
ar
X

iv
:1

10
7.

48
11

v1
  [

m
at

h.
K

T
] 

 2
4 

Ju
l 2

01
1

K-THEORIES FOR CLASSES OF INFINITE RANK BUNDLES

ANDRÉS LARRAÍN-HUBACH

Abstract. Several authors have recently constructed characteristic classes for
classes of infinite rank vector bundles appearing in topology and physics. These
include the tangent bundle to the space of maps between closed manifolds, the
infinite rank bundles in the families index theorem, and bundles with pseu-
dodifferential operators as structure group. In this paper, we construct the
corresponding K-theories for these types of bundles. We develop the formal-
ism of these theories and use their Chern character to detect a large class of
nontrivial elements.

1. Introduction

In this paper, we define K-theories for three classes of infinite rank vector
bundles called gauge bundles, pseudodifferential bundles, and families bundles.
For example, gauge bundles appear naturally when studying the tangent bundle
to the space of maps between closed manifolds, e.g. in string theory. Constructing
the Levi-Civita connection on these tangent bundles forces the extension of the
structure group to a group of bounded pseudodifferential operators (ΨDOs) [13].
Families bundles arise in the setup of the Atiyah-Singer families index theorem,
as mentioned in [2] and used by Bismut in his local proof of the families index
theorem [4, Ch. 10]; the families index theorem has been used to detect anomalies
in quantum field theory [3, 5].

In [10], [15], so-called leading order Chern classes were defined and used to find
nontrivial examples of gauge and pseudodifferential bundles. The existence of a
leading order Chern character is the motivation for this paper, as there should
exist K-theories corresponding to these bundles as the natural domain of this
Chern character.

There is a well known difficulty to constructing K-theory for infinite rank bun-
dles with Hilbert space fibers: Hilbert bundles over CW complexes are trivial,
because the structure group GL(H) of invertible bounded linear operators on a
complex Hilbert space H is contractible. However, topologically or geometrically
interesting subgroups of GL(H) may have nontrivial topology, and so may lead to
interesting K-theories. In [13], [15], certain Hilbert bundles with restricted struc-
ture groups are defined, and nontrivial examples appear in [10]. To construct
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2 ANDRÉS LARRAÍN-HUBACH

these bundles, copies of a Sobolev space Γs(N,E) of sections of a finite rank vec-
tor bundle E over a closed manifold N are glued over a CW complex X, using
elements of the invertible zero order ΨDOs Ψ∗

0(N,E) as transition maps. We call
the resulting Hilbert bundles pseudodifferential bundles. As a special case, we can
glue copies of Γs(N,E) using smooth gauge transformations of E. We call these
bundles gauge bundles.

To form characteristic classes for ΨDO and gauge bundles by Chern-Weil the-
ory, we need a trace on the Lie algebra Ψ0(N,E) of the structure group consisting
of zero order ΨDOs. These traces are basically of two types: the Wodzicki residue
and the leading order trace (given by integrating the leading order symbol over
the cosphere bundle) [12]. Using the Wodzicki residue, one can define “Wodzicki-
Chern classes”; however, these always vanish [11]. The leading order trace gives
rise to “leading order Chern classes.” Several examples of bundles with nontrivial
leading order classes are known, which indicates that the corresponding K-theories
KΨ of ΨDO-bundles and KG of gauge bundles should be nontrivial.

Neither of these K-theories handles the infinite rank bundles that arise in the
families index theorem. As explained in [2], the appropriate structure group is
Diff(N,E), consisting of pairs (φ, f), where φ is a diffeomorphism of N and f
is a bundle isomorphism of E covering φ. Note that the gauge group of E is
the subgroup of Diff(N,E) where φ = Id, and that Diff(N,E) is a subgroup of
GL(Γs(N,E)). The corresponding K-theory of families bundles is denoted KDiff.

In §2, we set up the foundations for KG and KDiff. Once the topology of the
structure groups is fixed, the constructions are fairly straightforward. The main
point is to let our bundles E → N vary over both E and N in order to form
good sums and products. In Lemmas 1 and 3, we show that KDiff and KG are
isomorphic to specific ordinary K-theory rings. For example, an element ofKG(X)
can be represented by an element of K(X × N) for some N . These results are
related to the generalized caloron construction in [6]. In Theorem 7, we show that
KG is the first term of a generalized cohomology theory which does not have Bott
periodicity. In Theorems 9 and 10, we get analogues of the Thom isomorphism
and the Serre-Swan theorems.

In §3, we compare the leading order Chern character of an element of KG(X)
to the ordinary Chern character of the corresponding element in K(X ×N). This
is used to detect nontrivial elements in KG(X).

In §4, we define the ring KΨ for ΨDO bundles. Again, we can use the leading
order Chern character to show that KΨ(X) is large. More precisely, for any N
as above, in Theorem 14 and Corollary 15 we show that almost all of K(X ×N)
injects into KΨ(X).

Acknowledgements. I would like to thank Steve Rosenberg for his invaluable
help in improving the content and presentation of this paper.
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2. The K-theory groups KDiff and KG

In this section we construct the ringsKDiff andKG . For a compact CW complex
X, we completely characterize KDiff(X),KG(X) in terms of ordinary K-theory
rings. KG will also be used in §4 to construct nontrivial elements in the more
complicated K-theory KΨ. We also establish some fundamental properties of
KDiff and KG , including their extension to a generalized cohomology theory, the
Thom isomorphism and a Serre-Swan theorem.

2.1. The Groups Diff and G. Throughout this paper, N is a closed orientable
Riemannian manifold and E → N is a finite rank hermitian vector bundle. Define
the group Diff(N,E) to be pairs of maps (φ, f), with φ ∈ Diff(N), f ∈ Diff(E) is
linear on the fibers, and such that the following diagram commutes

E E

N N
❄

✲f

❄
✲φ

Diff(N,E) is a topological group with the Fréchet topology [2].
Let Γs(N,E) be the Sobolev completion of the space of smooth sections of E

with respect to a fixed parameter s large enough so that elements of Γs(N,E) are
continuous. An element (φ, f) acts linearly on r ∈ Γs(N,E) by

(1) ((φ, f) · r)(y) = f · r(φ−1(y)),

for any y ∈ N .
Take ((φn, fn))

∞
n=1 a sequence in Diff(N,E) converging in the Fréchet topology

to (φ, f). It is immediate that for r ∈ Γs(N,E), (φn, fn)r → (φ, f)r in the Γs

topology. Likewise, if rn → r, in the Γs topology, then (φ, f)rn → (φ, f)r, in the
Γs topology. This shows that Diff(N,E) injects continuously into the space of
bounded invertible operators GL(Γs(N,E)) on Γs(N,E) with the norm topology.
The group G(N,E) = {(id, f) ∈ Diff(N,E)}, of smooth gauge transformations of
E → N is a closed normal subgroup of Diff(N,E).

We can also consider the topology of uniform convergence on Diff(N,E). In
this case, Diff(N,E) is dense in the group Homeo(N,E) of pairs (φ, f) as above,
but with φ and f homeomorphisms. For the uniform topology, Homeo(N,E)
injects continuously into GL(Γs(N,E)) with the norm topology. With the uniform
topology, G(N,E) is a nonclosed subgroup of Diff(N,E). The uniform topology
is needed in §4.3 to get a continuous symbol map.

2.2. Infinite Rank Bundles Related to Fibrations and KDiff. Let M
π
→ X

be a locally trivial fibration, where X and M are closed, oriented manifolds,
with fibers diffeomorphic to a fixed closed oriented manifold N . A finite rank
vector bundle E → M induces an infinite rank Fréchet bundle π∗(E) → X: given
b ∈ X, the fiber of π∗(E) over b is Γ(Mb,Eb), the space of smooth sections of
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the vector bundle Eb = E|π−1(b) → Mb = π−1(b) over b. Each bundle Eb → Mb

is noncanonically isomorphic to a fixed vector bundle E → N , called the local
model. The transition maps for π∗(E) are in Diff(N,E). There is a canonical
identification [4, p. 277]

Γ(X,π∗(E)) ∼= Γ(M,E).(2)

It is easier to work with Hilbert bundles. Fix a hermitian metric on E and a
metric on M , and redefine π∗(E) to be the bundle whose fibers are the Sobolev
sections Γs(Mb,Eb). π∗(E) is a Hilbert bundle with fibers isomorphic to Γs(N,E).
Even though we are working with Hilbert bundles, the transition maps lie in the
restricted subgroup Diff(N,E) ⊂ GL(Γs(N,E)), which has a highly nontrivial
topology. Thus π∗(E) may be nontrivial as a Diff(N,E) bundle.

More generally, let X be a CW-complex and {Uα} an open covering of X. Let
{(φαβ , fαβ) : Uα ∩ Uβ → Diff(N,E)} be a cocycle; that is, for b ∈ Uα ∩ Uβ ∩ Uγ ,

(φαβ , fαβ) · (φβγ , fβγ) = (φαγ , fαγ).

We glue Uα × Γs(N,E) to Uβ × Γs(N,E) via the transition maps (φαβ , fαβ) and
call the resulting Hilbert bundle E → X. Simultaneously, the {φαβ} glue the
Uα × N to a fibration M → X with fibers diffeomorphic to N , and the {fαβ}
similarly determine a finite rank vector bundle E → M . It is easy to see that
E = π∗(E). The bundle E will be called a families bundle.

Given families bundles π∗(E) and π∗(F) over X, we only consider morphisms
that are induced by bundle maps from E to F. In particular, if Ξ : π∗(E) → π∗(F)
is an isomorphism, then Ξ is induced from a bundle isomorphism Ξ′ : E → F, and
Ξ−1 is induced from (Ξ′)−1; thus E and F are isomorphic. We define VectDiff

M (X)
to be the category of isomorphism classes of vector bundles of the form π∗(E),
for E ∈ Vect(M), the category of isomorphism classes of vector bundles over M .
Note that M is fixed. It follows that there is an equivalence of categories between
VectDiff

M (X) and Vect(M).

The transition maps of bundles in VectDiff
M (X) lie in the group

DiffN (X) =
∏

E∈Vect(N)

Diff(N,E),

but a particular bundle has transition maps with only one fixed component not
of the form (id, id).

We add π∗(E) and π∗(F) in VectDiff
M (X) by defining π∗(E)⊕π∗(F) = π∗(E⊕F).

If {(φαβ , eαβ)} and {(φαβ , fαβ)} define π∗(E) and π∗(F) respectively, then the
transition maps for π∗(E)⊕ π∗(F) are {(φαβ , eαβ ⊕ fαβ)}. The tensor product is
defined by π∗(E) ⊗ π∗(F) = π∗(E ⊗ F), with transition maps {(φαβ , eαβ ⊗ fαβ)}.
The fibers of π∗(E) ⊗ π∗(F) are isomorphic to Γs(N,E ⊗ F ), where E → N
and F → N are the local models of E and F, respectively. Notice that this
is not the same as taking the tensor product of the fibers of π∗(E) and π∗(F).
With this sum and tensor product, VectDiff

M (X) becomes an abelian semiring and

π∗ : Vect(M) → VectDiff
M (X) a semiring homomorphism. The usual Grothendieck
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construction gives an abelian ring denoted by KDiff
M (X). The following result is

valid using the Fréchet or the uniform topology on DiffN (X).

Lemma 1. Let X be compact. There is a ring isomorphism

π∗ : K(M) → KDiff
M (X).

Here, K(M) denotes the usual K-theory ring of M . In particular, for X com-
pact, KDiff

M (X) is an abelian ring with unit.

Proof. Since X and N are compact, M is compact space. Elements of K(M) are
formal differences [E] − [F] for E, F ∈ Vect(M). The π∗ functor gives [π∗(E)] −
[π∗(F)] ∈ KDiff

M (X), and since every element of KDiff
M (X) is of this form, π∗ is

surjective.
If [π∗(E)]− [π∗(F)] = 0 then there is a bundle π∗(H) such that

π∗(E⊕H) ∼= π∗(E)⊕ π∗(H) ∼= π∗(F)⊕ π∗(H) ∼= π∗(F⊕H),

so E⊕H ∼= F⊕H and [E]− [F] = 0 in K(M). �

Note that if N = {pt} is a point, then M = X and VectDiff
M (X) = Vect(X). In

this case, KDiff
M (X) is just K(X).

Define KDiff(X) by

KDiff(X) =
⊗

M→X

KDiff
M (X),

where the tensor product of rings is taken over all possible diffeomorphism classes
Λ of locally trivial smooth fibrations M → X. An element ⊗i∈Λai ∈ KDiff(X)
has almost all ai equal to the identity. Thus a general element of KDiff(X) is a
finite sum of elements of the form a1 ⊗ . . .⊗ ak with aj ∈ KDiff

Mj
(X) for a fibration

Mj → X. Tensor products in KDiff(X) are taken componentwise.

Corollary 2. Let X be compact. There is a ring isomorphism

KDiff(X) ≃
⊗

M→X

K(M).

2.3. KG-Theory. The construction in §2.2 can be repeated for the subgroup
G(N,E) of gauge transformations. For reasons explained later, we only con-
sider the uniform topology. The associated fibration is trivial, M = X ×N , and
the induced bundles, called G-vector bundles or gauge bundles, are of the form
E = π∗(E) for E → X × N a finite rank complex vector bundle. The set of iso-

morphism classes of G-vector bundles is denoted by VectGN (X). As before, there

is an equivalence of categories between VectGN (X) and Vect(X ×N).
Set

GN =
∏

E∈Vect(N)

G(N,E).
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Every G-vector bundle will have its transition functions in one term of this disjoint
union. Since the base N is fixed, we denote GN by G.

The previous lemma holds in this context:

Lemma 3. Let X be compact. There is a ring isomorphism

π∗ : K(X ×N) → KG
N (X).

For example, if N = S1 and X is compact, then

KG
S1(X) = K(X × S1) ∼= K0(X)⊕K1(X),

[14, p. 110].
The group G(N,E) with the uniform topology is not a topological group, but it

is uniformly dense in the topological group of continuous gauge transformations
of E with the uniform topology. We can construct G-vector bundles as before,
using continuous gauge transformations as transition maps. (By standard ap-
proximations, the transition maps of any of these bundles can be assumed to be
smooth.) In contrast to smooth gauge transformations, the group of continuous
gauge transformations, also denoted by G(N,E) for the rest of this section, is a
topological group and has an explicit model for its classifying space [1]:

BG(N,E) = MapsE(N,BU),

where MapsE(N,BU) = {f : N → BU, f∗(EU) = E}. This is stated in [1] for
principal bundles, but holds for vector bundles associated to the faithful repre-
sentation (1). In summary, we switch to continuous gauge transformations in this
section to use the Atiyah-Bott construction, but just as with ordinary bundles,
it makes no difference if we consider smooth or continuous gauge transformations
as transition maps.

For f ∈ MapsE(N,BU), every map homotopic to f is also in MapsE(N,BU),
so MapsE(N,BU) is a path connected component of Maps(N,BU). There is a

bijection from VectGN (X) to [X,BG], the set of homotopy classes of maps from X
to BG = BG(N,E). Thus

BG =
∐

E∈Vect(N)

BG(N,E) =
∐

E∈Vect(N)

MapsE(N,BU).

Since every map f : N → BU lies in some component MapsF (N,BU),

BG = Maps(N,BU).(3)

Theorem 4. There is a bijective correspondence

KG
N (X) ≃ [X,BG × Z],

for G = G(N,E).

Here ≃ is used to denote a bijection, but it induces a tautological ring isomor-
phism.
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Proof. Any homotopy φ : X × [0, 1] → Maps(N,BU × Z) can be seen as a map
φ : X×N× [0, 1] → BU×Z. Therefore [X,Maps(N,BU)×Z] = [X×N,BU×Z].
Thus

KG
N (X) ∼= K(X ×N) ≃ [X ×N,BU × Z]

≃ [X,Maps(N,BU)× Z] ≃ [X,BG × Z].

�

We can also build G(N,E)-principal bundles R → X using cocycles καβ :
Uα ∩Uβ −→ G(N,E), for {Uα} a covering of X. We denote the set of G-principal

bundles by PrinGN (X). The canonical representation of G(N,E) on the space
Γs(N,E) gives an associated G-vector bundle

E = R×G(N,E) Γ
s(N,E).

G(N,E)-principal bundles are used in section §4.3 to define the symbol map.

2.4. KG-Theory and Ω Spectra. We recall the definition of an Ω spectrum.

Definition 5. A sequence of based CW complexes and base point preserving maps
(Ek, ǫk)k∈Z is an Ω spectrum if each ǫk : Ek → ΩEK+1 is a homotopy equivalence.

Given a CW complex X and an Ω spectrum (Ek, ǫk)k∈Z, the spaces [X,Ek]
form a generalized cohomology theory satisfying Milnor’s additivity axiom. Any
additive generalized cohomology theory has an Ω spectrum [9, p. 35].

We wish to show that BG × Z is the first term in an Ω spectrum. First we
prove

Lemma 6. Given an Ω spectrum (Ek, ǫk)k∈Z and a based compact CW complex X,
there exist based maps ǫ∗k : Maps(X,Ek) → Maps(X,Ek+1) such that the sequence
(Maps(X,Ek), ǫ

∗
k)k∈Z is an Ω spectrum.

Proof. The spaces Maps(X,Ek) are homotopy equivalent to CW complexes. By
hypothesis, there is a homotopy equivalence E2 ∼ ΩE1, so

Maps(X,E2) ∼ Maps(X,ΩE1) = Maps∗(X × S1, E1),

where Maps∗(X × S1, E1) are maps sending X × {1} to a fixed base point. This
implies

Maps∗(X × S1, E1) = Ω(Maps(X,E1)).

We proceed inductively: given ǫk : Ek → Ek+1 and a map f : X → Ek, we define
ǫ∗k(f) = f ◦ ǫk. �

Recall that complex K-theory is the extraordinary cohomology theory associ-
ated to the two-periodic spectrum ΩK = (BU × Z, U,BU × Z, . . .).

Theorem 7. Given a compact CW complex X, the group KG
N (X) ∼= [X,BG ×Z]

is the first term of a two periodic extraordinary cohomology theory.
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Proof. By Theorem 4,

KG
N (X) ≃ [X,BG × Z] ∼= [X,Maps(N,BU × Z)].

By Lemma 6, ΩG
N = (Maps(N,BU ×Z),Maps(N,U),Maps(N,BU ×Z) . . .) is an

Ω spectrum. Since ΩK is two periodic, so is ΩG
N . �

For a single gauge group G(N,E), we can define another generalized cohomology
theory, analogous to connective K-theory.

Lemma 8. There is an Ω spectrum (BG(N,E), E1, E2, . . . , ǫk)K∈N. Therefore,
[X,BG(N,E)] can be extended to a generalized cohomology theory.

Proof. (BU,SU,BSU, . . .) are the first three terms of an Ω spectrum ku∗, whose
associated extraordinary cohomology theory is connective K-theory [8]. For the
corresponding spaces of maps we get

Maps(N,BU) ∼ ΩMaps(N,SU) ∼ Ω2Maps(N,BSU) . . .

These homotopy equivalences are valid for the component MapsE(N,BU), so we
get an Ω spectrum with first term BG(N,E). �

2.5. Bott Periodicity and Thom Isomorphism in KG. Define KG(X) by

KG(X) =
⊗

N

KG
N (X),

where the tensor product of rings is taken over all possible diffeomorphism classes
Ξ of orientable manifolds N . An element ⊗i∈Ξai ∈ KG(X) has almost all ai equal
to the identity. Thus a general element of KG is a finite sum of terms of the form
a1 ⊗ . . . ⊗ ak where aj ∈ KG

Nj
(X) for a fibration X ×Nj → X. Tensor products

in KG(X) are taken componentwise.
For a compact CW complex X, by Lemma 3 and K(X ×S2) = K(X)⊗K(S2)

[14, p. 128],

KG
N (X × S2) ∼= K(X × S2 ×N) = K(X ×N)⊗K(S2) = KG

N (X)⊗K(S2).

This multiplicativity result is the analogue of Bott periodicity holding in this
context.

Let F → X be a finite rank hermitian vector bundle. The projection π1 :
X ×N → X induces π∗

1F → X ×N . Let B(F ) and S(F ) be the associated ball
and sphere bundle, respectively. The one point compactification of F , denoted
F+ = F ∪ {∞}, is homeomorphic to the quotient space B(F )/S(F ). It follows
that π∗(F )+ = F+ ×N . Using the K-theory Thom isomorphism for π∗

1F , we get

KG
N (X) ∼= K(X ×N) ∼= K̃(π∗

1(F )+) ∼= K̃(F+ ×N).

As in ordinary K-theory, define

KG
N (F ) = ker(KG

N(F
+) → K(∞))

KG(F ) =
⊗

N

KG
N (F ).
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It is immediate that KG
N (F ) ∼= K̃(F+ × N), so we get a restatement of the

Thom isomorphism in the KG context:

Theorem 9. Let F → X be a finite rank vector bundle and X a compact CW
complex. Then KG

N (X) ∼= KG
N (F ), and so

KG(X) ∼= KG(F ).

2.6. The Serre-Swan Theorem in KG. For a closed manifold Y , let C(Y ) de-
note the ring of complex valued continuous functions. By the classical Serre-Swan
theorem, the global sections functor gives an equivalence of categories between
Vect(Y ) and the category of finitely generated projective modules over C(Y ). For

X a compact manifold, we want an equivalence of VectGN (X) with some category
of modules over C(X).

An element E ∈ Vect(X×N) can be seen as a continuous family {Eb → N}b∈X
of vector bundles over N , parameterized by X. We use the notation {Eb} ∈
VX(N). Γ({Eb}) denotes the space of maps h : X → {Γ(N,Eb)}b∈X such that
h(b) ∈ Γ(N,Eb) and the family {h(b)}b∈X is the restriction of a continuous section
of E → X×N . Denote by Γ(VX(N)) the category of all spaces of the form Γ({Eb})
with morphisms induced by maps between the corresponding vector bundles over
X ×N .

The following theorem formalizes the idea that VectGN (X) should be equivalent
to families of finitely generated projective C(N)-modules parameterized by X.

Theorem 10. The global sections functor is an equivalence of categories between
VectGN (X) and Γ(VX(N)).

Proof. Take E → X in VectGN (X). There is a bundle E → X ×N with π∗(E) = E .
We need to show that π∗(E) −→ Γ(π∗(E)) gives the desired equivalence.

Given φ ∈ Γ(X,π∗(E)) and b ∈ X, φ(b) ∈ Γ({b} ×N,Eb). Identifying {b} ×N
with N , we get φ ∈ Γ({Eb}).

Conversely, if h ∈ Γ({Eb}), the corresponding continuous family {Eb}b∈X comes
from a vector bundle E → X ×N with h ∈ Γ(X,π∗(E)). �

3. The Chern Character in KG

In this section, we show that the leading order Chern character gives a ring
homomorphism from KG(X) to de Rham cohomology H∗(X). We use a version
of Chern-Weil theory, so from now on we assume that the base X is a closed,
orientable, finite dimensional manifold. In this section, G = G(N,E) denotes
smooth gauge transformations.

3.1. Definition and Basic Properties. There is a natural way to define Chern
classes and a Chern character on G-vector bundles E → X, with fibers Γs(N,E).
X admits a partition of unity, so we can put a G-connection on E with curva-
ture form ΩE ∈ Λ2(X,Γs(End(E))) taking values in sections of smooth endomor-
phisms. Note that Γs(End(E)) is formally the Lie algebra of the structure group
G(N,E).
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For a choice of Riemannian metric on N , there is a natural trace on this Lie
algebra, obtained by taking the usual fiberwise trace and then integrating over
N : for H ∈ Γ(End(E)),

TrG(H) =

∫

N

trHy dvol(N).

As in the standard Chern-Weil construction, the leading order Chern classes
cGk (E) and the leading order Chern character chG(E) are the de Rham cohomology
classes [15]

cGk (E) = [TrG(ΩE)k] ∈ H2k(X),

chG(E) = [TrG(exp(ΩE))] ∈ Hev(X).

The term “leading order” will be explained in the next section.

Lemma 11. Let E and F be G-vector bundles with transition maps in G(N,E)
and G(N,F ), respectively. Then

chG(E ⊕ F) = chG(E) + chG(F),

chG(E ⊗ F) = chG(E) ∪ chG(F).

Thus chG induces a ring homomorphism

chG : KG
N (X) → Hev(X,C).

The additivity of the Chern character implies the Whitney sum formula for the
leading order Chern classes.

Proof. Given connections ∇E and ∇F on E and F , we can follow verbatim the
usual arguments from finite dimensional Chern-Weil theory and obtain

ΩE⊕F =

(

ΩE 0
0 ΩF

)

.

Thus

TrG(exp(ΩE⊕F )) = TrG(exp(ΩE)) + TrG(exp(ΩF )),

from which the additivity of chG follows. A similar argument works for tensor
products. �

The usual Chern character in K(X ×N) gives a complex ring isomorphism

CH : KG
N (X)⊗ C → Hev(X ×N,C).

Lemma 12. CH and chG are related by

chG(E) =

∫

N

CH(E) dvol(N),

where π∗(E) = E.
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Proof. Let ξ, η be vector fields on X. Their horizontal lifting to X × N with
respect to the canonical splitting T (X × N) = TX ⊕ TN are ξH = (ξ, 0) and
ηH = (η, 0).

A connection ∇E on E induces a connection ∇E on π∗(E) = E by [4, p. 282]

∇E
ξ (s) = ∇E

(ξ,0)s̃,

where s ↔ s̃ is the correspondence Γ(X,π∗(E)) = Γ(X × N,E). The curvature
operators satisfy

ΩE(ξ, η) = ΩE((ξ, 0), (η, 0)).

Let x denote local coordinates on X and y local coordinates on N . Locally,

tr(ΩE) =
∑

i,j

aij(x, y)dx
i ∧ dxj +

∑

k,l

bkl(x, y)dx
k ∧ dyl +

∑

p,q

cpq(x, y)dy
p ∧ dyq,

for aij , bkl, cpq ∈ C∞(X ×N). The exponential will be of the form

tr(exp(ΩE)) =
∑

I,J

a′IJ(x, y)dx
I ∧ dxJ

+
∑

K,L

b′KL(x, y)dx
K ∧ dyL +

∑

P,Q

c′PQ(x, y)dy
P ∧ dyQ,

for multiindices I, J,K,L, P,Q. Since dyj(ξ, 0) = 0 for all j,

chG(E) =

∫

N

tr(exp(ΩE))dvol(N)

=

(

∑

I,J

∫

N

a′IJ(x, y)dvol(N)

)

dxI ∧ dxJ

and
∫

N

CH(E)dvol(N) =

∫

N

tr(exp(ΩE))dvol(N)

=

(
∫

N

∑

I,J

a′I,J(x, y) dvol(N)

)

dxI ∧ dxJ

�

We now treat naturality of the leading order Chern class. Let E = π∗(E) ∈

VectGN (X) and f : Y → X a map with Y another closed orientable manifold. The
pullback bundle f∗E → Y is defined as

f∗E := π∗
(

(f × Id)∗(E)
)

,

where f × Id : Y ×N → X ×N is the induced map.

Lemma 13. With the same notation as before,

chG(f∗E) = f∗chG(E).
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Proof. By the previous lemma,

chG(f∗E) =

∫

N

CH
(

(f × Id)∗(E)
)

dvol(N) =

∫

N

(f × Id)∗CH(E)dvol(N).

Since (f × Id)∗ commutes with the integral over the fiber N ,

chG(f∗E) = (f × Id)∗
∫

N

CH(E)dvol(N) = f∗(chG(E)).

�

The leading order Chern character extends to KG(X) by setting

chG(a1 ⊗ . . . ⊗ ak) = chG(a1) ∪ . . . ∪ chG(ak),

and then extending linearly. With this extension,

chG : KG(X) → Hev(X)

is again a ring homomorphism.
We now show that this Chern character is compatible with the module struc-

tures on K-theory and cohomology. KG
N (X) is a KG

N (pt)-module as follows. Since

KG
N (pt)

∼= K(N) and KG
N (X) ∼= K(X ×N), we get a product

α : KG
N (pt)⊗KG

N (X) → KG
N (X),

by taking (H → N) ∈ KG
N (pt) and E → X ×N ∈ KG

N (X) and defining

α(H,E) := π∗
2(H)⊗ E ∈ K(X ×N) ∼= KG

N (X).

It is easy to see that the diagram

KG
N (pt)⊗KG

N (X) KG
N (X)

Hev(N)⊗Hev(X ×N) Hev(X ×N)
❄

CH⊗CH

✲α

❄

CH

✲∪

(4)

commutes, i.e. the KG
N (pt)-module structure of KG

N (X) and the Hev(N)-module
structure of Hev(X ×N) are compatible. Integrating over N gives another com-
mutative diagram, this time for the leading Chern character:

KG
N (pt)⊗KG

N (X) KG
N (X)

C⊗H∗(X) H∗(X)
❄

chG⊗ chG

✲α

❄
chG

✲

(5)
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There are diagrams corresponding to (4) and (5) for KG =
⊗

KG
N , given by

replacing the cohomology groups with
⊗

N

Hev(N)⊗Hev(X ×N) and
⊗

N

Hev(X ×N).

3.2. Examples of Nontrivial KG
S1-classes. The tangent bundle to the free loop

space of a manifold is a natural example of a G-vector bundle. LetXn be a smooth,
oriented, closed manifold and LX its loop space. Here LX is the completion of the
space of smooth loops with respect to the Sobolev topology for large parameter s,
as explained in [13]. The complexified tangent bundle TCLX → LX is canonically
a G(S1,Cn)-vector bundle modeled on a trivial bundle C

n = S1 ×C
n → S1.

There is a canonical inclusion ι : X → LX by considering a point as a constant
loop. The pullback bundle F = ι∗(TCLX) → X is a G-vector bundle. The fiber
over a point x0 ∈ X is given by F|x0 = L(Tx0X ⊗ C). The transition maps for
F are the the transition maps of TCX, but now acting on LCn instead of Cn.
Thus at x0 ∈ X in the overlap of two charts, the transition map in GL(n,C) for
Tx0X ⊗ C is also a constant function in

Maps(S1, GL(n,C)) = G(S1,Cn)

for F . Since the transition maps are constant, we can construct a connection ∇F

on F taking values in End(Cn) (identified with constant maps in Maps(S1,End(Cn)).
By Lemma 12, The corresponding leading order Chern character is

chG(F) = vol(S1)CH(TCX).

Therefore, manifolds with CH(TCX) 6= 0 give examples of nontrivial elements

F → X in KG
S1(X).

4. K-Theory for Pseudodifferential Bundles

As mentioned in the introduction, pseudodifferential bundles arise in the study
of the geometry of mapping spaces [13]. In fact, the leading order Chern charac-
ter was originally defined for pseudodifferential bundles in [15]. In this section we
construct a K-theory KΨ for these bundles with the leading order Chern character
again a ring homomorphism from KΨ to de Rham cohomology. The construction
of KΨ is also motivated by the discovery of nontrivial examples of pseudodiffer-
ential bundles in [10].

4.1. Preliminaries on Pseudodifferential Operators. We recall some results
of Hörmander [7] about the norm closure of pseudodifferential operators of order
zero. Let E be a finite rank Hermitian vector bundle over a closed Riemannian
manifold N . Denote by Ψ0 = Ψ0(N,E) the algebra of zero order pseudodiffer-
ential operators acting on Γs(N,E). The group of invertible elements of Ψ0 is
denoted by Ψ∗

0. The leading symbols of operators in Ψ0 are smooth sections of
End(S∗N,π∗E), where π : S∗N → N is the cosphere bundle.
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Operators in Ψ0 are bounded on Γs(N,E). For Ψ0 the norm closure of Ψ0 in
GL(Γs(N,E)), the leading symbol extends to a continuous map
Ψ0 → End(S∗N,π∗E), where End(S∗N,π∗E) now denotes continuous endomor-
phisms with the uniform topology. For P ∈ Ψ0(N,E) and a bundle G → Y , the
operator P ⊗ 1 acting on smooth sections of E ⊠G → N × Y can be extended to
a bounded operator in Ψ0(E⊠G → N ×Y ). The leading symbol of the extension
is σ0(P )⊗ 1, where σ0(P ) is the principal symbol of P [7, p. 202]. Note that the
extension lies only in the closure Ψ0(E ⊠G → N × Y ).

Assume that G → Y is C → pt, considered as a complex vector bundle over
a point. We get an operator P ⊗ 1 acting on E ⊗ 1 → N × {pt}, which can
be canonically identified with E → N . Given a pseudodifferential operator Q ∈
Ψ0(N,F ), we get an operator P ⊗Q ∈ Ψ0(N,E ⊗ F ) defined by

P ⊗Q = (P ⊗ 1) ◦ (1⊗Q).(6)

Here we are using E ⊗ F ∼= (E ⊗ 1)⊗ (1⊗ F ).
This allows us to define tensor products of pseudodifferential operators. Again,

this product lies only in the norm closure and is not per se a pseudodifferential
operator.

4.2. Pseudodifferential Bundles. As before, we can construct a vector bundle
over X using pseudodifferential operators. Take an open covering {Uα} of X and
glue the spaces Uα × Γs(N,E) using transition maps

φE
αβ : Uα ∩ Uβ −→ Ψ

∗
0(N,E).

(Here Ψ
∗
0 = (Ψ0)

∗, not Ψ∗
0.) Denote the resulting bundle by E → X [15]. For

E → X as above, E → N is called its model bundle, and E is called a Ψ-bundle
over X. A homomorphism between Ψ-bundles is a continuous family of fiber
preserving linear maps given fiberwise by elements of the norm closure of pseudo-
differential operators of order zero. Here, continuity is taken with respect to the
norm topology on the space of pseudodifferential operators.

For fixed N , we define VectΨN (X) to be the set of isomorphism classes of Ψ-
bundles over X for all model bundles E → N . The full structure group of these
bundles is

Ψ
∗
N =

∏

E∈Vect(N)

Ψ
∗
0(N,E).

The closed manifold X admits partitions of unity, so elements of VectΨN (X) admit
fiber metrics and connections, and Ψ-bundles over contractible relatively compact
open sets are trivial.

There is a straightforward procedure to make VectΨN (X) an abelian semiring.
For sums, take E → X as above and another Ψ-bundle F → X with fibers

Γs(N,F ) and transition maps φF
αβ : Uα ∩ Uβ −→ Ψ

∗
0(N,F ), with both bundles

trivial over the open sets {Uα} of a covering of X. The transition maps for
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E⊕ F −→ X are

φE⊕F
αβ =

(

φE
αβ 0

0 φF
αβ

)

acting on Γs(N,E ⊕ F ).
For E⊗ F −→ X, take

φE
αβ ⊗ φF

αβ = (φE
αβ ⊗ 1) ◦ (1⊗ φF

αβ),

as in (6), acting on Γs(N,E ⊗ F ). It is immediate that the cocycle conditions

of the transition maps are preserved, since the operators φE
αβ ⊗ 1 and 1 ⊗ φF

αβ

commute.
From the abelian semiring VectΨN (X) we can define the corresponding KΨ-

theory ring KΨ
N (X) as usual. In particular, for N = {pt}, VectΨ{pt}(X) = Vect(X)

so KΨ
pt(X) = K(X).

Similarly, we can define principal bundles with fibers isomorphic to Ψ
∗
0(N,E).

Once again, we glue copies of the group using the transition maps. These principal
bundles are called Ψ-principal bundles and denoted by PrinΨN (X).

Let P → X be a Ψ-principal bundle. Using the canonical faithful representation
of Ψ

∗
0(N,E) on Γs(N,E) we get an associated Ψ-vector bundle

E = P ×Ψ
∗

0(N,E) Γ
s(N,E).

In this paper, we only consider the action of Ψ
∗
0(N,E) on Γs(N,E), so there is a

one-to-one correspondence between Ψ-vector bundles and Ψ-principal bundles.
As with KG(X), we define KΨ(X) by

KΨ(X) =
⊗

N

KΨ
N (X),

where the tensor product of rings is taken over all diffeomorphism classes Ξ of
closed orientable manifolds N .

4.3. The Symbol Map in KΨ. The leading symbol σ0(P ) of P ∈ Ψ
∗
0(N,E) is

an element in G(S∗N,π∗E), the group of continuous gauge transformations. Set

G♯ =
∏

E∈Vect(N)

G(S∗N,π∗E).

We also have a well defined symbol map

σ0 : Prin
Ψ
N (X) → Prin

G♯

S∗N (X)

in the obvious notation as follows: For {φPαβ : Uαβ → Ψ
∗
0(N,E)} the transition

maps of P ∈ PrinΨN (X), define σ0(P) ∈ Prin
G♯

S∗N (X) by the transition maps

σ0(φ
P
αβ) : Uαβ → G(S∗N,π∗E).

σ0 is continuous precisely because we are using the uniform topology on G♯.
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The map σ0 can be defined similarly on vector bundles. Since Γs(N,E) and
Γs(S∗N,π∗E) are faithful representations of Ψ∗

0 and G♯, respectively, there is no
loss of information by considering

σ0 : Vect
Ψ
N (X) → Vect

G♯

S∗N (X).

Note that if the fibers of E ∈ VectΨN (X) are isomorphic to Γs(N,E), then σ0(E)
has fibers isomorphic to Γs(S∗N,π∗E).

From the definition of sums and tensor products of Ψ-vector bundles, σ0 induces
a ring homomorphism

σ0 : K
Ψ
N (X) → K

G♯

S∗N (X).

The leading order Chern character chΨ : KΨ
N (X) → Hev(X) is defined to be the

composition
chΨ = chG♯ ◦ σ0.

For chΨ on KΨ(X), we extend σ0 by

σ0(a1 ⊗ . . . ⊗ ak) = σ0(a1)⊗ . . .⊗ σ0(ak),

and applying chG♯ as before.

4.4. Nontrivial Elements in KΨ. We can detect nonzero elements of Kψ
N (X)

using the symbol map, the leading order Chern character and the ordinary Chern
character. This extends techniques in [10] which produced nontrivial examples of
bundles in VectΨN (X).

An element of G(N,E) is an invertible pseudodifferential operator of order zero
acting on Γs(N,E), so we have a canonical inclusion

j : VectGN (X) →֒ VectΨN (X).

The projection π : S∗N → N induces a pullback map

π∗ : G(N,E) → G(S∗N,π∗E).

Taking pullbacks of transition maps, this induces π∗ : VectGN (X) → Vect
G♯

S∗N (X)
and

π∗ : KG
N (X) → K

G♯

S∗N (X).

The following diagram commutes:

KΨ
N (X) K

G♯

S∗N (X) H∗(X)

KG
N (X) H∗(X)

✲σ0 ✲ch
G♯

◗
◗

◗
◗◗❦

j

✻
π∗

✲
chG

✻
·vol(S∗N)

The vertical map on the right is multiplication by the constant vol(S∗N). The dia-

gram shows that for ϑ ∈ KG
N (X) with nonvanishing leading order Chern character,

π∗(ϑ) ∈ K
G♯

S∗N (X) and j(ϑ) ∈ KΨ
N (X) are nontrivial. For example, replacing S1
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in §3.2 by N , we see that if CH(TCX) 6= 0 then [F ] ∈ KG
N (X) is nonzero. Thus

CH(TCX) 6= 0 implies π∗(F) ∈ K
G♯

S∗N (X) and j(F) ∈ KΨ
N (X) are nontrivial.

We have K
G♯

S∗N (X) ∼= K(X×S∗N) and KG
N (X) ∼= K(X×N). By the Künneth

formula, H∗(X×S∗N) ∼= H∗(X)⊗H∗(S∗N) and H∗(X×N) ∼= H∗(X)⊗H∗(N).
The corresponding commutative diagram for CH is

KΨ
N (X) ⊗ C K(X × S∗N)⊗ C H∗(X) ⊗H∗(S∗N)

K(X ×N)⊗ C H∗(X)⊗H∗(N)

✲σ0 ✲CH

∼=

❍❍❍❍❍❍❍❍❍❨

j

✻

π∗

✲CH

∼=

✻
1⊗π∗(7)

Let dim(N) = 2l = n and let [wN ] a generator of H2l(N). Set

T = CH−1

(

H∗(X)⊗

(

dimN−1
⊕

i=0

H i(N)

))

.

In other words, T is the subset of KG
N (X) ⊗ C consisting of γ such that CH(γ)

does not contain a term of the form a⊗ [wN ] for a ∈ H∗(X).

We now prove that K
G♯

S∗N (X) and KΨ
N (X) ⊗ C is at least as large as T .

Theorem 14. a) π∗ : T → K
G♯

S∗N (X)⊗C and j : T → KΨ
N (X)⊗C are injections.

b) If χ(N) = 0, then π∗ : KG
N (X) ⊗ C → K

G♯

S∗N (X) ⊗ C and j : KG
N (X) ⊗ C →

KΨ
N (X)⊗ C are injections.

Proof. (a) The Gysin sequence gives

. . . → H2k−n(N)
∪e
→ H2k(N)

π∗

→ H2k(S∗N) → H2k−n+1(N) . . . ,

where e is the Euler class of S∗N . In particular, for k < l, π∗ : H2k(N) →
H2k(S∗N) is an injection.

If CH(γ) does not contain a term of the form a⊗ [wN ], then (1⊗π∗)(CH(γ)) ∈
H∗(X) ⊗ H∗(S∗N) is nonzero. By the commutativity of (7), π∗(γ) ∈ K(X ×

S∗N)⊗ C = K
G♯

S∗N (X)⊗ C and j(γ) ∈ KΨ
N (X)⊗ C are nonzero.

(b) If χ(N) = 0 then π∗ : H2l(N) → H2l(S∗N) is an injection. In this case,

1⊗π∗ is injective and the argument in (a) extends from T to all of KG
N (X)⊗C. �

Since CH is an isomorphism, the nontrivial elements in KΨ
N (X) ⊗ C given in

Theorem 14 can be identified with most of H∗(X ×N).

Corollary 15. A copy of H∗(X)⊗
(

⊕

dim N−1
i=0 H i(N)

)

injects into KΨ
N (X)⊗C.
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