the Bruhat graph of σ [12, 9, 11], although the aforementioned property is not preserved
by deletion and contraction on Bruhat graphs (nor is its negation).

Our work is in some sense orthogonal to earlier work of Atkinson, Murphy, and Ruskuc [1,
2] on finitely generated order ideals in pattern containment order. Their work takes the
viewpoint that a permutation is a string consisting of distinct integers. Our viewpoint
considers permutations as elements of a Coxeter group. Therefore our results are com-
plementary to theirs. Furthermore, pattern avoidance has alternative definitions within
the framework of Coxeter groups [5]. We believe our work can be easily extended to the
other Coxeter groups.

Section 2 is devoted to definitions, while Sections 3 and 4 respectively give proofs for
our theorems about permutations of at most length ℓ and permutations whose Bruhat
graphs are planar.

2. Definitions

We begin with definitions from the combinatorics of Coxeter groups applied to the
specific case of the symmetric group Sn; a standard reference for this material is [7].

By a transposition t we mean some 2-cycle (i j) in the symmetric group. An adjacent
transposition is one of the form (i i+ 1).

Let π ∈ Sn be a permutation. The length of π, denoted ℓ(π), is the minimum number
of adjacent transpositions si1, . . . , siℓ such that π can be written as their product si1 · · · siℓ .
An inversion of π is a pair of indices i < j with π(i) > π(j); note that ℓ(π) is also equal
to the number of inversions of π.
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The absolute length of π, denoted a(π), is the minimum number of transpositions
ti1 , . . . , tia , not necessarily adjacent transpositions, such that π = ti1 · · · tia . If π ∈ Sn has
c disjoint cycles (counting fixed points as 1-cycles), then a(π) = n − c. By definition,
a(π) ≤ ℓ(π) for any permutation π.

Example 2.1. Permutations are written in one line notation unless stated otherwise.
The permutation π = 3412 has length ℓ(π) = 4, and absolute length a(π) = 2.

The symmetric group Sn has a partial ordering known as Bruhat order. Define
π ≺ σ if ℓ(π) < ℓ(σ) and there is a transposition t such that tπ = σ (or equivalently a
transposition t′ such that πt′ = σ). Bruhat order is the transitive closure of ≺, so π ≤ τ
if there exist permutations σ1, . . . , σk ∈ Sn such that π ≺ σ1 ≺ · · · ≺ σk ≺ τ .

The Bruhat graph for Sn is the directed graph whose vertices are the elements of Sn,
with edges defined as follows. Given permutations σ and τ , there is an edge σ → τ if
σ ≺ τ , meaning that ℓ(σ) < ℓ(τ) and there exists a transposition t with tσ = τ . (Note
ℓ(τ)− ℓ(σ) need not equal 1.) Given a permutation π, the Bruhat graph for π, denoted
B(π), is the induced subgraph whose vertices are those labeled by permutations σ with
σ ≤ π; this is the largest subgraph with unique sink π.

The length of π is the length of the longest directed path (necessarily from the identity
to π) in B(π), and the absolute length of π is the length of the shortest directed path in
B(π) from the identity (which is graph theoretically the unique source) to π (the unique
sink).

Now we give various definitions related to the notion of pattern containment; a
standard reference for this subject is [8]. Let π ∈ Sk and τ ∈ Sn with k ≤ n. We say
that τ (pattern) contains π if there exist indices 1 ≤ i1 < . . . < ik ≤ n such that
τ(ia) < τ(ib) if and only if π(a) < π(b). We say τ (pattern) avoids π if τ does not
contain π.

Example 2.2. The permutation 5736241 contains the permutation 3412 (both written in
one-line notation) three different ways using the bolded entries: 5736241, 5736241, and
5736241.

In contrast, 135246 avoids 3412.

The following proposition is immediate.

Proposition 2.3. If τ contains π, then B(π) is isomorphic to a subgraph of B(τ) which
includes the sink vertex τ .

Proof. Let i1 < · · · < ik be the indices of by which π is contained in τ . Consider the
induced subgraph given by the vertices of B(τ) labelled by permutations σ for which
σ(j) = τ(j) for all j not among the containment indices, meaning that j 6= ia for all
a. �

Pattern containment is a partial order relation; the poset of permutations under pattern
containment is sometimes called pattern order.



4 CHRISTOPHER CONKLIN AND ALEXANDER WOO

Finally, we need one definition from graph theory. A graph is planar if it can be drawn
in the plane without edges crossing. The following theorem is classical and known as
Kuratowski’s Theorem.

Theorem 2.4. A graph is planar if and only if it contains no subgraph isomorphic to a
subdivision of K3,3 (the complete bipartite graph with 3 vertices on each side) or K5 (the
complete graph on 5 vertices).

3. Permutations of less than a fixed length

In this section we prove the following theorem.

Theorem 3.1. Given a permutation σ ∈ Sm, ℓ(σ) ≥ n if and only if σ contains some
τ ∈ Sk where k ≤ 2n and ℓ(τ) ≥ n.

One can restate this theorem to say that ℓ(σ) < n if and only if σ avoids all permutations
τ ∈ Sk with k ≤ 2n for which ℓ(τ) ≥ n. Of course, the minimal avoidance set will be
much smaller. Nevertheless, this shows the avoidance set for the property ℓ(π) < n is
finite.

Example 3.2. Our bound of 2n is sharp in that there is a permutation in S2n of length
n which contains no other permutation of length n, namely the permutation 214365 · · · .

We begin by proving the special case where σ has a fixed point, meaning some i for
which σ(i) = i.

Lemma 3.3. Suppose m > 2n, and σ ∈ Sm is a permutation with at least one fixed point.
Then ℓ(σ) ≥ n if and only if σ strictly contains some τ with ℓ(τ) ≥ n.

Proof. Clearly if σ strictly contains some τ with ℓ(τ) ≥ n then ℓ(σ) ≥ n. Assume ℓ(σ) ≥ n.
Consider two cases:

Case 1: Assume there exists a fixed point i (so σ(i) = i) and i is not involved in any
321 pattern in σ. In such a case i is not involved in any inversions, so the permutation
obtained by removing the i-th entry (in 1-line notation) has the same length as σ. Thus
σ strictly contains a pattern of length at least n, as desired.

Case 2: Assume all of the j fixed points in σ are involved in a 321 pattern contained
in σ. Then every fixed point in σ must represent the middle element (the 2) in a 321
pattern for the following reason: if i is an fixed point, and there are 2 elements after i that
are less than i, then there must be 2 elements before i greater than i. This means each
of the j fixed points is involved in at least 2 inversions, so the total number of inversions
involving the j fixed points is at least 2j. Note no inversion can involve two fixed points.

Furthermore, every entry of σ that is not a fixed point must be involved in an inversion.
Since every fixed point of σ is the middle element of a 321 pattern, every entry that is
not a fixed point is actually involved in an inversion with another entry that is not a fixed
point. There are m − j > 2n − j non-fixed points in σ, so there are more than n − j

2
inversions not involving any fixed points.
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Let τ be the permutation created by deleting one fixed point from σ. It has more than
n− j

2
inversions from the non-fixed points of σ, and 2j−2 inversions from the fixed points

of σ which were not deleted. Therefore,

ℓ(τ) > n−
j

2
+ (2j − 2)

= n− 2 +
3

2
j

> n− 2 +
3

2

= n−
1

2
,

as j ≥ 1, so ℓ(τ) ≥ n, as desired. �

Now we deal with the case of cycles.

Lemma 3.4. Every m-cycle in Sm contains some τ ∈ Sm−1 with ℓ(τ) ≥ m− 2.

Proof. Let σ be an m-cycle, so every element in σ is involved in at least one inversion.
Let j be the smallest number of inversions that involve any one element. Let τ ∈ Sm−1

be obtained by removing an element from σ with j inversions. Note that τ is contained
in σ. If j = 1 then ℓ(τ) ≥ m−2, since the fact that σ is an m-cycle implies ℓ(σ) ≥ m−1.

Assume j ≥ 2. Since every element is involved in at least j inversions, ℓ(σ) ≥ jm

2
, and

ℓ(τ) ≥ jm

2
− j = j

2
(m− 2). Since j ≥ 2, ℓ(τ) ≥ m− 2, as desired. �

Finally we treat the last case, that where our permutation is a product of disjoint
(non-trivial) cycles.

Lemma 3.5. Suppose m > 2n, and let σ ∈ Sm be a product of disjoint (non-trivial)
cycles. Then σ contains some τ ∈ Sm′, where m′ ≤ m− 2, with ℓ(τ) ≥ n.

Proof. Let j be the size of the smallest cycle in σ. Note that removing all entries of any
given cycle does not change the relative order of the other elements, so removing all the
entries of a cycle produces a pattern contained in σ. Furthermore, the entries of any single
cycle also forms a pattern contained in σ.

Now, if j > n, then let τ be the permutation formed by removing all the entries other
than the ones in a minimal size cycle. Note that the absolute length a(τ) = j − 1 ≥ n, so
ℓ(τ) ≥ n. Also, τ ∈ Sj, and j ≤ m− 2 since the cycles which were removed have at least
2 elements.

If j ≤ n, let τ be the permutation formed by removing all entries in a minimal size
cycle. The absolute length of τ is m − j − c, where c is the number of disjoint cycles in
τ . Since j is the size of the smallest cycle of σ, c ≤ (m− j)/j. Therefore,
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a(τ) ≥ m− j −
m− j

j

=
(j − 1)(m− j)

j

>
(j − 1)(2n− j)

j

=
(n− j)(j − 1) + n(j − 1)− (n− 1)j

j
+ n− 1

=
(n− j)(j − 1) + j − n

j
+ n− 1

=
(n− j)(j − 2)

j
+ n− 1.

Since j ≤ n and j ≥ 2, a(τ) > n − 1, so a(τ) ≥ n and ℓ(τ) ≥ n. Note τ ∈ Sm−j , and
j ≥ 2.

�

Proof of Theorem 3.1: If σ contains τ with ℓ(τ) ≥ n, then ℓ(σ) ≥ n since σ must have
the inversions of τ at the embedding indices.

Suppose ℓ(σ) ≥ n. We prove that σ ∈ Sm contains τ ∈ Sk for some k ≤ 2n with
ℓ(τ) ≥ n by induction on m. If m ≤ 2n, then the theorem holds tautologically with
τ = σ. Otherwise, we consider separately the cases where σ has a fixed point, where
σ consists of a single m-cycle, and where σ is a product of disjoint non-trivial cycles.
Lemmas 3.3, 3.4, and 3.5 show that σ contains some permutation σ′ where ℓ(σ′) ≥ n and
σ′ ∈ Sm′ for some m′ < m. By the induction hypothesis, σ′ contains a permutation τ ∈ Sk

for some k ≤ 2n with ℓ(τ) ≥ n. Since pattern containment is transitive, σ contains τ and
the theorem is proven. �

4. Planar Bruhat graphs

In this section we give a number of characterizations of permutations with planar Bruhat
graphs, beginning with the following.

Theorem 4.1. Let σ be a permutation. Then the Bruhat graph B(σ) is planar if and
only if σ avoids 321 and ℓ(σ) ≤ 3.

Proof. The Bruhat graph B(321) is the complete bipartite graph K3,3, which is not planar.
Furthermore, B(3412) contains (as a subgraph) B(1432) since 1432 < 3412 in Bruhat
order, and 1432 contains 321, so B(3412) is also not planar. Therefore, if σ contains 321
or 3412, then B(σ) is not planar.

On the other hand, Tenner showed [18, Thm. 5.3] that if σ avoids both 321 and 3412,
then the interval in Bruhat order between the identity and σ is isomorphic to the Boolean
lattice. In this case, all the edges in the Bruhat graph come from covering relations in
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the Bruhat order, so the Bruhat graph is the edge graph for a cube of dimension ℓ(σ).
(One way to see this is by noting that σ avoids 3412 and 4231, so its Bruhat graph has
exactly ℓ(σ) edges at each vertex, and the covering relations in the Boolean lattice already
provide ℓ(σ) edges.) The edge graph of an n-dimensional cube is planar if and only if
n ≤ 3. Therefore, B(σ) is planar if and only if σ avoids 321 and 3412 and ℓ(σ) ≤ 3.
Since ℓ(3412) = 4, the condition that σ avoid 3412 is encompassed in the condition that
ℓ(σ) ≤ 3. �

We also have a longer proof of the above theorem which is independent of [18].

The following characterization in terms of the Bruhat graph itself follows immediately
from the above proof.

Corollary 4.2. The graph B(σ) is planar if and only if it is a point, a single edge, or the
edge graph of a square or a cube.

Combining Theorems 3.1 and 4.1 produces the following corollary.

Corollary 4.3. The graph B(σ) is planar if and only if σ avoids 321 and all permutations
π ∈ Sm where m ≤ 8 and ℓ(π) ≥ 4.

A computer calculation to reduce the set of permutations given by Corollary 4.3 to a
minimal avoidance set produces the following.

Corollary 4.4. The graph B(σ) is planar if and only if σ avoids all of the permutations in
the following list: {321, 3412, 23451, 23514, 24153, 25134, 31425, 31524, 41253, 51234,
234165, 231564, 231645, 241365, 214563, 214635, 215364, 216345, 314265, 312564,
312645, 412365, 2315476, 2143675, 2143756, 2145376, 2153476, 3125476, 21436587}

Finally, we record the number of permutations with planar Bruhat graphs by length,
which follows from [18, Cor. 5.5]:

Corollary 4.5. For any m ≥ 1, there are

(1) 1 permutation in Sm of length 0,
(2) (m− 1) permutations in Sm of length 1,

(3) (m+1)(m−2)
2

permutations in Sm of length 2, and

(4) (m+4)(m−1)(m−3)
6

permutations in Sm of length 3

which have planar Bruhat graphs.
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