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Abstract

In this work we investigate small clusters of helium atoms using the hyperspherical harmonic

basis. We consider systems with A = 2, 3, 4, 5, 6 atoms with an inter-particle potential which

does not present a strong repulsion at short distances. We use an attractive gaussian potential

that reproduces the values of the dimer binding energy, the atom-atom scattering length, and the

effective range obtained with one of the widely used He-He interactions, the LM2M2 potential. In

systems with more than two atoms we consider a repulsive three-body force that, by construction,

reproduces the trimer binding energy of the LM2M2 potential. With this model, consisting in

the sum of a two- and three-body potential, we have calculated the spectrum of clusters formed

by four, five and six helium atoms. We have found that these systems present two bound states,

one deep and one shallow close to the threshold fixed by the energy of the (A − 1)-atom system.

Universal relations between the energies of the excited state of the A-atom system and the ground

state energy of the (A−1)-atom system are extracted as well as the ratio between the ground state

of the A-atom system and the ground state energy of the trimer.

PACS numbers: 31.15.xj, 31.15.xt, 36.90.+f, 34.10.+x
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I. INTRODUCTION

Systems composed by few helium atoms have been object of intense investigation from

a theoretical and experimental point of view. The existence of the He-He molecule was

experimentally established using diffraction experiments [1–4]. Its binding energy E2b has

been estimated to be around 1 mK and its scattering length a0 around 190 a.u. This makes

the He-He molecule one of the biggest diatomic molecules. On the theoretical side, several

He-He potentials have been proposed; in spite of different details and derivations, all of

them share the common feature of a sharp repulsion below an inter-particle distance of

approximately 5 a.u..

Another important characteristic of the He-He interactions is their effective range r0 ≈
13 a.u.. Accordingly, the ratio a0/r0 is large enough (> 10) to place small helium clusters into

the frame of Efimov physics [5, 6]. As shown by Efimov, when at least two of the two-body

subsystems present an infinitely large scattering length (or zero binding energy) an infinite

sequence of bound states (called Efimov states) appear in the three-body system; their

binding energies scale in a geometrical way and they accumulate at zero energy. The scaling

factor, e−2π/s0 ≈ 1/515.03, is universal and depends only on the ratio between particle masses

(for three identical bosons s0 ≈ 1.00624), not on the details of the two-body interaction (see

Ref. [7] for a review). For a finite a0/r0 ratio, the number of the Efimov states has been

estimated to beN = (s0/π)ln|a0/r0| [6]; for example, the (bosonic) three 4He system presents

an excited state just below the atom-dimer threshold that has been identified as an Efimov

state.

Triggered by this interesting fact, several investigations of the helium trimer have been

produced, establishing that its excited state is indeed an Efimov-like state (see for example

Refs. [8–10]). In addition, analysis of the atom-dimer collision in the ultracold regime have

also been performed [11–13].

One of the main difficulties in solving the quantum mechanical problem in the case of

three helium atoms results to be the treatment of the strong repulsion at short distances of

the He-He potential. Specific algorithms have been developed so far to solve this problem.

The Faddeev equation has been opportunely modified [14]. Moreover, the hyperspherical

adiabatic (HA) expansion has been extensively used in this case (for a review see Ref. [15]).

However, due to the difficulties in treating the strong repulsion, few calculations exist for
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systems with more than three helium atoms. For example, in Ref. [16] the diffusion Monte

Carlo method has been used to describe the ground state of He molecules up to 10 atoms.

On the other hand, description of few-atoms systems using soft-core potentials are currently

operated (see for example Ref. [17]).

Therefore, the equivalence between hard- or soft-core-potential descriptions needs some

clarification. In a recent work [18], an attractive He-He gaussian potential has been used

to investigate the three 4He system. In absence of direct experimental data, the two-body

potential has been designed to reproduce the helium dimer binding energy E2b, the He-He

scattering length a0, and the effective range r0 of the LM2M2 potential [19]. This gaussian

potential can be considered as a regularized-two-body contact term in an Effective Field

Theory (EFT) approximation of the physics driven by the LM2M2 potential [20]. It should

be noticed that two potentials predicting similar values of a0 and r0 predict similar phase

shifts in the low energy limit and, therefore, even if their shape is completely different, they

describe in an equivalent way the physical processes in that limit [20]. The equivalence is

lost as the energy is increased, when the details of the potential become more and more

important.

Extending the study to the three-body system, differences between the attractive gaussian

and the LM2M2 potentials are immediately observed. For example the trimer ground state

energies differ by more than 15% (see Table I). A natural way to restore the equivalence

between the two potentials is by the addition of a three-body soft-term force to the gaussian

potential. On the other hand in an EFT treatment of the three-boson system with large

scattering length, a three-body-contact term is required at leading order (LO). Its strength is

usually determined by fixing a three-body observable as for example one of the trimer bound

state energies. After this choice cut-off independent results are obtained [21]. Following this

ideas, and based on Ref. [18], in the present work we have considered a gaussian-hypercentral

three-body force with the strength fixed to reproduce the LM2M2 ground state binding

energy of the three-atom system. The quality of this description has been studied for

different ranges of the three-body force.

Using the two-atom and three-atom systems to fix the model interaction, we have analyzed

heavier systems, up to A = 6 atoms. The numerical calculations are performed by means of

the hyperspherical harmonic (HH) expansion method with the technique developed recently

by the authors in Ref. [22]. In this approach, the authors use the HH basis, without a
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previous symmetrization procedure, to describe bound states in systems up to six particles.

The method is based in a particular representation of the Hamiltonian matrix, as a sum

of products of sparse matrices, well suited for a numerical implementation. Converged

results for different eigenvalues, with the corresponding eigenvectors belonging to different

symmetries, have been obtained. As a novelty, in the present work we extend the formalism

to treat a three-body force. Moreover, as we are dealing with atoms of 4He, only the the

spectrum corresponding to totally symmetric eigenstates are of interest.

After fixing the strength of the three-body force to correctly describe the LM2M2 three-

body ground state E
(0)
3b = 126.4 mK, we have calculated the first three levels of the spectrum

with total angular momentum L = 0 of the A = 4, 5, 6 systems. In the three cases we have

found that the first two levels are bosonic bound states, one deep, E
(0)
Ab , and one very shallow,

E
(1)
Ab , close to the threshold formed by the A− 1 system plus one atom. The third state in

all cases belongs to a mixed symmetry with an energy above the threshold and therefore

not representing a bound state. The appearance of only two bound states in this systems

is in agreement to previous calculations [23]. This fact has been observed in A = 4 and

interpreted as a consequence of the Efimov like spectrum of the A = 3 system [24]. It should

be noticed that, whereas converged results can be found in the literature for the ground

state of the many atom systems, the energy of the excited states is much more difficult to

calculate and only rough estimates are available.

To gain insight on the shallow state, we have varied the range of the three-body force

(maintaining fixed the three-body ground state energy) and we have studied the effects of

that variation in the A = 4, 5, 6 spectrum. In the range considered, the variation produces

small effects in the eigenvalues; however, it is crucial to determine if the shallow state is

bound or not with respect to the A − 1 threshold. Interestingly, we have observed that

when the ranges of the two- and three-body forces have a ratio of about
√
2, the ratio

between the shallow- and ground-state energy is E
(1)
Ab /E

(0)
A−1b ≈ 1.01 − 1.02, in agreement

with Refs. [25, 26]. This analysis confirms previous observations that each Efimov state in

the A = 3 system produces two bound states in the A = 4 system. Furthermore, we have

found E
(0)
4b /E

(0)
3b ≈ 4.5, E

(0)
5b /E

(0)
3b ≈ 10.5, and E

(0)
6b /E

(0)
3b ≈ 18.5, which is in agreement with

Refs. [26, 27].

The paper is organized as follows. In the next Section II we describe the two- and three-

body forces we used in our calculations to reproduce LM2M2 data. In Section III the results
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for the bound states of the A = 3, 4, 5, 6 He clusters are collected whereas the conclusions

are given in the last section. Some technical details of the method have been summarized

in the Appendix.

II. SOFT-CORE TWO- AND THREE-BODY HELIUM POTENTIAL

As mentioned in the Introduction, the 4He-4He interaction presents a strong repulsion at

short distances, below 5 a.u. This characteristic makes it difficult a detailed description of the

system with more than four atoms. Accordingly, in the present work we have studied small

clusters of helium interacting through a soft-core two- and three-body potentials which can

be interpreted as regularized two- and three-body contact terms in a LO-EFT approximation

of LM2M2.

Following Refs. [10, 18] we use the gaussian two-body potential

V (r) = V0 e−r2/R2

, (1)

with V0 = −1.227 K and R = 10.03 a.u.. In the following we use ~2/m = 43.281307 (a.u.)2K.

This parametrization of the two-body potential approximately reproduces the dimer binding

energy E2b, the atom-atom scattering length a0 and the effective range r0 given by the

LM2M2 potential. Specifically, the results for the gaussian potential are E2b = −1.296 mK,

a0 = 189.95 a.u. and r0 = 13.85 a.u., to be compared to the corresponding LM2M2 values

E2b = −1.302 mK, a0 = 189.05 a.u. and r0 = 13.84 a.u.. As shown in Ref. [18], the use

of the gaussian potential in the three-atom system produces a ground state binding energy

E
(0)
3b = 150.0 mK, which is appreciable bigger than the LM2M2 helium trimer ground state

binding energy of 126.4 mK. A smaller difference, though still appreciable, is observed in

the first excited state (see Table I).

In order to have a closer description to the A = 3 system obtained with the LM2M2

potential, we introduce the following three-body interaction

W (ρijk) = W0 e−ρ2
ijk

/ρ2
0 , (2)

where ρ2ijk = 2
3
(r2ij + r2jk + r2ki) is the three-body hyperradius in terms of the distances of

the three interacting particles. Moreover, the strength W0 is fixed to reproduce the LM2M2

helium trimer binding energy of 126.4 mK. We have studied different cases by varying the
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range of the three-body force ρ0 between 4 and 16 a.u.. Specific cases with the corresponding

results in the A = 3 system are shown in Table I. In the first two rows of the table we report

the ground- and excited-binding energies of the trimer, both for LM2M2 potential and its

gaussian representation. The excess of binding is evident for this last model. Successively,

we report, for selected values of W0 and ρ0, the binding energies obtained summing to the

gaussian potential the (repulsive) three-body force. By construction the ground state has

been fixed to the LM2M2 value and, in addition, we can observe that the excited state E
(1)
3b

is now closer to the corresponding LM2M2 result, showing an extremely small variation with

ρ0; the difference between the extremal values obtained for ρ0 = 4 a.u. and ρ0 = 16 a.u. is

less than 1%.

It should be noticed that the ranges R of the two-body force and ρ0 of the three-body

force are somehow related. The gaussian two-body force can be thought as originating from

a contact interaction regularized using a gaussian cutoff with Λ = R−1 (see for example

Ref. [7]). This means that configurations, in the A = 2 system, in which two atoms have a

relative momentum k > Λ remain outside the present description or, in other words, details

of the interaction for distances below R are not accessible. In the A > 2 systems, three

atoms interact through the three-body force when they happen to be inside a sphere of

radius ρ0 at the same time. It is clear that, as no information is introduced in the two-body

system for distances below R, from the relation ρ2ijk = 2
3
(r2ij + r2jk + r2ki) and putting each

distance at the value R, we obtain for the three-body range ρ2 = 2R2. Since R has been

fixed in order to describe two-body quantities, in the description of systems with A > 3

atoms we consider different values of ρ0 with particular attention at the region ρ0 ≈
√
2R.

The calculations for the A ≥ 3 systems, up to six atoms, are performed using the un-

symmetrized HH basis. The method has been recently used to describe up to six nucleons

interacting through a central potential [22]. A brief description of the method is given in the

Appendix. The novelty presented here regards the implementation of the three-body force.

Using a particular rotation of the HH basis it is possible to construct the potential energy

as a product of sparse matrices. The Hamiltonian matrix is obtained using the following

orthonormal basis

〈ρΩ |m [K]〉 =
(

β(α+1)/2

√

m!

(α+m)!
L(α)
m (βρ) e−βρ/2

)

YLM
[K] (ΩN) , (3)

where L
(α)
m (βρ) is a Laguerre polynomial with α = 3N − 1 and β a variational non-linear
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parameter. The matrix elements of the Hamiltonian are obtained after integrations in the

ρ,Ω spaces. They depend on the indices m,m′ and [K], [K ′] as follows

〈m′ [K ′]|H|m [K]〉 = −~
2β2

m
(T

(1)
m′m −K(K + 3N − 2)T

(2)
m′m)δ[K ′][K]

+
∑

i<j





∑

[K ′′][K ′′′]

Bij,LM
[K][K ′′]B

ij,LM
[K ′′′][K ′]V

m,m′

[K ′′][K ′′′]



+
∑

i<j<k





∑

[K ′′][K ′′′]

Dijk,LM
[K][K ′′]D

ijk,LM
[K ′′′][K ′]W

m,m′

[K ′′][K ′′′]



 .

(4)

The matrices T (1) and T (2) have an analytical form and are given in Ref. [28]. The matrix

elements V m,m′

[K][K ′] and Wm,m′

[K][K ′] are obtained after integrating the matrices V12(ρ) and W (ρ)

in ρ-space (we will call the corresponding matrices V12 and W ). Introducing the diagonal

matrix D such that 〈[K ′] |D |[K]〉 = δ[K],[K ′]K(K + 3N − 2), and the identity matrix I in

K-space, we can rewrite the Hamiltonian schematically as

H = −~
2β2

m
((1)T ⊗ I + (2)T ⊗D) +

∑

i<j

[BLM
ij ]t V12 BLM

ij ,+
∑

i<j<k

[DLM
ijk ]t W DLM

ijk , (5)

in which the tensor product character of the kinetic energy is explicitly given. A method to

diagonalize a matrix of this form is given in Ref. [22].

III. RESULTS FOR A = 4, 5, 6 HE CLUSTERS

In this sections we present results for small clusters, up to A = 6, formed by atoms of

4He. Despite the differences observed at the level of the three-body system between the

gaussian two-body force and the LM2M2 potential, it is of interest the computation of the

spectrum produced by the gaussian two-body force only for the A = 4, 5, 6 systems.

In Table II we show the L = 0 ground state E
(0)
Ab and the first two excited states E

(1)
Ab

and E
(2)
Ab for increasing values of the grand-angular momentum K using the unsymmetrized

HH basis. The calculations have been performed up to K = 40 in A = 4, K = 24 in

A = 5 and K = 22 in A = 6. It is a property of the HH basis that when all states having

a fixed value of K are included in the expansion of the wave function, the symmetry of

the eigenvectors reflects the symmetries present in the Hamiltonian. Since the Hamiltonian

is symmetric under exchange of the particles, the obtained eigenvectors have well defined

particle permutation symmetry. In the present case the ground state and first excited state

of the Hamiltonian matrix for A = 4, 5, 6 are symmetric states and belong to the irreducible
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representation [λ] with λ = A. In all cases the second excited state has mixed symmetry

and belongs to the irreducible representation [λ 1] with λ = A − 1. In Table II we also

observe that the ground state binding energy, E
(0)
Ab , has a very fast convergence in terms of

K and can be determined with five digits; this value fixes the threshold of the continuum

spectrum in the A + 1 system. True bound states in the A = 4 systems are those having

a binding energy bigger than the trimer binding energy of 150.0 mK and, looking at the

table, bound states in the A = 5, 6 systems appears below the threshold of 751.38 mK and

1945.2 mK respectively. Since in all cases the second excited state E
(2)
Ab results to be above

the threshold, only two bosonic states are bound in the A = 4, 5, 6 systems, one deep and

one shallow close to the A − 1 threshold. The next bosonic state appears above E
(2)
Ab and,

therefore, it is not bound. This result confirms previous analysis in the four body sector that

the lower Efimov state in the A = 3 system produces two bound states, one deep and one

shallow. Here, we have extended this observation up to the A = 6 system. The convergence

of the E
(1)
Ab is much slower than for the ground state, however with the extended based used

it has been determined with an accuracy well below 1%.

For this atom-atom potential the ratio r0/a ≈ 1/14 and therefore we are not too far

from the unitary limit, and we can make predictions for the universal ratios E
(1)
Ab /E

(0)
(A−1)b

and E
(0)
Ab /E

(0)
3b . From the table we can observe that E

(1)
4b /E

(0)
3b = 1.085, E

(1)
5b /E

(0)
4b = 1.10

and E
(1)
6b /E

(0)
5b = 1.13. These results are not so close to the universal ratio of around 1.01

indicating that effective range corrections are important. For the ratios with respect to the

trimer ground state we have, E
(0)
4b /E

(0)
3b = 5.01, E

(0)
5b /E

(0)
3b = 12.97 and E

(0)
6b /E

(0)
3b = 25.4. As

we will see, these ratios are substantially modified when a three-body force is included.

Now, we consider the model with both two- and three-body interaction. The pattern

of convergence for the ground and excited states of the A = 4, 5, 6 helium systems, using

the gaussian two-body potential plus the repulsive three-body potential with ρ0 = 14 a.u.,

is given in Table III. The maximum grand angular momentum considered is K = 40 for

A = 4, K = 24 for A = 5 and K = 22 for A = 6. As in the case in which only the

two-body force has been considered, in all of the three cases only two bound states appears,

one deep and one shallow very close to the A − 1 threshold. The ground state presents a

fast convergence with K and the accuracy can be estimate below 0.1 mK. The convergence

for the excited state is slower and, for the values of K considered, its accuracy is given at

the level of 3 mK. However, from the results it is well established that, with the value of ρ0
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considered, the excited state, E
(1)
Ab , is bound with respect to the A − 1 threshold. In fact,

for A = 4 the 3 + 1 threshold appears at 126.4 mK and the upper bound estimate for this

state is 129 mK. Its ratio E
(1)
4b /E

(0)
3b is 1.020. For A = 5 the 4 + 1 threshold appears at

568.8 mK and the upper bound estimate for the excited state is 575 mK. Its ratio E
(1)
5b /E

(0)
4b

is 1.011. For A = 6 the 5 + 1 threshold appears at 1326.6 mK and the upper bound

estimate for the excited state is 1350 mK. Its ratio E
(1)
6b /E

(0)
5b is 1.018. The ratio between the

trimer ground state and the ground states of the A = 4, 5, 6 systems are E
(0)
4b /E

(0)
3b = 4.5,

E
(0)
5b /E

(0)
3b = 10.5 and E

(0)
5b /E

(0)
3b = 18.5, respectively. These ratios are in good agreement

with those given in Refs. [25–27]. It is interesting to compare the results obtained using the

soft-core representation of the LM2M2 potential with the results of Refs. [16, 23] (quoted

in Table III) obtained using the original LM2M2 interaction. For the ground state the

agreement is around 2% for A = 4, 5 and around 1% for A = 6. The agreement is worst

for the excited state, however the results from Ref. [23] are obtained using approximate

solutions of the adiabatic hyperspherical equations.

The overall agreement for A = 4, 5, 6 between LM2M2 and soft potential gives a further

indication that at the LO in an EFT approach to the Efimov physics there is no need of a

four-body force; this is only a side observation which is not at all conclusive for the lack of

systematic study as a function of the cut-off.

Finally, we analyze modifications to the spectrum of the systems we have considered

when different values of W0 and ρ0 are used. The results are summarized in the four panels

of Fig. 2. The results for A = 3 can be extracted from Table II; the A = 3 ground state is

stable by construction, and small variations are observed for E
(1)
3b . As shown in Fig. 2a, E

(1)
3b

is always below the 2+1 threshold. For A = 4, see Fig. 2b, the excited state E
(1)
4b is above

the 3+1 threshold, and therefore not bounded for values of ρ0 < 7 a.u. For A = 5, Fig. 2c,

and A = 6, Fig. 2d, the corresponding excited states are above the 4+1 and 5+1 thresholds

for for values of ρ0 < 12 a.u., and ρ0 < 10 a.u., respectively. For A = 5, 6 the results for

the bound state present a bump with the smaller binding energy around ρ0 = 10 a.u.. At

ρ0 = 12 a.u. the excited states are all bound, the results for the universal ratios are shown

in Table IV for selected values of ρ0. It should be noticed that in the present analysis the

unitary limit is not completely reached since the ratio between the two-body effective range

and scattering length is r0/a ≈ 1/14. An analysis of the universal ratios as a function of a

is in progress.
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IV. CONCLUSIONS

In this work we have attached two different problems. From one side, we have studied

the possibility of calculating bound and excited states in a bosonic (atomic) system up to

A = 6 using the unsymmetrized HH expansion and considering soft two- and three-body

forces. On the other hand, the model has been constructed to approximate the description

of small helium clusters taking as a reference the results of the LM2M2 potential. These

two problems are related since the LM2M2 presents a strong repulsion at short distances.

Therefore, the possibility of using a soft-core representation of the original potential has

been analyzed in detail. In Ref. [18] bound states and low energy scattering states of the

trimer have been analyzed using the soft-core representation of the LM2M2. The results

obtained in that work were encouraging in the sense that they were found to be in close

agreement to those obtained using the original potential.

Here, we have extended the analysis to bigger systems. Therefore, the description of such

systems with sufficient accuracy is of the main importance. To this end, we have used a

method recently developed in Ref. [22] in which the HH basis is used without symmetriza-

tion of the basis states. The basis is complete and, when all basis elements are included

up to a certain maximum value of the grand angular momentum K, the eigenvectors re-

flect the symmetries present in the Hamiltonian. In the particular case here considered, the

eigenvectors have well defined symmetry under particle permutation and they can be orga-

nized as belonging to the different irreducible representations of the group of permutations

of A objects, SA. This simple fact has allowed to make an important statement regarding

the number of bosonic bound states present in the systems under study. After the direct

diagonalization of the A-body system we have analyzed the first three states for increasing

values of K. We have considered very extended basis, up to K = 40 for the A = 4 system

and K = 24 (K = 22) for the A = 5 (A = 6) system. This allowed to obtain converged

results for the first eigenvalues of the spectrum. The first two were symmetric states having

eigenvalues with energy below the continuum threshold (fixed by the lowest bound state in

the A−1 system) and therefore they represent true bound states. The third state was found

to belong to a mixed symmetry and results to be above the threshold. This was the case for

all the systems considered (A = 4, 5, 6) and it means that the next bosonic state has an en-

ergy above the mixed state and therefore it is not bound. Therefore we have unambiguously
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determined that these systems present only two bound states.

The two bosonic bound states has been studied for different values of the three-body

potential rage ρ0. This analysis is given in Fig. 2 where the position of the excited state

moves from unbound to bound as ρ0 increases. The particular case ρ0 ≈
√
2R is explicitly

given in Table II showing that in fact the excited state is slightly bound. Moreover, since the

He-He potential predicts a large two-body scattering length, we have studied the universal

ratios E
(0)
Ab /E

(0)
3b and E

(1)
Ab /E

(0)
(A−1)b. These ratios have been studied in detail in the A = 4

case (see Refs. [24, 26]). Estimates have also been obtained for bigger systems [27]. Our

calculations, obtained for one particular value of the ratio r0/a, are in agreement with those

ones. An analysis of the universal ratios as a → ∞ is at present under way.

Finally, we would like to discuss the quality of the description using the two- and three-

body soft-core-potential model. We observe a substantial good agreement, at the level of 2%

or better, for the ground states of the A-atom systems in comparison to the results of the

LM2M2 potential given by Lewerenz (Ref. [16]). The excited states have been calculated in

Ref. [23] though using a reduced Hilbert space. Comparing to those results we observe an

agreement around 5%. From this analysis we can conclude that a four-body force will have

effects beyond this level of accuracy. A deeper analysis in this subject is in progress.

V. APPENDIX

Following Refs. [22, 28], we present a brief overview of the properties of the HH basis

and its implementation without generating basis elements with well defined permutational

symmetry. This approach allows to avoid the complications of symmetry-adapted-basis

construction, and to easily treat permutational-symmetry-breaking terms [22, 29]

We start with the following definition of the Jacobi coordinates for an equal mass A body

system with Cartesian coordinates r1 . . . rA

xN−j+1 =

√

2j

j + 1
(rj+1 −Xj) , j = 1, . . . , N . (6)

For a given set of Jacobi coordinates x1, . . . ,xN , we can introduce the hyperradius ρ

ρ =

( N
∑

i=1

x2
i

)1/2

=

(

2
A
∑

i=1

(ri −X)2
)1/2

=

(

2

A

A
∑

j>i

(rj − ri)
2

)1/2

, (7)
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and the hyperangular coordinates ΩN

ΩN = (x̂1, . . . , x̂N , φ2, . . . , φN) , (8)

with the hyperangles φi defined via

xN = ρ cosφN

xN−1 = ρ sinφN cosφN−1

...

xi = ρ sin φN · · · sin φi+1 cosφi

...

x2 = ρ sinφN · · · sin φ3 cosφ2

x1 = ρ sinφN · · · sin φ3 sinφ2 .

(9)

The explicit expression for the HH functions, having well defined values of LM , is

YLM
[K] (ΩN) =

[

N
∏

j=2

Pαlj
,αKj−1

Kj
(φj)

]

[

Yl1(x̂1)⊗Yl2(x̂2)|L2
. . .⊗YlN−1

(x̂N−1)|LN−1
⊗YlN (x̂N)

]

LM

,

(10)

with the indicated coupling scheme. The hyperspherical polynomial is

Pαlj
,αKj−1

Kj
(φj) = N αlj

,αKj
nj (cosφj)

lj (sinφj)
Kj−1P

αKj−1
,αlj

nj (cos 2φj) . (11)

The set of quantum numbers [K] includes the n2 . . . nN indices of the Jacobi polynomials,

the l1 . . . lN angular momenta of the particles and the intermediate couplings L2 . . . LN−1.

The Kj quantum numbers are defined as

Kj =

j
∑

i=1

(li + 2ni) , n1 = 0 , K ≡ KN , (12)

K ≡ KN is known as the grand angular momentum, and N αβ
n is a normalization factor. For

the definition of the αa, where a can be either an angular momentum lj or a quantum number

Kj , one needs to introduce the hyperspherical-binary-tree structure [30]. For example the

tree of Fig. 1 corresponds to the choice of hyperangles given by Eq. (9), in which the

coefficients specializes to αKj
= Kj + 3j/2− 1 and αlj = lj + 1/2.

Hyperspherical functions constructed using different hyperspherical-coordinate definitions

can be related using the T -coefficients [31, 32]. Schematically, these coefficients relate the

12



following tree structures

li li−1 Ki−2

φi

φi−1

Ki−1

Ki

=

Ni
∑

ñi−1=0

T αKi−2
αli−1

αli

ni−1ñi−1Ki

li li−1 Ki−2

φi

φ̃i−1

K̃i−1

Ki

. (13)

Here Ki = Ki−1+ li+2ni = K̃i−1+ li+2ñi The explicit definition of the coefficients is given

in Ref. [22]. Let us call YLM
[K] (Ω

i
N) the HH basis element constructed in terms of a set of

Jacobi coordinates in which the i-th and i+1-th Jacobi vectors results from the transposition

between particles j, j + 1

x′

i = −1

j
xi +

√

(j + 1)2 − 2(j + 1)

j
xi+1

x′

i+1 =

√

(j + 1)2 − 2(j + 1)

j
xi +

1

j
xi+1 ,

(14)

with all the other vectors equal to the original ones (transposed basis). The coefficients

Ai,LM
[K][K ′] =

∫

dΩN [YLM
[K] (ΩN )]

∗YLM
[K ′](Ω

i
N) , (15)

are the matrix elements of a matrix ALM
i that allows to express the transposed HH basis

elements in terms of the reference basis. The coefficients Ai,LM
[K][K ′] form a very sparse matrix

and they can be calculated analytically using the T - coupling coefficients and the Raynal-

Revai matrix elements [22] . A generic rotation between the reference HH basis and a basis

in which the last Jacobi vector is defined as x′

N = rj − ri can be constructed as successive

products of the Ak,LM
[K][K ′] coefficients. Defining YLM

[K] (Ω
ij
N ) the HH basis element constructed in

terms of a set of Jacobi coordinates in which the N -th Jacobi vector is defined x′

N = rj − ri,

this coefficient can be given in the following form

Bij,LM
[K][K ′] =

∫

dΩ[YLM
[K] (ΩN )]

∗YLM
[K] (Ω

ij
N) =

[

ALM
i1

· · ·ALM
in

]

[K][K ′]
. (16)

The particular values of the indices i1, . . . , in, labelling the matrices ALM
i1 , . . . ,ALM

in , depend

on the pair (i, j). The matrix

BLM
ij = ALM

i1
· · ·ALM

in , (17)

is written as a product of the sparse matrices ALM
i ’s.

13



We consider now the potential energy of an A-body system constructed in terms of two-

body interactions

V =
∑

i<j

V (i, j) . (18)

In terms of the HH basis it results

∑

ij

Vij(ρ) =
∑

ij

[BLM
ij ]t V12(ρ)BLM

ij . (19)

where the matrix elements of the matrix V12(ρ) are defined as

V
(1,2)
[K][K ′](ρ) = 〈YLM

[K] (ΩN )|V (1, 2)|YLM
[K ′](ΩN )〉 =

δl1,l′1 · · · δlN ,l′
N
δL2,L′

2
· · · δLN ,L′

N
δK2,K ′

2
· · · δKN ,K ′

N

×
∫

dφN(cosφN sin φN)
2 PαlN

,αKN−1

KN
(φN) V (ρ cosφN)P

αlN
,αKN−1

K ′

N
(φN) .

(20)

Each term of the sum in Eq.(19) results in a product of sparse matrices, a property which

allows an efficient implementation of matrix-vector product. This procedure can be easily

extended to spin-dependent potentials [33].

We now consider a three body force depending on the hyperradius ρijk of a triplet of

particles ri, rj, rk,

V (3) =
∑

i<j<k

W (ρijk) . (21)

The term in which i, j, k ≡ 1, 2, 3 verifies ρ2123 = x2
N + x2

N−1. It can be calculated on a

hyperspherical-basis set relative to an non-standard hyperspherical tree with the branches

attached to leaves xN and xN−1 going to the same node. The transition between the two

hyperspherical sets is given by the T -coefficients

YLM
[K] (ΩN ) =

∑

ñN−1

T αKN−2
αlN−1

αlN

nN−1 ñN−1 K YLM
[K̃]

(Ω̃N) , (22)

where all the variable with the tilde refer to the non-standard tree. With this choice we

simply have

ρ123 = ρ cosφN , (23)

and the fixed-rho matrix elements reads

〈YLM
[K̃ ′]

(Ω̃N)|W (ρ)|YLM
[K̃]

(Ω̃N )〉 = δl′
1
,l1 · · · δl′N ,lN δL′

2
,L2

· · · δL′,LδM ′,MδK̃ ′

2
,K̃2

· · · δK̃ ′

N−1
,K̃N−1

∫

(cosφN)
4(sinφN)

3N−8dφN P
α
K̃N−1

,αKN−2

K ′ (φN)P
α
K̃N−1

,αKN−2

K (φN)W (ρ cosφN) .
(24)
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The three-body force matrix W (ρ) is extremely sparse, and it is diagonal on all quantum

numbers but the grand-angular momentum. Finally the matrix W (ρ) in the standard basis

is obtained by means of the T -coefficients

〈YLM
[K ′](ΩN )|W (ρ)|YLM

[K] (ΩN)〉 =
∑

ñN−1

T αKN−2
αlN−1

αlN

n′

N−1
ñN−1 K ′ T αKN−2

αlN−1
αlN

nN−1 ñN−1 K 〈YLM
[K̃ ′]

(Ω̃N)|W (ρ123)|YLM
[K̃]

(Ω̃N )〉 .

(25)

In order to calculate the other terms of the three-body force, we use the matrices ALM
p ,

defined in Eq. (15), that transpose particles; with a suitable product of these sparse matrices

DLM
ijk = ALM

p1 · · ·ALM
pm , (26)

we can permute the particles in such a way that xN = ri − rj, and xN−1 = 2/
√
3(rk − (ri +

rj)/2), and ρ2ijk = x2
N−1 + x2

N , and the total three-body force reads

V (3) =
∑

i<j<k

[DLM
ijk ]tW (ρ)DLM

ijk . (27)
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[2] Wieland Schöllkopf and J. Peter Toennies, “The nondestructive detection of the helium dimer

and trimer,” J. Chem. Phys. 104, 1155 (1996).
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TABLE I. The ground state E
(0)
3b and the excited state E

(1)
3b of the helium trimer calculated with

the LM2M2 potential, with its gaussian representation and with the gaussian potential plus the

three-body potential. In this case the two parameters, the strength W0 and the range ρ0 are given.

potential E
(0)
3b [mK] E

(1)
3b [mK]

LM2M2 [11] −126.4 −2.265

gaussian −150.0 −2.467

(W0 [K], ρ0 [a.u.])

(306.9, 4) −126.4 −2.283

(18.314, 6) −126.4 −2.287

(4.0114, 8) −126.4 −2.289

(1.4742, 10) −126.4 −2.292

(0.721, 12) −126.4 −2.295

(0.422, 14) −126.4 −2.299

(0.279, 16) −126.4 −2.302
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TABLE II. A = 4, 5, 6 binding energies of the ground and the first two excited states for increasing

values of the grand-angular-quantum number K using the gaussian potential.

K E
(0)
4b [mK] E

(1)
4b [mK] E

(2)
4b [mK] E

(0)
5b [mK] E

(1)
5b [mK] E

(2)
5b [mK] E

(0)
6b [mK] E

(1)
6b [mK] E

(2)
6b [mK]

0 725.98 31.688 1913.0 642.84 3773.1 2010.7

2 725.98 31.688 1913.0 642.84 314.15 3773.1 2010.9 1626.5

4 746.45 77.971 1941.2 746.01 400.95 3807.6 2140.1 1719.3

6 750.15 107.63 1944.1 778.79 516.60 3809.9 2166.2 1840.5

8 751.06 124.48 2.5177 1945.0 802.47 571.03 3810.8 2188.6 1882.5

10 751.28 135.94 29.401 1945.2 813.88 608.58 3810.9 2196.4 1909.0

12 751.35 144.17 50.336 1945.2 820.87 634.25 3810.9 2200.8 1923.4

14 751.37 149.30 66.672 1945.2 824.84 653.19 3810.9 2202.7 1931.9

16 751.37 152.98 79.082 1945.2 827.23 657.59 3810.9 2203.6 1936.5

18 751.38 155.54 89.069 1945.2 828.67 678.86 3810.9 2204.0 1938.7

20 751.38 157.43 97.021 1945.2 829.58 687.87 3810.9 2204.1 1939.7

22 751.38 158.76 103.54 1945.2 830.15 695.23 3810.9 2204.2 1940.0

24 751.38 159.77 108.90 1945.2 830.50 701.29

26 751.38 160.53 113.38

28 751.38 161.10 117.16

30 751.38 161.54 120.37

32 751.38 161.89 123.13

34 751.38 162.15 125.52

36 751.38 162.37 127.60

38 751.38 162.53 129.42

40 751.38 162.67 131.02
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TABLE III. A = 4, 5, 6 binding energies of the ground and first excited state for increasing values

of the grand-angular-quantum number K. The three-body force parameters are ρ0 = 14 a.u. and

W0 = 0.422 K.

K E
(0)
4b [mK] E

(1)
4b [mK] E

(0)
5b [mK] E

(1)
5b [mK] E

(0)
6b [mK] E

(1)
6b [mK]

0 538.93 4.557 1288.1 365.1 2293.8 1109.9

2 538.93 4.557 1288.1 365.1 2293.8 1109.9

4 561.69 40.29 1319.6 460.4 2331.8 1237.3

6 566.68 67.47 1324.4 497.6 2336.6 1273.0

8 568.21 84.22 1326.1 527.0 2338.4 1307.7

10 568.58 96.04 1326.5 542.7 2338.7 1323.1

12 568.73 105.30 1326.6 554.0 2338.8 1334.4

14 568.77 111.17 1326.6 561.0 2338.9 1340.9

16 568.78 115.58 1326.6 565.9 2338.9 1345.3

18 568.79 118.78 1326.6 569.3 2338.9 1348.2

20 568.79 121.20 1326.6 571.8 2338.9 1350.2

22 568.79 122.98 1326.6 573.6 2338.9 1351.6

24 568.79 124.38 1326.6 574.9

26 568.79 125.47

28 568.79 126.33

30 568.79 127.02

32 568.79 127.57

34 568.79 128.02

36 568.79 128.40

38 568.79 128.70

40 568.79 128.96

Ref.[16] 558.4 1302.2 2319.4

Ref.[23] 559.7 132.6 1309.3 597.1 2329.4 1346.7
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TABLE IV. The ratios E
(0)
Ab /E

(0)
3b and E

(1)
Ab /E

(0)
(A−1)b as a function of the three-body cutoff ρ0.

ρ0 [a.u.] E
(0)
4b /E

(0)
3b E

(1)
4b /E

(0)
3b E

(0)
5b /E

(0)
3b E

(1)
5b /E

(0)
4b E

(0)
6b /E

(0)
3b E

(1)
6b /E

(0)
5b

12 4.47 1.01 10.33 1.001 18.12 1.005

14 4.50 1.02 10.50 1.011 18.50 1.018

16 4.54 1.03 10.70 1.021 19.06 1.029
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FIG. 1. Hyperspherical tree corresponding to Eq.( 9)

23



-0.127

-0.126

-0.125

4 6 8 10 12 14 16

ρ0 [a.u.]

-0.002

-0.001

0.000

a)

E
[K

]

E
(0)
3b

E2b

E
(1)
3b

-0.575

-0.570

-0.565

-0.560

4 6 8 10 12 14 16

ρ0 [a.u.]

-0.135

-0.130

-0.125

-0.120

b)

E
[K

]

E
(0)
4b

E
(0)
3b

E
(1)
4b

-1.36

-1.34

-1.32

-1.30

-1.28

4 6 8 10 12 14 16

ρ0 [a.u.]

-0.60

-0.58

-0.56

-0.54

-0.52

c)

E
[K

]

E
(0)
5b

E
(0)
4b

E
(1)
5b

-2.44
-2.40
-2.36
-2.32
-2.28
-2.24

4 6 8 10 12 14 16

ρ0 [a.u.]

-1.40
-1.36
-1.32
-1.28
-1.24

d)

E
[K

]

E
(0)
6b

E
(0)
5b

E
(1)
6b

FIG. 2. Ground- and excited-state energies of the A = 2, 3, 4, 5, 6 systems as a function of ρ0.

In panel a) we report the ground- and excited-state energy of A = 3 system together with the

ground-state energy of A = 2; for all of the values of ρ0 we have considered, the excited A = 3

state is bounded. In panel b) we report the ground- and excited-state energy of A = 4 system

together with the ground-state energy of A = 3; the excited A = 4 state is bounded for ρ0 > 7.

In panel c) we report the ground- and excited-state energy of A = 5 system together with the

ground-state energy of A = 4; the excited A = 5 state is bounded for ρ0 > 12. In panel d) we

report the ground- and excited-state energy of A = 6 system together with the ground-state energy

of A = 5; the excited A = 6 state is bounded for ρ0 > 10.
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