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ASSEMBLY MAPS WITH COEFFICIENTS IN TOPOLOGICAL

ALGEBRAS AND THE INTEGRAL K-THEORETIC NOVIKOV

CONJECTURE

SNIGDHAYAN MAHANTA

Abstract. We prove that any countable discrete and torsion free subgroup of a general
linear group over an arbitrary field or a similar subgroup of an almost connected Lie group
satisfies the integral algebraic K-theoretic (split) Novikov conjecture over K and S, where
K denotes the C∗-algebra of compact operators and S denotes the algebra of Schatten class
operators. We prove that such a group also satisfies the algebraic K-theoretic (split) Novikov
conjecture over Q and C with finite coefficients. For all Gromov hyperbolic groups G, we
show that the canonical algebra homomorphism K[G] → C∗

r
(G)⊗̂K induces an isomorphism

between their algebraic K-theory groups. We end with a discussion of a recent conjecture
of Yu about the algebraic K-theory of the group algebra S[G].

Introduction

For any group discrete G and a unital ring R the algebraic K-theoretic Novikov conjecture
for G over R asserts that a canonically defined Loday assembly map

(µL
R)∗ : H∗(BG;KR) → K∗(R[G])

is rationally injective. HereKR denotes the nonconnective algebraic K-theory spectrum of R.
The stronger integral K-theoretic Novikov conjecture asserts that the same map is injective.
Using standard excision arguments and the fact that H-unital Q-algebras in the sense of
[60] satisfy excision in algebraic K-theory [58], the Loday assembly map can be extended to
H-unital coefficient Q-algebras R. Conjectures of this nature in K-theory and L-theory can
be traced back to Hsiang [27]. In this article the term K-theory without any adjective will
always refer to algebraic K-theory and will be denoted by K∗.

For any countable discrete and torsion free group G the Baum–Connnes conjecture asserts
that a canonically defined Baum–Connes assembly map

µBC
∗ : Kg

∗(BG) → Ktop
∗ (C∗

r (G))

is an isomorphism [5]. Here Kg denotes the Baum–Douglas picture of geometric K-homology
[8, 7] and Ktop

∗ denotes the topological K-theory of C∗-algebras. The Baum–Connes assembly
map can be constructed for any second countable locally compact and Hausdorff group. The
conjecture can even be generalized to incorporate coefficients in a separable G-C∗-algebra by
using universal proper G-spaces and Kasparov’s bivariant K-theory [6]. The Baum–Connes
conjecture has implications in many areas of mathematics and the status of this conjecture
is also well documented in the literature (see, e.g., [45]). Recently Lafforgue announced the
proof of the Baum–Connes conjecture with coefficients for all Gromov hyperbolic groups [37].
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The original Novikov conjecture about the homotopy invariance of higher signatures is known
to follow from the rational injectivity of the Baum–Connes assembly map. Presumably,
motivated by this observation Kasparov formulated the Strong Novikov Conjecture with
trivial coefficients, which asserts that µBC

∗ is a rationally injective (see, e.g., page 192 of
[36]).

Since we are dealing with two different Novikov conjectures, in order to avoid confusion,
we refer to the Novikov conjecture in algebraic K-theory as the Hsiang–Novikov conjecture.
Similarly the Strong Novikov Conjecture in KK-theory is referred to as the Kasparov–Novikov
conjecture. Predictably the integral K-theoretic Hsiang–Novikov (resp. integral Kasparov–
Novikov) conjecture asserts that (µL

R)∗ (resp. µBC
∗ ) is injective. Finally, the integral K-

theoretic split Hsiang–Novikov (resp. the integral split Kasparov–Novikov) conjecture asserts
that the assembly map (µL

R)∗ (resp. µBC
∗ ) is split injective.

In this article we prove the following two results (reduction principles):

Theorem 0.1. (see Theorem 4.3 and Theorem 4.2) If a countable discrete and torsion free
group satisfies the integral Kasparov–Novikov (resp. the split Kasparov–Novikov) conjecture
with trivial coefficients, then it satisfies the K-theoretic Hsiang–Novikov (resp. split Hsiang–
Novikov) conjecture over Q and C with finite coefficients.

Theorem 0.2. (see Theorem 6.4 and Theorem 8.4) If a countable discrete and torsion free
group satisfies the integral Kasparov–Novikov (resp. the split Kasparov–Novikov) conjecture
with trivial coefficients, then it satisfies the integral K-theoretic Hsiang–Novikov (resp. split
Hsiang–Novikov) conjecture over K and S, where K denotes the C∗-algebra of compact op-
erators and S denotes the algebra of Schatten class operators.
Furthermore, if µBC

∗ is only rationally injective then so is (µL
K)∗. (The rational injectivity of

(µL
S)∗ is known for all groups without any further hypothesis [61]).

Theorem 0.1 goes in a direction that is different from the rational injectivity question.
Admittedly, this result is not optimal and work is in progress to strengthen it. Building
upon a result of [16], Bökstedt–Hsiang–Madsen proved the rational injectivity of the Loday
assembly map for R = Z under the assumption that H∗(G,Z) is finitely generated in [11].
Carlsson–Goldfarb proved the integral K-theoretic split Hsiang–Novikov conjecture for all
geometrically finite groups with finite asymptotic dimension over arbitrary unital coefficient
rings in [13]. The integral K-theoretic Hsiang–Novikov conjecture can be refined to a state-
ment that predicts a certain assembly map to be an isomorphism. This is the Farrell–Jones
isomorphism conjecture in algebraic K-theory. For simplicity, let us suppose that G is a tor-
sion free group and R is a regular Noetherian Q-algebra. Then the Farrell–Jones conjecture
simply asserts that the above-mentioned Loday assembly map is actually an isomorphism.
Bartels–Lück–Reich proved the Farrell–Jones conjecture for all Gromov hyperbolic groups
over arbitrary unital coefficient rings in [3]. For an update on the status of these conjectures
we refer the readers to [29, 41]. Motivated by the Connes–Moscovici work on the Novikov
conjecture in topology [18], recently Yu proved that for any discrete group G the assembly
map in the Farrell–Jones isomorphism conjecture in algebraic K-theory is rationally injective
over S, where S denotes the algebra of Schatten class operators [61]. However, our techniques
differ from that of ibid. in a significant manner (explained in the following paragraph). In
Theorem 7.2 we prove that, for all Gromov hyperbolic groups [23], the canonical algebra ho-
momorphism K[G] → C∗

r (G)⊗̂K induces an isomorphism between their algebraic K-theory
2



groups. Moreover, the Whitehead groups of G over K, which are the homotopy groups of
the homotopy cofibre of the Loday assembly map µL

K, vanish for any Gromov hyperbolic
group G. The preprint of Yu [61] appeared while the article was under preparation and it is
clear that this result follows easily from the circle of ideas in ibid. We end the article with a
brief discussion of a conjecture of Yu (Conjecture 5.1 of ibid.) and propose a variant of the
conjecture (see Conjecture 8.6).

The works of Connes–Moscovici [18] and Yu [61] make use of the periodic cyclic (co)homology
valued Chern–Connes character. Roughly, one relates the K-theoretic assembly map to a
periodic cyclic homological assembly map, which is designed to retain information only up
to torsion. Therefore, such techniques are very useful for proving rational injectivity state-
ments. However, in order to prove integral statements it is important to work directly with
the K-theoretic assembly maps. The main strategy in our proof of the reduction principle
is to interconnect the various K-theoretic assembly maps involved. In order to do so we
make use of the unified perspective of Davis–Lück on the various isomorphism conjectures
[20]. Davis–Lück construct an assembly map in any G-homology theory, which in turn is
constructed from a spectrum that is a module over the orbit category of G in a suitable
sense. By choosing different spectra, e.g, nonconnective algebraic K-theory or topological
K-theory, one obtains different G-homology theories and assembly maps therein. Under
favourable circumstances these assembly maps can be identified with the Loday assembly
map and with the Baum–Connes assembly map with trivial coefficients [25] respectively. In
order to prove Theorem 0.2 we extend the identification of the Baum–Connes assembly map
with the Davis–Lück assembly map to the case where the coefficient algebra is K, equipped
with the trivial G-action (see Proposition 6.2). The domain of the Davis–Lück isomorphism
conjectures is always a G-homology theory. However, if G is torsion free and the coefficient
algebra satisfies some reasonable hypotheses, then one can avoid equivariant homology theo-
ries and work with ordinary homology theories. Therefore, we restrict our attention to torsion
free groups. In this case, the domain of the Davis–Lück assembly map looks like H∗(BG; E),
where E is the spectrum defining the homology theory. These groups are computable using
the Atiyah–Hirzebruch spectral sequence in generalized homology theories. One aim of the
isomorphism conjectures is to predict the values of the codomains of the assembly maps,
which are typically hard to compute, in terms these generalized homology groups of BG.
In Section 5 we construct Künneth type spectral sequences using the machinery of [21] to
compute these homology groups, although an extremely trivial case of that is used in this
article. We hope that these spectral sequences will be of independent interest.

Upshot: Let us mention that the integral (split) Kasparov–Novikov conjecture is known
to be true in numerous examples. For instance, let G be a countable discrete group with a
proper left-invariant metric. Thanks to Skandalis–Tu–Yu we know that if G admits a uniform
embedding into a Hilbert space, then G satisfies the split Kasparov–Novikov conjecture (even
with coefficients in any separable G-C∗-algebra) [62, 55]. Using the results of ibid., Guentner–
Higson–Weinberger showed that if G is a countable discrete subgroup of GL(n, F ) for any
field F or of any almost connected Lie group, then G satisfies the split Kasparov–Novikov
conjecture (with coefficients in any separable G-C∗-algebra) [24]. Using the above-mentioned
reduction principle, we arrive at the main result of this article.

3



Theorem. Any countable discrete and torsion free subgroup of a general linear group over an
arbitrary field or a similar subgroup of an almost connected Lie group satisfies the integral K-
theoretic split Hsiang–Novikov conjecture over K and S, i.e., the Loday assembly maps (µL

K)∗ :
H∗(BG;KK) → K∗(K[G]) and (µL

S)∗ : H∗(BG;KS) → K∗(S[G]) are split injective. They also
satisfy the K-theoretic split Hsiang–Novikov conjecture with finite coefficients over Q and C,
i.e., the Loday assembly maps (µL

K)∗ and (µL
S)∗ are split injective with finite coefficients.

For a countable discrete and torsion free group with a proper left-invariant metric, the above
assertions continue to hold if the group admits a uniform embedding into a Hilbert Space,
which is a rather mild condition.

To the best of the author’s knowledge these results are new at this level of generality (al-
though with restricted coefficients).

Notations and conventions: A discrete group is tacitly assumed to be countable and all
C∗-algebras are assumed to be separable. A space will always mean a compactly generated
and Hausdorff space and ⊗̂ will denote the minimal tensor product between C∗-algebras.
Throughout this article K will denote the nonconnective Gersten–Wagoner algebraic K-
theory spectrum and Ktop will denote the complex topological K-theory spectrum. Occa-
sionally we are going to work with specific models for these spectra and we shall comment
on them when the need arises. Unless otherwise stated, while dealing with a space like BG
(the classifying space of a discrete group G) we implicitly work with a CW model, e.g., the
geometric realization of the simplicial model of BG.

Acknowledgements. The author is extremely grateful to G. Yu for his comments on the
first draft of this article. The author also wishes to thank P. Baum, H. Reich, A. Valette
and C. Westerland for helpful email correspondences.

1. Baum–Connes assembly map for discrete and torsion free groups

Let G be any discrete and torsion free group. Let Ktop
C denote the (complex) topological

K-theory spectrum. It defines a (reduced) generalized homology theory on the category of
pointed compactly generated and Hausdorff spaces as follows [59]: For any unpointed space
X , set

Ktop
∗ (X) = π∗(X+ ∧K

top
C ),

where X+ denotes the disjoint union of X and a basepoint. This is called the topological
K-homology of X . Let BG denote the classifying space of G and let C ⊂ BG be any compact
subset. There is a canonical map

µ(C) : Ktop
∗ (C) → Ktop

∗ (C∗
r (G)),

where Ktop on the right hand side denotes the topological K-theory of (complex) Banach
algebras and C∗

r (G) denotes the reduced group C∗-algebra of G. It is defined in terms of a
canonical ‘Mischenko line bundle’ and Kasparov product in KK-theory. For the details we
refer the readers to pages 97 and 98 of [17], where the connection to the L-theory assembly
map is also explained. Let us remind the readers that the L-theoretic assembly map is the
relevant one for the original Novikov conjecture about the homotopy invariance of higher
signatures; in fact, it is equivalent to the rational injectivity of the L-theoretic assembly
map.
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Being a compactly generated space, BG is a filtered colimit of its compact subsets. Here
the set of compact subsets of BG is canonically filtered by inclusion. Since generalized
homology theory commutes with filtered colimits, one concludes

Ktop
∗ (BG) ∼= lim−→C

Ktop
∗ (C),

where C ⊂ BG runs through compact subsets. The assembly map construction is compatible
with the inductive system of Ktop-homology groups in the following sense: Whenever C ⊂ C ′

there is a commutative diagram

Ktop
∗ (C ′)

µ(C′)
// Ktop

∗ (C∗
r (G))

Ktop
∗ (C)

OO

µ(C)

55
k

k
k

k
k

k
k

k
k

k
k

k
k

k

As a result one obtains the assembly map

µ∗ : K
top
∗ (BG) ∼= lim−→

C ⊂ BG

Ktop
∗ (C) −→ Ktop

∗ (C∗
r (G)),(1)

and the Baum–Connes conjecture (with trivial or complex coefficients) [5, 6] asserts that
this map is an isomorphism.

There is a geometric picture of K-homology, denoted by Kg, due to Baum–Douglas on
the category of a (pairs of) finite CW complexes [8, 7]. Each geometric K-cycle over X is
a triple (M,E, f), where M is a compact spinc n-manifold, E is a complex vector bundle
over M and f : M → X+ is a continuous map sending ∂M to the basepoint in X+. There
are some canonical equivalence relations imposed on such K-cycles and the equivalences
classes, denoted by [M,E, f ], comprise Kg(X). There is a natural map αX : Ktop

∗ (X) =
π∗(X+∧K

top
C ), which turns out to be an isomorphism between generalized homology theories

(see, e.g., [28, 4]). The map αX simply sends a K-class [M,E, f ] to f∗([E]∩ [M ]), where [M ]
denotes the canonical K-homological fundamental class determined by the spinc structure on
M . In [9] it is shown that, for any finite CW complex X , the geometric K-homology Kg

∗(X)
is naturally isomorphic to Kasparov’s analytic K-homology KK∗(C(X),C), whence Kg is a
generalized homology theory on the category of finite CW complexes. In the sequel we shall
use geometric and analytic K-homology interchangeably without further explanation. The
definition of geometric K-homology is extended to all compactly generated and Hausdorff
spaces by setting Kg

∗(X) = lim−→C
Kg

∗(C), where C ⊂ X runs through all compact subsets.

Since Kg
∗(X) ∼= Ktop

∗ (X) for every finite CW complex, it follows that

Kg
∗(BG) ∼= Ktop

∗ (BG),

where one may choose a CW model for BG and use the fact that every compact subset of a
CW complex is contained in a finite CW subcomplex.

The original definition of the Baum–Connes assembly map µBC
∗ used Kg

∗(BG) as the domain
for discrete and torsion free groups. Given any K-cycle [M,E, f ] one gets an induced map
f∗ : π1(M) → G; now form the Dirac operator on M with coefficients in E and map it
to the G-index in Ktop

∗ (C∗
r (G)) along f∗. For a more general parametrized version of this

construction see Theorem 4 of [5]. The two assembly maps µBC
∗ and µ∗ are equivalent in the

sense that there is a commutative diagram:
5



Kg
∗(BG)

∼=
��

µBC
∗ // Ktop

∗ (C∗
r (G))

Ktop
∗ (BG)

µ∗

55
k

k
k

k
k

k
k

k
k

k
k

k
k

k

Thanks to this equivalence, in the sequel we are going to use µ∗ and µBC
∗ interchangeably.

It follows from the natural equivalence of equivariant geometric K-homology and equi-
variant KK-theory [10] that this formulation of the assembly Baum–Connes assembly map
is equivalent to the more familiar KK-theoretic one. More generally, for any G-C∗-algebra
there is an assembly map KK∗(BG;A) → Ktop

∗ (A ⋊r G) and the Baum–Connes conjecture
with coefficients in A asserts that this map is an isomorphism [6]. For our purposes, we do
not need to know the details of this construction or that of Kasparov’s KK-theory. Interested
readers may refer to Kasparov’s original papers [34, 33, 35]. We simply remark that both
µBC
∗ and µ∗ are equivalent to the KK-theoretic assembly map, when A = C, i.e.,

KK∗(BG;C) → Ktop
∗ (C⋊r G) ∼= Ktop

∗ (C∗
r (G)).

Recall that the integral (split) Kasparov–Novikov conjecture asserts that this map is (split)
injective.

2. Algebraic assembly maps

Let G be any discrete group (not necessarily torsion free) and let R be any unital complex
algebra. There is a canonical inclusion of groups G →֒ GL1(Z[G]) as units. Composing
with the map GL1(Z[G]) → GL(Z[G]) = lim−→n

GLn(Z[G]) and applying the classifying space

functor B(−), we obtain j : BG → BGL(Z[G]). Now the functorial plus construction gives
rise to the following commutative diagram of spaces:

BG
j //

��

BGL(Z[G])

��

BG+
j+ // BGL(Z[G])+,

whence we get a continuous map of spaces

BG+ ∧ BGL(R)+
j+∧id
−→ BGL(Z[G])+ ∧BGL(R)+.(2)

Composing it with the Loday product map

BGL(Z[G])+ ∧ BGL(R])+ → BGL(Z[G]⊗R)+ ∼= BGL(R[G])+,

we obtain BG+ ∧ BGL(R)+ → BGL(R[G])+. This map is actually compatible with the
infinite loop space structure on BGL(−)+ and hence can be upgraded to a map of spectra,
giving rise to Loday’s assembly map (with coefficients in R)

µL
R : BG+ ∧KR → KR[G].(3)

6



Here K denotes the Gersten–Wagoner nonconnective algebraic K-theory spectrum (see, e.g.,
[48]). For the details of the construction of the assembly map we refer the readers to Chapter
4 of [39]. Following Loday one calls the homotopy cofibre of µL

R as the Whitehead spectrum
of G over R [38].

Remark 2.1. Carlsson–Pedersen used a different assembly map to prove the integral K-
theoretic Hsiang–Novikov conjecture under some assumptions using techniques from con-
trolled topology [14]. It is known that their assembly map is naturally equivalent to the Loday
assembly map [25, 56]. The Carlsson–Pedersen assembly map has built-in naturality.

Let A be a separable and unital C∗-algebra, on which G acts trivially. In this case the
reduced crossed product A⋊rG simply becomes A⊗̂C∗

r (G). In the sequel we denote A⊗̂C∗
r (G)

by C∗
r (G,A). Recall that C∗

r (G,A) is defined as a suitable completion of Cc(G,A) = A[G],
so that there is a canonical complex algebra homomorphism ιA : A[G] → C∗

r (G,A). Let
ιA : KA[G] → KC∗

r (G,A) denote the induced map of K-theory spectra.

Remark 2.2. The above discussion can be extended to nonunital C∗-algebras by defining
GL(A) = lim−→n

ker[GLn(Ã) → GLn(C)], where Ã denotes the (complex) unitization of A

(note that any C∗-algebra satisfies excision in algebraic K-theory). Indeed, by the naturality
of the assembly map there is a commutative diagram in the homotopy category of spectra:

BG+ ∧KÃ

µL

Ã //

��

KÃ[G]

��
BG+ ∧KC

µL
C // KC[G].

Using excision, we conclude that the induced map between the homotopy fibres (well-defined
up to homotopy) µL

A : BG+ ∧ KA → KA[G] is the desired assembly map. It follows that if
both µL

Ã
and µL

C are weak homotopy equivalences, then so is µL
A. The same argument allows

us to construct the Loday assembly map with coefficients in any H-unital Q-algebra, since
such algebras also satisfy excision in algebraic K-theory (see [58]).

Definition 2.3. We define the algebraic reduced assembly map µalg
A : BG+∧KA → KC∗

r (G,A)

by the following commutative diagram of spectra:

KA[G]

ιA

��
BG+ ∧KA

µL
A

55
k

k
k

k
k

k
k

k
k

k
k

k
k

k
k

k

µ
alg
A

// KC∗
r (G,A).

Remark 2.4. Due to the octahedral property, there is an exact triangle in the triangulated
homotopy category of spectra:

Cone(µL
A) → Cone(µalg

A ) → Cone(ιA),

where Cone denotes the mapping cone. We mentioned earlier that Cone(µL
A) is taken to be

the definition of the Whitehead spectrum of G over A.
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Remark 2.5. One can easily insert another level of factorization by realizing that there is an
interesting intermediate (Banach) algebra A[G] → L1(G,A) → C∗

r (G,A). This will produce
maps of spectra KA[G] → KL1(G,A) → KC∗

r (G,A) and one needs to construct in a similar vein
the intermediate KL1(G,A)-valued assembly map.

3. The relation to the Baum–Connes assembly map

There is no reason to expect that the algebraic reduced assembly map µalg
A possesses good

properties. Now we this map to the more interesting Baum–Connes assembly map. In
order to do so, we need the general framework of Davis–Lück on isomorphism conjectures in
K-theory, L-theory and Ktop-theory.

The Davis–Lück isomorphism conjecture [20] provides a unified perspective on the various
conjectures that are related to assembly maps, e.g., those of Baum–Connes, Bost, Farrell–
Jones. More precisely, they construct an assembly map in a G-homology theory and show
that the aforementioned assembly maps can be seen as specific cases by choosing the G-
homology theory appropriately. We focus our attention to the Baum–Connes conjecture for
discrete groups from this viewpoint. One obtains the Farrell–Jones conjecture in algebraic
K-theory, roughly, by replacing the topological K-theory spectrum by the algebraic K-theory
spectrum.

Let G be a discrete group and Fin denote the family of finite subgroups of G. Let EFin(G)
denote the classifying space of G associated to Fin, which is uniquely characterized up to
G-homotopy by the properties:

(1) EFin(G) is a G-CW complex,
(2) EFin(G)H is contractible if H ∈ Fin and empty otherwise.

For the existence of EFin(G) (for more general families) interested readers may refer to [40].
Let A be a G-C∗-algebra. One needs to construct a spectrum K

top
G,A as a module in a suitable

sense over the orbit category of G, which has the property that, for all subgroups H ⊂ G,
one has HG

∗ (G/H ;Ktop
G,A)

∼= Ktop
∗ (A⋊rH); in particular, HG

∗ (pt;K
top
G,A)

∼= Ktop
∗ (A⋊rG). Then

one can define the Davis–Lück assembly map µDL
A (at the level of spectra) in the G-homology

theory determined by K
top
G,A, which is induced by the canonical G-projection EFin(G)+ →

pt+ = S0, i.e.,

(µDL
A )∗ : H

G
∗ (EFin(G);Ktop

G,A) → HG
∗ (pt;K

top
G,A)

∼= Ktop
∗ (A⋊r G).(4)

The isomorphism conjecture in topological K-theory asserts that the above assembly map
(µDL

A )∗ is an isomorphism. For the details of the construction of the spectrum K
top
G,A we refer

the readers to Section 2 of [20] and [30]. Presumably the article [46] is also relevant in this
context. A result of Hambleton–Pedersen says that for a discrete group (not necessarily
torsion free) the Davis–Lück assembly map µDL

C agrees with the Baum–Connes assembly
map µBC

C (see Corollary 8.4 of [25]). In other words, the Davis–Lück isomorphism conjecture
is equivalent to the Baum–Connes conjecture with trivial coefficients.
In the same spirit, there is an algebraic K-theory spectrum KG,R (R unital) giving rise to
an assembly map

(µDL
R )∗ : H

G
∗ (EVC(G);KG,R) → HG

∗ (pt;KG,R) ∼= Ktop
∗ (R[G]),(5)

8



where VC stands for the family of virtually cyclic subgroups of G. Once again the classifying
space EVC(G) is characterized uniquely up toG-homotopy by the two properties. The Farrell–
Jones isomorphism conjecture in algebraic K-theory asserts that the above assembly map is
an isomorphism.

For any ring R set NKn(R) to be the cokernel of the split inclusion Kn(R) → Kn(R[t]).
It is well-known that if R is a regular Noethering ring then NKn(R) ∼= {0} for all n ∈ Z.
If R is regular Noetherian, then so is R[t] and hence for all m ∈ N the split inclusion
Kn(R) → Kn(R[t1, · · · , tm]) is actually an isomorphism. More generally, a ring R is called
K-regular if the split inclusion Kn(R) → Kn(R[t1, · · · , tm]) is an isomorphism for all n ∈ Z

and m ∈ N. In the sequel we shall only consider K-regular rings.

Example 3.1. Since C is a regular Noetherian ring, it is K-regular. More interestingly, it
is known that any stable C∗-algebra is K-regular (see Theorem 3.4 of [50]). In particular,
the C∗-algebra of all compact operators on a separable Hilbert space K is K-regular.

If G is torsion free then Fin consists of only the trivial subgroup and hence one ob-
serves that EG is a model for EFin(G). So the domain of µDL

A reduces as HG
∗ (EG;Ktop

G,A)
∼=

H∗(BG;Ktop
G,A), which begins to look like the domain of the Baum–Connes assembly map

µBC
A , i.e., the topological K-homology of BG with coefficients in A. It is known that with

trivial coefficients, i.e., A = C the Davis–Lück assembly map is equivalent to the Baum
Connes assembly map (see Corollary 8.4 of [25]). In fact, some simplifications also occur in
the Farrell–Jones isomorphism conjecture in algebraic K-theory.

Remark 3.2. If G is a discrete and torsion free group and R is a unital, K-regular Q-
algebra, then EG can be taken as a model for EVC(G). In this case the Davis–Lück assembly
map

(µDL
R )∗ : H

G
∗ (EVC(G);KG,R) → HG

∗ (pt;KG,R)

is naturally equivalent to the Loday assembly map µL
∗ that we saw in the previous section (see

Corollary 67 (ii) of [42]). In ibid. the above assertion is stated only for regular Noetherian
Q-algebras R; however, Remark 15 in ibid. clarifies that K-regularity in the above sense
suffices.

The Farrell–Jones isomorphism conjecture in algebraic K-theory was stated in [22] for
R = Z and in it appeared in the general form in [2]. Thanks to the above Remark the
Farrell–Jones isomorphism conjecture in algebraic K-theory can be extended to incorporate
H-unital K-regular Q-algebras as coefficients for discrete and torsion free groups. Indeed,
one can identify the Davis–Lück assembly map with the Loday assembly map and then argue
as in Remark 2.2.

Now let ιC : C[G] → C∗
r (G) denote the canonical complex algebra homomorphism inducing

a map KC[G]
ιC→ KC∗

r (G) between their nonconnective K-theory spectra. There is a natural
comparison map between the algebraic K-theory and the topological K-theory spectra of
a (complex) Banach algebra [31]. For any unital Banach algebra A, it is induced by the
canonical continuous map c(A) : GL(A) → GLtop(A). Here GL(A) is the algebraic inductive
limit of the discrete groups GLn(A) as before, whereas GLtop(A) is that of GLtop

n (A), each of
which inherits its topology from the Banach space Mn(A). In fact, this map can be promoted
to a natural map of spectra c(A) : KA → K

top
A , where Ktop

A denotes the (complex) topological
K-theory spectrum of A (see Theorem 2.1. of [50]).

9



Lemma 3.3. There is a commutative diagram:

H∗(BG;KC)

c(C)∗
��

µ
alg
∗ // K∗(C

∗
r (G))

c(C∗
r (G))∗

��

H∗(BG;Ktop
C )

µBC
∗ // Ktop

∗ (C∗
r (G)),

where the left vertical arrow c(C)∗ is induced by the map of spectra c(C) : KC → K
top
C .

Proof. It follows after setting A = C (with trivialG-action) in the large commutative diagram
in section 1.6 (page 47) of [1] that there is a commutative diagram

HG
∗ (EVC(G);KG,C) //

��

K∗(C[G])

��
HG

∗ (EFin(G);Ktop
G,C)

// Ktop
∗ (C∗

r (G)),

where the top (resp. bottom) horizontal arrow is the Davis–Lück assembly map in algebraic
(resp. topological) K-theory and the left vertical map is induced by the change of theory
map or the comparison map from algebraic to topological K-theory. Under the assumptions
the top horizontal map can be identified with the Loday assembly map µL

∗ : H∗(BG;KC) →
K∗(C[G]) (see Remark 3.2), whereas the bottom horizontal map is known to be equivalent
to the Baum–Connes assembly map (see Corollary 8.4 of [25]). Consequently, we get the
following commutative diagram:

H∗(BG;KC)
µL
∗ //

c(C)∗
��

K∗(C[G])

��

H∗(BG;Ktop
C ) ∼= Ktop

∗ (BG)
µBC
∗ // Ktop

∗ (C∗
r (G)),

where the left vertical map is induced by the comparison map. The right vertical map can
be factorized as

K∗(C[G])
(ιC)∗
−→ K∗(C

∗
r (G))

c(C∗
r (G))∗
−→ Ktop

∗ (C∗
r (G)),

where the first map in algebraic K-theory is induced by the canonical algebra homomorphism

C[G]
ιC→ C∗

r (G). Incorporating this factorization into the above diagram, we get

H∗(BG;KC)

c(C)∗
��

µL
∗ // K∗(C[G])

(ιC)∗ // K∗(C
∗
r (G))

c(C∗
r (G))∗

��

H∗(BG;Ktop
C )

µBC
∗ // Ktop

∗ (C∗
r (G)).

Now observe that the composition of the top two horizontal arrows is µalg
∗ . �
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4. K-theoretic Hsiang–Novikov conjecture with finite coefficients

Let us first observe that

Lemma 4.1. Any discrete and torsion free group satisfies the integral K-theoretic split
Hsiang–Novikov conjecture in negative degrees, i.e., H∗(BG;KC) → K∗(C[G]) is split in-
jective for all ∗ < 0.

Proof. Indeed, since the negative algebraic K-theory groups of C vanish, an inspection of the
Atiyah–Hirzebruch spectral sequence E2

p,q = Hp(BG; Kq(C)) ⇒ Hp+q(BG;KC) reveals that
H∗(BG;KC) = {0} for ∗ < 0. �

For a pointed space X one obtains the notion of its homotopy group with coefficients in
Z/n by replacing the spheres Si in the definition of homotopy groups πi(X) = [S1, X ] by the
Moore space M i

n := Si−1 ∪n e
i, i.e., an i-cell attached to Si−1 by a map ∂Bi = Si−1 → Si−1

of degree n. This enables us to construct K-theory with finite coefficients [12], which enjoys
many good functorial properties like ordinary K-theory. For a recent survey of the theory
one may refer to [47]. Karoubi studied that algebraic and topological K-theory of Banach
algebras with finite coefficients and obtained some striking results in [32]. It is known that
if A = C or K, the comparison map with finite coefficients K(A,Z/n) → Ktop

∗ (A,Z/n) is an
isomorphism for all n > 2 and ∗ > 0 (see Theorem 4.2 of [49]). Using this result we are able
to prove

Theorem 4.2. If a discrete and torsion free group satisfies the integral (split) Kasparov–
Novikov conjecture with trivial coefficients, then G and C satisfy the K-theoretic (split)
Hsiang–Novikov conjecture with finite coefficients.

Proof. By the previous Lemma we may concentrate only on nonnegative degrees. Attaching
the Loday assembly map in algebraic K-theory to the top of the commutative diagram in
Lemma 3.3, we get

K∗(C[G])

(ιC)∗
��

H∗(BG;KC)

c(C)∗
��

µ
alg
∗ //

µL
∗

44
j

j
j

j
j

j
j

j
j

j
j

j
j

j
j

j

K∗(C
∗
r (G))

c(C∗
r (G))∗

��

H∗(BG;Ktop
C )

µBC
∗ // Ktop

∗ (C∗
r (G)),

The bottom horizontal arrow is (split) injective, since G is assumed to satisfy the (split)
Kasparov–Novikov conjecture with trivial coefficients. Since c(C) : KC → K

top
C induces an

isomorphism K∗(C,Z/n) → Ktop
∗ (C,Z/n) in nonnegative degrees, the assertions follows. �

A Theorem of Suslin says that if F →֒ L is an extension of algebraically closed fields,
then the induced map KF → KL produces an isomorphism between the algebraic K-theory
groups with finite coefficients [57]. Using this result for the extension Q →֒ C we improve
the coefficients in the above result to Q.

Theorem 4.3. If a discrete and torsion free group G satisfies the integral (split) Kasparov–
Novikov conjecture with trivial coefficients, then G and Q satisfy the K-theoretic (split)

11



Kasparov–Novikov conjecture with finite coefficients, i.e., the Loday assembly map with fi-
nite coefficients at the level of homotopy groups H∗((BG;KQ),Z/n) → K∗(Q[G],Z/n) is split
injective.

Proof. Once again we may concentrate only on nonnegative degrees. By the naturality of
the Loday assembly map, there is a commutative diagram induced by Q →֒ C:

H∗(BG;KQ) //

��

K∗(Q[G])

��
H∗(BG;KC) // K∗(C[G]).

With finite coefficients the bottom horizontal arrow is split injective (by the previous Propo-
sition) and so is the left vertical arrow by Suslin’s Theorem. �

Remark 4.4. Both Theorem 4.2 and Theorem 4.3 would continue to hold if µBC
∗ is only

(split) injective with finite coefficients.

5. Some spectral sequences

For any C∗-algebra A, there is symmetric spectrum (in the sense of [26]) model of Ktop
A ,

which is, in addition, a (left) module spectrum over a (commutative) symmetric ring spec-
trum model of Ktop

C (see Theorem B of [30]). Furthermore, there is a unit map from the
sphere spectrum S to K

top
C , which is a homomorphism of commutative symmetric ring spec-

tra. After passing to functorial cofibrant replacements (in the S-model structures [54] or
the flat stable model structures as in Schwede’s book project on symmetric spectra) on the
categories of (left) module spectra over the symmetric ring spectra, we may assume that all
spectra are cofibrant. Now apply the functorial left Quillen construction, which produces
a (cofibrant) S-algebra (resp. S-module) from a (cofibrant) symmetric ring spectrum (resp.
symmetric spectrum) as explained in [53]. Thus we obtain a model of Ktop

A as an S-module
over an S-algebra model of Ktop

C , where all S-algebras (resp. S-modules) are cofibrant. For
the details about S-algebras and S-modules the readers may refer to [21]. Now one may
write

BG+ ∧K
top
A ≃ (BG+ ∧K

top
C ) ∧

K
top
C

K
top
A ,

using a cofibrant CW model of BG, e.g., the geometric realization of the simplicial model of
BG. If R is a (cofibrant) commutative S-algebra and M,N are (cofibrant) R-modules, then
there is a strongly convergent natural (both in M and N) spectral sequence (see Theorem
4.1 of ibid.)

E2
p,q = Torπ∗(R)

p,q (π∗(M), π∗(N)) ⇒ πp+q(M ∧R N).(6)

Here p is the resolution degree of M and q is the internal degree of the graded modules
whence it is a right half plane homological spectral sequence.

Remark 5.1. The symmetric spectra constructed in [30] take values in pointed simplicial
sets, whereas S-modules are spectra valued in based spaces. However, it is known that there is
a Quillen equivalence between the category of symmetric spectra valued in pointed simplicial
sets and that of symmetric spectra valued in based spaces (see Section 18 of [43]).
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Setting R = K
top
C , M = BG+ ∧K

top
C and N = K

top
A and observing that π∗(BG+ ∧K

top
C ) =

Ktop
∗ (BG) we get:

Lemma 5.2. There is a right half plane homological strongly convergent natural spectal
sequence

E2
p,q = TorZ[u,u

−1]
p,q (Ktop

∗ (BG),Ktop
∗ (A)) ⇒ πp+q(BG+ ∧K

top
A ),(7)

where the degree of u is 2.

Proposition 5.3. If A is KK-equivalent to K, then there is an identification of Z/2-graded
theories

Ktop
∗ (BG)⊗Ktop

∗ (A) ∼= π∗(BG+ ∧K
top
A ) = H∗(BG;Ktop

A ),

which is natural in both G and A.

Proof. Under the assumption on A, one knows that Ktop
∗ (A) ≃ Ktop

∗ (K) ≃ Z[u, u−1]. The
assertion is now evident from the above spectral sequence (7). �

Remark 5.4. Setting R = KC, M = BG+ ∧KC and N = KA in the spectral sequence (6),
we get

E2
p,q = TorK∗(C)

p,q (H∗(BG;KC),K∗(A)) ⇒ πp+q(BG+ ∧KA) = Hp+q(BG;KA).

Apart from the standard Atiyah–Hirzebruch spectral sequences, these Künneth type spec-
tral sequences can potentially be useful for computational purposes for the domain of the
Davis–Lück assembly map in certain situations (compare [51]).

6. Assembly maps with coefficients in topological algebras

Now we are going to study assembly maps with coefficients in certain topological algebras.
We use the extra knowledge about the K-theory of these algebras to gain more information
about such assembly maps. In rather technical terms, we are going to identify (µalg

K )∗ with
(µBC

K )∗.

Lemma 6.1. There are canonical isomorphisms

(1) H∗(BG;KG,K)
∼=
→ H∗(BG;Ktop

G,K) induced by the change of theory morphism from the
algebraic to topological K-theory, where K is equipped with trivial G-action.

(2) H∗(BG;Ktop
G,C)

∼=
→ H∗(BG;Ktop

B,K) induced by the algebra homomorphism C → K.

Proof. For (1) observe that, for every subgroup H ⊂ G, by construction HG
∗ (G/H ;KG,K) ∼=

K∗(C
∗
r (H,K)) and HG

∗ (G/H ;Ktop
G,K)

∼= Ktop
∗ (C∗

r (H,K)). Since C∗
r (H,K) is stable, the change

of theory morphism induces an isomorphism K∗(C
∗
r (H,K)) ∼= Ktop

∗ (C∗
r (H,K)). The assertion

now follows from Theorem 6.3 of [20].
The argument for (2) is similar; one simply needs to use the C∗-stability of topological
K-theory, i.e., Ktop

∗ (C∗
r (H)) ∼= Ktop

∗ (C∗
r (H,K)) for any subgroup H ⊂ G. �

Let us set Ktop
∗ (G;A) = KKG

∗ (EG;A), where EG is the universal proper G-space, which
is uniquely characterized up to G-homotopy. If G is torsion free, one may take EG = EG.
The classifying space EG may not be locally compact. So one defines KKG

∗ (EG;A) =
lim−→C

KKG
∗ (C0(X), A), where C ⊂ EG runs through the set of all G-compact subspaces
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canonically ordered by inclusion. Let X be a locally compact proper G-space and let A be
a G-C∗-algebra (with not necessarily trivial G-action). For any C∗-algebra B with trivial
G-action, there is a canonical homomorphism

αX : KKG
∗ (C0(X), A)⊗Ktop

∗ (B) → KKG
∗ (C0(X), A⊗̂B),

which is constructed by first identifying Ktop
∗ (B) ∼= KKG

∗ (C, B) and then applying Kasparov
product ⊗C. This map is compatible with inclusions of G-compact subspaces of EG and
hence defines a morphism

αG : Ktop
∗ (G;A)⊗Ktop

∗ (B) → Ktop
∗ (G;A⊗̂B).

In [15] the authors define the following class NG of G-C∗-algebras: A ∈ NG if and only
if the above morphism αG is an isomorphism for every C∗-algebra B with trivial G-action,
such that Ktop

∗ (B) is torsion free. The class NG is fairly large; for instance, it contains all
type I C∗-algebras and if A ∈ NG and B is KKG-equivalent to A, then B ∈ NG (see Lemma
4.7 and Theorem 0.1 of ibid.). Clearly, K ∈ NG.
Let A be a G-C∗-algebra. We quote the following commutative diagram from Section 1.6
(page 47) of [1]:

HG
∗ (EVC(G);KG,A)

��

(µDL
A

)∗ // K∗(A⋊G)

��
HG

∗ (EFin(G);Ktop
G,A)

(µDL
A

)∗ // Ktop
∗ (A⋊r G),

where the top (resp. bottom) horizontal arrow (µDL
A )∗ denotes the Davis–Lück assembly map

in algebraic (resp. topological) K-theory. Putting A = K with trivial G-action, where G is
a discrete and torsion free, we get

H∗(BG;KG,K)

∼=
��

(µDL
K

)∗
// K∗(K[G])

c(C∗
r (G,K))∗◦(ιK)∗

��
H∗(BG;Ktop

G,K)
(µDL

K
)∗

// Ktop
∗ (C∗

r (G,K)),

where the left vertical arrow is an isomorphism due to Lemma 6.1 part 1. Now we use the
fact that K is K-regular, to replace (µDL

K )∗ by (µL
K)∗ (cf. Remark 3.2) and obtain

H∗(BG;KK)

∼=
��

(µL
K
)∗

// K∗(K[G])

c(C∗
r (G,K))∗◦(ιK)∗

��
H∗(BG;Ktop

G,K)
(µDL

K
)∗

// Ktop
∗ (C∗

r (G,K))

(8)

The Hambleton–Pedersen result on the equivalence of µDL
∗ with µBC

∗ is encapsulated in the
following commutative diagram:

14



Ktop
∗ (BG) ∼= H∗(BG;Ktop

C )

∼=
��

µBC
∗ // Ktop

∗ (C∗
r (G))

∼=
��

H∗(BG;Ktop
G,C)

µDL
∗ // Ktop

∗ (C∗
r (G)),

(9)

where the vertical maps are isomorphisms. Note that the actual result identifies both µDL
∗ and

µBC
∗ with a continuously controlled assembly map; however, those details are irrelevant for our

purposes. The naturality of Davis–Lück assembly map produces the following commutative
diagram:

H∗(BG;Ktop
G,C)

∼=
��

µDL
∗ // Ktop

∗ (C∗
r (G))

∼=

��
H∗(BG;Ktop

G,K)
(µDL

K
)∗

// Ktop
∗ (C∗

r (G,K)),

(10)

where the left vertical arrow is an isomorphism due to Lemma 6.1 part 2. From diagrams
(9) and (10) we get the following commutative diagram:

H∗(BG;Ktop
C )

∼=
��

µBC
∗ // Ktop

∗ (C∗
r (G))

∼=

��
H∗(BG;Ktop

G,K)
(µDL

K
)∗

// Ktop
∗ (C∗

r (G,K))

(11)

We tensor the diagram (11) with Ktop
∗ (K) and make the following simplifications:

(1) We identify µBC
∗ ⊗id : Ktop

∗ (BG)⊗Ktop
∗ (K) → Ktop

∗ (C∗
r (G))⊗Ktop

∗ (K) with the Baum–
Connes assembly map with coefficient in the G-C∗-algebra K with trivial G-action
(µBC

K )∗ : K
top
∗ (BG;K) → Ktop

∗ (C∗
r (G,K)) using Proposition 4.9 of [15].

(2) Since Ktop
∗ (K) is torsion free we use Künneth formula in topological K-theory [52] to

identify Ktop
∗ (C∗

r (G,K)) ⊗ Ktop
∗ (K) ∼= Ktop

∗ (C∗
r (G,K)). Now from Proposition 5.3 we

conclude that

H∗(BG;Ktop
K )⊗Ktop

∗ (K) ∼= H∗(BG;Ktop
K ).

Observe that H∗(BG;Ktop
K ) ∼= Ktop

∗ (BG) via the homotopy equivalence K
top
C ≃ K

top
K

induce by the C∗-algebra homomorphism C → K. Therefore the bottom horizontal
arrow in the diagram (11) does not change.

Thus we have proved the following result:
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Proposition 6.2. There is a commutative diagram:

Ktop
∗ (BG;K)

∼=
��

(µBC
K

)∗
// Ktop

∗ (C∗
r (G,K))

∼=
��

H∗(BG;Ktop
G,K)

(µDL
K

)∗
// Ktop

∗ (C∗
r (G,K))

(12)

expressing the equivalence of the Davis–Lück assembly map and the Baum–Connes assembly
map with coefficients in K, when G acts on it trivially.

Combining the diagram (8) with the above Proposition, we get

Lemma 6.3. There is a commutative diagram:

K∗(K[G])

(ιK)∗
��

H∗(BG;KK)

(µL
K
)∗

44
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i

∼=
��

(µalg
K

)∗
// K∗(C

∗
r (G,K))

c(C∗
r (G,K))∗∼=

��

Ktop
∗ (BG;K)

(µBC
K

)∗ // Ktop
∗ (C∗

r (G,K))

(13)

Observe that, by definition, (µalg
K )∗ = (ιK)∗ ◦ (µ

L
K)∗.

Theorem 6.4. Let G be a discrete and torsion free group. If G satisfies the (split) Kasparov–
Novikov conjecture with trivial coefficients, then G and K satisfy the integral K-theoretic
(split) Hsiang–Novikov conjecture, i.e., the Loday assembly map (µL

K)∗ : H∗(BG;KK) →
K∗(K[G]) is (split) injective.
Furthermore, if µBC

∗ is only rationally injective then so is (µL
K)∗.

Proof. For any G-C∗-algebra A and any other C∗-algebra B with a trivial G-action the
authors of [15] construct the following commutative diagram in Proposition 4.9:

Ktop
∗ (BG;A)⊗Ktop

∗ (B)

αG

��

(µBC
A

⊗id)∗
// Ktop

∗ (A⋊r G)⊗Ktop
∗ (B)

��

Ktop
∗ (BG;A⊗̂B)

(µBC

A⊗̂B
)∗

// Ktop
∗ ((A⊗̂B)⋊r G)

where the right vertical arrow is the Künneth map is topological K-theory. Putting A = C

and B = K we get

Ktop
∗ (BG)⊗Ktop

∗ (K)

αG ∼=
��

(µBC⊗id)∗ // Ktop
∗ (C∗

r (G))⊗Ktop
∗ (K)

∼=
��

Ktop
∗ (BG;K)

(µBC
K

)∗
// Ktop

∗ (C∗
r (G,K))
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Since Ktop
∗ (K) is torsion free and K is in the bootstrap class both vertical arrows are iso-

morphisms. Using flatness of Ktop
∗ (K) we conclude that if µBC

∗ is (split) injective, then so is
(µBC ⊗ id)∗ ∼= (µBC

K )∗. The assertion now follows from the previous Lemma.
The statement about the rational injectivity is obvious. �

7. Algebraic K-theory of certain group algebras

Recall that the homotopy cofibre of Loday assembly map µL
R : BG+ ∧ KR → KR[G] is

defined to be the Whitehead spectrum of G over R and its homotopy groups are called the
Whitehead groups of G over R. By excision in algebraic K-theory this notion carries over to
H-unital coefficient Q-algebras (see Remark 2.2).

Lemma 7.1. Let G satisfy the Baum–Connes conjecture with trivial coefficients. Then
the obstruction to the algebra homomorphism K[G] → C∗

r (G,K) inducing a weak homotopy
equivalence at the level of nonconnective algebraic K-theory spectra lies in the Whitehead
spectrum of G over K (up to a shift).

Proof. Since the bijectivity of µBC
∗ implies that of (µBC

K )∗ (see Corollary 5.2 of [15]) and the

algebraic reduced assembly map (µalg
K )∗ at the level of homotopy groups agrees with (µBC

K )∗
(see Lemma 6.3), the assertion follows from Remark 2.4. �

As a consequence we deduce the following result:

Theorem 7.2. Let G be a discrete and torsion free Gromov hyperbolic group and let G act
on K trivially. Then canonical algebra homomorphism ιK : K[G] → C∗

r (G,K) induces a
weak homotopy equivalence between their nonconnective algebraic K-theory spectra and the
Whitehead groups of G over K vanish.

Proof. Under the assumptions on the group G it is known that it satisfies the Baum–Connes
conjecture with trivial coefficients [44]. By the previous Lemma it suffices to show that the
Whitehead groups of G over K vanish. A result of Bartels–Lück–Reich says that all Gromov
hyperbolic groups satisfy the Farrell–Jones isomorphism conjecture in algebraic K-theory for
every associative and unital ring R (see Corollary 1.2 of [3]); more precisely, the authors prove
that for torsion free groups Kn(R[G]) ∼= Hn(BG;KR) ⊕ (⊕I(NKn(R)⊕ NKn(R))), where I
denotes the set of conjugacy classes of maximal infinite cyclic subgroups of G. Using the
naturality of the decomposition (in R), Remark 2.2 and excision in NK-theory, one concludes

Kn(K[G]) ∼= Hn(BG;KK)⊕ (⊕I(NKn(K)⊕NKn(K))) .(14)

It is known that NKn(K) vanishes for all n, since K is a stable C∗-algebra (see Theorem 3.4
of [50]). It follows that the Whitehead groups of G over K vanish. �

Remark 7.3. Since the C∗-algebra C∗
r (G,K) is stable, its nonconnective algebraic K-theory

is the same as its topological K-theory, which in turn is that same as its topological K-
homology, i.e., K∗(K[G]) ≃ Ktop

∗ (BG).

8. On a conjecture of Yu

For any p > 1 let Sp denote the ring operators of Schatten p-class, i.e., T ∈ B(H)

is an element of Sp if and only if tr(T ∗T )
1
2 < ∞, where the trace is defined as tr(T ) =
17



∑
n〈Ten, en〉 with respect to an orthonormal basis {en}n∈N of H (the definition of tr turns

out to be independent of the choice of the orthonormal basis). The algebra of Schatten class
operators is defined to be S = ∪p>1Sp. There is a canonical sequence of C-algebra inclusions
S ⊂ K ⊂ B(H). It follows from the results of [19] that S[G] is H-unital for any discrete
group G (see, e.g., Theorem 2.2 of [61]).

Conjecture 8.1 (Yu [61]). For any discrete group G the canonical algebra homomorphism
i : S[G] ∼= C[G] ⊗C S → C∗

r (G)⊗̂K = C∗
r (G,K) induces an isomorphism between their

algebraic K-theory groups
i∗ : Kn(S[G]) → Kn(C

∗
r (G,K)).

The algebra homomorphism i : S[G] → C∗
r (G,K) can be factorized as S[G] → K[G] →

C∗
r (G,K). Now one can separately investigate these homomorphisms and this leads us to

two separate conjectures:

Conjecture 8.2. For any discrete group G, the canonical algebra homomorphism S[G] →
K[G] induces a weak equivalence between their nonconnective algebraic K-theory spectra.

Conjecture 8.3. For any discrete group G, the canonical algebra homomorphism K[G] →
C∗

r (G,K) induces a weak equivalence between their nonconnective algebraic K-theory spectra.

The Farrell–Jones isomorphism conjecture in algebraic K-theory should imply conjecture
8.2. The Theorem 7.2 above gives an affirmative answer to conjecture 8.3 for all Gromov
hyperbolic groups (note that such groups are known to satisfy both the Farrell–Jones iso-
morphism conjecture in algebraic K-theory and the Baum–Connes conjecture with trivial
coefficients).

Observe that π∗(KK) is Bott 2-periodic (due to its identification with topological K-
theory). In fact, π∗(KK) is Z if ∗ is even, and {0} if ∗ is odd. The same conclusion
holds for the algebraic K-theory of S [19] and an easy inspection reveals that the canonical
inclusion S → K induces a weak homotopy equivalence KS → KK. It is also shown in
ibid. that S is K-regular and H-unital (whence the Loday assembly map can be defined
with coefficients in S, see Remark 2.2). As before, for any discrete and torsion free group
G, we identify the Davis–Lück assembly map in K-theory with the Loday assembly map
(µL

S)∗ : H∗(BG;KS) → K∗(S[G]). Using the naturality of the Loday assembly map, once
again we have the following commutative diagram:

H∗(BG;KS) //

∼=
��

K∗(S[G])

��
H∗(BG;KK) // K∗(K[G]),

where the vertical arrows are induced by S → K. Since the map KS → KK is a weak ho-
motopy equivalence the left vertical arrow is an isomorphism. As a consequence of Theorem
6.4 we have proven

Theorem 8.4. Let G be a discrete and torsion free group. If G satisfies the (split) Kasparov–
Novikov conjecture with trivial coefficients, then G and S satisfy the integral K-theoretic
(split) Hsiang–Novikov conjecture, i.e., the Loday assembly map (µL

S)∗ : H∗(BG;KS) →
K∗(S[G]) is (split) injective.
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Remark 8.5. The above Theorem is an integral K-theoretic statement, whereas the main
result of Yu in [61] proves the rational injectivity of (µL

S)∗ for all discrete groups with no
further assumptions.

Motivated by these observations, we arrive at the following variant of Yu’s conjecture:

Conjecture 8.6 (Variant of Yu). Let G be any discrete group. Let A be any stable C∗-
algebra, equipped with the trivial G-action, such that A is KK-equivalent to K (evidently
A ∈ NG). Then the canonical algebra homomorphism A[G] → C∗

r (G,A) induces a weak
equivalence between their nonconnective algebraic K-theory spectra.

Concluding remark: It is plausible that, building upon the arguments of this article, one
can generalize the coefficient C∗-algebra in Theorem 6.4 from K to any stable G-C∗-algebra
A with trivial G-action, such that A belongs to the bootstrap class and Ktop

∗ (A) is finitely
generated and torsion free.
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