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ABSTRACT. We present a general algorithm for finding the overlap area be-
tween two ellipses. The algorithm is based on finding a segment area (the
area between an ellipse and a secant line) given two points on the ellipse. The
Gauss-Green formula is used to determine the ellipse sector area between two
points, and a triangular area is added or subtracted to give the segment area.
For two ellipses, overlap area is calculated by adding the areas of appropriate
sectors and polygons. Intersection points for two general ellipses are found
using Ferrari’s quartic formula to solve the polynomial that results from com-
bining the two ellipse equations. All cases for the number of intersection points
(0, 1, 2, 3, 4) are handled. The algorithm is implemented in c-code, and has
been tested with a range of input ellipses. The code is efficient enough for use
in simulations that require many overlap area calculations.

1. Introduction. Ellipses are useful in many applied scenarios, and in widely dis-
parate fields. In our research, which happens to be in two very different areas, we
have encountered a common need for efficiently calculating the overlap area between
two ellipses.

In one case, the design for a solar calibrator on-board an orbiting satellite required
an efficient algorithm for ellipse overlap area. Imaging systems aboard satellites rely
on semi-conductor detectors whose performance changes over time due to many
factors. To produce consistent data, some means of calibrating the detectors is
required; see, e.g., [1]. Some systems use the sun as a light source for calibration.
In a typical solar calibrator, incident sunlight passes through an attenuator grating
and impinges on a diffuser plate, which is oriented obliquely to the attenuator
grating. The attenuator grating is a pattern of circular openings. When sunlight
passes through the circular openings, projections of the circles onto the oblique
diffuser plate become small ellipses. The projection of the large circular entrance
aperture on the oblique diffuser plate is also an ellipse. The total incident light
on the calibrator is proportional to the sum of all the areas of the smaller ellipses
that are contained within the larger entrance aperture ellipse. However, as the
calibration process proceeds, the satellite is moving through its orbit, and the angle
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from the sun into the calibrator changes ("7° in 2 minutes). The attenuator grating
ellipses thus move across the entrance aperture, and some of the smaller ellipses
pass in and out of the entrance aperture ellipse during calibration. Movement of the
small ellipses across the aperture creates fluctuations in the total amount of incident
sunlight reaching the calibrator in the range of 0.3 to 0.5%. This jitter creates errors
in the calibration algorithms. In order to model the jitter, an algorithm is required
for determining the overlap area of two ellipses. Monte Carlo integration had been
used; however, the method is numerically intensive because it converges very slowly,
so it was not an attractive approach for modeling the calibrator due to the large
number of ellipses that must be modeled.

In a more down-to-earth setting, populated places such as city streets or build-
ing corridors can become quite congested while crowds of people are moving about.
Understanding the dynamics of pedestrian movement in these scenarios can be ben-
eficial in many ways. Pedestrian dynamics can provide critical input to the design
of buildings or city infrastructure, for example by predicting the effects of specific
crowd management strategies, or the behavior of crowds utilizing emergency escape
routes. Current research in pedestrian dynamics is making steady progress toward
realistic modeling of local movement; see, e.g., [2]. The model presented in [2] is
based on the concept of elliptical volume exclusion for individual pedestrians. Each
model pedestrian is surrounded by an elliptical footprint area that the model uses to
anticipate obstacles and other pedestrians in or near the intended path. The foot-
print area is influenced by an individuals’ velocity; for example, the exclusion area
in front of a fast-moving pedestrian is elongated when compared to a slower-moving
individual, since a pedestrian is generally thinking a few steps ahead. As pedestri-
ans travel through a confined space, their collective exclusion areas become denser,
and the areas will eventually begin to overlap. A force-based model will produce a
repulsive force between overlapping exclusion areas, causing the pedestrians to slow
down or change course when the exclusion force becomes large. Implementing the
force-based model with elliptical exclusion areas in a simulation requires calculating
the overlap area between many different ellipses in the most general orientations.
The ellipse area overlap algorithm must also be efficient, so as not to bog down the
simulation.

Simulations for both the satellite solar calibrator and force-based pedestrian dy-
namic model require efficient calculation of the overlap area between two ellipses. In
this paper, we provide an algorithm that has served well for both applications. The
core component of the overlap area algorithm is based on determining the area of
an ellipse segment, which is the area between a secant line and the ellipse boundary.
The segment algorithm forms the basis of an application for calculating the overlap
area between two general ellipses.

2. Ellipse area, sector area and segment area.

2.1. Ellipse Area. Consider an ellipse that is centered at the origin, with its axes
aligned to the coordinate axes. If the semi-axis length along the z-axis is A, and
the semi-axis length along the y-axis is B, then the ellipse is defined by a locus of
points that satisfy the implicit polynomial equation

.%'2 y2
F—Fﬁ:l (1)
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The same ellipse can be defined parametrically by:

x=A-cos(t)

y:B-sin(t)} Ostsim )
The area of such an ellipse can be found using the parameterized form with the
Gauss-Green formula:

A
1 2T
=— A -cos(t) - B-cos(t) — B -sin(t) - (—A) - sin(t)]dt
2 Jo (3)
. 2m . 2
4B cos?(t) 4 sin?(t)]dt = 4-B / dt
2 Jo 2 Jo
=r-A-B

2.2. Ellipse Sector Areas. We define the ellipse sector between two points (x1,
y1) and (z2, y2) on the ellipse as the area that is swept out by a vector from the
origin to the ellipse, beginning at (z1, y1), as the vector travels along the ellipse
in a counter-clockwise direction from (x1, y1) to (22, y2). An example is shown in
Fig. 1. The Gauss-Green formula can also be used to determine the area of such an
ellipse sector.

02
Sector Area :A—B dt
2 o (4)
_(92—91)-A-B
B —

FIGURE 1. The area of an ellipse sector between two points on the
ellipse is the area swept out by a vector from the origin to the first
point as the vector travels along the ellipse in a counter-clockwise
direction to the second point. The area of an ellipse sector can be
determined with the Gauss-Green formula, using the parametric
angles 61 and 65.
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The parametric angle 6 that is formed between the x-axis and a point (z, y) on
the ellipse is found from the ellipse parameterizations:

x=A-cos(f) = 6 =cos '(z/A)
y =B -sin(§) == 0 =sin"'(y/B)

For a circle (A = B in the ellipse implicit polynomial form), the parametric angle
corresponds to the geometric (visual) angle that a line from the origin to the point
(x, y) makes with the z-axis. However, the same cannot be said for an ellipse; that
is, the geometric (visual) angle is not the same as the parametric angle used in the
area calculation. For example, consider the ellipse in Fig. 1; the implicit polynomial
form is , ,

x
St5=1 (5)

Suppose the point (z1, y1) is at (4/\/5, 4/\/5) The point is on the ellipse, since
(WVE) | (@A) 45 5 1 4

42 22 42 225 5

A line segment from the origin to (4/\/5, 4/\/5) forms an angle with the z-axis
of m/4 (~0.7485398). However, the ellipse parametric angle to the same point is:

0= COS_l (%) = COS_l (%) ~ 1.10715

The same angle can also be found from the parametric equation for y:

§ = sin* (%) =sin"! <%> ~ 1.10715

The angle found by using the parametric equations does not match the geometric
angle to the point that defines the angle.

When determining the parametric angle for a given point (x, y) on the ellipse,
the angle must be chosen in the proper quadrant, based on the signs of x and y. For
the ellipse in Fig. 1, suppose the point (x2, y2) is at (—3, —\/7/2). The parametric
angle that is determined from the equation for x is:

-3
6 = cos™* (T) ~ 2.41886

The parametric angle that is determined from the equation for y is:

0 = sin~! <#> — sin~! (%ﬁ> ~ — 722734

The apparent discrepancy is resolved by recalling that inverse trigonometric func-
tions are usually implemented to return a ‘principal value’ that is within a conven-
tional range. The typical (principal-valued) 8 = arccos(z) function returns angles
in the range 0 = § = 7, and the typical (principal-valued) § = arcsin(z) function
returns angles in the range —7/2 = 6 = 7/2. When the principal-valued inverse
trigonometric functions return angles in the typical ranges, the ellipse parametric
angles, defined to be from the z-axis, with positive angles in the counter-clockwise
direction, can be found with the relations in Table 2.2.
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Quadrant IT (z < 0andy > 0) | Quadrant I (x > 0and y >
6 = arccos(z/A) 0)
= 7 — arcsin(y/B) 6 = arccos(z/A)

= arcsin(y/B)
Quadrant III (zr < 0O and y < 0) | Quadrant IV (z >0 y <
6 = 2w — arccos(x/A) 0)
= 7 — arcsin(y/B) 0 = 27 — arccos(z/A)

= 27 + arcsin(y/B)

TABLE 1. Relations for finding the parametric angle that corre-
sponds to a given point (z, y) on the ellipse 22/A? + y%/B? = 1.
The parametric angle is formed between the positive z-axis and a
line drawn from the origin to the given point, with counterclock-
wise being positive. For the standard (principal-valued) inverse
trigonometric functions, the resulting angle will be in the range 0
< 0 < 27 for any point on the ellipse.

The point at (—3, —\/7/2) on the ellipse of Fig. 1 is in Quadrant III. Using the
relations in Table 2.2, the parametric angle that is determined from the equation
for z is:

-3
0 =2r— arccos(T) A2 3.86433

The parametric angle that is determined from the equation for y is:

—V7/2
2

) ~ 3.86433

0 = m — arcsin(

With the proper angles, the Gauss-Green formula can be used to determine the
area of the sector from the point at (4/\/5, 4/\/5) to the point (—3, —\/7/2) in the
ellipse of Fig. 1.

(Ao —601)-A-B
2
[(27T—&1"CCOS (52)) — arccos (#5) ] 4.2 (6)
2

Sector Area =

~11.0287

The Gauss-Green formula is sensitive to the direction of integration. For the
larger goal of determining ellipse overlap areas, we define the ellipse sector area to
be calculated from the first point (x1, y1) to the second point (z2, y2) in a counter-
clockwise direction along the ellipse. For example, if the points (z1, x1) and (z2,
y2) of Fig. 1 were to have their labels switched, then the ellipse sector defined by
the new points will have an area that is complementary to that of the sector in
Fig. 1, as shown in Fig. 2.

Switching the point labels, as shown in Fig. 2, also causes the angle labels to
be switched, resulting in the condition that 6; > 62. Since using the definitions
in Table 2.2 will always produce an angle in the range 0 = 6 < 27 for any point
on the ellipse, the first angle can be transformed by subtracting 27 to restore the
condition that #; < 65. The sector area formula given above can then be used,
with the integration angle from (6; — 27) through 6. With the angle labels shown
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(%, 1)

6,

FIGURE 2. We define the ellipse sector area to be calculated from
the first point (z1, y1) to the second point (2, y2) in a counter-
clockwise direction along the ellipse.

in Fig. 2, the area of the sector from the point at (—3, —\/7/2) to the point at
(4/\/5, 4/\/5) in a counter-clockwise direction is:

(62— (01 —27m))-A-B
2
7[(277—arccos (‘T‘O’)) — (arccos (4/4—‘/5) — 27 )] 42 (7)
2

Sector Area =

~14.1040

The two sector areas shown in Fig. 1 and Fig. 2 are complementary, in that they
add to the total ellipse area. Using the angle labels as shown in Fig. 1 for both
sector areas:

(92—91)~A~B (91—(92—27T))AB

Total Area = +
2 2
(2r)-A-B
=5 —=mAB (8)
=r-4-2
~25.1327

2.3. Ellipse Segment Areas. For the overall goal of determining overlap areas
between ellipses and other curves, a useful measure is the area of what we will call
an ellipse segment. A secant line drawn between two points on an ellipse partitions
the ellipse area into two fractions, as shown in Fig. 1 and Fig. 2. We define the
ellipse segment as the area confined by the secant line and the portion of the ellipse
from the first point (z1, y1) to the second point (x2, ys2) traversed in a counter-
clockwise direction. The segment’s complement is the second of the two areas that
are demarcated by the secant line. For the ellipse of Fig. 1, the area of the segment
defined by the secant line through the points (z1, y1) and (22, y2) is the area of
the sector minus the area of the triangle defined by the two points and the ellipse
center. To find the area of the triangle, suppose that the coordinates for the vertices
of are known, e.g., as (x1, y1), (22, y2) and (x3, y3). Then the triangle area can be
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found by:

r1 T2 I3

1
Triangle Area =5 det | y1 Y2 ys3
111 (9)
1
=5 |z1 - (Y2 —y3) — 2 (Y1 —y3) + 3 - (Y1 — ¥2)|

In the case where one vertex, say (x3, y3), is at the origin, then the area formula
for the triangle can be simplified to:

1
Triangle Area = 3 |21 - Y2 — @2 - Y1 (10)

For the case depicted in Fig. 1, subtracting the triangle area from the area of the
ellipse sector area gives the area between the secant line and the ellipse, i.e., the
area of the ellipse segment counter-clockwise from (x1, y1) to (z2, y2):

(02 —61)-A-B 1

Segment Area = B E—— |21 Y2 — @2 - Y1 (11)

For the ellipse of Fig. 1, with the points at (4/\/5, 4/\/3) and (—3, —\/7/2), the
area of the segment defined by the secant line is:

[(277—arccos (%3)) — arccos (%) ] 4.2

2 2

~ 9.52865

For the ellipse of Fig. 2, the area of the segment shown is the sector area plus
the area of the triangle.

(92—(91—27‘())~A~B 1

+

5 2-|x1-y2—x2-y1| (12)
With the points at (—3, —\/7/2) and (4/\/5, 4/\/3) the area of the segment is:

[(2w—arccos (‘T‘O’)) — (arccos (%\/5) — o )] ) 1 | i | e 4 _3}

Segment Area =

2 2 V6 2 s

~ 15.60409411

For the case shown in Fig. 1 and Fig. 2, the sector areas were shown to be
complementary. The segment areas are also complementary, since the triangle area
is added to the sector of Fig. 1, but subtracted from the sector of Fig. 2. Using the
angle labels as shown in Fig. 1 for both sector areas:

Total Area = [w — % ar - ye — 22 y1|:|
01— (0o —27m))-A-B 1 13
+[<1 L) +§,|Il.y2_x2.y1@ (13)

=r-A-B=m-4-2~ 251327

The key difference between the cases in Fig. 1 and Fig. 2 that requires the area of
the triangle to be either subtracted from, or added to, the sector area is the size of
the integration angle. If the integration angle is less than 7, then the triangle area
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ELLIPSE_SEGMENT Area Algorithm:

9 arccos (z1/A) , 4120
1 Y71 27 —arccos (z1/A) , y1 <0
: g, — | arccos (z2/A) s Y220
2= 27 — arccos (x2/A) , y2 <0
5 _ |0 , b <Oy
2. &—{ 6, — 21, 6, >0,
3. Area = (02_0;)'14'8 + Sign(ezg_el_w) ey ye —@a -y
where:

the elli;;se implicit polynomial equation is

=1

A > 0 is the semi-axis length along the z-axis

B > 0 is the semi-axis length along the y-axis

(21, y1) is the first given point on the ellipse

(22, y2) is the second given point on the ellipse

0, and 65 are the parametric angles corresponding to the points
(1, y1) and (3, y2)

TABLE 2. An outline of the ELLIPSE_SEGMENT area algorithm.

must be subtracted from the sector area to give the segment area. If the integration
angle is greater than m, the triangle area must be added to the sector area.

2.4. A Core Algorithm for Ellipse Segment Area. A generalization of the
cases given in Fig. 1 and Fig. 2 suggests a robust approach for determining the
ellipse segment area defined by a secant line drawn between two given points on the
ellipse. The ellipse is assumed to be centered at the origin, with its axes parallel to
the coordinate axes. We define the segment area to be demarcated by the secant
line and the ellipse proceeding counter-clockwise from the first given point (x1, y1)
to the second given point (232, y2). The ELLIPSE_SEGMENT algorithm is outlined
in Table 2, with pseudo-code presented in List. 1. The ellipse is passed to the
algorithm by specifying the semi-axes lengths, A > 0 and B > 0. The points are
passed to the algorithm as (21, 1) and (22, y2), which must be on the ellipse.

For robustness, the algorithm should avoid divide-by-zero and inverse-trigonometric
errors, so data checks should be included. The ellipse parameters A and B must be
greater than zero. A check is provided to determine whether the points are on the
ellipse, to within some numerical tolerance, . Since the points can only be checked
as being on the ellipse to within some numerical tolerance, it may still be possible
for the x-values to be slightly larger than A, leading to an error when calling the
inverse trigonometric functions with the argument x/A. In this case, the algorithm
checks whether the x-value close to A or —A, that is within a distance that is less
than the numerical tolerance. If the closeness condition is met, then the algorithm
assumes that the calling function passed a value that is indeed on the ellipse near
the point (A, 0) or (A, 0), so the value of z is nudged back to A or —A to avoid
any error when calling the inverse trigonometric functions. The core algorithm,
including all data checks, is shown in List. 1.
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ListiNng 1. The ELLIPSE_SEGMENT algorithm is shown for
calculating the area of a segment defined by the secant line drawn
between two given points (z1, y1) and (z2, y2) on the ellipse
x2/As+ya/Bs = 1. We define the segment area for this algorithm
to be demarcated by the secant line and the ellipse proceeding
counter-clockwise from the first given point (21, y1) to the second
given point (x2, ya).

ELLIPSESEGMENT (A, B, X1, Y1, X2, Y2)
do if (A 0 or B 0)

then return (—1, ERRORELLIPSEPARAMETERS) :DATA CHECK
2 2 2 2 2 2 2 2
do if (|X1 /A 4+ Y1 /B 1] > or |X1 /A + Y1l /B 1] > )
then return (—1, ERRORPOINTSNOT_ON_ELLIPSE) :DATA CHECK
do if (|X1|/A > )
do if |X1] — A >
then return (—1, ERRORAINVERSE.TRIG) :DATA CHECK
else do if X1 < 0
then X1 —A
else X1 A

do if (|X2]/A > )
do if |X2] — A >

then return (—1, ERRORINVERSE_TRIG) :DATA CHECK
else do if X2 < 0
then X2 —A
else X2 A
do if (Y1 < 0) :ANGLE QUADRANT FORMULA (TABLE 1)
then 1 2 acos (X1/A)
else 1 acos (X1/A)
do if (Y2 < 0) :ANGLE QUADRANT FORMULA (TABLE 1)
then 2 2 acos (X2/A)
else 2 acos (X2/A)
do if (1 > 2) :MUST START WITH 1 < 2
then 1 1 — 2
do if ((2 1) > ) :STORE SIGN OF TRIANGLE AREA

then trsgn +1.0

else trsgn +1.0
area 0.5%(AxBx(2 — 1) trsgn x| X1xY2 — X2xY1])
return (area, NORMAL.TERMINATION)

An implementation of the ELLIPSE_SEGMENT algorithm written in c-code is
shown in Appendix 4. The code compiles under Cygwin-1.7.7-1, and returns the
following values for the two test cases presented in Fig. 1 and Fig. 2:

LISsTING 2. Return values for the test cases in Fig. 1 and Fig. 2

cc call_es.c ellipse_segment.c —o call_es.exe
./ call_es
Calling ellipse_segment.c

Fig. 1: segment area = 9.52864712, return_value = 0
Fig. 2: segment area = 15.60409411, return_value = 0
sum of ellipse segments = 25.13274123

ellipse area by pixAxB = 25.13274123

3. Extending the Core Segment Algorithm to more General Cases.

3.1. Segment Area for a (Directional) Line through a General Ellipse.
The core segment algorithm is based on an ellipse that is centered at the origin
with its axes aligned to the coordinate axes. The algorithm can be extended to
more general ellipses, such as rotated and/or translated ellipse forms. Start by
considering the case for a standard ellipse with semi-major axis lengths of A and
B that is centered at the origin and with its axes aligned with the coordinate
axes. Suppose that the ellipse is rotated through a counter-clockwise angle ¢, and
that the ellipse is then translated so that its center is at the point (h, k). The
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rotated+translated ellipse could then be defined by the set of parameters (A4, B,
h, k, ¢), with the understanding that the rotation through ¢ is performed before
the translation through (h, k). The approach for extending the core segment area
algorithm will be to determine analogs on the standard ellipse corresponding to
any points of intersection between a shape of interest and the general rotated and
translated ellipse. To identify corresponding points, features of the shape of interest
are translated by (~h, —k), and then rotated by —p. The translated-+rotated features
are used to determine any points of intersection with a similar ellipse that is centered
at the origin with its axes aligned to the coordinate axes. Then, the core segment
algorithm can be called with the translated+rotated intersection points.

Rotation and translation are affine transformations that are also length- and
area-preserving. In particular, the semi-axis lengths in the general rotated ellipse
are preserved by both transformations, and corresponding points on the two ellipses
will demarcate equal partition areas. Fig. 3 illustrates this idea, showing the ellipse
of Fig. 1 which has been rotated counter-clockwise through an angle ¢ = 37/8, then
translated by (h, k) = (—6,+3).

F1GURE 3. Translation and rotation are affine transformations that
are also length-and area-preserving. Corresponding points on the
two ellipses will demarcate equal partition areas.

Suppose that we desire to find the area of the rotated+translated ellipse sector
defined by the line y = —z, where the line ‘direction’ travels from lower-right to
upper-left, as shown in Fig. 3. We describe an approach for finding a segment in a
rotated+translated ellipse, based on the core ellipse segment algorithm.

An ellipse that is centered at the origin, with its axes aligned to the coordinate
axes, is defined parametrically by

x = A-cos(t)
y = B -sin(t)
Suppose the ellipse is rotated through an angle ¢, with counter-clockwise being
positive, and that the ellipse is then to be translated to put its center is at the point
(h, k). Any point (z, y) on the standard ellipse can be rotated and translated to
end up in a corresponding location on the new ellipse by using the transformation:
s h
erR | _ | cos(y)  —sinfy) | pz | (14)
YTR sin () cos () Yy k
Rotation and translation of the original standard ellipse does not change the ellipse
area, or the semi-axis lengths. One important feature of the algorithms presented
here is that the semi-axis lengths A and B are in the direction of the x- and y-axes,

} 0<t<2m
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respectively, in the un-rotated (standard) ellipse. In its rotated orientation, the
semi-axis length A will rarely be oriented horizontally (in fact, for ¢ = /4, the
semi-axis length A will be oriented vertically). Regardless of the orientation of the
rotated+translated ellipse, the algorithms presented here assume that the values of
A and B passed into the algorithm represent the semi-axis lengths along the z- and
y-axes, respectively, for the corresponding un-rotated, un-translated ellipse. The
angle ¢ is the amount of counter-clockwise rotation required to put the ellipse into
its desired location. Specifying a negative value for ¢ will rotate the standard ellipse
through a clockwise angle. The angle ¢ can be specified in anywhere in the range
(-8, +8); the working angle in the code will be computed from the given angle,
modulo 27, to avoid any potential errors (?) when calculating trigonometric values.
The translation (h, k) is the absolute movement along the coordinate axes of the
ellipse center to move a standard ellipse into its desired location. Negative values
of h move the standard ellipse to the left; negative values of k move the standard
ellipse down.

To find the area between the given line and the rotated+translated ellipse, the two
curve equations can be solved simultaneously to find any points of intersection. But
instead of searching for the points of intersection with the rotated+translated ellipse,
it is more efficient to transform the two given points that define the line back through
the translation (—h, —k) then rotation through —p. The new line determined by the
translated+rotated points will pass through the standard ellipse at points that are
analogous to where the original line intersects the rotated+translated ellipse.

The transformations required to move the given points (21, y1) and (z2, y2) into
an orientation with respect to a standard ellipse that is analogous to their orientation
to the given ellipse are the inverse of what it took to rotate+translate the ellipse to
its desired position. The translation is performed first, then the rotation:

[ Tiy ] _ { cos(—yp) —sin(—yp) ] ' [ x; —h } (15)
Yio sin (—p)  cos (—p) yi—k

Multiplying the vector by the matrix, and simplifying the negative-angle trig func-
tions gives the following expressions for the translated+rotated points:

11y =03 () - (s — ) +sin () - (s — F)
Vi =—sin (@) - (z; —h) +cos(¢) - (y; — k)

The two new points (z1,,¥1,) and (22,,¥2,) can be used to determine a line, e.g.,
by the point-slope method:

Y2 — Y1
Y=y, +— = (x—2) (16)
,TQO — ,Tlo
The equation can also be formulated in an alternative way to accommodate cases
where the translated+rotated line is vertical, or nearly so:

T =, + T (g ) (17)
Y20 — Y1g
Points of intersection are found by substituting the line equations into the standard
ellipse equation, and solving for the remaining variable. For each case, define the
slope as:
Mye = Ty, — 21, My = Y20 — Y10 (18)
Then the two substitutions proceed as follows:
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. 22 y?
y:y10+mym'(x_$10) mto ﬁ—f—ﬁ:l
a? (2/1 + Myg - (I — T ))2
:>ﬁ + 0 =2 0 -1
B +A%- (mym)Q 2
o ()
+ (y10)2 -2 Myz - T1g * Yo + (mym : 1'10)2 - 32
=0
. 22 y?
T =T1, +mmy'(y_y10) into F—f—ﬁ:l
2
:>(=T10 +mLE’g -2(y_y10)) +y_2 -1
A B2
A*+ B2 (mry)2 2
- 2 -y (20)

+12- (1710 C Mgy — (mzy)2 'ylo):| Y

+ (1'10)2 -2 May - L1y " Y10 + (mmj 'y10)2 - A2

=0

If the translated+rotated line is not vertical, then use the first equation to find
the z-values for any points of intersection. If the translated+rotated line is close to
vertical, then the second equation can be used to find the y-values for any points
of intersection. Since points of intersection between the line and the ellipse are
determined by solving a quadratic equation ax? + bx + ¢, there are three cases to
consider:

1. A =b% — 4ac < 0: Complex Conjugate Roots (no points of intersection)

2. A = b?—4ac = 0: One Double Real Root (1 point of intersection; line tangent

to ellipse)
3. A = b? — 4ac > 0: Two Real Roots (2 points of intersection; line crosses
ellipse)

For the first two cases, the segment area will be zero. For the third case, the two
points of intersection can be sent to the core segment area algorithm. However, to
enforce a consistency in area measures returned by the core algorithm, the integra-
tion direction is specified to be from the first point to the second point. As such,
the ellipse line overlap algorithm should be sensitive to the order that the points
are passed to the core segment algorithm. We suggest giving the line a ‘direction’
from the first given point on the line to the second. The line ‘direction’ can then
be used to determine which is to be the first point of intersection, i.e., the first
intersection point is where the line enters the ellipse based on what ‘direction’ the
line is pointing. The segment area that will be returned from ELLIPSE_SEGMENT
by passing the line’s entry location as the first intersection point is the area within
the ellipse to the right of the line’s path.
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The approach outlined above for finding the overlap area between a line and a
general ellipse is implemented in the ELLIPSE_LINE_OVERLAP algorithm, with
pseudo-code shown in List. 3. The ellipse is passed to the algorithm by specifying the
counterclockwise rotation angle ¢ and the translation (h, k) that takes a standard
ellipse and moves it to the desired orientation, along with the semi-axes lengths,
A >0 and > 0. The line is passed to the algorithm as two points on the line, (z1,
y1) and (x2, y2). The ‘direction’ of the line is taken to be from (x1, y1) toward (z2,
y2). Then, the segment area returned from ELLIPSE_SEGMENT will be the area
within the ellipse to the right of the line’s path.

LisTING 3. The ELLIPSE_LINE_OVERLAP algorithm is shown
for calculating the area of a segment in a general ellipse that
is defined by a given line. The line is considered to have a
‘direction’ that runs from the first given point (x1, y1) to the
second given point (x2, y2). The line ‘direction’ determines
the order in which intersection points are passed to the EL-
LIPSE_SEGMENT algorithm, which will return the area of the
segment that runs along the ellipse from the first point to the
second in a counter-clockwise direction. Any routine that calls the
algorithm ELLIPSE_LINE_OVERLAP must be sensitive to the
order of points that are passed in.

(Area,Code) « ELLIPSE\.LINE\.OVERLAP (A,B,H,K,q,X1,Y1,X2,Y2)
do if (A< 0 or B< 0)

then return (—1, ERRORELLIPSEPARAMETERS) :DATA_CHECK
do if ( |¢|>2m)
then ¢ + (¢ modulo 27) :BRING ¢ INTO —27 < ¢ < 27w (?)
do if (]X1]/A > 2r)
then X1 + —A
X10 < cos(p) * (X1 — H) +sin(ep) * (Y1 — K)
Y10 + —sin(p) * (X1 — H) + cos(p) * (Y1 — K)
X20 <« cos(yp) * (X2 — H) +sin(p) * (Y2 - K)
Y20 + —sin(p) * (X2 — H) + cos(p) * (Y2 — K)
do if (|X20—X10|>¢ ) :LINE IS NOT VERTICAL
then m < (Y20 — Y10)/(X20 — X10) :STORE QUADRATIC COEFFICIENTS
a « (B? 4+ (Asm)?2)/A?
b + (2.0%(Y10%xm — m?%X10))
c + (Y10? — 2.0*m+xY10%X10 + (mxX10)? — B?)
else if (]Y20 — Y10| >¢) :LINE IS NOT HORIZONTAL
then m + (X20 — X10) /(Y20 — Y10) :STORE QUADRATIC COEFFS
a < (A% + (Bsxm)?)/B?
b <+ (2.0%(X10%xm — m?xY10))

¢ «(X10% — 2.0%m+xY10%X10 + (m*xY10)? — A?)
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else return (—1, ERROR-LINE_POINTS) :LINE POINTS TOO CLOSE
discrim <« b%? — 4.0xaxc
do if (discrim < 0.0) :LINE DOES NOT CROSS ELLIPSE

then return (0, NOJINTERSECT)
else if (discrim > 0.0) ‘TWO INTERSECTION POINTS
then rootl <« (—=b — sqrt (discrim))/(2.0%a)

root2 <« (—b + sqrt (discrim))/(2.0xa)

else return (0, TANGENT) :LINE TANGENT TO ELLIPSE
do if (|X20— X10|>¢) :ROOTS ARE X-VALUES
then do if (X10 < X20) :ORDER PTS SAME AS LINE DIRECTION
then x1 < rootl
X2 4 root2
else x1 < root2
X2 4= rootl
else do if (Y10 < Y20) :ROOTS ARE Y-VALUES
then yl rootl :ORDER PTS SAME AS LINE DIRECTION

.
y2 < root2
< root2
y2 < rootl
(Area,Code) <« ELLIPSESEGMENT (A,B,x1,yl,x2,y2)
do if (Code < NORMAL.TERMINATION)
then return (—1.0, Code)

else return (Area, TWOINTERSECTION_POINTS)

An implementation of the ELLIPSE_LINE_OVERLAP algorithm in c-code is

shown in Appendix 5. The code compiles under Cygwin-1.7.7-1, and returns the
following values for the test cases presented above in Fig. 3, with both line ‘direc-
tions’:

LISTING 4. Return values for the test cases in Fig. 3.

cc call_el.c ellipse_line_overlap.c ellipse_segment.c —o call_el.exe

./ call_el

Calling ellipse_line_overlap.c

area = 4.07186819, return_value = 102
reverse: area = 21.06087304, return_value = 102
sum of ellipse segments = 25.13274123
total ellipse area by pixAxB = 25.13274123

3.2. Ellipse-Ellipse Overlap Area. The method described above for determining
the area between a line and an ellipse can be extended to the task of finding the
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overlap area between two general ellipses. Suppose the two ellipses are defined
by their semi-axis lengths, center locations and axis rotation angles. Let the two
sets of parameters (A1, Bi, h1, k1, 1) and (Aa, Ba, ha, ko, ¢2) define the two
ellipses for which overlap area is sought. The approach presented here will be to
first translate both ellipses by an amount (—h1, —k1) that puts the center of the first
ellipse at the origin. Then, both translated ellipses are rotated about the origin
by an angle —¢; that aligns the axes of the first ellipse with the coordinate axes;
see Fig. 4. Intersection points are found for the two translated+rotated ellipses,
using Ferrari’s quartic formula. Finally, the segment algorithm described above is
employed to find all the pieces of the overlap area.

E R e N -
L L

1]

2109 -8 -7 6 -5 M% 5

3]

FIGURE 4. Intersection points on each curve are used with the
ellipse segment area algorithm to determine overlap area, by cal-
culating the area of appropriate segments, and polygons in certain
cases. For the case of two intersection points, as shown above, the
overlap area can be found by adding two segments, as shown in
Fig. 5.

For example, consider a case of two general ellipses with two (non-tangential)
points of intersection, as shown in Fig. 4. The translation+rotation transformations
that put the first ellipse at the origin and aligned with the coordinate axes do not
alter the overlap area. In the case shown in Fig. 4, the overlap area consists of one
segment from the first ellipse and one segment from the second ellipse. The segment
algorithm presented above can be used directly for ellipses centered at the origin
and aligned with the coordinate axes. As such, the desired segment from the first
ellipse can be found immediately with the segment algorithm, based on the points
of intersection. To find the desired segment of the second ellipse, the approach
presented here further translates and rotates the second ellipse so that the segment
algorithm can also be used directly. The overlap area for the case shown in Fig. 4
is equal to the sum of the two segment areas, as shown in Fig. 5. Other cases,
e.g. with 3 and 4 points of intersection, can also be handled using the segment
algorithm.

The overlap area algorithm presented here finds the area of appropriate sector(s)
of each ellipse, which are demarcated by any points of intersection between the
two ellipse curves. To find intersection points, the two ellipse equations are solved
simultaneously. This step can be accomplished by using the implicit polynomial
forms for each ellipse. The first ellipse equation, in its translated+rotated position
is written as an implicit polynomial using the appropriate semi-axis lengths:
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0

0 1 2 3 4

F1GURE 5. The area of overlap between two intersecting ellipses
can be found by using the ellipse sector algorithm. In the case of
two (non-tangential) intersection points, the overlap area is equal
to the sum of two ellipse sectors. The sector in each ellipse is
demarcated by the intersection points.

£L'2 y2

eI

In a general form of this problem, the translation+rotation that puts the first

ellipse centered at the origin and oriented with the coordinate axes will typically

leave the second ellipse displaced and rotated. The implicit polynomial form for

a more general ellipse that is rotated and/or translated away from the origin is
written in the conventional way as:

=1 (21)

AA-2* +BB-2-y+CC-y*+ DD -2+ FEE-y+ FF =0 (22)
Any points of intersection for the two ellipses will satisfy these two equations
simultaneously. An intermediate goal is to find the implicit polynomial coefficients
in Ellipse Eq. 22 that describe the second ellipse after the translation+rotation that
puts the first ellipse centered at the origin and oriented with the coordinate axes.
The parameters that describe the second ellipse after the translation+rotation can
be determined from the original parameters for the two ellipses. The first step is
to translate the second ellipse center (hz, k2) through an amount (~hi, —k1), then
rotate the center-point through —p; to give a new center point (horg, karr):

horr =cos (=) - (ha — h1) —sin (=py) - (k2 — k1)
korp =sin (—p1) - (ha — h1) +cos(—y) - (k2 — k1)

The coordinates for a point (z7gr, yrr) on the second ellipse in its new trans-
lated+rotated position can be found from the following parametric equations, based
on an ellipse with semi-axis lengths As and By that is centered at the origin, then
rotated and translated to the desired position:

xR = Az - cos(t) - cos (w2 — w1) — Ba-sin(t) - sin (w2 — v1) + hogp
yrr = As - cos (t) - sin (w2 — p1) + Ba-sin(t) - cos (w2 — p1) + kayp
To find the implicit polynomial coefficients from the parametric form, further
transform the locus of points (zr g, yrr) so that they lie on the ellipse (As, Ba, 0,
0, 0), which is accomplished by first translating (xrg, yrr) through (—(hy — ha),
—(k1 — k2)) and then rotating the point through the angle —(¢1 — @2):

} 0<t<2mw
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x =cos (p2 — 1) - (x7r — (h1 — h2)) —sin(p2 — 1) - (y7r — (k1 — k2))
y =sin (g2 — 1) - (x7R — (h1 — h2)) +cos(p2 —¢1) - (yrr — (k1 — k2))

The locus of points (x, y) should satisfy the standard ellipse equation with the
appropriate semi-axis lengths:
2 2
A3 B3
Finally, the implicit polynomial coefficients for Ellipse Eq. 22 are found by sub-
stituting the expressions for the point (x, y) into the standard ellipse equation,
yielding the following ellipse equation:

=1 (23)

[cos (g2 = ¢1) - (wrr — (h1 = ha)) —sin (p2 — 1) - (yrr — (k1 — k2)) |
A3
[sin (¢2 — ¢1) - (w7 — (b1 — h2)) +cos(p2 — 1) - (yrr — (k1 — k2))]°  (24)
+ B%

=1

where (zxrg, yrr) are defined as above. Expanding the terms, and then re-
arranging the order to isolate like terms yields the following expressions for the
implicit polynomial coefficients of a general ellipse with the set of parameters (Aa,

Bo, harr, karr, 2 — ¢1):

AA :cosz (p2 — 1) i sin” (2 — 1)

A3 B3
_ 2-sin(p2 — 1) - cos (w2 — 1) 2 - sin (2 — 1) - cos (2 — 1)
BB = 2 - 2
A2 BQ
-2 _ 2 _
oo S (@22 p1)  cos (<p22 1)
A2 B2
~ —2-cos(p2 — 1) * [hary - cos(p2 — @1) + kapp - sin (p2 — 1) ]
DD = 2
A2
2 - sin — -k - COS — —h - sin —
n (02 — 1) - [korp (%7;2 ©1) 27 g (2 — 1) ] (25)
2
~ —2-sin(p2 — 1) - [hary - cos (w2 — @1) + Koy -sin (2 — ¢1) ]
EE = 2
A2
+2 - o8 (p2 — 1) * [hagy, - sin (p2 — p1) — kg, - cos (w2 — 1) |
B3
[hagy - cos (g2 — 1) + kg -sin (2 — 1) ]2
FF = .
A2
[y - sin (92 = 91) = ko - co8 (02 — 1) |
+ — —1
2

For the area overlap algorithm presented in this paper, the points of intersection
between the two general ellipses are found by solving simultaneously the two implicit
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polynomials denoted above as Ellipse Eq. 21 and Ellipse Eq. 22. Solving for z in
the first equation:

LL‘Q y2 y2
St =1 = x:i,/AZ’-(l——) (26)
A? ' B? ! B}

Substituting these expressions for x into Ellipse Eq. 22 and then collecting terms
yields a quartic polynomial in y. It turns out that substituting either the positive
or the negative root gives the same quartic polynomial coefficients, which are:

eyl -yt +ey Bl v + ey 2y + eyl -y +ey[0] =0 (27)
where:
WU _ gt 40% ¢ B2 (42 (BB® — 2. AA-CC) + BY . CC?
B =AT- +Bl-[1-(BB —9. . )+B1' ]
C%B] —2.By-[B?.CC-EE+ A2-(BB-DD — AA - EE)]
1
_c,ng[2] —A2-{[B} - (2-44-CC - BB?) + DD? =2 AA- FF] - 2. A} . AA”}
1

+B}-(2-CC-FF + EE®)
cy [1]

=2-B-[A}-(AA-EE - BB-DD)+ EE - FF|

C%[O] =[Ay-(Ay-AA—DD)+ FF]-[A1 - (A1 - AA+ DD) + FF|
1

(28)

In theory, the quartic polynomial will have real roots if and only if the two curves
intersect. If the ellipses do not intersect, then the quartic will have only complex
roots. Furthermore, any real roots of the quartic polynomial will represent y-values
of intersection points between the two ellipse curves. As with the quadratic equation
that arises in the ellipse-line overlap calculation, the ellipse-ellipse overlap algorithm
should handle all possible cases for the types of quartic polynomial roots:

1. Four real roots (distinct or not); the ellipse curves intersect.

2. Two real roots (distinct or not) and one complex-conjugate pair; the ellipse
curves intersect.

3. No real roots (two complex-conjugate pairs); the ellipse curves do not inter-
sect.

For the method we present here, polynomial roots are found using Ferrari’s quar-
tic formula. A numerical implementation of Ferrari’s formula is given in [3]. For
complex roots are returned, and any roots whose imaginary part is returned as zero
is a real root.

When the polynomial coefficients are constructed as shown above, the general
case of two distinct ellipses typically results in a quartic polynomial, i.e., the coeffi-
cient cy[4] is non-zero. However, certain cases lead to polynomials of lesser degree.
Fortunately, the solver in [3] is conveniently modular, providing separate functions
BIQUADROOTS, CUBICROOTS and QUADROOTS to handle all the possible
polynomial cases that arise when seeking points of intersection for two ellipses.
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If the polynomial solver returns no real roots to the polynomial, then the ellipse
curves do not intersect. It follows that the two ellipse areas are either disjoint, or
one ellipse area is fully contained inside the other; all three possibilities are shown
in Fig. 6. Each sub-case in Fig. 6 requires a different overlap-area calculation, i.e.
either the overlap area is zero (Case 0-3), or the overlap is the area of the first
ellipse (Case 0-2), or the overlap is the area of the second ellipse (Case 0-1). When
the polynomial has no real roots, geometry can be used to determine which specific
sub-case of Fig. 6 is represented. An efficient logic starts by determining the relative
size of the two ellipses, e.g., by comparing the product of semi-axis lengths for each
ellipse. The area of an ellipse is proportional to the product of its two semi-axis
lengths, so the relative size of two ellipses can be determined by comparing the
product of semi-axis lengths:

(m-Ay-By))a(r-As-By) = (A1-Bi)a (42 By), ac{'</>"} (29)

Suppose the first ellipse is larger than the second ellipse, then A; B; > A3Bs. In
this case, if the second ellipse center (horg, korr) is inside the first ellipse, then
the second ellipse is wholly contained within the first ellipse (Case 0-1); otherwise,
the ellipses are disjoint (Case 0-3). The logic relies on the fact that there are
no intersection points, which is indicated whenever there are no real solutions to
the quartic polynomial. To test whether the second ellipse center (horg, korr) is
inside the first ellipse, evaluate the first ellipse equation at the point z = horpg, and
y = korg; if the result is less than one, then the point (horg, korr) is inside the
first ellipse. The complete logic for determining overlap area when A; By > AsBo
is:

If the polynomial has no real roots, and A; By > AsBs, and h%;’* + kSBTQR < 1, then
the first ellipse wholly contains the second, otherwise the two eliipses zire disjoint.

FIGURE 6. When the quartic polynomial has no real roots, the
ellipse curves do not intersect. It follows that either one ellipse is
fully contained within the other, or the ellipse areas are completely
disjoint, resulting in three distinct cases for overlap area.

Alternatively, suppose that the second ellipse is larger than the first ellipse, then
A1By < A3Bs. If the first ellipse center (0, 0) is inside the second ellipse, then the
first ellipse is wholly contained within the second ellipse (Case 0-2); otherwise the
ellipses are disjoint (Case 0-3). Again, the logic relies on the fact that there are no
intersection points, To test whether (0, 0) is inside the second ellipse, evaluate the
second ellipse equation at the origin; if the result is less than zero, then the origin
is inside the second ellipse. The complete logic for determining overlap area when
A1B; < A3 B is:
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If the polynomial has no real roots, and A;B; < A3Bs, and FF < 0, then the
second ellipse wholly contains the first, otherwise the two ellipses are disjoint.

Suppose that the two ellipses are the same size, i.e., AyB; = A3Bs. In this
case, when no intersection points exist, the ellipses must be disjoint (Case 0-3). It
also turns out that the polynomial solver of [3] will return no real solutions if the
ellipses are identical. This special case is also handled in the overlap area algorithm
presented below. Pseudo-code for a function NOINTPTS that determines overlap
area for the cases depicted in Fig. 6 is shown in Fig. 14.

If the polynomial solver returns either two or four real roots to the quartic equa-
tion, then the ellipse curves intersect. For the algorithm presented here, all of the
various possibilities for the number and type of real roots are addressed by creating
a list of distinct real roots. The first step is to loop through the entire array of
complex roots returned by the polynomial solver, and retrieve only real roots, i.e.,
only those roots whose imaginary component is zero. The algorithm presented here
then sorts the real roots, allowing for an efficient check for multiple roots. As the
sorted list of real roots is traversed, any root that is ‘identical’ to the previous root
can be skipped.

Each distinct real root of the polynomial represents a y-value where the two
ellipses intersect. Each y-value can represent either one or two potential points
of intersection. In the first case, suppose that the polynomial root is y = B; (or
y = —By), then the y-value produces a single intersection point, which is at (0, By)
(or (0, -B7)). In the second case, if the y-value is in the open interval (—Bi, Bi),
then there are two potential intersection points where the y-value is on the first
ellipse:

Each potential intersection point (z;, ;) is evaluated in the second ellipse equa-
tion:

AA-2? + BB -2;-y; +CC -y + DD -x; + EE -y; + FF, i=1,2

If the expression evaluates to zero, then the point (z, y) is on both ellipses, i.e.,
it is an intersection point. By checking all points (z, y) for each value of y that
is a root of the polynomial, a list of distinct intersection points is generated. The
number of distinct intersection points must be either 0, 1, 2, 3 or 4. The case of
zero intersection points is described above, with all possible sub-cases illustrated in
Fig. 6. If there is only one distinct intersection point, then the two ellipses must be
tangent at that point. The three possibilities for a single tangent point are shown
in Fig. 7.

For the purpose of determining overlap area, the cases of 0 or 1 intersection points
can be handled in the same way. When two intersection points exist, there are three
possible sub-cases, shown in Fig. 8. It is possible that both of the intersection points
are tangents (Case 2-1 and Case 2-2). In both of these sub-cases, one ellipse must
be fully contained within the other. The only other possibility for two intersection
points is a partial overlap (Case 2-3).
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FIGURE 7. When only one intersection point exists, the ellipses
must be tangent at the intersection point. As with the case of zero
intersection points, either one ellipse is fully contained within the
other, or the ellipse areas are disjoint. The algorithm for finding
overlap area in the case of zero intersection points can also be used
when there is a single intersection point.

F1GURE 8. When two intersection points exist, either both of the
points are tangents, or the ellipse curves cross at both points. For
two tangent points, one ellipse must be fully contained within the
other. For two crossing points, a partial overlap must exist

Each sub-case in Fig. 8 requires a different overlap-area calculation. When two
intersection points exist, either both of the points are tangents, or the ellipse curves
cross at both points. Specifically, when there are two intersection points, if one point
is a tangent, then both points must be tangents. And, if one point is not a tangent,
then neither point is a tangent. So, it suffices to check one of the intersection points
for tangency. Suppose the ellipses are tangent at an intersection point; then, points
that lie along the first ellipse on either side of the intersection will lie in the same
region of the second ellipse (inside or outside). That is, if two points are chosen
that lie on the first ellipse, one on each side of the intersection, then both points will
either be inside the second ellipse, or they will both be outside the second ellipse.
If the ellipse curves cross at the intersection point, then the two chosen points will
be in different regions of the second ellipse.

A logic based on testing points that are adjacent to a tangent point can be
implemented numerically to test whether an intersection point is a tangent or a
cross-point. Starting with an intersection point (x, y), calculate the parametric
angle on the first ellipse, by the rules in Table 2.2:
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9 — {arccos(:v/Al) y>0 (30)

27 — arccos(z/A1) y <0

A small perturbation angle is then calculated. For the method presented here,
we seek to establish an angle that corresponds to a point on the first ellipse that is
a given distance, approximately 2FPS, away from the intersection point:

EPSRadian = arcsin (ﬂ> (31)

The angle EPSRqadian is then used with the parametric form of the first ellipse to
determine two points adjacent to (z, y):

cos(0 + EPSRadian)
y1 =B1 - sin(f + EPSradian)
29 =A; - cos(0 — EPSradian)
y2 =B - sin(0 — EPSradian)
Each of the points is then evaluated in the second ellipse equation:
test; = AA -2} + BB -2; - y; + CC-y; + DD -a; + EE -y; + FF, i=1,2 (33)

If the value of test; is positive, then the point (x;, y;) is outside the second
ellipse. It follows that the product of the two test-point evaluations test;tests will
be positive if the intersection point is a tangent, since at a tangent point both
test points will be on the same side of the ellipse. The product of the test-point
evaluations will be negative if the two ellipse curves cross at the intersection point,
since the test points will be on opposite sides of the ellipse. The function ISTANPT
implements this logic to check whether an intersection point is a tangent or a cross-
point; pseudo-code is shown in Fig. 18.

When there are two intersection points, the ISTANPT function can be used to
differentiate the case 2-3 (Fig. 8) from the cases 2-1 and 2-2. Either of the two
known intersection points can be checked with ISTANPT. If the intersection point
is a tangent, then both of the intersection points must be tangents, so the case is
either 2-1 or 2-2, and one ellipse must be fully contained within the other. For cases
2-1 and 2-2, the geometric logic used for 0 or 1 intersection points can also be used,
i.e., the function NOINTPTS can be used to determine the overlap area for these
cases. If the two ellipse curves cross at the tested intersection point, then the case
must be 2-3, representing a partial overlap between the two ellipse areas.

For case 2-3, with partial overlap between the two ellipses, the approach for find-
ing overlap area is based on using the two points (z1, y1) and (z2, y2) with segment
the algorithm (Table 2; Fig. 2) to determine the partial overlap area contributed
by each ellipse. The total overlap area is the sum of the two segment areas. The
two intersection points divide each ellipse into two segment areas (see Fig. 5). Only
one sector area from each ellipse contributes to the overlap area. The segment al-
gorithm returns the area between the secant line and the portion of the ellipse from
the first point to the second point traversed in a counter-clockwise direction. For
the overlap area calculation, the two points must be passed to the segment algo-
rithm in the order that will return the correct segment area. The default order is
counter-clockwise from the first point (21, y1) to the second point (z2, y2). A check
is made to determine whether this order will return the desired segment area. First,

X1 :Al .
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the parametric angles corresponding to (x1, y1) and (z2, y2) on the first ellipse are
determined, by the rules in Table 2.2:

6, — arccos(x1 /A1) y1 >0 (34)
21 — arccos(z1 /A1) y1 <0

0, — arccos(xa /A1) y2 >0 (35)
27 — arccos(wa /A1) y2 <0

Then, a point between (z1, y1) and (z2, y2) that is on the first ellipse is found:

Tmid =A1 - cos (#)

1 2)

Ymid =B - sin (

The point (Zmid, Ymid) is on the first ellipse between (21, y1) and (22, y2) when
travelling counter- clockwise from (z1, y1) and (22, y2). If (Xmid, Ymia) is inside
the second ellipse, then the desired segment of the first ellipse contains the point
(Tmid, Ymid)- In this case, the segment algorithm should integrate in the default
order, counterclockwise from (x1,y1) to (22, y2). Otherwise, the order of the points
should be reversed before calling the segment algorithm, causing it to integrate
counterclockwise from (2, y2) to (z1, y1). The area returned by the segment
algorithm is the area contributed by the first ellipse to the partial overlap.

The desired segment from the second ellipse is found in a manner to the first
ellipse segment. A slight difference in the approach is required because the segment
algorithm is implemented for ellipses that are centered at the origin and oriented
with the coordinate axes; but, in the general case the intersection points (z1, y1)
and (z2, y2) lie on the second ellipse that is in a displaced and rotated location.
The approach presented here translates and rotates the second ellipse to the origin
so that the segment algorithm can be used. It suffices to translate then rotate the
two intersection points by amounts that put the second ellipse centered at the origin
and oriented with the coordinate axes:

1R =(21 — h2TR) - cos(p1 — p2) + (y1 — kaTR) - sin(p2 — ¢1)
y1TR =(T1 — hoTR) - sin(p1 — v2) + (y1 — kaTr) - cos(p1 — v2) (37)
xoTR =(T2 — haTR) - cos(p1 — @2) + (y2 — k2TR) - sin(p2 — ¢1)
Yorr =(72 — hatr) - sin(p1 — @2) + (y2 — k2TR) - cos(p1 — p2)

The new points (z1Tr, y1TR) and (zeTr, yorr) lie on the second ellipse after a
translation+rotation that puts the second ellipse at the origin, oriented with the
coordinate axes. The new points can be used as inputs to the segment algorithm
to determine the overlap area contributed by the second ellipse. As with the first
ellipse, the order of the points must be determined so that the segment algorithm
returns the appropriate area. The default order is counter-clockwise from the first
point (z11R, y1TR) to the second point (xoTr, yaTr). A check is made to determine
whether this order will return the desired segment area. First, the parametric angles
corresponding to points (z1Tr, y1Tr) and (zaorr, yorr) on the second ellipse are
determined, by the rules in Table 2.2:



24 GARY B. HUGHES AND MOHCINE CHRAIBI

0. — arccos(x11r /A2) yitr > 0 (38)
27 — arccos(z1Tr/A2) y1TR <0

6y — arccos(zaTR /A2) yorr > 0 (39)
27 — arccos(zaTr/A2) yorr <0

Then, a point on the second ellipse between (z1Tr, y17R) and (xorr, YaTR) IS
found:

Tmid =As - cos (61 —;92)

0 0
Ymid =DBs - sin (%)

The point (Zmid, Ymia) is on the second ellipse between (211r, y1TR) and (zaTR,
yarr) when travelling counter- clockwise from (z1Tr, y1Tr) and (zaTr, y2rr). The
new point (Zmid, Ymia) lies on the centered second ellipse. To determine the desired
segment of the second ellipse, the new point (Zmid, Ymid) must be rotated then
translated back to a corresponding position on the once-translated+rotated second
ellipse:

TmidRT =%mid - €08(Y2 — ¢1) + Ymid - sin(e1 — @2) + harr
YmidRT =%mid - Si0(Y2 — ©1) + Ymia - cos(p1 — @2) + koTr

If (TmidRT, Ymidrr) is inside the first ellipse, then the desired segment of the
second ellipse contains the point (Zmid, Ymid). In this case, the segment algorithm
should integrate in the default order, counterclockwise from (x1Tgr, y1TR) tO (T2TR,
yarr). Otherwise, the order of the points should be reversed before calling the
segment algorithm, causing it to integrate counterclockwise from (xorr, yaTr) tO
(z17TR, y17R). The area returned by the segment algorithm is the area contributed
by the second ellipse to the partial overlap. The sum of the segment areas from the
two ellipses is then equal to the ellipse overlap area. The TWOINTPTS function
calculates the overlap area for partial overlap with two intersection points (Case
2-3); pseudo-code is shown in Fig. 15.

There are two possible sub-cases for three intersection points, shown in Fig. 9.
One of the three points must be a tangent point, and the ellipses must cross at the
other two points. The cases are distinct only in the sense that the tangent point
occurs with ellipse 2 on the interior side of ellipse 1 (Case 3-1), or with ellipse 2 on
the exterior side of ellipse 1 (Case 3-2). The overlap area calculation is performed
in the same manner for both cases, by calling the TWOINTPTS function with the
two cross-point intersections. The ISTANPT function can be used to determine
which point is a tangent; the remaining two intersection points are then passed to
TWOINTPTS. This logic is implemented in the THREEINTPTS function, with
pseudo-code in Fig. 16.

There is only one possible case for four intersection points, shown in Fig. 9. The
two ellipse curves must cross at all four of the intersection points, resulting in a
partial overlap. The overlap area consists of two segments from each ellipse, and a
central convex quadrilateral. For the approach presented here, the four intersection
points are sorted ascending in a counter-clockwise order around the first ellipse.
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FIGURE 9. When three intersection points exist, one must be a
tangent, and the ellipse curves must cross at the other two points,
always resulting in a partial overlap. When four intersection points
exist, the ellipse curves must cross at all four points, again resulting
in a partial overlap

The ordered set of intersection points is (z1, y1), (22, y2), (3, y3) and (x4, ya).
The ordering allows a direct calculation of the quadrilateral area. The standard
formula uses the cross-product of the two diagonals:

1
area =g [(z3 —x1,y3 — Y1) X (T4 — T2, Y1 — y2)|

:% (w3 — 1) - (ya — y2) — (w4 — 22) - (¥3 — 71)

(40)

The point ordering also simplifies the search for the appropriate segments of each
ellipse that contribute to the overlap area.

Suppose that the first two sorted points (z1, y1) and (22, y2) demarcate a segment
of the first ellipse that contributes to the overlap area, as shown in Fig. 9 and Fig. 10.
It follows that the contributing segments from the first ellipse are between (x1, y1)
and (x2, y2), and also between (z3, y3) and (24, y4). In this case, the contributing
segments from the second ellipse are between (a2, y2) and (z3, y3), and between
(24, ya) and (z1, y1). To determine which segments contribute to the overlap area,
it suffices to test whether a point midway between (z1, y1) and (z2, y2) is inside
or outside the second ellipse. The segment algorithm is used for each of the four
areas, and added to the quadrilateral to obtain the total overlap area.

FIGURE 10. Overlap Area with four intersection points (Case 4-1).
The overlap area consists of two segments from each ellipse, and a
central convex quadrilateral.
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An implementation of the ELLIPSE_ELLIPSE_OVERLAP algorithm in c-code
is shown in Appendix6. The code compiles under Cygwin-1.7.7-1, and returns the
following values for the test cases presented above in Fig. 6, Fig. 7 , Fig. 8 and
Fig. 9:

LISTING 5. Return values for the test cases presented above in
Fig. 6, Fig. 7, Fig. 8 and Fig. 9.

cc call\_ee.c ellipse\-ellipse\-overlap.c —o call\_ee.exe

./ call\_ee

Calling ellipse\ -ellipse\-overlap.c

Case 0—1: area = 6.28318531, return_value = 111
ellipse 2 area by pi*xa2xb2 = 6.28318531
Case 0—2: area = 6.28318531, return_value = 110
ellipse 1 area by pixalxbl = 6.28318531
Case 0—3: area = 0.00000000, return_value = 103
Ellipses are disjoint , ovelap area = 0.0
Case 1—1: area = 6.28318531, return_value = 111
ellipse 2 area by pi*xa2xb2 = 6.28318531
Case 1—2: area = 6.28318531, return_value = 110
ellipse 1 area by pixalbl = 6.28318531
Case 1—3: area = —0.00000000, return_value = 107
Ellipses are disjoint , ovelap area = 0.0
Case 2—1: area = 10.60055478, return_value = 109
ellipse 2 area by pixa2xb2 = 10.60287521
Case 2—2: area = 6.28318531, return_value = 110
ellipse 1 area by pixalbl = 6.28318531
Case 2—3: area = 3.82254574, return_value = 107
Case 3—1: area = 7.55370392, return_value = 107
Case 3—2: area = 5.67996234, return_value = 107
Case 4—1: area = 16.93791852, return_value = 109
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LisTiNG 6. The ELLIPSE_ELLIPSE_OVERLAP algorithm is
shown for calculating the overlap area between two general el-
lipses. The algorithm calls several supporting functions, including
the polynomial solvers BIQUADROOTS, CUBICROOTS and
QUADROOTS, from CACM Algorithm 326 [2] . The remaining
functions are outlined in figures below.

27

(Area,Code) <« ELLIPSE_ELLIPSE_.OVERLAP (A1,B1,H1,K1,¢1,A2,B2,H2,K2,¢2)

do if

(A1 = 0 or Bl = 0) OR (A2 = 0 or B2 = 0)

then return (—1, ERROR-ELLIPSEPARAMETERS) :DATA CHECK
do if (Jel] > 2m)

then ¢l + (plmodulo27)
do if (]e2] > 2m)

then @2« (¢2modulo2m)

H2.TR « (H2 — Hl)xcos (pl) + (K2 — Kl)*sin (pl1) :TRANSHROT ELL2

K2.TR « (H1 — H2)xsin (¢l1) + (K2 — Kl)*cos (¢1)

@2R +— 92 — ol

do if

(I92R| > 2)

then 2R <« (¢2Rmodulo2m)

AA

BB «+

CC «+

DD «+

cos?(p2R)/A2% + sin?(p2R)/B2? :BUILD\, IMPLICIT\, COEFFS ELL2TR
2% cos (p2R)*sin (p2R)/A2%2 — 2xcos (p2R)*sin (p2R)/B22

sin? (p2R)/A22 + cos?(¢2R)/B22

—2%cos (p2R)*(cos (p2R)*H2.TR + sin (p2R)*K2.TR)/A22

— 2xsin (p2R)*(sin (92R)*H2.TR — cos (92R)*K2.TR)/B22

EE + —2xsin (p2R)* (cos (92R)*H2.TR + sin (¢2R)*K2_TR)/A22

+ 2xcos (p2R)* (sin (@2R)*H2.TR — cos (92R)*K2.TR)/B22

FF <« (—cos (p2R)*H2.TR — sin (¢2R)*K2.TR)?/A2?

+ (sin (p2R)*H2.TR — cos (¢2R)*K2.TR)?/B2? — 1

:BUILD QUARTIC POLYNOMIAL COEFFICIENTS FROM THE TWO ELLIPSE EQNS

cy [4]
cy [3]

cy [2]

cy [1]
cy [0]

py [0]

do if

— A1*xAA? 4 B12x(A1%%(BB? — 2+AA+CC)+ B12+CC?)

— 2%Blx(B1?xCC+EE + Al1%x(BB+DD — AA«EE))

— A1%%((B1%2%(2%xAAxCC — BB?) + DD? — 2xAAxFF)
—2xA12%AA% + B1%%(2+CCxFF + EE?)

— 2xBlx(A12x(AA+EE — BB«DD) + EE«FF)

+ (Al*(A1*AA —DD) + FF)x(Al*(Al*AA + DD) + FF)
— 1
(ley[4]] > 0) :SOLVE QUARTIC EQ

then for 1 « 0 to 3 by 1



28 GARY B. HUGHES AND MOHCINE CHRAIBI

255

256 pyl[d—i] « cy[i]/cy[4]

257

258 r [][] + BIQUADROOTS (py][])

259

260 nroots <« 4

261

262 else if (|ey[3]] > 0) :SOLVE CUBIC EQ
263

264 then for i « 0 to 2 by 1

265

266 py[3—i] « cy[i]/cy[3]

267

268 r[][] « CUBICROOTS (py][])

269

270 nroots < 3

271

272 else if (|ey[2]] > 0) :SOLVE QUADRATIC EQ
273

274 then for i < 0 to 1 by 1

275

276 py[2—i] « cy[i]/cy[2]

277

278 r[][] + QUADROOTS (py[])

279

280 nroots < 2

281

282 else if (|ey[l]] > 0) :SOLVE LINEAR EQ
283

284 then r[1][1] <« (—cy[0]/cy[1])

285

286 r[2][1] «< O

287

288 nroots < 1

289

290 else :COMPLETELY DEGENERATE EQ
291

292 nroots <« 0

293

294 nychk < 0 :IDENTIFY REAL ROOTS
295

296 for i <« 1 to nroots by 1

297

298 do if (|r[2][{]| < EPS)

299

300 then nychk <« nychk + 1

301

302 ychk [nychk] <« r[1][i]*B1

303

304 for j « 2 to nychk by 1 :SORT REAL ROOTS
305

306 tmp0 <« ychk[]j]

307

308 for k « (j — 1) to 1 by -1

309

310 do if (ychk[k] = tmpO)

311

312 then break

313

314 else ychk[k+1] « ychk[k]

315

316 ychk [k+1] < tmpO

317

318 nintpts <« 0 :FIND INTERSECTION POINTS
319

320 for i « 1 to nychk by 1

321

322 do if ((i¢>1) and (|ychk[i] —ychk[i —1]| < EPS/2))
323

324 then continue

325

326 do if (|ychk[i]] > —B1)

327
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then x1 « 0
else x14+? Alxsqrt (1.0 — ychk[i]?/B1?)
x2 <+ —x1
do if (lellipse2tr(al, ychk[i], AA, BB,CC, DD, EE, FF)| < EPS/2)
then nintpts < nintpts + 1
do if (nintpts > 4)
then return (—1, ERRORINTERSECTIONPTS)
xint [nintpts] < x1
yint [nintpts] < ychk[i]
do if ((|ellipse2tr(x2, ychk[i], AA, BB,CC, DD, EE, FF)| < EPS/2)
and (|z2—z1] > EPS/2))
then nintpts < nintpts + 1
do if (nintpts > 4)
then return (—1, ERRORINTERSECTIONPTS)
xint [nintpts] < x1
yint [nintpts] <« ychk[i]
switch (nintpts) :HANDLE ALL CASES FOR \# OF INTERSECTION PTS
case 0:
case 1:
(OverlapArea ,Code) < NOINTPTS (Al,Bl1,A2,B2,H1,K1,H2 K2, AA,
BB, CC,DD, EE, FF)
return (OverlapArea ,Code)
case 2:
Code « istanpt (xint[1l],yint[1],Al,B1,AA,BB,CC,DD,EE,FF)
do if (Code == TANGENTPOINT)
then (OverlapArea,Code) <+ NOINTPTS (Al,B1,A2,B2,H1,K1,
H2,K2,AA,BB,CC,DD,EE, FF)
else (OverlapArea ,Code) <« TWOINTPTS (xint|[],yint[],Al,
PHI_1,A2,B2,H2.TR,K2.TR, PHI_2 ,AA,BB,CC,DD, EE, FF)
return (OverlapArea ,Code)
case 3:
(OverlapArea ,Code) < THREEINTPTS (xint,yint ,Al,B1,PHI_1,
A2,B2,H2.TR,K2.TR,PHI_2 ,AA,BB,CC,DD, EE, FF)
return (OverlapArea, Code)
case 4:
(OverlapArea ,Code) <« FOURINTPTS (xint,yint ,Al,B1,PHI_1,

A2, B2,H2.TR,K2_.TR,PHI_2,AA,BB,CC,DD,EE,FF)

29
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401
402 return (OverlapArea ,Code)

LisTiNG 7. The NOINTPTS subroutine. If there are either 0 or 1
intersection points, this function determines whether one ellipse is
contained within the other (Cases 0-1, 0-2, 1-1 and 1-2), or if the
ellipses are disjoint (Cases 0-3 and 1-3). The function returns the
appropriate overlap area, and a code describing which case was
encountered.

403

404 (OverlapArea ,Code) <+ NOINTPTS (A1l,B1,A2,B2,H1,K1,H2.TR,K2.TR,AA,
405

406 BB,CC,DD,EE,FF)

407

408 relsize <« AlxBl — A2xB2

409

410 do if (relsize > 0)

411

412 then do if (((H2.-TR+*H2_.TR)/(A1l%xAl)+(K2_.TR+K2_.TR)/(B1%*B1l)) < 1.0)
413

414 then return (w*xA2+«B2, ELLIPSE2_INSIDE_ELLIPSE1)

415

416 else return (0, DISJOINT_ELLIPSES)

417

418 else do if (relsize < 0)

419

420 then do if (FF < 0)

421

422 then return (w*AlxBl,ELLIPSE1_INSIDE_ELLIPSE2)
423

424 else return (0, DISJOINT_ELLIPSES)

425

426 else do if ((H1 = H2.TR) AND (K1 = K2_.TR))

427

428 then return (w*AlxBl, ELLIPSES_ARE_IDENTICAL)

429

430 else return (—1, ERROR.CALCULATIONS

LisTiNG 8. The TWOINTPTS subroutine. If there are 2 intersec-
tion points where the ellipse curves cross (Case 2-3), this function
uses the ellipse sector algorithm to determine the contribution of
each ellipse to the total overlap area. The function returns the
appropriate overlap area, and a code indicating two intersection
points.

431  (OverlapArea ,Code) <« TWOINTPTS (xint[],yint[],Al,Bl,¢1,A2,B2,H2.TR,
432

433 K2.TR, 2 ,AA,BB,CC,DD, EE, FF)

434

435 do if (|z[1]] > Al) :AVOID INVERSE TRIG ERRORS

436

437 then do if (x[1] < 0)

438

439 then x[1] « —Al

440

441 else x[1] « Al

442

443 do if (y[1] < 0) :FIND PARAMETRIC ANGLE FOR (x[1], y[1])
444

445 then 61 « 27 — arccos (x[1]/Al)

446

447 else 01 « arccos (x[1]/Al)

448

449 do if (|z[2]] > Al) :AVOID INVERSE TRIG ERRORS
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then do if (x[2] < 0)
then x[2] <+ —Al
else x[2] « Al
do if (y[2] < 0) :FIND PARAMETRIC ANGLE FOR (x[2], y[2])
then 02 <+ 2w — arccos (x[2]/Al)
clse 02 « arccos (x[2]/Al)
do if (01 > 02) :GO CCW FROM 61 TO\, 602
then tmp < 61, 01 « 02, 62 «+ tmp
xmid < Alxcos ((01 + 62)/2)
ymid < Blxsin ((01 + 602)/2)
do if (AAxxmid®4BB*xmid*ymid+CC+ymid?4DDs xmid+EE+ymid+FF > 0)
then tmp <« 01, 01+ 02, 02 + tmp
do if (01 > 02) :SEGMENT ALGORITHM FOR ELLIPSE 1
then 01 7 01 — 2w
do if ((02 — 01) > =)
then trsign <+ 1
else trsign <+ -1

areal <« (AlxBlx(62 — 01) + trsignx*\textbar x[1]*y[2] — x[2]*xy[1])\textbar

/2
X1\ _tr + (x[1] — H2\_TR)#cos (¢l — ¢2) + (y[1] — K2\_.TR)*sin (92 — 1)
yI\-tr « (x[1] — H2\_TR)#sin (¢l — ¢2) + (y[1] — K2\_.TR)*cos (ol — ©2)
X2\ _tr + (x[2] — H2\_TR)xcos (¢l — ¢2) + (y[2] — K2\_.TR)*sin (92 — 1)
y2\_tr 7 (x[2] — H2\.TR)=sin (¢l — ¢2) + (y[2] — K2\.TR)*cos (ol — ©2)
do if (|zltr] > A2) :AVOID INVERSE TRIG ERRORS

then do if (xl_tr < 0)
then xl_tr <« —A2
else x1l_tr <« A2
do if (yl-tr < 0) :FIND PARAMETRIC ANGLE FOR (x1_tr, yl_tr)
then 61 « 27 —— arccos (x1_tr/A2)
else 01 « arccos (x1l_-tr/A2)
do if (lz2er|> A2) :AVOID INVERSE TRIG ERRORS
then do if (x2_tr < 0)
then x2_tr <« —A2
else x2_tr <« A2
do if (y2-tr < 0) :FIND PARAMETRIC ANGLE FOR (x2_tr, y2_-tr)
then 02 <+ 2w — arccos (x2_tr/A2)

else 02 <« arccos (x2_tr/A2)



522
523
524
525
526
527
528
529
530

533
534
535
536
537
538
539

571
572
573
574
575
576
577

32 GARY B. HUGHES AND MOHCINE CHRAIBI

do if (01 > 02) :GO (OCW FROM 61 TO\, 62
then tmp <« 601, 01 « 02, 02 + tmp

xmid < A2xcos ((01 + 602)/2)

ymid < B2xsin ((01 + 62)/2)

xmid-rt = xmid*cos(p2 — 1) + ymid*sin (el — ¢2) + H2.TR

ymid_-rt = xmid*sin (92 — 1) + ymid*cos(p2 — ¢1) + K2_.TR

do if (xmid-rt?/A1% 4+ ymid_rt?/B1%? > 1)

then tmp <« 601, 01 « 02, 02 + tmp
do if (01 > 02) :SEGMENT ALGORITHM FOR ELLIPSE 2
then 61 < 01 — 27w

do if ((02 — 601) > m)
then trsign <« 1
else trsign <+ —1
area2 <+ (A2xB2x(02 — 01)
+ trsignx|zler x y2ir — x2-tr * ylyr)| /2

return (areal + area2, TWOINTERSECTION_POINTS)

LisTING 9. The THREEINTPTS subroutine. When there are
three intersection points, one of the points must be a tangent
point, and the ellipses must cross at the other two points. For
the purpose of determining overlap area, the TWOINTPTS
function can be used with the two cross-point intersections. The
ISTANPT function can be used to determine which point is a
tangent; the remaining two intersection points are then passed to
TWOINTPTS. The function returns the appropriate overlap area,
and a code indicating three intersection points.

OverlapArea ,Code) <+ THREEINTPTS (xint[],yint[],Al,Bl,o1,A2,B2,H2.TR,

K2_.TR,¢2,AA,BB,CC,DD,EE,FF)
tanpts < 0

for i « 1 to nychk by 1
code <+ ISTANPT ISTANPT (x[i],y[i],Al,B1,AA,BB,CC,DD,EE,FF)
do if (code = TANGENT_POINT)
then tanpts <« tanpts + 1
tanindex < i
do if NOT (tanpts = 1)
then return (—1, ERRORINTERSECTION_POINTS)
switch (tanindex) :STORE THE INTERSECTION POINTS
case 1: :TANGENT POINT IS IN (x[1], y[1])

xint [1] « xint[3]
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yint [1] <+ yint[3]

case 2: :TANCENT POINT IS IN (x[2], y[2])

xint [2] < xint[3]

yint [2] « yint[3]

(OverlapArea ,code) <+ TWOINTPTS (xint[],yint[],Al,Bl,¢1,A2,B2,H2.TR,

retu

rn

K2.TR, 2 ,AA,BB,CC,DD, EE, FF)

(OverlapArea ,THREEINTERSECTION_POINTS)

LisTING 10. The FOURINTPTS subroutine. When there are four
intersection points, the ellipse curves must cross at all four points.
A partial overlap area exists, consisting of two segments from
each ellipse and a central quadrilateral. The function returns the
appropriate overlap area, and a code indicating four intersection
points.

verlapArea,Code) <« FOURINTPTS (xint[],yint[],Al,Bl,¢1,A2,B2,H2.TR,

for

for

K2.TR, 2 ,AA,BB,CC,DD,EE, FF)

i < 1 to 4 by 1 :AVOID INVERSE TRIG ERRORS
do if (|xint[i]] > Al)
then do if (xint[i] < 0)
then xint[i] « —Al
else xint[i] « Al
do if (yint[i] < 0) :FIND PARAMETRIC ANGLES
then O[i] « 2w — arccos (xint[i]/Al)
else O[i] « arccos (xint[i]/Al)
j < 2 to 4 by 1 :PUT POINTS IN CCW ORDER
tmp0 « 6[]]

tmpl <+ xint[j]

tmp2 <+ yint[j]

fo

r k « (j—1) to 1 by -1 :INSERTION SORT BY ANGLE
do if (8[k] <= tmp0)
then break
clse 6lk+1] « 6[k]
xint [k+1] « xint [k]

yint [k+1] < yint [k]

areal « (|(xint[3] — xint[1]) *(yint[4] — yint[2]) —
xint [4] — xint[2]) *(yint [3] — yint[1])]| /2) :QUAD AREA
for i «< 1 to 4 by 1 : TRANSLATEHROTATE ELLIPSE 2

xi

nt_tr[i] + (xint[i] — H2.TR)xcos (¢l — ¢2)
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+ (yint[i] — K2.TR)=xsin (p2 — ¢l)
nt_tr[i] « (xint[i] — H2.TR)=xsin (¢l — ¢2)
+ (yint[i] — K2.TR)xcos (¢l — ¢2)
if (|lwinter[i]] > A2) :AVOID INVERSE TRIG ERRORS
then do if (xint-tr[i] < 0)
then xint-tr[i] <« —A2
else xint_tr[i] « A2
if (yint_tr[i] < 0) :FIND PARAM ANGLES FOR (xint_tr , yint_tr)
then @_tr[i] < 27 — arccos (xint_tr[i]/A2)
else O_tr[i] « arccos (xint-tr[i]/A2)

xmid < Alxcos

ymid < Blxsin

do

if

th

((01 + 62)/2)

((01 + 62)/2)

(AA*xmid?4+BB*xmid*ymid+CCx ymid?>4+DD*xmid+EE+ymid+FF < 0)

en area2 = (AL+Blx(0[2] — 0[1])

|(xint[1]*yint[2] — xint[2]*yint[1])])/2
area3 = (Al«Blx(0[4] — 0[3])

|(xint[3]*yint[4] — xint[4]+yint[3])])/2
aread = (A2xB2x(0_tr [3] — 6_tr [2])

| (xint\_tr[2]*yint_tr [3] — xint_tr [3]+yint_tr[2])] )/2
area5 = (A2+B2+(0_tr[1] — 0_tr [4] — twopi))

[(xint_tr[4]*yint_tr [1] — xint-tr[1]*xyint_-tr[4])]| /2)

el

se area2 =
[(xint[2]*

aread =

(A1«B1%(6[3] — 6[2])
yint [3] — xint[3]*xyint[2])])/2

(A1xB1%(0[1] — (6[4] — twopi))

[(xint[4]*yint [1] — xint[1l]xyint[4])]) /2

aread =

(A2xB2x* (0 _tr [2] — 6_tr [1])

[(xint_tr [1]*yint_tr [2] — xint_tr[2]*yint_tr[1])])/2

areadb =

(A2«B2x%(0_tr [4] — 6_tr [3])

[(xint_tr [3]*yint_tr [4] — xint_tr[4]*yint_tr[3])])/2

return (areal4a

rea24arecad+taread+aread , FOUR_INTERSECTION_POINTS)

LISTING
point (z,

11. The ISTANPT subroutine. Given an intersection
y) that satisfies both Ellipse Eq.21 and Ellipse Eq. 22,

the function determines whether the two ellipse curves are tangent

at (z, y),

or if the ellipse curves cross at (z, y).

Code «+ ISTANPT (x,y,Al,B1,AA,BB,CC,DD,EE,FF)

do

if

(lz| > A1)

:AVOID INVERSE TRIG ERRORS
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703 then do if x < 0

704

705 then x <+ —Al

706

707 else x «+ Al

708

700 do if (y < 0) :FIND PARAMETRIC ANGLE FOR (x, y)
710

711 then 6 « 27w —— arccos (x/Al)

712

713 else 0 < arccos (x/Al)

714

715  branch « v(x? + y?) :DETERMINE PERTURBATION ANGLE
716

717 do if (branch < 100xEPS)

718

719 then eps_radian < 2xEPS

720

721 else eps_radian < arcsin (2+*EPS/branch)

722

723 x1 < Alxcos (0 + eps_radian) :CREATE TEST POINTS ON EACH SIDE
724

725 yl <« Blxcos (6 + eps-radian) :OF THE INPUT POINT (x, y)
726

727  x2 < Alxcos (0 — eps_radian)

728

729 y2 < Blxcos (0 — eps-radian)

730

731 testl <« AA*X12+BB*X1*y1+CC*y12+DD*x1+EE*y1+FF
732

733 test2 <« AA*X22+BB*X2*y2+CC*y22+DD*x2+EE*y2+FF
734

735 do if (testlsxtest2 > 0)

736

737 then return TANGENT_POINT

738

739 else return INTERSECTION_POINT

ListinG 12. C-SOURCE CODE FOR ELLIPSE_SEGMENT

4. APPENDIX A.

740

741

742 /*

743

744 *

745

746 * Function: double ellipse_segment

747

748 *

749

750 %  Purpose: Given the parameters of an ellipse and two points that lie on

751

752k the ellipse, this function calculates the ellipse segment
area

753

754k between the secant line and the ellipse. Points are input as

755

756 (X1, Y1) and (X2, Y2), and the segment area is defined to be

757

758 ok between the secant line and the ellipse from the first point

759

760 (X1, Y1) to the second point (X2, Y2) in the counter—
clockwise

761

762 x direction .

763

764 *

765
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766 * Reference: Hughes and Chraibi (2011), Calculating FEllipse Owerlap Areas
767

768 *

769

770 * Dependencies: math.h for calls to trig and absolute wvalue functions
771

T2 x program-constants.h error message codes and constants
773

774 *

775

776« Inpuls : 1. double A ellipse semi—axzis length in z—direction
T

778 % 2. double B ellipse semi—axzis length in y—direction
779

780  * 3. double X1 z—value of the first point on the ellipse
781

782 % 4. double Y1 y—value of the first point on the ellipse
783

784 % 5. double X2 z—value of the second point on the ellipse
785

786 o+ 6. double Y2 y—value of the second point on the ellipse
787

788 *

789

790  «  OQOutputs: 1. int xMessageCode stores diagnostic information

791

792 x integer codes in program-constants.h
793

794 x

795

796  «  Return: The value of the ellipse segment area:

797

798 % —1.0 1s returned in case of an error with input data

799

800 *

801

802 sk ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok okok sk ook sk okok sk ook sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok
*/

803

804

805

806  //

807
808 //== INCLUDE ANSI C SYSTEM AND USER-DEFINED HEADER FILES

809

80 //

811

812 #include ”program_constants.h”

813

814

815

816 double ellipse_segment (double A, double B,double X1, double Y1, double X2

)

817

818 double Y2, int *xMessageCode)

819

820 {

821

822 double thetal; //—— parametric angle of the first point

823

824 double theta2; //—— parametric angle of the second point

825

826 double trsign; //— sign of the triangle area

827

828 double pi = 2.0 % asin \eqref{GrindEQ_-_1_0_}; //— a mazimum—
precision value of pi

829

830 double twopi = 2.0 * pi; //—— a mazimum—precision value of 2xpi
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//— Check the data first
//— Each of the ellipse azis lengths must be positive
if (!(A > 0.0) \textbar \textbar !(B > 0.0))
{
(* MessageCode) = ERROR_ELLIPSE PARAMETERS;

return —1.0;

//— Points must be on the ellipse, within EPS, which is defined
//— 1in the header file program_constants.h

if ( (fabs ((X1xX1)/(AxA) + (Y1xY1l)/(BxB) — 1.0) > EPS) textbar
textbar

(fabs ((X2xX2)/(A*A) + (Y2+Y2)/(B+B) — 1.0) > EPS) )

(* MessageCode) = ERRORPOINTSNOT_-ON_ELLIPSE;

return —1.0;

//— Awoid inverse trig calculation errors: there could be an error

//— if \textbar X1/A\textbar > 1.0 or \texztbar X2/A\textbar > 1.0
when calling acos()

//— If execution arrives here, then the point ts on the ellipse
//— within EPS. Try to adjust the walue of X1 or X2 before giving
//— wup on the area calculation

if (fabs (X1)/A > 1.0)

{

//— if execution arrives here, already know that \textbar XI\
textbar > A

if ((fabs (X1) — A) > EPS)

{

//— if X1 is not close to A or —A, then give up

(* MessageCode ) = ERROR\_INVERSE\_TRIG;

return —1.0;

else

//— nudge X1 back to A or —A, so acos() will work

37
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X1 = (X1 < 0)

if (fabs (X2)/A > 1.0)
{

//— if exzecution
textbar > A

if ((fabs (X2) — A
{
J/— if X2 is

7 A A

arrives here,

) > EPS)

not close to A or —A,

(* MessageCode ) = ERROR.INVERSE_TRIG;

//—— nudge X2 back to A or —A,

return —1.0;
}
else
{

X2 = (X2 < 0)
}

//— Calculate the par

7 A A

ametric angles

//— The parametric angles depend

//—— ts located. See

Table 1 in

on the

the reference.

then give up

so acos() will work

if (Y1 < 0.0) //— Quadrant III or IV
thetal = twopi — acos (X1 / A);
else //—— Quadrant I or II
thetal = acos (X1 / A);
if (Y2 < 0.0) //— Quadrant III or IV
theta2 = twopi — acos (X2 / A);
else //—— Quadrant I or II
theta2 = acos (X2 / A);
//— mneed to start the algorithm with thetal <

if (thetal > theta2)

thetal —= twopi;

on the ellipse

quadrant where

theta?2

each

already know that \textbar X2\

point
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//—— if the integration angle is less than pi, subtract the triangle
//— area from the sector, otherwise add the triangle area.
if ((theta2 — thetal) > pi)

trsign = 1.0;

else
trsign = —1.0;
//—— The ellipse segment is the area between the line and the ellipse,
//— calculated by finding the area of the radial sector minus the
area

//—— of the triangle created by the center of the ellipse and the two

//— points. First term +is for the ellipse sector; second term 1is for
//—— the triangle between the points and the origin. Area calculation
//— ts described in the reference.

(*MessageCode ) = NORMAL.TERMINATION;

return ( 0.5%(AxBx(theta2 — thetal) + trsignxfabs (X1xY2 — X2xY1)) );

5. APPENDIX B.

/*

LisTING 13. C-SOURCE CODE FOR EL-
LIPSE_LINE_OVERLAP

Function : double ellipse_line_overlap

Purpose: Given the parameters of an ellipse and two points on a line ,
this function calculates the area between the two curves. If

the line does mnot cross the ellipse, or if the line is
tangent

to the ellipse, then this function returns an area of 0.0
If the line intersects the ellipse at two points, then the
function returns the area between the secant line and the
ellipse. The line is considered to have a direction from

the first given point (X1,Y1) to the second given point (X2,
Y2)
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1035

1036 * This function determines where the line crosses the ellipse
1037

1038 first , and where it crosses second. The area returned 1is
1039

1040  * between the secant line and the ellipse traversed counter—
1041

1042 = clockwise from the first intersection point to the second
1043

1044  * intersection point.

1045

1046 *

1047

1048 * Reference: Hughes and Chraibi (2011), Calculating FEllipse Owerlap Areas
1049

1050 *

1051

1052 * Dependencies: math.h for calls to trig and absolute wvalue functions
1053

1054  =* program-constants.h error message codes and constants

1055

1056  * ellipse_segment.c core algorithm for ellipse segment
area

1057

1058 *

1059

1060 * Inputs : 1. double PHI CCW rotation angle of the ellipse, radians

1061

1062 * 2. double A ellipse semi—axzis length in xz—direction

1063

1064  * 3. double B ellipse semi—axzis length in y—direction

1065

1066 4. double H horizontal offset of ellipse center

1067

1068  * 5. double K vertical offset of ellipse center

1069

1070 * 6. double X1 z—value of the first point on the line

1071

1072 * 7. double Y1 y—value of the first point on the line

1073

1074 = 8. double X2 z—value of the second point on the line

1075

1076 = 9. double Y2 y—value of the second point on the line

1077

1078 *

1079

1080 *  Outputs : 1. int x*MessageCode returns diagnostic information

1081

1082  =* integer codes in program-constants.h

1083

1084 *

1085

1086 *  Return: The value of the ellipse segment area:

1087

1088  * —1.0 is returned in case of an error with the data or

1089

1090 calculation

1091

1092 =* 0.0 is returned if the line does not cross the ellipse, or if

1093

1094 = the line 1s tangent to the ellipse

1095

1096 *

1097

1098 sk ok ok ok ok sk ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok okok sk ook sk ook sk ook sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok
*/

1099

1100

1101

1102 //

1103
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1109
1110
1111
1112

1113
1114

1115
1116

1117
1118

1119
1120
1121
1122
1123
1124

1125
1126
1127
1128
1129
1130
1131
1132

1133
1134

1135
1136

1137
1138
1139
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1143
1144
1145
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1147
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1152
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/ /== DEFINE PROGRAM CONSTANTS
//
#include ”program_constants.h” //—— error message codes and constants
//
/ /== DEPENDENT FUNCTIONS
//
double textbf{ellipse_segment} (double A, double B,double X1, double Y1,
double X2,
double Y2, int xMessageCode);
double \textbf{ellipse_line_overlap} (double PHI, double A, double B,
double H,
double K, double X1, double Y1, double X2,
double Y2, int xMessageCode)
\{
//
//== DEFINE LOCAL VARIABLES
//
double X103 //—— Translated , Rotated z—value of the first point
double Y10; //—— Translated , Rotated y—value of the first point
double X20; //—— Translated , Rotated z—wvalue of the second point
double Y20; //—— Translated , Rotated y—value of the second point
double cosphi = textbf{cos} (PHI); //— store cos(PHI) to avoid
multiple calcs
double sinphi = \textbf{sin} (PHI); //— store sin(PHI) to avoid
multiple calcs
double m; //—— line slope, calculated from input line slope
double a, b, c; //—— quadratic equation coefficients axz\ {}2 + bxzx
+ c
double discrim ; //—— quadratic equationdiscriminant b\ {}2 — jkxaxc
double x1, x2; //— z—wvalues of intersection points
double yl1, y2; //— y—values of intersection points
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double mid-X; //— midpoint of the rotated z—wvalues on
double thetalparm; //—— parametric angle of first point
double theta2parm; //— parametric angle of second point
double xmidpoint; //— z—value midpoint of secant line
double ymidpoint; //— y—value midpoint of secant line
double rootl, root2; //— temporary storage wvariables for
double segment_area; //—— stores the ellipse segment area

//—— Check the data first
//—— Each of the ellipse axis lengths must be positive
if (!(A > 0.0) \textbar \textbar !(B > 0.0))
{
(* MessageCode) = ERROR_ELLIPSE PARAMETERS;

return —1.0;

the line

roots

//—— The rotation angle for the ellipse should be between —2pi and 2pi

(?)
if ( (\textbf{fabs} (PHI) > (2.0xpi)) )

PHI = \textbf{fmod} (PHI, twopi);

//—— For this numerical routine, the ellipse will be translated and
//—— rotated so that it is centered at the origin and oriented with
//—— the coordinate azes.

//—— Then, the ellipse will have the implicit (polynomsial) form of

J/—— e\ {r2/ANH{ 2+ y+2/B\{}2 = 1

//—— For the line, the given points are first translated by

the amount

//—— required to put the ellipse at the origin, e.g., by (—H, —K).

//—— Then, the points are rotated by the amount required to orient
//—— the ellipse with the coordinate azes, e.g., through the angle —
PHI.

X10 = cosphi* (X1 — H) + sinphix (Y1l — K);
Y10 = —sinphi* (X1 — H) + cosphix*(Y1l — K);
X20 = cosphix(X2 — H) + sinphix(Y2 — K);

Y20 = —sinphi*(X2 — H) + cosphi*(Y2 — K);
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//— To determine if the line and ellipse intersect, solve the two
//— equations simultaneously , by substituting y = Y10 + mx(z — X10)

//— and xz = X10 + mazyx(y — Y10) into the ellipse equation ,

//— which results in two quadratic equations in x. See the reference
//— for derivations of the quadratic coefficients.
//— If the new line is not close to being vertical, then wuse the

//— first derivation

if (\textbf{fabs} (X20 — X10) > EPS)

{
/= ((B\{}2 + A\ {}2em\ {}2)/(A\{}2)) = =\ "{}2
J/—— 2% (Y10«m — m\ “{}2xX10) % x
J/——  (Y10\ {}2 — 2sxmxY10xX10 + m\ “{}2xX10\ {}2 — B\ “{}2)
m = (Y20 — Y10) /(X20 — X10);
a = (BB 4 AxAxmxm) /(Ax*A) ;
b = 2.0%(Y10*m — mxmxX10) ;
¢ = (Y10%xY10 — 2.0%mxY10%X10 + m+m+X10%xX10 — Bx*B);
}
//— If the new line is close to being wvertical, then wuse the
//— second derivation

else if (\textbf{fabs} (Y20 — Y10) > EPS)

{
J/—  ((A\“{}2 + B\"{}2sm\ "{}2) /(B\"{}2)) = y\"{}2
//— 2% (X10%m — m\ "{}2«Y10) = vy
J/——  (X10\{}2 — 2sxmxY10xX10 + m\ “{}2x Y10\ {}2 — A\ “{}2)
m = (X20 — X10) /(Y20 — Y10);
a = (Ax*A + BxBsxmxm) /(B«+B) ;
b = 2.0%(X10*m — mxmxY10) ;
¢ = (X10%X10 — 2.0*mxY10%X10 + m+m+xY10xY10 — AxA);
}
//—— If the two given points on the line are very close together in
//— both z and y directions, then give up
else
{

(* MessageCode) = ERROR_LINE_POINTS;

return —1.0;
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//—— Once the coefficients for the Quadratic Equation in z are
//—— known, the roots of the quadratic polynomial will represent
//—— the z— or y—wvalues of the points of intersection of the line
//— and the ellipse. The discriminant can be used to discern
//—— which case has occurred for the given inputs:

//— 1. discr < 0

Vo Quadratic has complex conjugate rToots.

//— The line and ellipse do not intersect

Vo 2. discr = 0

//— Quadratic has one repeated root

//— The line and ellipse intersect at only one point

Vo i.e., the line is tangent to the ellipse

//— 8. discr > 0

Vo Quadratic has two distinct real rToots

//— The line crosses the ellipse at two points

discrim = bxb — 4.0xaxc;

if (discrim < 0.0)

{
//— Line and ellipse do not intersect
(* MessageCode ) = NO_INTERSECTION_POINTS;
return 0.0;

}

else if (discrim > 0.0)

{

//— Two real roots exist, so calculate them
//— The larger root tis stored in rToot2

rootl = (=b — \textbf{sqrt} (discrim)) / (2.0xa);

root2 = (—b 4+ \textbf{sqrt} (discrim)) / (2.0xa);

else

//— Line is tangent to the ellipse

(* MessageCode) = LINE_.TANGENT_TO_ELLIPSE;

return 0.0;
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decide which

root

s go

wnto

if (\textbf{fabs} (X20 — X10) >

{

else

//— order the
if (X10 < X20)

{

x1 = rootl
x2 = root2
}
else
{
x1l = root2
x2 = rootl
}

pot

)

)

)

)

//— The y—wvalues

//— z—wvalues

yl

y2

//—— roots

//— order the
if (Y10 < Y20)
{

yl = rootl

y2 = root2

}
else
{
yl = root2
y2 = rootl
}

into

are

pot

)

)

)

)

//— The z—wvalues

//— y—wvalues

into

nts

can

the

in the

be cal

line

Y10 + mx(x1 — X10);

Y10 + mx*(x2 — X10);

y—values

nts

can

the

in the

be cal

line

which =z

or y values

EPS) //— roots are xz—wvalues

same direction as X10 —> X20

culated

equation

by substituting the

y = Y10 + mx(z — X10)

same direction as Y10 —> Y20

culated

equation

by substituting the

z = X10 + mx(y — Y10)

45
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1449

1450 x1 = X10 + m*(yl — Y10);

1451

1452 x2 = X10 4+ mx*(y2 — Y10);

1453

1454 }

1455

1456

1457

1458 //— Arriving here means that two points of intersection have been

1459

1460 //— found. Pass the ellipse parameters and intersection points to

1461

1462 //— the ellipse_segment () routine.

1463

1464 segment_area = \textbf{ellipse_segment} (A, B, x1, yl, x2, y2,
MessageCode ) ;

1465

1466

1467

1468 //— The message code will indicate whether the function encountered

1469

1470 //— any errors

1471

1472 if ((xMessageCode) < 0)

1473

1474 {

1475

1476 return —1;

1477

1478 }

1479

1480 else

1481

1482 {

1483

1484 (* MessageCode ) = TWO_INTERSECTION_POINTS ;

1485

1486 return segment_area;

1487

1488 }

1489

1490 }

LISTING 14. C-SOURCE CODE FOR EL-
LIPSE_ELLIPSE_OVERLAP

6. APPENDIX C.
1491 /+

1492

1493 =

1494

1495 x  Function: double ellipse_ellipse_overlap

1496

1497 =

1498

1499 =  Purpose: Given the parameters of two ellipses , this function calculates

1500

1501 the area of owverlap between the two curves. If the ellipses
are

1502

1503 * disjoint , this function returns 0.0; if one ellipse is
contained

1504

1505 within the other, this function returns the area of the
enclosed

1506

1507 * ellipse; i1f the ellipses intersect, this function returns the

1508
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* calculated area of overlap.

*

* Reference: Hughes and Chraibi (2011), Calculating FEllipse Owerlap Areas

*

* Dependencies: math.h for calls to trig and absolute walue functions

* program_constants.h error message codes and constants

*

* Inputs: 1. double PHI.1 CCW rotation angle of first ellipse, radians

* 2. double Al semi—axzis length in z—direction first ellipse

* 3. double BI1 semi—axzis length in y—direction first ellipse

* 4. double HI1 horizontal offset of center first ellipse

* 5. double Kl1 vertical offset of center first ellipse

* 6. double PHI.2 CCW rotation angle of second ellipse , radians

* 7. double A2 semi—axzis length in z—direction second
ellipse

* 8. double B2 semi—axis length in y—direction second
ellipse

* 9. double H2 horizontal offset of center second ellipse

* 10. double K2 vertical offset of center second ellipse

*

*  Outputs : 1. int xrtnCode returns diagnostic information integer code

* integer codes in program-constants.h

*

*  Return: The calculated wvalue of the overlap area

* —1 is returned in case of an error with the calculation

* 0 is returned if the ellipses are disjoint

* pixAxB of smaller ellipse if one ellipse is contained within

* the other ellipse

*

sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk ok ok sk sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk ok ok ok sk sk sk ok kok

*/

/7

//== DEFINE PROGRAM CONSTANTS

/7

#include ”program-constants.h” //— error message codes and constants
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//== DEPENDENT FUNCTIONS

double twointpts

threeintpts

double fourintpts

double ellipse2tr

//—— functions
void BIQUADROOTS (double p[], double r[][5]);

(double Al, double Bl, double A2, double B2, double HI,

double K1, double H2.TR, double K2.TR, double AA, double

BB,

double CC, double DD, double EE, double FF, int *rtnCode);

(double xint[], double yint[], double Al, double B1,
double PHI_.1, double A2, double B2, double H2_.TR,
double K2_.TR, double PHI.2, double AA, double BB,

double CC, double DD, double EE, double FF, int xrtnCode)

)

(double xint[], double yint[], double Al, double B1,
double PHI_.1, double A2, double B2, double H2_TR,
double K2_.TR, double PHI_2, double AA, double BB,
double CC, double DD, double EE, double FF,

int srtnCode);

(double xint[], double yint[], double Al, double B1,

double PHI_.1, double A2, double B2, double H2_.TR,
double K2.TR, double PHI.2, double AA, double BB,

double CC, double DD, double EE, double FF, int xrtnCode
)3

(double x, double y, double Al, double Bl, double AA, double BB

double CC, double DD, double EE, double FF);

(double x, double y, double AA, double BB,

double CC, double DD, double EE, double FF);

solving the quartic equation from Netlib/TOMS
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void CUBICROOTS (double p[], double r[][5]);

void QUADROOTS (double p[], double r[][5]);

/7

//== ELLIPSE-ELLIPSE OVERLAP

/7

double ellipse_ellipse_overlap (double PHI.1, double Al, double BI1,
double H1, double K1, double PHI_2,
double A2, double B2, double H2, double K2,

int xrtnCode)

/7

//== DEFINE LOCAL VARIABLES

/7

int i, j, k, nroots, nychk, nintpts, fnRtnCode;

double AA, BB, CC, DD, EE, FF, H2_.TR, K2_.TR, A22, B22, PHI_2R;
double cosphi, cosphi2, sinphi, sinphi2, cosphisinphi;

double tmp0O, tmpl, tmp2, tmp3;

double cy[5] = {0.0}, py[5] = {0.0}, r[3][5] = {0.0};

double x1, x2, yl2, y22;

double ychk[5] = {0.0}, xint[5], yint[5];

double Areal, Area2, OverlapArea;

/7

//== DATA CHECK

/7

//—— Each of the ellipse axis lengths must be positive

if ( ('(A1 > 0.0) \textbar \textbar !(B1l1 > 0.0)) \textbar \textbar (!(
A2 > 0.0) \textbar \textbar !(B2 > 0.0)) )
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(¥*rtnCode) = ERROR_ELLIPSE PARAMETERS;

return —1.0;

//—— The rotation angles should be between —2pi and 2pi (?)
if ( (fabs (PHI_.1) > (twopi)) )

PHI.1 = fmod (PHI-1, twopi);
if ( (fabs (PHI_.2) > (twopi)) )

PHI.2 = fmod (PHI_2, twopi);

/7

//== DETERMINE THE TWO ELLIPSE EQUATIONS FROM INPUT PARAMETERS

/7

//—— Finding the points of intersection between two general ellipses

//—— requires solving a quartic equation. Before attempting to solve
the

//—— quartic, several quick tests can be used to eliminate some cases

//—— where the ellipses do not intersect. Optionally , can whittle away

//—— at the problem, by addressing the easiest cases first.

//—— Working with the translated+rotated ellipses simplifies the

//— calculations. The ellipses are translated then rotated so that
the

//—— first ellipse is centered at the origin and oriented with the
//—— coordinate azes. Then, the first ellipse will have the implicit
//—— (polynomsial) form of

S/~ a\{}2/AI\"{}2 + y+2/B1\"{}2 = 1

//—— For the second ellipse, the center is first translated by the
amount

//—— required to put the first ellipse at the origin, e.g., by (—HI, —
K1)

//—— Then, the center of the second ellipse is rotated by the amount

//—— required to orient the first ellipse with the coordinate azes, e.g

//—— through the angle —PHI_1.
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The translated and rotated center point

ellipse are found with the rotation matriz,

described in the reference.

cosphi = cos (PHI.1);

sinphi = sin (PHI-1);

H2_TR

(H2 — Hl)xcosphi + (K2 — Kl)x*sinphi;

K2.TR = (H1 — H2)x*sinphi + (K2 — Kl)*cosphi;

PHI_2R = PHI.2 — PHI_1;

it

Vo

Vo
[/
[/
Vo

(fabs (PHI_2R) > (twopi)) )

PHI_2R = fmod (PHI_2R, twopi);

Calculate implicit (Polynomial) coefficients

ellipse

in its translated—by (—H1, —H2) and rotated—by —PHI_1

coordinates for

for

derivations

the

are

the second

AAxxz "{}2 + BBxzxy + CCxy {}2 + DD+xx + EExy + FF = 0

Formulas derived in the reference

To speed things up, store multiply—used

cosphi = cos (PHI_2R);

cosphi2 = cosphixcosphij;

sinphi = sin (PHI_2R);

sinphi2 = sinphi*sinphi;

cosphisinphi = 2.0xcosphixsinphi;

A22 = A2xA2;

B22 = B2xB2;

tmpO
tmpl
tmp2

tmp3

[/

BB =
CC =
DD =
EE =

FF =

= (cosphi*H2.TR + sinphix*K2_.TR)/A22;

= (sinphi*xH2.TR — cosphi*xK2_.TR)/B22;

= cosphi*H2.TR + sinphi*xK2_.TR;

= sinphi*H2.TR — cosphi*xK2_.TR;

implicit polynomial coefficients for the
cosphi2/A22 + sinphi2/B22;

cosphisinphi /A22 — cosphisinphi/B22;
sinphi2/A22 + cosphi2/B22;

—2.0xcosphi*tmp0 — 2.0%sinphixtmpl;
—2.0%sinphi*tmp0 + 2.0%cosphixtmpl;

tmp2xtmp2/A22 + tmp3xtmp3/B22 — 1.0;

ETPTESSILONS

second

ellipse

first

51

second

postion
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1830

1831 //

1832
1833 / /== CREATE AND SOLVE THE QUARTIC EQUATION TO FIND INTERSECTION POINTS

1834

1835 //

1836

1837 //— If execution arrives here, the ellipses are at least ’close’ to
1838

1839 //—— 1intersecting .

1840

1841 //— Coefficients for the Quartic Polynomial in y are calculated from
1842

1843 //— the two implicit equations.

1844

1845 //— Formulas for these coefficients are derived in the reference.
1846

1847 cy [4] = pow (Al, 4.0)*AA*AA + BlxBlx(AlxAlx(BB+BB — 2.0xAAxCC)

1848

1849 + B1xB1xCCxCC) ;

1850

1851 cy [3] = 2.0%Bl1x(B1xB1*CC*EE + AlxAlx(BB+«DD — AA«EE));

1852

1853 cy [2] = AlxAl*((B1xBl1%(2.0xAAxCC — BB+*BB) + DD+«DD — 2.0xAAxFF)
1854

1855 — 2.0%A1xA1xAAxAA) + BlxBlx(2.0%+CCxFF + EE+«EE) ;

1856

1857 cy [1] = 2.0%B1x(AlxAlx(AA+EE — BB*DD) + EE*FF);

1858

1859 cy [0] = (Alx(Al1xAA — DD) + FF)=x(Alx(AlxAA + DD) + FF);

1860

1861

1862

1863 //— Once the coefficients for the Quartic Equation in y are known, the
1864

1865 //— roots of the quartic polynomial will represent y—wvalues of the
1866

1867 //— intersection points of the two ellipse curves.

1868

1869 //— The quartic sometimes degenerates into a polynomial of lesser
1870

1871 //— degree, so handle all possible cases.

1872

1873 if (fabs (cy[4]) > 0.0)

1874

1875 {

1876

1877 //== QUARTIC COEFFICIENT NONZERO, USE QUARTIC FORMULA

1878

1879 for (i = 0; 1 <= 3; i++)
1880

1881 py[4—i] = cy[i]/cy[4];
1882

1883 py[0] = 1.0;

1884

1885

1886

1887 BIQUADROOTS (py, r);

1888

1889 nroots = 4;

1890

1891 }

1892

1893 else if (fabs (cy[3]) > 0.0)
1894

1895 {

1896
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1905
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1907
1908
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1914
1915
1916
1917

1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
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1934
1935
1936
1937

1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953

1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965

}

else

{

//==

for

CALCULATING ELLIPSE OVERLAP AREAS

QUARTIC DEGENERATES TO CUBIC, USE CUBIC FORMULA

(i =05 i <= 2; i++)

py[3—i] = cy[i]/cy[3];

py[0] = 1.0;

CUBICROOTS (py, r);

nroo

if

//==

ts = 3;

(fabs (cy[2]) > 0.0)

QUARTIC DEGENERATES TO QUADRATIC, USE QUADRATIC FORMULA

(i =0; i <= 1; i++4)

py[2—i] = cy[i]/cy[2];

py[0] = 1.0

QUADROOTS (py, r);

nroo

if

//==

/=
r[1]
r[2]

nroo

nroo

ts = 2;

(fabs (cy[1]) > 0.0)

QUARTIC DEGENERATES TO LINEAR: SOLVE DIRECTLY

cy[1]*Y + cy[0] = 0

[1] = (=ey[0] /ey [1]);
[1] = 0.0;
ts = 1;

COMPLETELY DEGENERATE QUARTIC: ELLIPSES IDENTICAL???

a completely degenerate quartic, which would seem to

indicate that the ellipses are identical. However, some

configurations lead to a degenerate quartic with no
points of intersection .

ts = 0;

53
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//

/ /== CHECK ROOTS OF THE QUARTIC: ARE THEY POINTS OF INTERSECTION?

//— determine which roots are real, discard any complex roots
nychk = 0;

for (i = 1; 1 <= nroots; i++4)

{
if (fabs (r[2][i]) < EPS)
{
nychk++;
ychk [nychk] = r[1][i]*B1;
}
¥
//— sort the real roots by straight insertion

for (j = 2; j <= nychk; j++)

{
tmp0 = ychk[j];
for (k =j — 1; k >= 1; k——)
{
if (ychk[k] <= tmp0)
break ;
ychk [k+1] = ychk[k];
}
ychk [k+1] = tmpO;
¥
//— determine whether polynomsial roots are

//—— for the two ellipses

nintpts = 0;

points

of

intersection
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2034

2035 for (i = 1; i <= nychk; i++)

2036

2037 {

2038

2039 //— check for multiple roots

2040

2041 if ((i > 1) \&\& (fabs (ychk[i] — ychk[i—1]) < (EPS/2.0)))

2042

2043 continue;

2044

2045

2046

2047 //— check intersection points for ychk[i]

2048

2049 if (fabs (ychk[i]) > B1)

2050

2051 x1 = 0.0;

2052

2053 else

2054

2055 x1 = Alxsqrt (1.0 — (ychk[i]xychk[i])/(B1xB1l));

2056

2057 x2 = —x1;

2058

2059

2060

2061 if (fabs(ellipse2tr(x1, ychk[i], AA, BB, CC, DD, EE, FF)) < EPS
/2.0)

2062

2063 {

2064

2065 nintpts++4;

2066

2067 if (nintpts > 4)

2068

2069 {

2070

2071 (xrtnCode) = ERRORINTERSECTION_PTS;

2072

2073 return —1.0;

2074

2075 }

2076

2077 xint [nintpts] = x1;

2078

2079 yint [nintpts] = ychk[i];

2080

2081 }

2082

2083

2084

2085 if ((fabs(ellipse2tr(x2, ychk[i], AA, BB, CC, DD, EE, FF)) < EPS
/2.0)

2086

2087 \&\& (fabs (x2 — x1) > EPS/2.0))
2088

2089 {

2090

2091 nintpts++;

2092

2093 if (nintpts > 4)

2094

2095 {

2096

2097 (xrtnCode) = ERRORINTERSECTIONPTS;
2098

2099 return —1.0;

2100

2101 }

2102

2103 xint [nintpts] = x2;

2104
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2144
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2146
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2150
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2152
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2154
2155
2156
2157

2158
2159
2160
2161
2162
2163
2164
2165

2166
2167
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[nintpts] = ychk[i];

//== HANDLE ALL CASES FOR THE NUMBER OF INTERSCTION POINTS

//

switch (nintpts)

{
case

case

case

0:

1:

OverlapArea = nointpts (Al, Bl, A2, B2, H1, K1, H2.TR, K2.TR,

AA,

BB, CC, DD, EE, FF, rtnCode);

return OverlapArea;

2:
/
/ /=

[/
Vo

fnRtnCode = istanpt (xint[1], yint[1], Al, B1l, AA, BB, CC, DD

i

else

when there are two intersection points, it is possible for

them to both be tangents, in which case one of the
ellipses

is fully contained within the other. Check the points for

tangents; if one of the points is a tangent, then the
other

must be as well, otherwise there would be more than 2
intersection points.

)

EE, FF);

fnRtnCode = TANGENT_POINT)

OverlapArea = nointpts (Al, Bl, A2, B2, H1l, K1, H2.TR,
K2_TR,

AA, BB, CC, DD, EE, FF, rtnCode);

OverlapArea = twointpts (xint, yint, Al, Bl, PHI.1, A2, B2,

H2.TR, K2.TR, PHI_2, AA, BB, CC,
DD,

EE, FF, rtnCode);
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return OverlapArea;

case 3:
//— when there are three intersection points, one and only one
//— of the points must be a tangent point.

OverlapArea = threeintpts (xint, yint, Al, Bl, PHI.1, A2, B2,
H2_.TR, K2_.TR, PHI.2, AA, BB, CC, DD,
EE, FF, rtnCode);

return OverlapArea;

case 4:
//—— four intersections points has only one case.
OverlapArea = fourintpts (xint, yint, Al, Bl, PHI.1, A2, B2,
H2_.TR, K2_.TR, PHI.2, AA, BB, CC, DD,
EE, FF, rtnCode);

return OverlapArea;

default:

//— should mever get here (but get compiler warning for
missing

//—— return wvalue if this line is omitted)
(xrtnCode) = ERRORINTERSECTION_PTS;

return —1.0;

ellipse2tr (double x, double y, double AA, double BB,

double CC, double DD, double EE, double FF)

return (AAxxxx + BBxxxy + CCxyxy + DDxx + EExy + FF);

double nointpts (double Al, double Bl, double A2, double B2, double HI,

double K1, double H2.TR, double K2_.TR, double AA, double
BB,

double CC, double DD, double EE, double FF, int xrtnCode)
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The relative size of the two ellipses can be found from the

lengths

double relsize = (A1xBl) — (A2xB2);

it

{

else

relsize > 0.0)

//— First Ellipse 1s larger than second ellipse.

//— 1If second ellipse center (H2.TR, K2.TR) is inside
//— first ellipse, then ellipse 2 is completely inside
//— ellipse 1. Otherwise, the ellipses are disjoint.
if ( ((H2-TRxH2_.TR) / (AlxAl)

+ (K2_TR+K2_TR) / (B1xBl)) < 1.0 )

{
(*rtnCode) = ELLIPSE2_INSIDE_ELLIPSEL;
return (pixA2xB2);
}
else
{
(*rtnCode) = DISJOINT_ELLIPSES;
return 0.0;
}

if (relsize < 0.0)

//— Second Ellipse is larger than first ellipse

//— If first ellipse center (0, 0) is inside the

//— second ellipse , then ellipse 1 is completely inside
//— ellipse 2. Otherwise, the ellipses are disjoint

//— AAxxz "{}2 + BBxxzxy + CCxy\ "{}2 + DDz + EExy + FF = 0

it (FF < 0.0)

{
(xrtnCode) = ELLIPSE1_INSIDE_ELLIPSE2;
return (pixAlxB1);

}

else

{

(xrtnCode) = DISJOINT_ELLIPSES;

axis
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return 0.0;

//—— 1If execution arrives here, the relative sizes are identical.
//—— Are the ellipses the same? Check the parameters to see.

if ((HI = H2.TR) \&\& (K1 = K2.TR))

{
(*xrtnCode) = ELLIPSES_ARE_IDENTICAL;
return (pixAlxB1);
}
else
{
//— should mnever get here, so return error
(xrtnCode) = ERROR_CALCULATIONS;
return —1.0;
}

Y//— end if (relsize > 0.0)

//— two

are

double t

distinct intersection points (zl1, yl1) and (z2, y2) find overlap
a

wointpts (double x[], double y[], double Al, double Bl, double

PHI_1,

double A2, double B2, double H2.TR, double K2_.TR,
double PHI.2, double AA, double BB, double CC, double DD,

double EE, double FF, int srtnCode)

double areal, area2;

double xmid, ymid, xmid-rt, ymid-rt;

double thetal, theta2;

double tmp, trsign;

double x1_tr, yl_tr, x2_tr, y2_tr;

double discr;

)

double cosphi, sinphij;
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//— if execution arrives here,

//— tangents.

//— determine which direction

//— routine for each ellipse.

//— find the parametric angles

if (fabs (x[1]) > Al)

the in

to integrate in the

for ea

x[1] = (x[1] < 0) ? —Al : Al;

tersection

ch point on

points

are

ellipse 1

if (y[1] < 0.0) //—— Quadrant III or IV
thetal = twopi — acos (x[1] / Al);

else //—— Quadrant I or II
thetal = acos (x[1] / Al);

if (fabs (x[2]) > Al)
x[2] = (x[2] < 0) 7 —A1l : Al;

if (y[2] < 0.0) //—— Quadrant III or IV
theta2 = twopi — acos (x[2] / Al);

else //—— Quadrant I or II
theta2 = acos (x[2] / Al);

//—— logic is for proceeding counterclockwise from thetal to

if (thetal > theta2)
{
tmp = thetal;
thetal = theta2;

theta2 = tmp;

//— find a point on the first
//— intersection points.
xmid = Alxcos ((thetal + theta2

ymid = Blxsin ((thetal 4+ theta2

//— the point (zmid, ymid) is

//—— intersection points (xz[1],

ellipse

)/2.0);
)/2.0);

on the

y[1])

that is different

first ellipse

and (z[2],

y[2])

"between’

when

not

ellipse_segment

theta?2

than the two

the two

travelling
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//—— counter— clockwise from (xz[1], y[1]) to (xz[2], y[2]). If the
point

//—— (xzmid, ymid) is inside the second ellipse, then the desired
segment

//— of ellipse 1 contains the point (xmid, ymid), so integrate
//—— counterclockwise from (x[1], y[1]) to (xz[2], y[2]). Otherwise,
//— integrate counterclockwise from (z[2], y[2]) to (z[1], y[1])
if (ellipse2tr (xmid, ymid, AA, BB, CC, DD, EE, FF) > 0.0)
{

tmp = thetal;

thetal = theta2;

theta2 = tmp;

//—— here is the ellipse segment routine for the first ellipse
if (thetal > theta2)
thetal —= twopi;
if ((theta2 — thetal) > pi)
trsign = 1.0;
else
trsign = —1.0;
areal = 0.5*%(Al*Bl*(theta2 — thetal)

+ trsignxfabs (x[1]*xy[2] — x[2]*xy[1]));

//—— find ellipse 2 segment area. The ellipse segment routine
//— mneeds an ellipse that is centered at the origin and oriented

//—— with the coordinate axzes. The intersection points (xz[1], y[1])
and

J/— (z[2], y[2]) are found with both ellipses translated and rotated
by

//— (—H1, —K1) and —PHI_1. Further translate and rotate the points
//— to put the second ellipse at the origin and oriented with the
//—— coordinate azes. The translation is (—H2_.TR, —K2_.TR), and the
//— rotation is —(PHI.2 — PHI_1) = PHI 1 — PHI 2

cosphi = cos (PHI.1 — PHI.2);

sinphi = sin (PHI.1 — PHI.2);

x1l_-tr = (x[1] — H2.-TR)#*cosphi + (y[1] — K2.TR)*—sinphi;

yl_otr = (x[1] — H2.TR)#sinphi 4+ (y[1] — K2.TR)*cosphi;

x2_tr = (x[2] — H2.TR)#*cosphi + (y[2] — K2.TR)*—sinphij;
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2524

2525 y2_.tr = (x[2] — H2.TR)#*sinphi + (y[2] — K2.TR)*cosphi;
2526

2527

2528

2529 //— determine which branch of the ellipse to integrate by finding a
2530

2531 //— point on the second ellipse, and asking whether it is inside the
2532

2533 //— first ellipse (in their once—translated+rotated positions)
2534

2535 //— find the parametric angles for each point on ellipse 1
2536

2537 if (fabs (x1_tr) > A2)

2538

2539 x1l_tr = (x1_tr < 0) ? —A2 : A2;

2540

2541 if (ylotr < 0.0) //—— Quadrant III or IV

2542

2543 thetal = twopi — acos (x1l_tr/A2);

2544

2545 else //—— Quadrant I or II

2546

2547 thetal = acos (x1_tr/A2);

2548

2549

2550

2551 if (fabs (x2_tr) > A2)

2552

2553 x2_tr = (x2_.tr < 0) ? —A2 : A2;

2554

2555 if (y2-tr < 0.0) //—— Quadrant III or IV

2556

2557 theta2 = twopi — acos (x2_tr/A2);

2558

2559 else //—— Quadrant I or II

2560

2561 theta2 = acos (x2_tr/A2);

2562

2563

2564

2565 //—— logic 1is for proceeding counterclockwise from thetal to theta?2
2566

2567 if (thetal > theta2)

2568

2569 {

2570

2571 tmp = thetal;

2572

2573 thetal = theta2;

2574

2575 theta2 = tmp;

2576

2577 }

2578

2579

2580

2581 //— find a point on the second ellipse that is different than the two
2582

2583 //— intersection points.

2584

2585 xmid = A2xcos ((thetal + theta2)/2.0);

2586

2587 ymid = B2xsin ((thetal + theta2)/2.0);

2588

2589

2590

2591 //— translate the point back to the second ellipse in its once—
2592

2593 //— translated+rotated position

2594

2595 cosphi = cos (PHI.2 — PHI_1);

2596
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sinphi = sin (PHI-2 — PHI_1);
xmid_rt = xmid*cosphi + ymidx—sinphi + H2_.TR;

ymid_-rt = xmid*sinphi + ymid*cosphi + K2_TR;

//— the point (xmid_-rt, ymid_rt) is on the second ellipse ’'between’
the

//— intersection points (xz[1], y[1]) and (z[2], y[2]) when travelling
//—— counterclockwise from (xz[1], y[1]) to (xz[2], y[2]). If the point
//— (xmid_rt, ymid_rt) is inside the first ellipse, then the desired
//— segment of ellipse 2 contains the point (xzmid_rt, ymid_-rt), so
//—— integrate counterclockwise from (z[1], y[1]) to (z[2], y[2]).
//—— Otherwise , integrate counterclockwise from (xz[2], y[2]) to

/= (=[1], y[1])

if (((xmid-rt*xmid-rt)/(AlxAl) + (ymid-rt*xymid-rt)/(B1«Bl)) > 1.0)

tmp = thetal;
thetal = theta2;

theta2 = tmp;

//— here is the ellipse segment routine for the second ellipse
if (thetal > theta2)

thetal —= twopi;
if ((theta2 — thetal) > pi)

trsign = 1.0;

else

trsign —1.0;
area2 = 0.5%(A2+«B2x(theta2 — thetal)

+ trsign*fabs (xl_trxy2_tr — x2_tr*xyl_tr));

(*rtnCode) = TWO_INTERSECTION_POINTS;

return areal 4 area2;

three distinct intersection points, must have two intersections

//— and ome tangent, which is the only possibility

double threeintpts (double xint[], double yint[], double Al, double B1,
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double PHI_1, double A2, double B2, double H2_.TR,
double K2_.TR, double PHI_2, double AA, double BB,
double CC, double DD, double EE, double FF,
int sxrtnCode)

int i, tanpts, tanindex, fnRtn;

double OverlapArea;

//— mneed to determine which point is a tangent, and which two points

//—— are intersections

tanpts = 0;
for (i = 1; i <= 3; i++)
{

fnRtn = istanpt (xint[i], yint[i], Al, B1l, AA, BB, CC, DD, EE, FF);

if (fnRtn = TANGENT_POINT)
{
tanpts++;

tanindex = 1i;

//— there MUST be 2 intersection points and only one tangent

if (tanpts != 1)

{
//— should mever get here unless there is a problem discerning
//— whether or not a point is a tangent or intersection
(#*rtnCode) = ERRORINTERSECTIONPTS;

return —1.0;

//—— store the two interesection points into (xz[1], y[1]) and
/= (=[2], y[2])
switch (tanindex)
{
case 1:

xint [1] = xint [3];
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yint [1] = yint [3];
break ;
case 2:
xint [2] = xint [3];
yint [2] = yint [3];
break ;
case 3:
//— intersection points are already in the right places
break;
¥
OverlapArea = twointpts (xint, yint, Al, Bl, PHI.1, A2, B2, H2.TR,
K2_ TR,
PHI_2, AA, BB, CC, DD, EE, FF, rtnCode);
(*rtnCode) = THREEINTERSECTION_POINTS;
return OverlapArea;
¥
//— four intersection points
double fourintpts (double xint[], double yint[], double Al, double BI,
double PHI_.1, double A2, double B2, double H2_.TR,
double K2.TR, double PHI.2, double AA, double BB,
double CC, double DD, double EE, double FF, int xrtnCode
{
int i, j, k;
double xmid, ymid, xint_tr[5], yint_tr[5], OverlapArea;
double theta[5], theta_-tr[5], cosphi, sinphi, tmp0, tmpl, tmp2;
double areal, area2, area3, area4, areab;
//— only one case, which involves two segments from each ellipse, plus
//— two triangles.
//— get the parametric angles along the first ellipse for each of the

intersection

(i

/ /=
for

points

=1; i <= 4

i++)
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fabs (xint[i]) > Al)

xint[i] = (xint[i] <

yint[i]

theta[1i]

theta[1i]

t the angles by straight

< 0.0)

0)

twopi — acos

7 —Al

(xint [i]

//— Quadrant

acos (xint[i]

counter—clockwise order

for (j =

{

tmpO

tmpl

tmp2

for

{

2, j <= 4

i+

= thetal[j];

= xint |

= yint|

(k= -

ils

ils

1:

)

I or

/ Al);

insertion ,

k >= 1; k——)

if (theta[k] <= tmp0)

break ;

theta[k+1] = theta[k];

xint [k+1] =

yint [k+1] =

theta[k+1] =

xint [k+1] =

yint [k+1] =

//—— find the ar

areal

/)=

the

0.5xfabs

tm
tmp

tmp

ea

xint [k];

vint [k];

pO;
1;

23

of the interior

Al;

)

//—— Quadrant III or IV

/ Al);

11

and put the

quadrilateral

points

((xint [3] — xint[1])*(yint[4] — yint[2])

— (xint[4] — xint[2])*(yint[3] — yint[1]));

intersection points

lie

on

the

second

ellipse

in

its

n

once
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2886

2887 //— translated+rotated position. The segment algorithm is implemented
2888

2889 //—— for an ellipse that is centered at the origin, and oriented with
2890

2891 //— the coordinate azes; so, in order to use the segment algorithm
2892

2893 //—— with the second ellipse, the intersection points must be further
2894

2895 //—— translated+rotated by amounts that put the second ellipse centered
2896

2897 //—— at the origin and oriented with the coordinate azes.

2898

2899 cosphi = cos (PHI.1 — PHI.2);

2900

2901 sinphi = sin (PHI.1 — PHI_2);

2902

2903 for (i = 1; 1 <= 4; i++)

2904

2905 {

2906

2907 xint_tr[i] = (xint[i] — H2.TR)*cosphi + (yint[i] — K2.TR)*—sinphi;
2908

2909 yint_tr[i] = (xint[i] — H2.TR)*sinphi + (yint[i] — K2.TR)*cosphi;
2910

2911

2912

2913 if (fabs (xint_tr[i]) > A2)

2914

2915 xint_tr [i] = (xint_tr[i] < 0) 7 —A2 : A2;

2916

2917 if (yint_tr[i] < 0.0) //—— Quadrant III or IV

2918

2919 theta_tr[i] = twopi — acos (xint_tr[i]/A2);

2920

2921 else //— Quadrant I or II

2922

2923 theta_tr[i] = acos (xint_tr[i]/A2);

2924

2925 }

2926

2927

2928

2929 //—— get the area of the two segments on ellipse 1

2930

2931 xmid = Alxcos ((theta[l] + theta[2])/2.0);

2932

2933 ymid = Blxsin ((theta[l] + theta[2])/2.0);

2934

2935

2936

2937 //—— the point (zmid, ymid) is on the first ellipse ’between’ the two
2938

2939 //—— sorted intersection points (xint[1], yint[1]) and (zint[2], yint

[2])
2940

2941 //—— when travelling counter— clockwise from (zint[1], yint[1]) to

2942

2943 //—— (zint[2], yint[2]). If the point (zmid, ymid) is inside the
second

2944

2945 //— ellipse , then one desired segment of ellipse 1 contains the point

2946

2947 //— (zmid, ymid), so integrate counterclockwise from (zint[1], yint

[1])
2948

2949 //—— to (wint[2], yint[2]) for the first segment, and from

2950

2951 J/— (zint[3], yint[3] to (wint[4], wyint[4]) for the second segment.
2952

2953 if (ellipse2tr (xmid, ymid, AA, BB, CC, DD, EE, FF) < 0.0)

2954

2955 {



2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011

3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

3024
3025
3026

68
area2 = 0.
— fabs
aread = 0.
— fabs
area4 = 0.
— fabs
areab = 0.
— fabs
¥
else
{
area2 = 0
— fabs
aread = 0
— fabs
area4 = 0
— fabs
areab = 0
— fabs
¥
OverlapArea =
return OverlapArea;
¥
//— check
int istanpt (double x,
double CC,
{
double x1, yl1, x2,
//— Awoid inverse
//— if \textbar z1/A\textbar
arrives here,
//— then the point

GARY B. HUGHES AND MOHCINE CHRAIBI

5% (AlxBlx(theta[2] — theta[l])

(xint [1]*yint [2] — xint[2]*yint[1]));

5% (Alx*Bl*(theta[4] — theta[3])

5% (A2+«B2*(theta_tr [3] — theta_tr[2])

(xint [3]*yint [4] — xint[4]*yint[3]));

(xint_tr [2]*yint_tr [3] — xint_tr [3]*xyint_tr[2]));

5% (A2«B2x(theta_tr [1] — (theta_tr [4] — twopi))

(xint-tr [4]*yint_-tr [1] — xint_tr[1]*xyint_tr[4]));

5% (Al*Blx(theta[3] — theta[2])

(xint[2]*yint [3] — xint[3]*yint[2]));

5% (Al*Blx(theta[l] — (theta[4] — twopi))

(xint [4]*xyint [1] — xint[1]*yint[4]));

5% (A2+«B2x(theta[2] — theta[l])

(xint-tr[1]*yint_-tr [2] — xint_tr[2]*xyint_tr[1]));

.5x(A2«B2x(theta [4] — theta[3])

(xint_tr [3]*yint_tr [4] — xint_tr [4]*yint_tr [3]));

areal 4 area2 + aread3 4 aread + areab;

(*rtnCode) = FOURJINTERSECTION_POINTS;

double

double DD,

v2,

trig

18

theta

calculation

on

Y

)

the

whether an intersection point

double Al,

testl ,

> 1.0

ellipse

double

e

1s a ta

ngent

double BI,

or a (‘,I()HS*[ﬁ()IH[/

EE, double FF)

test2 ,

rrors.:

when calling

within

branch ,

there

EPS.

double AA, double BB
eps-radian;

could be an error

acos(). If execution
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if (fabs (x) > Al)

x = (x < 0) ? —A1 : Al;

//— Calculate the parametric angle on the ellipse for (z, y)
//— The parametric angles depend on the quadrant where each point
//— ts located. See Table 1 in the reference.
if (y < 0.0) //—— Quadrant III or IV

theta = twopi — acos (x / Al);
else //—— Quadrant I or II

theta = acos (x / Al);

//— determine the distance from the origin to the point (z, y)

branch = sqrt (x*x + y*xy);

//— use the distance to find a small angle, such that the distance
//— along ellipse 1 is approximately 2xEPS
if (branch < 100.0xEPS)
eps_radian = 2.0xEPS;
else

eps_radian = asin (2.0%xEPS/branch);

//— determine two points that are on each side of (z, y) and lie on
//— the first ellipse

x1 = Alxcos (theta 4+ eps_radian);

yl = Blxsin (theta + eps-radian);

x2 = Alxcos (theta — eps_radian);

y2 = Blxsin (theta — eps-radian);

//— evaluate the two adjacent points in the second ellipse equation
testl = ellipse2tr (x1, yl, AA, BB, CC, DD, EE, FF);

test2 = ellipse2tr (x2, y2, AA, BB, CC, DD, EE, FF);

//— if the ellipses are tangent at the intersection point, then
//— points on both sides will either both be inside ellipse 1, or

//— they will both be outside ellipse 1
if ((testlxtest2) > 0.0)

return TANGENT_POINT;
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3100

3101 else

3102

3103 return INTERSECTION_POINT;
3104
3105
3106
3107
3108

3109 //

—~

3110

3111 //—— CACM Algorithm 826: Roots of low order polynomials.

3112

3113 //— Nonweiler, Terence R.F., CACM Algorithm 326: Roots of low order
3114

3115 //—— polynomials , Communications of the ACM, wvol. 11 no. 4, pages

3116

3117 //— 269—270 (1968). Translated into c¢ and programmed by M. Dow, ANUSF,
3118

3119 //—— Awstralian National University , Canberra, Australia.

3120

3121 //—— Accessed at http://www.netlib.org/toms/326.

3122

3123 //— Modified to woid functions, integers replaced with floating point
3124

3125 //—— where appropriate, some other slight modifications for readability
3126

3127 //—— and debugging ease.

3128

3129 //

3130

3131 void QUADROOTS (double p[], double r[][5])
3132

3133 {

3134

3135 Jx

3136

3137 Array r[3][5] p[5]

3138

3139 Roots of poly p[0]xxz"{}2 + p[1]xxz + p[2]=0
3140

3141 z=r[1][k] + & r[2][k] k=1,2
3142

3143 */

3144

3145 double b,c,d;

3146

3147 =—p[1]/(2.0xp[0]);

3148

3149 c=p[2]/p[0];

3150

3151 d=bxb—c;

3152

3153 if (d>=0.0)

3154

3155 {

3156

3157 if (b>0.0)

3158

3159 b=(r[1][2]=(sqrt(d)+b));
3160

3161 else

3162

3163 b=(r[1][2]=(—sqrt(d)+b));
3164

3165 r[1][1]=c/b;

3166

3167 r[2][1]=(r[2][2]=0.0);

3168



3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241

else

}

retu
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d=(r[2][1]=sqrt(=d));

r[2][2]= —d;

r[1][1]=(r[1][2]=D);

rn;

void CUBICROOTS(double p[], double r[][5])

{

Jx

Array r[8][5] p[5]

Roots of poly p[0]*

AN H{}s + pl1]x2\{}

a=r[1][k] + i v[2][k] k=1,...,8
Assumes O0<arctan(z)<pi/2 for x>0
«/
double s,t,b,c,d;
int kj
if(p[0]!=1.0)
{
for(k=1;k<4;k++)
plk]=p[k]/p[0];
p[0]=1.0;
¥
s=p[1]/3.0;
t=s*xp[1];
b=0.5%(sx(t/1.5—p[2])+p[3]);
t=(t—p[2]) /3.0;
c=txtxt;
d=bxb—c;
if(d>=0.0)
{

d=pow ((sqrt (d)+fabs (b)) ,1.0/3.0);
if(d!'=0.0)

{

9

+ p[2]

c + p[3] = 0

71
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3242

3243 if (b>0.0)

3244

3245 —d;

3246

3247 else

3248

3249 b=d;

3250

3251 c=t/b;

3252

3253 }

3254

3255 d=r[2][2]=sqrt\eqref{GrindEQ_-_0_75_}x*(b—c);
3256

3257 b=b+c ;

3258

3259 c=r[1][2]=—0.5%b—s;
3260

3261 if ((b>0.0 \&\& s<=0.0) \textbar \textbar (b<0.0 \&\& $>0.0))
3262

3263 {

3264

3265 r[1][1l]=c;

3266

3267 r[2][1]=—d;
3268

3269 r[1][3]=b-s;
3270

3271 r[2][3]=0.0;
3272

3273 }

3274

3275 else

3276

3277 {

3278

3279 r[1][1]=b-s;
3280

3281 r[2][1]=0.0;
3282

3283 r[1][3]=c;

3284

3285 r[2][3]=—d;
3286

3287 }

3288

3289 } /x end 2 equal or complex roots */
3290

3291 else

3292

3293 {

3294

3295 if (b==0.0)

3296

3297 d=atan\eqref{GrindEQ__1.0_-}/1.5;
3298

3299 else

3300

3301 d=atan (sqrt(—d)/fabs (b)) /3.0;
3302

3303 if(b<0.0)

3304

3305 b=2.0xsqrt (t);
3306

3307 else

3308

3309 b=—2.0xsqrt (t);
3310

3311 c=cos (d)*b;

3312

3313 t=—sqrt\eqref{GrindEQ__0_75_}*sin (d)*b—0.5%c;
3314



3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379

3380
3381
3382
3383
3384
3385
3386

}
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=t—cCc—s;
c=Cc—s;
t=t—s;

if (fabs(c)>fabs(t))

{
r[1][3]=c;
}
else
{
r[1][3]=+t;
t=c;
}
if (fabs(d)>fabs(t))
{
r[1][2]=d;
}
else
{
r[1][2]=+¢;
t=d;
}
r[1][1]="¢t;

for(k=1;k<4;k++)

r[2][k]=0.0;

return ;

void BIQUADROOTS(double p[],double r[][5])

{

/x

Array r[3][5] p[5]

Roots of poly p[0]xz\ {}4 + p[1]xz\"{}3
0

z=r[1][k] + i v [2][k] k=1,...,4

«/

double a,b,c,d,e;

73

p[2]xx\"{}2 + p[8]xx + p[4] =
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3387 int k,j;

3388

3389 if(p[0] !'= 1.0)

3390

3391 {

3392

3393 for (k=1;k<5;k++)

3394

3395 plk]=p[k]/p[0];
3396

3397 p[0]=1.0;

3398

3399 }

3400

3401 e=0.25%p[1];

3402

3403 b=2.0xe;

3404

3405 c=bx*b;

3406

3407 d=0.75%c;

3408

3409 b=p[3]+bx(c—p[2]);

3410

3411 a=p[2] —d;

3412

3413 c=p[4]+ex(exa—p[3]);

3414

3415 a=a—d;

3416

3417 p[l]=0.5%a;

3418

3419 pl2]=(p[1]*p[1l] —c)*0.25;
3420

3421 p[3]=bxb/(—64.0);

3422

3423 if(p[3]<0.0)

3424

3425 {

3426

3427 CUBICROOTS (p, 1) ;

3428

3429 for (k=1;k<4;k++)

3430

3431 {

3432

3433 if(r[2][k]==0.0 \&\& r[1][k]>0.0)
3434

3435 {

3436

3437 d=r [1][k]*4.0;
3438

3439 a=a+d ;

3440

3441 if (a>=0.0 \&\& b>=0.0)
3442

3443 pll]=sqrt(d);
3444

3445 else if (a<=0.0 \&\& b<=0.0)
3446

3447 pll]=sqrt(d);
3448

3449 else

3450

3451 pll]=—sqrt (d);
3452

3453 b=0.5%(a+b/p[1]) ;
3454

3455 goto QUAD;
3456

3457 }

3458

3459 }
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3517
3518
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}

if(p[2]<0.0)

{
b=sqrt (c);
d=b+b—a;
p[1]=0.0;
if(d>0.0)

p[l]=sqrt(d);

else

if(p[1]>0.0)

b=sqrt (p[2]) *2.0+p[1];
else

——sqrt (p[2]) *2.04+p[1];
if(b!=0.0)
{

p[1]=0.0;

else

for (k=1;k<5;k++)
{
r (1] [Kl=—e;
r[2][k]=0.0;
¥
goto END;

}

3519 QUAD:

3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532

p[2]=c/b;
QUADROOTS (p, 1) ;
for (k=1;k<3;k++)
for (j=1;j<3;j++)
r[jl[k+2]=r[j][k];

p[l]=-p[1];

75
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3538
3539
3540
3541
3542
3543
3544
3545

3547
3548
3549
3550
3551

3552
3553

3554
3555

3556
3557
3558
3559
3560
3561

3562
3563

3564
3565

3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
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p[2]=b;
QUADROOTS (p, 1) ;
for (k=1;k<5;k++)
r[1][k]=r[1][k]—e;
END:
return;
}

LisTinG 15. C-SOURCE CODE FOR UTILITY FUNCTIONS

7. APPENDIX D.
program\ -constants .h:

//

//== INCLUDE ANSI C SYSTEM HEADER FILES

//

#include <math.h> //— for calls to trig, sqrt and power functions
//

/ /== DEFINE PROGRAM CONSTANTS

//

#detfine NORMAL.TERMINATION 0
#define NOINTERSECTION_POINTS 100
#define ONEINTERSECTION_POINT 101
#define LINE_.TANGENT_TO_ELLIPSE 102
#define DISJOINT_ELLIPSES 103
#detfine ELLIPSE2.OUTSIDETANGENT_ELLIPSE1l 104
#define ELLIPSE2 INSIDETANGENT_ELLIPSEL 105
#define ELLIPSES.INTERSECT 106
#detfine TWO_LINTERSECTION_POINTS 107
#define THREEINTERSECTION_POINTS 108
#detfine FOURINTERSECTION_POINTS 109
#define ELLIPSE1I_INSIDE_ELLIPSE2 110
#define ELLIPSE2_INSIDE_ELLIPSE1 111



3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645

3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662

CALCULATING ELLIPSE OVERLAP AREAS

#define ELLIPSES_ARE_IDENTICAL 112

#define INTERSECTION_POINT 113

#define TANGENTPOINT 114

#define ERRORELLIPSE PARAMETERS —100

#define ERROR.DEGENERATE ELLIPSE —101

#define ERRORPOINTSNOT_ON_ELLIPSE —102

#define ERRORINVERSE_TRIG —103

#define ERROR_LINE_POINTS —104

#define ERROR-QUARTIC_CASE —105

#define ERROR.POLYNOMIAL_DEGREE —107

#define ERROR.POLYNOMIAL_ROOTS —108

#define ERRORINTERSECTION.PTS —109

#define ERROR.CALCULATIONS —112

#define EPS +1.0E-07

#define pi (2.0%xasin (1.0)) //~— a mazimum—precision value of pi
#define twopi (2.0%pi) //— a mazimum—precision value of 2%pi

call_es.c:

#include <stdio.h>
#include <math.h>

#include ”program_constants.h”

double ellipse-segment (double A, double B, double X1,

5

double Y2, int *xMessageCode);

int main (int argc, char %% argv)

{

double A, B;
double X1, Y1;
double X2, Y2;

double areal, area2;

double Y1,

double

7

X2
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3688
3689
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3691
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3693
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3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715

3716
3717
3718
3719
3720
3721

3722
3723
3724
3725

3726
3727
3728
3729
3730
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double pi = 2.0 % asin eqref{GrindEQ--1_0-}; //— a mazimum—precision
value of pi
int rtn;
char msg[1024];

printf (” Calling ellipse_segment.ctextbackslash n”);

//— case shown in Fig. 1

A

4.
B = 2.;

X1l = 4./sqrt (5.);

Y1 = 4./sqrt (5.);
X2 = —3.;
Y2 = —sqrt (7.)/2.;

areal = ellipse_segment (A, B, X1, Y1, X2, Y2, &rtn);

sprintf (msg,”Fig 1: segment area = %15.8f, return_-value = %d\
textbackslash n”, areal, rtn);

printf (msg);

//— case shown in Fig. 2
A= 4.

B = 2.

X1l = -3

Y1 = —sqrt (7.)/2.;

X2 = 4./sqrt (5.);

Y2 4./sqrt (5.);

area2 = ellipse_segment (A, B, X1, Y1, X2, Y2, &rtn);

sprintf (msg,”Fig 2: segment area = %15.8f, return_-value =%
dtextbackslash n”, area2, rtn);

printf (msg);

sprintf (msg,”sum of ellipse segments = %15.8ftextbackslash n”, areal +
area2);

printf (msg);

sprintf (msg,”total ellipse area by pixaxb = %15.8ftextbackslash n”, pix
AxB) ;

printf (msg);
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return rtn;

call_el.c:

#include <stdio.h>
#include <math.h>

#include ”program_constants.h”

double \textbf{ellipse_segment} (double A, double B, double X1, double Y1,
double X2,
double Y2, int *xMessageCode);
double \textbf{ellipse-line_overlap} (double PHI, double A, double B,
double H,
double K, double X1, double Y1, double X2,
double Y2, int xMessageCode) ;
int \textbf{main} (int argc, char %% argv)
{
double A, B;
double H, K, PHI;
double X1, Y1;
double X2, Y2;
double areal, area2;
double pi = 2.0 % \textbf{asin} \eqref{GrindEQ__1_.0_}; //— a mazimum
—precision value of pi
int rtn;
char msg[1024];
\textbf{printf} (” Calling ellipse_line_overlap.c\textbackslash n”);
//— case shown in Fig. 4
A= 4.
B = 2.;
H = —-6;
K = 3;

PHI = 3.%xpi/8.0;
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3801 Y1l = 3.;

3802

3803 X2 = —7.;

3804

3805 Y2 = 7.;

3806

3807

3808

3809 areal = \textbf{ellipse\_line\_.overlap} (PHI, A, B, H, K, X1, Y1, X2, Y2
; \&rtn);

3810

3811 \textbf{sprintf} (msg,”Fig 4: area = \%15.8f, return_value = \%d\
textbackslash n”, areal, rtn);

3812

3813 \textbf{printf} (msg);

3814

3815

3816

3817 //— case shown in Fig. 4, points reversed

3818

3819 A= 4.;

3820

3821 B

3822

3823 H

3824

3825 K = 3;

3826

3827 PHI = 3.xpi/8.0;

3828

3829 Xl = —7.;

3830

3831 Y1 = 7.;

3832

3833 X2 = —3.;

3834

3835 Y2

3836

3837

3838

3839 area2 = \textbf{ellipse\_line\_overlap} (PHI, A, B, H, K, X1, Y1, X2, Y2
, \&rtn)

Il
N

Il
|
=)

Il
w

3840

3841 \textbf{sprintf} (msg,”Fig 4 reverse: area = %15.8f, return_value = \%d\
textbackslash n”, area2, rtn);

3842

3843 \textbf{printf} (msg);

3844

3845

3846

3847 \textbf{sprintf} (msg,”sum of ellipse segments = %15.8ftextbackslash n”,
areal + area2);

3848

3849 \textbf{printf} (msg);

3850

3851 \textbf{sprintf} (msg,”total ellipse area by pixaxb = %15.8
ftextbackslash n”, pixAxB);

3852

3853 \textbf{printf} (msg);

3854

3855

3856

3857 return rtn;

3858

3859 }

3860

3861

3862

3863

3864

3865 call_ee.c:

3866

3867
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3868

3869 #include <stdio.h>

3870

3871 #include ”program_constants.h”
3872

3873 double ellipse_ellipse_overlap (double PHI.1, double Al, double B1,

3874

3875 double H1, double K1, double PHI_2,

3876

3877 double A2, double B2, double H2, double K2

3878

3879 int xrtnCode) ;

3880

3881

3882

3883 int main (int argc, char =% argv)

3884

3885 {

3886

3887 double Al, B1l, H1l, K1, PHI_1;

3888

3889 double A2, B2, H2, K2, PHI.2;

3890

3891 double area;

3892

3893 int rtn;

3894

3895 char msg[1024];

3896

3897 printf (7 Calling ellipse_ellipse_overlap.c\textbackslash n)\
textbackslash n”);

3898

3899

3900

3901 //— case 0—1

3902

3903 Al = 3.; Bl = 2.; Hl = 0.; K1 = 0.; PHI.1 = 0.;

3904

3905 A2 = 2.; B2 = 1.; H2 = —.75; K2 = 0.25; PHI.2 = pi/4.;

3906

3907 area = ellipse_ellipse_overlap (PHI_.1, Al, B1, H1, KI,

3908

3909 PHI_2, A2, B2, H2, K2, \&rtn);

3910

3911 sprintf (msg,”Case 0—1: area = \%15.8f, return_value = \%d\
textbackslash n”, area, rtn);

3912

3913 printf (msg);

3914

3915 sprintf (msg,” ellipse 2 area by pixa2%b2 = \%15.8f\
textbackslash n”, pixA2xB2);

3916

3917 printf (msg);

3918

3919

3920

3921 //— case 0—2

3922

3923 Al = 2.; Bl =1.; Hl = 0.; K1 = 0.; PHI.1 = 0.;

3924

3925 A2 = 3.; B2 = 2.; H2 = —.3; K2 = —.25; PHI.2 = pi/4.;

3926

3927 area = ellipse_ellipse-overlap (PHI_.1, Al, B1, Hl, K1,

3928

3929 PHI_2, A2, B2, H2, K2, &rtn);

3930

3931 sprintf (msg,”Case 0—2: area = %15.8f, return\_value = \%d\
textbackslash n”, area, rtn);

3932

3933 printf (msg);

3934



3935

3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951

3952
3953
3954
3955

3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969

3970
3971
3972
3973

3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989

3990
3991
3992
3993

3994
3995
3996
3997
3998
3999
4000
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sprintf (msg,” ellipse 1 area by pixalxbl = \%15.8f\
textbackslash n”, pixAlxBl);
printf (msg);
J/— case 0—3
Al = 2.; Bl =1.; Hl = 0.; K1 = 0.; PHI.1 = 0.;
A2 = 1.5; B2 = 0.75; H2 = —2.5; K2 = 1.5; PHI.2 = pi/4.;
area = ellipse_ellipse_overlap (PHI_.1, Al, B1, H1, KI,
PHI_2, A2, B2, H2, K2, &rtn);
sprintf (msg,”Case 0—3: area = \%15.8f, return_value = \%d\
textbackslash n”, area, rtn);
printf (msg);
printf (7 Ellipses are disjoint , ovelap area = 0.0\
textbackslash n\textbackslash n”);
J/— case 1—1
Al = 3.; Bl = 2.; Hl = 0.; K1 = 0.; PHI\_-1 = 0.
A2 = 2.; B2 = 1.; H2 = —1.0245209260022; K2 = 0.25; PHI.2 = pi/4.;
area = ellipse_ellipse-overlap (PHI_.1, Al, B1, Hl, K1,
PHI_2, A2, B2, H2, K2, \&rtn);
sprintf (msg,”Case 1—1: area = \%15.8f, return\_value = \%d\
textbackslash n”, area, rtn);
printf (msg);
sprintf (msg,” ellipse 2 area by pixa2%b2 = \%15.8f\
textbackslash n”, pixA2xB2);
printf (msg);
J/— case 1-2
Al=2.; Bl=1.; HL = 0.; Kl = 0.; PHI.1 = 0.;
A2 = 3.5; B2 = 1.8; H2 = .22; K2 = .1; PHI.2 = pi/4.;
area = ellipse_ellipse_overlap (PHI_.1, Al, B1, H1, KI,
PHI_2, A2, B2, H2, K2, \&rtn);
sprintf (msg,”Case 1—2: area = \%15.8f, return_value = \%d\
textbackslash n”, area, rtn);
printf (msg);
sprintf (msg,” ellipse 1 area by pixalbl = \%15.8f\
textbackslash n”, pixAlxBl);
printf (msg);
J/— case 1-3



4001
4002
4003
4004
4005
4006
4007
4008
4009

4010
4011
4012
4013

4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027

4028
4029
4030
4031

4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047

4048
4049
4050
4051

4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
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Al = 2.; Bl =1.; Hl = 0.; K1 = 0.; PHI.1 = 0.;
A2 = 1.5; B2 = 0.75; H2 = —2.01796398085; K2 = 1.25; PHI2 = pi/4.;
area = ellipse_ellipse-overlap (PHI_.1, Al, B1, H1l, K1,
PHI_2, A2, B2, H2, K2, \&rtn);
sprintf (msg,”Case 1—3: area = %15.8f, return\_value = \%d\
textbackslash n”, area, rtn);
printf (msg);
printf (7 Ellipses are disjoint , ovelap area = 0.0\
textbackslash n\textbackslash n”);
J/— case 2—1
Al = 3.; Bl = 2.; Hl = 0.; K1 = 0.; PHI.1 = 0.;
A2 = 2.25; B2 = 1.5; H2 = 0.; K2 = 0.; PHI.2 = pi/4.;
area = ellipse_ellipse_overlap (PHI_.1, Al, B1, Hl, K1,
PHI.2, A2, B2, H2, K2, \&rtn);
sprintf (msg,”Case 2—1: area = \%15.8f, return_value = \%d\
textbackslash n”, area, rtn);
printf (msg);
sprintf (msg,” ellipse 2 area by pixa2xb2 = \%15.8f\
textbackslash n”, pixA2xB2);
printf (msg);
//— case 2—2
Al=2.; Bl=1.; HL = 0.; Kl = 0.; PHI.1 = 0.;
A2 = 3.; B2 = 1.7; H2 = 0.; K2 = 0.; PHI.2 = pi/4.;
area = ellipse_ellipse_overlap (PHI_.1, Al, B1, H1, KI,
PHI_2, A2, B2, H2, K2, \&rtn);
sprintf (msg,” Case 2—2: area = \%15.8f, return_value = \%d\
textbackslash n”, area, rtn);
printf (msg);
sprintf (msg,” ellipse 1 area by pixalbl = \%15.8f\
textbackslash n”, pixAlxBl);
printf (msg);
//— case 2-8
Al=3.; Bl=2.; HL = 0.; Kl = 0.; PHI.1 = 0.;
A2=2.; B2 = 1.; H2 = —2; K2 = —1.; PHI.2 = pi/4.;
area = ellipse_ellipse-overlap (PHI_.1, Al, B1, Hl, K1,
PHI.2, A2, B2, H2, K2, \&rtn);

83



4067

4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083

4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099

4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115

4116
4117
4118
4119
4120
4121
4122
4123
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sprintf (msg,”Case 2—3: area = \%15.8f, return\_value = \%d\
textbackslash n\textbackslash n”, area, rtn);

printf (msg);

J/— case 3—1
Al = 3.; Bl = 2.; Hl = 0.; K1 = 0.; PHI.1 = 0.;
A2 = 3.; B2 =1.; H2 = 1.; K2 = 0.35; PHI.2 = pi/4.;
area = ellipse_ellipse_overlap (PHI_.1, Al, B1, H1, KI,
PHI_2, A2, B2, H2, K2, \&rtn);

sprintf (msg,”Case 3—1: area = \%15.8f, return\_value = \%d\
textbackslash n”, area, rtn);

printf (msg);

//— case 8—2
Al = 2.; Bl =1.; Hl = 0.; K1 = 0.; PHI.1 = 0.;
A2 = 2.25; B2 = 1.5; H2 = 0.3; K2 = 0.; PHI.2 = pi/4.;
area = ellipse_ellipse_overlap (PHI_.1, Al, B1, H1, K1,
PHI_2, A2, B2, H2, K2, \&rtn);

sprintf (msg,”Case 3—2: area = \%15.8f, return\_value = \%d\
textbackslash n\textbackslash n”, area, rtn);

printf (msg);

//—— case j—1
Al = 3.; Bl = 2.; Hl = 0.; K1 = 0.; PHI.1 = 0.;
A2 = 3.; B2 =1.; H2 = 1.; K2 = —0.5; PHI.2 = pi/4.;
area = ellipse_ellipse_overlap (PHI_.1, Al, B1, HI1, KI,
PHI_2, A2, B2, H2, K2, \&rtn);

sprintf (msg,”Case 4—1: area = \%15.8f, return_value = \%d\
textbackslash n”, area, rtn);

printf (msg);

return rtn;
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