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Minkowski famously introduced the concept of a space-timetiouum in 1908, merging
three dimensional space with an imaginary time dimensipresented bict, a framework
which naturally produced the correct spacetime intexval c?t2, and the results of Ein-
stein’s theory of special relativity. As an alternative tankbwski space-time, we replace
the unit imaginary = +/—1, with the Clifford bivecton = e;e, for the plane, which also
has the property of squaring to minus one, but which can daded without the addition
of an extra dimension, as it is a natural part of Clifford’'alr€artesian-type plane with
the orthonormal basig, ande,. We find that with the ansatz of spacetime represented by
a Clifford multivector, the spacetime metric and the Loretnéansformations, follow im-
mediately as properties of the algebra. Based on the steuofithe multivector, a simple
semi-classical model is also produced for representingiveparticles, giving a new ef-
ficient derivation for Compton’s scattering formula. Wecald a new perspective on the
nature of time, now appearing as the bivector of the plane.

Keywords: Special Relativity, Geometric algebra, Clifford algebra, L orentz transformation,
Minkowski

1. Introduction

It has been well established experimentally that the Largnansformations, provide the
correct translation of space and time measurements frormernigl frame of reference to
another. They were initially developed rh;L_[;|904¢ gmeviously b@t?]
[Ernst and Hsu, 2001], to explain the null result of the Misioa-Morley experiment, by
proposing a length contraction of a laboratory frame ofnegfee moving with respect to
a hypothetical aether. Einsteln [1905] however, rederthedransformations on the basis
of two fundamental postulates, of the invariance of the lafyshysics and the invariance
of the speed of light, between inertial observers, thusieliting the need for an aether.
Minkowski in 1908, also derived the Lorentz transformasiémom a different perspective,
by postulating a spacetime continuum, from which the resoftspecial relativity also
naturally followed [Sexl and Urbantke, 2001]. From an aitgive perspectivéfzy@an
[@] showed that preserving causality was sufficient guemthat the coordinate trans-
formations are the Lorentz transformations, along withreatiant maximum speed.
Though Einstein is credited with the definitive explanatainthe Lorentz transfor-
mations via his two postulates, Minkowski’s alternativgpagach had far-reaching impact
[Goenner et al., 1999], as it provided a general structuresgacetime within which the
laws of physics could be described. To achieve this he fiisthpduced the concept of
a uniform four-dimensional space time continuum with thpested Euclidean distance
measurgAs)? = (Axy)? + (Axp)? + (Axz)? + (Axq)?, but wherex, = ict, borrowing the
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idea of imaginary time proposed by Poincaré, whiere/—1 is the unitimaginary, which
thus allowed one to view space time as a conventional Ewlidpace, while still recov-
ering the required distance meas(is)? = (Ax1)? + (Axz)? + (Axg)? — c?(At)?. This idea
was received favorably by Einstein, and by the wider sdientommunity at the time
[Einstein and Lawson, 1921], but more recently, with theirdet® remain consistent with
the real metric of general relativity [Taylor and Wheele®66,| Misner et al., 1973], the
unit imaginary has been replaced with a four dimensionatimsignature(+,+,+,—),
because it is more easily extended to a general real meftricuiwed four-dimensional
space.

In this paper, we follow Minkowski's approach, but we poatelan alternate spacetime
framework, which is provided by the multivector of a two-@insional Clifford algebra.
Clifford algebra has been used previously to describe sipaedHestenes, 1999, 2003,
PPavsit 4], however these approaches retain a fourrdiomal spacetime framework
with an associated metric structure, whereas our appraaghres a minimal two dimen-
sional Euclidean space, without the need for a metric foncts it arises naturally from
the properties of the multivector. In this approach, spealiff, we replace the unit imagi-
nary of Minkowski, with the Clifford bivectoe; e, of the plane defined by the orthonormal
vectorse; andey, which also has the property of squaring to minus one. Thecbor
however has several advantages over the unit imaginarkain firstly, it is a composite
algebraic component of the plane, and so an extra Euclidea@ndion is not required,
and secondly, the bivector is an algebraic element embeiddedtrictly real space, and
hence consistent with the real space of general relatiigyfind that we are able to adopt
Clifford’s geometric algebra of two-dimensions as a suéatigebraic framework, because
the Lorentz transforms of special relativity act on just plagallel and perpendicular com-
ponents of vectors relative to a boost direction, thus dafiai two-dimensional space.

Clifford’s geometric algebra was first published in 1873geexling the work of Grass-
man and Hamilton, creating a single unified real mathemldtiamework over Cartesian
coordinates, which naturally included the algebraic prtge of scalars, complex num-
bers, quaternions and vectors into a single entity, cafledrultivector[Doran and Lasenby,
]. We find that this general algebraic entity, as partrefeh two-dimensional algebra,
provides a natural alternative to Minkowski spacetime.

(a) Clifford’s algebra of the plane
In order to represent the plane, Clifford defined two algebelements; andey, with
€ =e =1, andeje, = —evey, (1.1)

where we note that the composite elemente; & is defined as anticommutinig [Doran and Lasenby,
], and therefore squares to minus one, thatis, (e16,)? = e1ee16) = —€1€1626) =

—1, and can be used to replace, the unit imaginary. A geneifédi@ multivector for the

plane can be written by combining the algebraic elements, as

a+ X161 + %€ + 1 b, 1.2)

wherea andb are real scalarss = x1€1 + X6 represents a Cartesian vector, wxthx,
real scalars, andis the bivector. We notice, that the multivector, encapssla complex-
like numbera+- b, but also includes the vecter, thus producing a generalization of a
complex number. Thus we have defined an associative butmmmating algebra in order
to describe the plane.
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Multivector Spacetime 3

(i) Geometric product

A key property of Clifford’s algebra, is given by the prodac¢two vectors. Given the
vectorsu = uje; + Upe; andv = vie; + ey, then using the distributive law for multiplica-
tion over addition, as assumed for an algebraic field, we find

uv = (Ure1 + Uzep)(V1e1 + Va€2) = Ugvi + UgVo + (UgVe — Vilo)er ey, (1.3)

using the properties defined in Ef.{1.1). We identify; + upv, as the dot product and
(u1v2 — viUp)er e as the wedge product, giving

uv=u-v+UAv. (1.4)

Hence the algebraic product of two vectors produces a suheafat and wedge products,
with the significant advantage that this algebraic prodwet has an inverse operation.
For G andV unit vectors, givingl -V = cosf andd AV = 1 sin8, we therefore havév =
cosf +1sinf, wheref is the angle between the two vectors.

We can see from Eq_(1.4), that for the case of a vector midtidy itself, that the
wedge product will be zero and hence the square of a veéterv-v = V%+V%, becomes
a scalar quantity. Hence the Pythagorean length of a vez®miplyv/v2, and so we can

find the inverse vector v
-1

=5 (1.5)

That is, the reciprocal of a Clifford vector is simply a vecidgth the same direction, and
the inverse length.

2. Clifford multivectorsasa framework for space and time

After inspecting Minkowski's definition of spacetime coordtes and Eq[{112), we are
therefore led to describe spacetime events as the muttivditterence

AX = AX1€1 + AXo€p + 1 CAt = AX + 1CAL, (2.2)

with Ax representing the change in position vector in the plané\anepresents the change

in observer time, where we restrict our analysis to two-digienal space. This is without
loss of generality, however, as we can always re-orientateptane, to lie in the plane

of the relative velocity vector between the frames. Therprigtation of the coordinate
change in Eq[{211), is the same as conventionally intezfréiaylor and Wheelefr, 1966],
representing an observer moving through a preconfiguremiowie system, which at each
point has a properly synchronized clock, from which the mgwbserver can read off the
other frames local timé and positionx. An example on the use of the multivector in
Eq. (2) is applied tar"-meson decay in Sectigi 3. We then find the spacetime interval
to be

(DX)? = (AX 4 1CAL) (AX + 1CAL) = (AX)? — C2(At)? + CALAXI + CAtI AX = (AX)? — G2 (At)?,
(2.2)
using the fact thaf\x and 1 anticommute, becauseanticommutes witte; ande,, and
12 = —1, giving the correct spacetime interval. We notice herevanédiate simplification
through use of the multivector, in that we are not requireditfine the dot productin order
to calculate the metric, but it is produced directly by siynpdjuaring the multivector. For
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the rest frame of the particle, that is, not moving with respe the chosen frame, we have
(AXp)? = —c?(AT)?, where we define in this casdo represent the proper timeof the
particle. We have assumed that the spesdhe same in the rest and the moving frame, as
required by Einstein’s second postulate. Now, if the spaeinterval defined in Eq(2.2)

is invariant, which we demonstrate in a later section udigttansformations defined by
Eq. (2.17), then we can equate the rest frame interval to theng frame interval, giving

A2(AT)? = P(At)2 — (Ax)? = ¢?(At)? — v3(At)? = c?(At)? <1 V—Z) (2.3)
)’ '

with Ax = vAt, and hence, taking the square root, we find the time dilatdtiomula

At = yAT where
1

= V1-vZ/cz

From Eq.[[2.]1), we can now calculate the proper velocityuftothe differential form
of Eq. (Z.1) with respect to the proper time difference, mivihe velocity multivector

(2.4)

dX dxdt dt
:EZEEJHCE:VHWC, (2.5)

where we useft = y andv = &. We then find

1
2 2 2 2 2
U :(W+VIC) <T2/C2> (V 70):7C. (26)
We define the momentum multivector
P:mU:yrrN+lymCzp+l%, (2.7)

with the relativistic momentum = ymv and the total energlg = ymc.
Now, asU? = —c?, thenP? = —m?c? is an invariant describing the conservation of
momentum and energy, which gives

P2c? = p?c? — E? = —n?c?, (2.8)

or E? = mPc* 4 p?c?, giving the standard relativistic expression for the covetion of
momentum-energy. Employing the de Broglie relatipns hk andE = hw, we find using
Eqg. (2.7), the wave multivector

P w
K=—==Kk+1—. 2.
F +1 c (2.9)
Similarly then we have
w2 1
KZ=k?-= =—=5 2.1
Z = (2.10)

giving the correct dispersion relation for a wave which igtigistically invariant, where
Ac= mﬂc is the reduced Compton wave length. That is, we have a phésstyer, = \TW\ =
c /1+ ﬁ@ and the group velocityg = 4 = Vﬁp We now find the dot product of the wave

and spacetime multivectoks- X = k - x — wt, giving the phase of a traveling wave.
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Multivector Spacetime 5

(a) Rotations in space

Euler’s formula for complex numbers, carries over uncharfge the bivecton, with
which we define a rotor
R=cosf+sing=¢?, (2.11)

which produces a rotation b§ on theeje, plane, in the same way as rotations on the
Argand diagram. For example, for a unit vector e; along thee; axis, acting with the
rotor from the right we find/R = e;(cosf + 1 sinf8) = cosfe; + e;sind, thus describing
an anti-clockwise rotation b. If we alternatively act from the left with the rotor, we will
find a clockwise rotation b¥.

However, we now show, that a rotation can be described marerghy as a sequence
of two reflections. Given a vectar; normal to a reflecting surface, with an incident ray
given byl, then we find the reflected r >hby, 2003]

r=-—n1ln;. (2.12)
If we apply a second reflection, with a unit nornmal then we have
r =nanilnin, = (cosd — 1sin@)l(cosh +1sin@) = e '°1e?, (2.13)

using Eq.[(T:¥) for two unit vectors. If the two normalsandn; are parallel, then no rota-
tion is produced. In fact the rotation produced is twice thgla between the two normals.

Hence rotations are naturally produced by conjugation revfifeve seek to rotate a
vectorv by an angled, we calculate

vV =g '0/2yg0/2, (2.14)

which rotates in an anticlockwise direction. The rotatiomiula in Eq.[[Z.14) above, can
in two-space, be simplified to a single right acting operates ve'®. However this simpli-
fication is only possible in two-dimensions for the specade of rotations on vectors, and
will not work on other algebraic elements or in higher diniens, and hence Eq._(2114) is
the preferred way to apply operators such as rotors on \&atat multivectors.

(b) The Lorentz Group

We found that the exponential of the bivectdf edescribes rotations in the plane,
as shown in Eq[{2.14), however, more generally, we can dé&fmexponential of a full
multivectorM defined as in Eq[{1]2), by constructing the Taylor series

2 3
eM:1+M+M—+M—+... (2.15)

21 3!
which is absolutely convergent for all multivectdvs[mw% Also, for multi-
vectorsM, N, we have ¥eN = M*N if and only if MN= NM, and because of the closure
of multivectors under addition and multiplication, we skattthe exponential of a multi-
vector, must also produce another multivector, and we fimdact, a unique multivector
N =M, for each multivectom M@QL The inverse operation, that is, findiag th
logarithm ofN, is not always defined, for example, fdra pure vector, then an exponential
form does not exist. However as noted in Eq. (P.12), acting wector by conjugation with
a vector produces a reflection, which is not part of the homegas Lorentz group.
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6 J. M. Chappell et. al.

To simplify notation mmﬂ we will dispense withethotationAX describing
a change in observer coordinates, and simply assume thedthdinate systems coincide
att =t = 0 with x = x’ = 0, so that we can write this change as simjlySo, selecting
transformations that leave the spacetime interval givexidoy: (AX)?, defined in Eq(212),
invariant, defines the homogeneous Lorentz group. For tHevector M = a+ @V -+ 10,
we define the dagger operatidh’ = a— @0 — 16, we firstly find for a general rotation
M, that &M’ = @a++10ga- 9910 _ aghi+10g-97-16 _ ¢2a g gcalar, but in order to
not rescale the space we require- 0. Hence looking at all transformations of the form
eM — e#¥+18 acting by conjugation, we find

X2 = MM eMxeM’ — Mx2eM’ = x2, (2.16)

using associativity and the fact th&té" = 1, and thak2 is a scalar as shown in EG_(2.2),
and so unaffected by boosts and rotations. Hence all tramsf®ns of the form

g0 (2.17)

will leave the spacetime interval invariant, and so defihediomogeneous Lorentz group.
Hence we see that the operator defined by Eq.12.17), willlehe spacetime interval
unchanged, confirming th&f\x)? — c2(At)? is an invariant, as assumed in Eg.{2.3).

(i) Spacetime boosts

Using the first component of the homogeneous Lorentz grotipetein Eq. [2.117),
operators of the form®, where the vectov = vie; + Vo6&, — @V, wherev is a unit vector,
with U2 = 1, we find

o % .
e‘”":1+¢O+g+%+%+---:coshp—i—\”/smh(p. (2.18)
Also, defining an orthogonal vector togiven byw = v, then we findw? = (1v)? = v2,
and therefore®Y = coshp + 1Vsinhg.

So applying the exponential operator to the general spaeetéctoX = x+ 1ct, using

the transformation
X' = e '0/2Xe9/2, (2.19)

then in thel = e, direction, for example, we find the transformed spacetinmedioates

X = e*’%p(xelerngrlct)e’%p (2.20)
= e2x1e + X6 + 1 cte?2
= (coshgxy — ctsinh@)e; + X2e2 4 1 (ctcoshp — sinhgxy ),

which is the conventional Lorentz boost, in terms of thedépip, defined by tanlp=v/c,
which can be rearranged to give cask y and sinhp = yv/c. Substituting these relations
we find

VX

X' = V(Xl—\’t)el‘i‘XZeZ‘HV(Ct_?l)v (2.21)
which thus gives the transformatiah= y(x1 — vt), X, = X, andct’ = y(ct — %), the cor-
rect Lorentz boost of coordinates. The formula in Eq._(RcE®) be simply inverted to give

Article submitted to Royal Society



Multivector Spacetime 7

X = €%0/2X'e~199/2  ysing the fact that'&/2e~'9%/2 — &0 — 1. The relativity of simul-
taneity is a fundamental result of special relativity, arahf the perspective of the Clifford
multivector Eq.[[Z11), we see that it stems from the fact,tating a boost operation, the
terms for space; ande, become mixed, resulting in the bivector teegg,, thus creating
a variation in the observers time coordinate. Similarly ii@mentum multivector, shown
in Eq. [2.7), will follow the same coordinate transformatlaw between frames shown in
Eq. (Z19), with? = e '79/2pgl¥9/2,

We find that the Lorentz boost of electromagnetic fields, gmepd to coordinates, is
similar to Eq. [2.IB) above, except that we omit thigivector in the exponent, that is we
are boosting in a perpendicular direction. Given an eledigld asE = Exe; + Eye, then
applying the boost according to E. (2.14), using as an el@thp exponentiation of a
vectorv — ey, in thee; direction, we find

Yo _ g
e 2Ee2

2
Exer + Eyeo (coshp + e sinhg)
Eyw

= EBEe+ VEyez—elezT,

(coshg — elsinhqo) (Exer + Eye) <cosh§ + elsinhg> (2.22)

which are the correct Lorentz transformations for an etentignetic field. That is, the
parallel field is unaffected, the perpendicular fiédghas been increased y&, and the
terme;eEyyv/c, represents thee, plane, also describable with an orthogonal veetor
in three-space, hence this term gives the expected induagdetic fieldBs,.

Hence the exponential map of a Clifford vector, naturallydarces the correct Lorentz
transformation of spacetime coordinates and the elecigosti field in the plane, using
the spacetime coordinate multivector given by Hqg.1(2.1) tredfield multivectorF =
E+1cB

(i) Velocity addition rule

If we apply two consecutive parallel boostg, = viV — @V andvy = ol — @V,
where tantp = £, we have the combined boost operation

el — (ate)V, (2.23)
Hence we have a combined boost velocity

tanhg, + tanhg, V1 + V2
v =ctan = =
Mo+ ¢2) 1+tanhgtanhg 1+ viv,/c?’

(2.24)

the standard relativistic velocity addition formula. Bgpection, the velocity addition for-
mula implies that a velocity can never be boosted past thedspavhich confirmsc as a
speed limit.

Hence, we have now demonstrated from the ansatz of the gpacebordinate de-
scribed by the multivector shown in Ef._(R.1), that we pradtie correct Lorentz trans-
formations, where the variabtds indeed found to be an invariant speed limit. Numerically
thereforec can be identified as the speed of light, since this is the onwk physical
object which travels at a fixed speed and represents a uaisrsed limit.
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8 J. M. Chappell et. al.

3. Applications
(a) m"-meson decay

A classic example of experimental proof for the special thied relativity is its ap-
plication to the decay ofr"-mesons, which are observed to enter the atmosphere at high
velocity v from outer space, having a known decay time at rest;of 2.55x 108 s,
giving a spacetime coordinate ¥f= ic1;. Boosting these coordinates to the-meson
velocity, we have a boost¥/2, where tankp = v/c, so we therefore find

X' =RXR = e 'Y9/21c1e"%/2 = 1€/ %% = 1cTr(CoShp + 1USiNhg) = WTr+ 1 YCTyr.

(3.2)

So that we have a decay time in laboratory coordinates ef yct,;, with a track length in
the laboratory ok = 1y, in agreement with experimental determinati@éﬁl

(b) Thomas rotation

It is known, that a surprising result occurs when we apply hea-parallel boosts,
followed by their inverse boosts, in that the velocity of freeme does not return to zero.
Furthermore, there is a rotation of the frame, called therid&®rotation, a result, in fact,

not noticed until 1925 [Taylor and Wheeler, 1966].

For the case of two consecutive general boosts given by

R— efzqozvz/zeﬂ(pl\?l/z — eﬂ(a;f/c/zefle/z7 (3_2)

where we use the results from the Appendix A, to write thieimts of a single combined
boost@.V; and a rotatiord, finding, using the results from the Appendix A,

¢ 6 sindsinh% sinh%2
an— =
2 cosdsinh% sinh% — cosh% cosh% ’

(3.3)

whered is the angle between the boost directions, given bydced/; - V,. Hence we can
see that only for parallel boosts, thatds= 0, will there not in fact be a Thomas rotation
0, of the frame.

We can also write the Thomas rotation as a single exponaitiamultivector

R— e*lcﬂ\*/t/Z*lﬂt/Z, (3.4)

using the results of the Appendix B. Hence the homogeneotento group defined by
Eg. (217), naturally encompasses the rotations, boosdt3laomas rotations of frames.

(c) Acircle as seen by a moving observer

We locate a circle on the plane, centered a unit distancegalme, axis, seen by a
static observer located at the origin as

X = sinBe; + cosbe,, (3.5)
which forms a position multivector representing the edge

X =x+i1ct=ctk+1ct, (3.6)
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Multivector Spacetime 9

where we have written the position vector, representingaqgyhtrajectory traveling from
the circle ax = ctX, assuming propagation at the speed,ah the directionk. We also
have a moving observer at the origin, with a bdRst €€.%/2, where tankp = v/c.

Hence we find the new position of the circle, from the boostaatdinates as

X" = RXR (3.7)
cte'®1?/2sinBee'©19/2 1 ctcoshe, + cte &9/ g e ?/2
= ct(sinBcoshp+ sinhg)e; + ctcosbe, + 1 ct(sinB sinh@ -+ coshy).

For light, we require< = ct and hence from Eq[(3.7), by equating teand coeffi-
cients, we requirgct(sin coshg + sinhg)e; + ctcosfe;| = |ict(sindsinhg + coshy)|,
and hence the light rays follow the unit vector

N (sin@ coshp+ sinhg)e; + cosbe,

= e - 3.8
sin@ sinhg+ coshy (3.8)

If we consider the vectan = &, + sinh@pcosbBe;, then
m-X = cosha cosf, (3.9)

which shows thain points towards the center of the moving circle. If we now naline

m, we find
cos6 coshg

\/1+sint? pcog O

or tand’ = %. Hence the circle appears to shrink, although still appasuscircle.

For example, the diameter of the moon is approximatély=20.5 degree, but if the
earth was moving at half the speed of light relative to the madlat is tankp = 0.5, then
using Eq.[(3.10), its diameter would appear to shrink dowa&o= 0.435 degrees, or to
87% of its original size.

As we are working with a two-dimensional Clifford algebrag wan only make con-
clusions about observations in the plane, although it waschy! Penro$ 9] that a
sphere will also remain a sphere in this situation.

m-%X =coso’ =

(3.10)

(d) Modeling fundamental particles as multivectors

The multivector defined in EJ.(2.1), will now be used as a@spntation for individual
particles, from which the results of special relativitycbuwas Lorentz contraction and time
dilatation, also arise.

Using the multivector defined in EJ._(2.9), we can define aiglarmoving with a
velocity v, given by

P:ﬁk+:yﬁ—:b, (3.11)
wherehk = ymv. As expected the momentum multivector is invariant betwieential
frames withP? = —mc, in agreement with Eq[{2.8). For a particle at rest, we tioeee

haveR, = l% =1 ﬁT‘”O where we use the de Broglie relation between total enErgyd the
frequencyE = how, to find
mé
W= —=.

- (3.12)
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10 J. M. Chappell et. al.

Integrating the momentum multivector with respect to theger timer, remembering that
dt = ydt, and dividing by the rest masswe find

h6o
Xl =X+ B, (3.13)

wherewy = d(fto and the constant of integration being zero as wexset0 andfy = 0 at
T = 0. Inspecting the bivector component, we find
mc
AcdBy = Acwodt = (mc) ( h_ >dt cdt, (3.14)

showing that the local time of the particle can be identifiedree phase of the de Broglie
wave, withdt = (’\—CC) dép.

The form of the multivector naturally leads to a model for #iectron, analogous to
a zitterbewegungnodel, first described by Schrodinger [1930], an effect eawensively
verified by experiment, [Wunderlich, 2010, Gerritsma et2010, Zawadzki and Rusin,
lzTﬂ] Thezitterbewegungnodel assumes that the electron consists of lightlike garti
oscillating at the speed of light, with an amplitude equatht® reduced Compton wave-
length, where the macroscopically observed veloeiof the electron now represents the
drift velocity of this lightlike particle.

In order to produce a simplified semi-classical model, weiagsa circular periodic
motion with a radius

h
whereA; = % is the reduced Compton wavelength, which then gives theetatigj ve-

locity v=rown = (%;) (Zmﬁcz) = c as required for aitterbewegungnodel.

We know from inspection of Eq[(3.111), that under a boost, fteguencyay will
increase taw = yauy, with the radius required to shrink to=rp/y, so that the tangential

velocity v =rw = (’—;}) YWo = rgWp = C, remains at the speed of light. We also found in

Sectior B[(xr), that a circle will shrink by the ratio pfn agreement with this result. Hence
this simplified two-dimensional Bohr-type model in Hig. ddlicates that under a boost, the
de Broglie frequency will increase tau implying an energy and hence a mass increase
ymp, the frequency increase also implies time dilatation, withlocal time being provided
by the phase of the de Broglie wave, and the shrinking radindyzing length contraction,
thus producing known relativistic effects.

In the footsteps of previous investigations [Schrodin @880, Penrose, 2004, H nes,

], a future development is to extend this work to threeettisional space.

(e) Scattering processes

It is established that energy and momentum conservatiotieapip relativistic dy-
namics, provided that the rest enengyc? is now included along with the appropriate
relativistic corrections, that is, defining momentumyas/, and the energy agnc. We
now find, however, that the two conservation laws can be faghidkto a single momentum
multivector defined in Eq[{2.7).

For example, if we are given a set of particles which are wedlin an interaction,
which then produce another set of particle as output. Thearder to describe this col-
lision interaction process we firstly include a separate emiomm multivector for each
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¢ hk = ymev

’61

Figure 1. Multivector model for the electron, consisting aflight-like particle orbiting at the
de Broglie angular frequenayy at a radius ofA¢ in the rest frame, and when in motion described

generally by the multivectdP. = hk + 1 % Under a boost, the de Broglie angular frequency will
increase toyay, giving an apparent mass increase and time dilatation,léwtren radius will also
shrink byy, implying length contraction, thus naturally producing ey results of special relativity.

particle, and then energy and momentum conservation battheeinitial and final states
is simply given by
> Piitia = ) Pinal, (3.16)

assuming we are dealing with an isolated system. We Kaewp|c for a massless particle,
so using Eq[(2]7) we write the momentum multivector for atph@s™ = p + 1 |p|, which
givesr 2 = 0 and for a massive particR? = —mgc? as shown in Eq[{218).

For Compton scattering, which involves an input photorkstg an electron at rest,
with the deflected photon and moving electron as productsamenrite energy and mo-
mentum conservation using the multivectors as siniphy B, = 't + P, which we can
rearrange to

(Mi—T¢)+R =P (3.17)

Squaring both sides we find
(M =T )24+ R —T¢)+ (T — )P+ P2 =P, (3.18)

remembering that in general the multivectors do not comniiéev, we have the generic
results thatP? = P? = —mac? and (M —T¢)2 =2+ T2 — iy — T = -2 - T =
—2(pi-pi +|pilIpf|) = 2|pil|pf|(1—cosh), usinglr 2 =2 = 0. For the following two terms
in Eq. (3.18), using = rmoc, we havemoc(1 (M —¢)+ (T — T )1) = —2moc(|pli — |p|f)-
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We therefore find from Eq[(3.18) that
[pil|ps|(1—cosB) — moc(|pi| - [ps|) = O. (3.19)

Dividing through by|p;||pt| and substitutingp| = /\ﬂ we find Compton’s well known for-
mula

h
)\f*/\| —@(1*C059) (320)

The advantage of the momentum multivector is that energynamghentum conservation

can be considered in unison as shown in Eq.(3.17), which®ades a clear solution

path, whereas conventional textbook methods rely on méatipg two separate equations
describing momentum and energy conserva@éé@]l%?

4. Discussion

It is well established that Clifford’s geometric algebmainatural formalism to study the
eometrical operations of the plane, such as reflectionsatations[Doran and Laserby,
]. However, we demonstrate additionally that space tiepresented as the Clifford
multivector, as shown in EJ.(2.1), is a natural alternativilinkowski spacetime, produc-
ing the correct spacetime interval and the required Lorgatzsformation, directly from
the properties of the algebra. Hence we propose that meitive are the natural mathe-
matical structure to describe spacetime.

The definition of a spacetime event as a multivector in Eql)(2lso provides a new
perspective on the nature of time, in that rather than beéfigeld as an extra Euclidean di-
mension, it becomes instead a composite quantity of spae®jtectore; e;. Minkowski’'s
famous quote is therefore particularly agenceforth space by itself, and time by itself, are
doomed to fade away into mere shadows, and only a kind of wifithe two will preserve
an independent realitfEinsteit/ 1952]

As we have seen in Eq._(Z]11), a bivector represents a rotaitd a possible inter-
pretation is that time is defined by the angular rotation efdk Broglie frequency = %
related to the frequency of ttmtterbewegungas hypothesized by Schrodinger, Penrose
and others [Schrodinder, 1930],[Penf ], and encapsulated by a
two dimensional model derived from the multivector desmnrpm Eq. [3.11), shown in
Fig.[.

Such a view of time as an entity possessing rotational ate#) has also been sup-
ported by recent experiments, which have identified a fluctgalectric field at the de Broglie
frequency for an electron [Catillon etlal., 2008], and the afthe rotating electric field in
circularly polarized light as an attosecond clock to protoerac processeal.,
2011/ Ueda and Ishikala, 2011, Eckle étlal., 2008, KrausiambV, 2009]. Hence soci-
ety’s popular description of time, as the ‘river of time’ de@ in part on the pronouncement
of Newton in the Principia, Book 1 [Newton, 1686], that timeflows equably without re-
lation to anything external . ,.along with time being promoted by Minkowski as a fourth
dimension, may perhaps need to be amended to include aor@béispect, and adopting a
water analogy, time might be viewed descriptively as a ygbiol or an eddy.

The spacetime multivector defined in EQ._{2.1) for the plasaa obviously be ro-
tated into a larger three-dimensional space, without gp&galgebraic properties, becom-
ing equivalent to spacetime events conventionally desdritly the Lorentz four-vectors
xH = (ct,x), u € [0,1,2,3], and similarly for the velocity and momentum multivectoes d
fined in Eq. [2.b) and Eql{Z.7) respectively, however thé@ltl multivector provides a
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more natural algebraic setting, without the requiremennafrices or a metric in order
to describe the Lorentz transformations. Also, Minkowglasetime diagrams, consisting
of a space axis and a time axis, still apply, though the time a& longer represents a
Euclidean time dimension, but simply shows the algebrdatimship between time as a
bivector and space as a vector. The abstract nature of Mislkaiagrams is confirmed by
the rotation of the coordinate axes for the moving obsewiich are tilted with respect to
the original frame when displayed on the Minkowski diagranpractice which is purely
formal and not indicating a real rotation of the space or temes between the frames

[1987]. Also the use of the momentum multivectorriefiin Eq. [217) allows
the application of momentum and energy conservation walsingle algebraic entity, as
shown in the applications in Sectibh 3, for Compton scattgri

In summary, this approach from a pure mathematical perspdeased on the ansatz
of spacetime represented by a Clifford multivector showgdn({Z.1), produces the correct
spacetime metric and Lorentz transformations directlynftbe properties of the algebra,
without needing to reference other postulates. This syaierapproach, is also shown to
be advantageous in describing the Lorentz transformatiarthat an exhaustive explo-
ration of the exponential map of a multivector, naturallpguced rotations, boosts and
the Thomas rotation of frames, and in fact the full homogesdmrentz group repre-
sented simply as the multivector exponenti®@@?. The Lorentz group is typically seen
ass0(3,1), describing three space and one time dimension. Howeveedsawe shown,
this is larger than required in order to describe the algebspace and time defined by the
Lorentz transformations.

We also see educational benefits with the use of multivea®esdescription of space-
time, which allow the Lorentz transformations to arise nalty in a simplified algebraic
setting, without any unnecessary mathematical ‘overfigsush as matrices, the dot prod-
uct or metric structures.

5. Appendix
(a) Boost-rotation form of a multivector
Given a general two-space multivector

M = a-+wie; +Woer + 1h =rcosa + scosfe; + ssinffe; + Irsina, (5.1)

in order to write this in the exponential form
pe‘”‘?ee’ = p (coshpcose + sinhg(vyx cosf — vy sinB)e; (5.2)
+sinh@(vy cosB + vy sinB)ey + 1 coshqosine) ,

consisting of a separate boost and rotation, we require

6 = a:arctan(g),p:\/r2—32:\/a2+b2—vv§—w§ (5.3)

¢ = arctanr(§) = arctanh M
r VLD
wia-+wpb - woa — wib
vi = co§f—a)= ,Vo=sin(f—a)= 7
/W2 +w3vaZ + b2 /w2 + w2v/aZ 1 b2
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14 J. M. Chappell et. al.

from which we can determin@, ¢, v andp. Hence we can convert from a general multi-
vectorM to the exponential form shown in E@.(b.2). Inspecting EcB)5ve see that this
form of a multivector will not be possible # + b? = 0, that is if we have a pure vector,
but as already noted in EQ._{2]12), this will produce a puflection. Ifr? < s? thenp goes
imaginary, however this would imply that we are trying to Bpgboost with? > 1, which
once again shows that the speed of light is a speed limit. élaecsee that applying boosts
through the exponential maps of the velocity vector, it ipassible to boost past the speed
of light, and hence this also confirms the speed a speed limit for particles.

(b) Exponential of the full multivector

We found that exponentiating the even subalgebra, that-isb, produces rotations,
and exponentiating a vector= vie; + xep, produces a Lorentz boost of the field, so we
now seek the exponential of a full multivector. This canimoigy be split into two separate
operations, as the vector and bivector terms do not commute.

Firstly, we observe that, definirg= v + b, thenB? = (v + 1b)? = v? — b? + bvi +
biv = v? — b?, produces a scalar. THterm can also be separated from the scajas
they commute, as follows

M — gatv+ib  _ qagv+ib (5.4)

V2 _ b2 B(VZ o b2) (VZ o b2)2
o1 + 30 + 2l +...

= é <1+B+

szbz V27b22
= eﬁ‘(ljL 5 +( T ) +...

B
[ 2_p2
+ v2—b2( Ve —Dbe 4

= €*(coshB|+Bsinh|B|),

)

where|B| = v/v2 — b2, assuming? > b?, andB = % = "‘E"b. If v2 < b? we simply replace
the hyperbolic trigonometric functions with trigonometfinctions, and if/2 = b?, then
referring to the second line of the above derivation, we kaedll terms followingB are
zero, and so, in this cas&' e= €%(1+ B) = €*(1+V + tb). The reverse process, of finding

the exponent for a given multivector, represents takindagef a multivector.
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