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Revisiting special relativity: A natural algebraic
alternative to Minkowski spacetime
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Minkowski famously introduced the concept of a space-time continuum in 1908, merging
three dimensional space with an imaginary time dimension represented byict, a framework
which naturally produced the correct spacetime intervalx2− c2t2, and the results of Ein-
stein’s theory of special relativity. As an alternative to Minkowski space-time, we replace
the unit imaginaryi =

√
−1, with the Clifford bivectorι = e1e2 for the plane, which also

has the property of squaring to minus one, but which can be included without the addition
of an extra dimension, as it is a natural part of Clifford’s real Cartesian-type plane with
the orthonormal basise1 ande2. We find that with the ansatz of spacetime represented by
a Clifford multivector, the spacetime metric and the Lorentz transformations, follow im-
mediately as properties of the algebra. Based on the structure of the multivector, a simple
semi-classical model is also produced for representing massive particles, giving a new ef-
ficient derivation for Compton’s scattering formula. We also find a new perspective on the
nature of time, now appearing as the bivector of the plane.

Keywords: Special Relativity, Geometric algebra, Clifford algebra, Lorentz transformation,
Minkowski

1. Introduction

It has been well established experimentally that the Lorentz transformations, provide the
correct translation of space and time measurements from oneinertial frame of reference to
another. They were initially developed by Lorentz [1904] and previously by Voigt [1887]
[Ernst and Hsu, 2001], to explain the null result of the Michelson-Morley experiment, by
proposing a length contraction of a laboratory frame of reference moving with respect to
a hypothetical aether. Einstein [1905] however, rederivedthe transformations on the basis
of two fundamental postulates, of the invariance of the lawsof physics and the invariance
of the speed of light, between inertial observers, thus eliminating the need for an aether.
Minkowski in 1908, also derived the Lorentz transformations from a different perspective,
by postulating a spacetime continuum, from which the results of special relativity also
naturally followed [Sexl and Urbantke, 2001]. From an alternative perspective, Zeeman
[1964] showed that preserving causality was sufficient to ensure that the coordinate trans-
formations are the Lorentz transformations, along with an invariant maximum speed.

Though Einstein is credited with the definitive explanationof the Lorentz transfor-
mations via his two postulates, Minkowski’s alternative approach had far-reaching impact
[Goenner et al., 1999], as it provided a general structure for spacetime within which the
laws of physics could be described. To achieve this he firstlyintroduced the concept of
a uniform four-dimensional space time continuum with the expected Euclidean distance
measure(∆s)2 = (∆x1)

2 +(∆x2)
2 + (∆x3)

2 +(∆x4)
2, but wherex4 = ict, borrowing the
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2 J. M. Chappell et. al.

idea of imaginary time proposed by Poincaré, wherei =
√
−1 is the unit imaginary, which

thus allowed one to view space time as a conventional Euclidean space, while still recov-
ering the required distance measure(∆s)2 = (∆x1)

2+(∆x2)
2+(∆x3)

2−c2(∆t)2. This idea
was received favorably by Einstein, and by the wider scientific community at the time
[Einstein and Lawson, 1921], but more recently, with the desire to remain consistent with
the real metric of general relativity [Taylor and Wheeler, 1966, Misner et al., 1973], the
unit imaginary has been replaced with a four dimensional metric signature(+,+,+,−),
because it is more easily extended to a general real metric for curved four-dimensional
space.

In this paper, we follow Minkowski’s approach, but we postulate an alternate spacetime
framework, which is provided by the multivector of a two-dimensional Clifford algebra.
Clifford algebra has been used previously to describe spacetime [Hestenes, 1999, 2003,
Pavsic, 2004], however these approaches retain a four-dimensional spacetime framework
with an associated metric structure, whereas our approach requires a minimal two dimen-
sional Euclidean space, without the need for a metric function, as it arises naturally from
the properties of the multivector. In this approach, specifically, we replace the unit imagi-
nary of Minkowski, with the Clifford bivectore1e2 of the plane defined by the orthonormal
vectorse1 and e2, which also has the property of squaring to minus one. The bivector
however has several advantages over the unit imaginary, in that, firstly, it is a composite
algebraic component of the plane, and so an extra Euclidean dimension is not required,
and secondly, the bivector is an algebraic element embeddedin a strictly real space, and
hence consistent with the real space of general relativity.We find that we are able to adopt
Clifford’s geometric algebra of two-dimensions as a suitable algebraic framework, because
the Lorentz transforms of special relativity act on just theparallel and perpendicular com-
ponents of vectors relative to a boost direction, thus defining a two-dimensional space.

Clifford’s geometric algebra was first published in 1873, extending the work of Grass-
man and Hamilton, creating a single unified real mathematical framework over Cartesian
coordinates, which naturally included the algebraic properties of scalars, complex num-
bers, quaternions and vectors into a single entity, called the multivector [Doran and Lasenby,
2003]. We find that this general algebraic entity, as part of areal two-dimensional algebra,
provides a natural alternative to Minkowski spacetime.

(a) Clifford’s algebra of the plane

In order to represent the plane, Clifford defined two algebraic elementse1 ande2, with

e2
1 = e2

2 = 1, ande1e2 =−e2e1, (1.1)

where we note that the composite elementι = e1e2 is defined as anticommuting [Doran and Lasenby,
2003], and therefore squares to minus one, that is,ι2 = (e1e2)

2 = e1e2e1e2 =−e1e1e2e2 =
−1, and can be used to replace, the unit imaginary. A general Clifford multivector for the
plane can be written by combining the algebraic elements, as

a+ x1e1+ x2e2+ ιb, (1.2)

wherea andb are real scalars,x = x1e1 + x2e2 represents a Cartesian vector, withx1,x2

real scalars, andι is the bivector. We notice, that the multivector, encapsulates a complex-
like numbera+ ιb, but also includes the vectorx, thus producing a generalization of a
complex number. Thus we have defined an associative but non-commuting algebra in order
to describe the plane.
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Multivector Spacetime 3

(i) Geometric product

A key property of Clifford’s algebra, is given by the productof two vectors. Given the
vectorsu = u1e1+u2e2 andv = v1e1+v2e2, then using the distributive law for multiplica-
tion over addition, as assumed for an algebraic field, we find

uv = (u1e1+u2e2)(v1e1+ v2e2) = u1v1+u2v2+(u1v2− v1u2)e1e2, (1.3)

using the properties defined in Eq. (1.1). We identifyu1v1+ u2v2 as the dot product and
(u1v2− v1u2)e1e2 as the wedge product, giving

uv = u ·v+u∧v. (1.4)

Hence the algebraic product of two vectors produces a sum of the dot and wedge products,
with the significant advantage that this algebraic product now has an inverse operation.
For û andv̂ unit vectors, givinĝu · v̂ = cosθ andû∧ v̂ = ι sinθ , we therefore havêuv̂ =
cosθ + ι sinθ , whereθ is the angle between the two vectors.

We can see from Eq. (1.4), that for the case of a vector multiplied by itself, that the
wedge product will be zero and hence the square of a vectorv2 = v ·v = v2

1+ v2
2, becomes

a scalar quantity. Hence the Pythagorean length of a vector is simply
√

v2, and so we can
find the inverse vector

v−1 =
v
v2 . (1.5)

That is, the reciprocal of a Clifford vector is simply a vector with the same direction, and
the inverse length.

2. Clifford multivectors as a framework for space and time

After inspecting Minkowski’s definition of spacetime coordinates and Eq. (1.2), we are
therefore led to describe spacetime events as the multivector difference

∆X = ∆x1e1+∆x2e2+ ιc∆t = ∆x+ ιc∆t, (2.1)

with ∆x representing the change in position vector in the plane and∆t represents the change
in observer time, where we restrict our analysis to two-dimensional space. This is without
loss of generality, however, as we can always re-orientate our plane, to lie in the plane
of the relative velocity vector between the frames. The interpretation of the coordinate
change in Eq. (2.1), is the same as conventionally interpreted [Taylor and Wheeler, 1966],
representing an observer moving through a preconfigured coordinate system, which at each
point has a properly synchronized clock, from which the moving observer can read off the
other frames local timet and positionx. An example on the use of the multivector in
Eq. (2.1) is applied toπ+-meson decay in Section 3. We then find the spacetime interval
to be

(∆X)2 = (∆x+ ιc∆t)(∆x+ ιc∆t)= (∆x)2−c2(∆t)2+c∆t∆xι+c∆tι∆x= (∆x)2−c2(∆t)2,
(2.2)

using the fact that∆x and ι anticommute, becauseι anticommutes withe1 ande2, and
ι2 =−1, giving the correct spacetime interval. We notice here an immediate simplification
through use of the multivector, in that we are not required todefine the dot product in order
to calculate the metric, but it is produced directly by simply squaring the multivector. For
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4 J. M. Chappell et. al.

the rest frame of the particle, that is, not moving with respect to the chosen frame, we have
(∆X0)

2 = −c2(∆τ)2, where we define in this caset to represent the proper timeτ of the
particle. We have assumed that the speedc is the same in the rest and the moving frame, as
required by Einstein’s second postulate. Now, if the spacetime interval defined in Eq. (2.2)
is invariant, which we demonstrate in a later section using the transformations defined by
Eq. (2.17), then we can equate the rest frame interval to the moving frame interval, giving

c2(∆τ)2 = c2(∆t)2− (∆x)2 = c2(∆t)2− v2(∆t)2 = c2(∆t)2
(

1− v2

c2

)

, (2.3)

with ∆x = v∆t, and hence, taking the square root, we find the time dilatation formula
∆t = γ∆τ where

γ =
1

√

1− v2/c2
. (2.4)

From Eq. (2.1), we can now calculate the proper velocity through the differential form
of Eq. (2.1) with respect to the proper time difference, giving the velocity multivector

U =
dX
dτ

=
dx
dt

dt
dτ

+ ιc
dt
dτ

= γv+ γιc, (2.5)

where we usedt
dτ = γ andv = dx

dt . We then find

U2 = (γv+ γιc)2 =

(

1
1− v2/c2

)

(v2− c2) =−c2. (2.6)

We define the momentum multivector

P= mU= γmv+ ιγmc= p+ ι
E
c
, (2.7)

with the relativistic momentump = γmv and the total energyE = γmc2.
Now, asU2 = −c2, thenP2 = −m2c2 is an invariant describing the conservation of

momentum and energy, which gives

P2c2 = p2c2−E2 =−m2c4, (2.8)

or E2 = m2c4 + p2c2, giving the standard relativistic expression for the conservation of
momentum-energy. Employing the de Broglie relationsp = h̄k andE = h̄w, we find using
Eq. (2.7), the wave multivector

K =
P
h̄
= k+ ι

w
c
. (2.9)

Similarly then we have

K2 = k2− w2

c2 =− 1
λ 2

c
, (2.10)

giving the correct dispersion relation for a wave which is relativistically invariant, where
λc =

h̄
mc is the reduced Compton wave length. That is, we have a phase velocity vp =

w
|k| =

c
√

1+ 1
λ 2

c k2 and the group velocity,vg =
dw
dk = c2

vp
. We now find the dot product of the wave

and spacetime multivectorsK ·X = k ·x−wt, giving the phase of a traveling wave.
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Multivector Spacetime 5

(a) Rotations in space

Euler’s formula for complex numbers, carries over unchanged for the bivectorι, with
which we define a rotor

R= cosθ + ι sinθ = eιθ , (2.11)

which produces a rotation byθ on thee1e2 plane, in the same way as rotations on the
Argand diagram. For example, for a unit vectorv = e1 along thee1 axis, acting with the
rotor from the right we findvR= e1(cosθ + ι sinθ ) = cosθe1+e2sinθ , thus describing
an anti-clockwise rotation byθ . If we alternatively act from the left with the rotor, we will
find a clockwise rotation byθ .

However, we now show, that a rotation can be described more generally as a sequence
of two reflections. Given a vectorn1 normal to a reflecting surface, with an incident ray
given byI, then we find the reflected ray [Doran and Lasenby, 2003]

r =−n1In1. (2.12)

If we apply a second reflection, with a unit normaln2, then we have

r = n2n1In1n2 = (cosθ − ι sinθ )I(cosθ + ι sinθ ) = e−ιθ Ieιθ , (2.13)

using Eq. (1.4) for two unit vectors. If the two normalsn1 andn2 are parallel, then no rota-
tion is produced. In fact the rotation produced is twice the angle between the two normals.

Hence rotations are naturally produced by conjugation, where if we seek to rotate a
vectorv by an angleθ , we calculate

v′ = e−ιθ/2veιθ/2, (2.14)

which rotates in an anticlockwise direction. The rotation formula in Eq. (2.14) above, can
in two-space, be simplified to a single right acting operatorv′ = veιθ . However this simpli-
fication is only possible in two-dimensions for the special case of rotations on vectors, and
will not work on other algebraic elements or in higher dimensions, and hence Eq. (2.14) is
the preferred way to apply operators such as rotors on vectors and multivectors.

(b) The Lorentz Group

We found that the exponential of the bivector eιθ , describes rotations in the plane,
as shown in Eq. (2.14), however, more generally, we can definethe exponential of a full
multivectorM defined as in Eq. (1.2), by constructing the Taylor series

eM = 1+M+
M2

2!
+

M3

3!
+ . . . (2.15)

which is absolutely convergent for all multivectorsM [Hestenes, 1999]. Also, for multi-
vectorsM,N, we have eMeN = eM+N, if and only if MN= NM, and because of the closure
of multivectors under addition and multiplication, we see that the exponential of a multi-
vector, must also produce another multivector, and we find, in fact, a unique multivector
N= eM, for each multivectorM [Hestenes, 1999]. The inverse operation, that is, finding the
logarithm ofN, is not always defined, for example, forN a pure vector, then an exponential
form does not exist. However as noted in Eq. (2.12), acting ona vector by conjugation with
a vector produces a reflection, which is not part of the homogeneous Lorentz group.
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6 J. M. Chappell et. al.

To simplify notation [French, 1987] we will dispense with the notation∆X describing
a change in observer coordinates, and simply assume that thecoordinate systems coincide
at t = t ′ = 0 with x = x′ = 0, so that we can write this change as simplyX. So, selecting
transformations that leave the spacetime interval given byX2 ≡ (∆X)2, defined in Eq. (2.2),
invariant, defines the homogeneous Lorentz group. For the multivector M = a+ φ v̂+ ιθ ,
we define the dagger operationM† = a− φ v̂− ιθ , we firstly find for a general rotation
eM, that eMeM†

= ea+φ v̂+ιθ ea−φ v̂−ιθ = e2aeφ v̂+ιθ e−φ v̂−ιθ = e2a a scalar, but in order to
not rescale the space we requirea= 0. Hence looking at all transformations of the form
eM = eφ v̂+ιθ , acting by conjugation, we find

X′2 = eMXeM†
eMXeM†

= eMX2eM†
= X2, (2.16)

using associativity and the fact that eMeM†
= 1, and thatX2 is a scalar as shown in Eq. (2.2),

and so unaffected by boosts and rotations. Hence all transformations of the form

eφ v̂+ιθ , (2.17)

will leave the spacetime interval invariant, and so defines the homogeneous Lorentz group.
Hence we see that the operator defined by Eq. (2.17), will leave the spacetime interval
unchanged, confirming that(∆x)2− c2(∆t)2 is an invariant, as assumed in Eq. (2.3).

(i) Spacetime boosts

Using the first component of the homogeneous Lorentz group defined in Eq. (2.17),
operators of the form eφ v̂, where the vectorv = v1e1+v2e2 7→ φ v̂, wherev̂ is a unit vector,
with v̂2 = 1, we find

eφ v̂ = 1+φ v̂+
φ2

2!
+

φ3v̂
3!

+
φ4

4!
+ · · ·= coshφ + v̂sinhφ . (2.18)

Also, defining an orthogonal vector tov given byw = ιv, then we findw2 = (ιv)2 = v2,
and therefore eφι v̂ = coshφ + ι v̂sinhφ .

So applying the exponential operator to the general spacetime vectorX = x+ ιct, using
the transformation

X′ = e−ι v̂φ/2Xeι v̂φ/2, (2.19)

then in thev̂ = e1 direction, for example, we find the transformed spacetime coordinates

X′ = e−ι v̂φ
2 (xe1+ ye2+ ιct)eι v̂φ

2 (2.20)

= eφe2x1e1+ x2e2+ ιcteφe2

= (coshφx1− ctsinhφ)e1+ x2e2+ ι(ctcoshφ − sinhφx1),

which is the conventional Lorentz boost, in terms of the rapidity φ , defined by tanhφ = v/c,
which can be rearranged to give coshφ = γ and sinhφ = γv/c. Substituting these relations
we find

X′ = γ(x1− vt)e1+ x2e2+ ιγ
(

ct− vx1

c

)

, (2.21)

which thus gives the transformationx′1 = γ(x1−vt), x′2 = x2 andct′ = γ(ct− vx1
c ), the cor-

rect Lorentz boost of coordinates. The formula in Eq. (2.19)can be simply inverted to give
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Multivector Spacetime 7

X = eι v̂φ/2X′e−ι v̂φ/2, using the fact that eι v̂φ/2e−ι v̂φ/2 = e0 = 1. The relativity of simul-
taneity is a fundamental result of special relativity, and from the perspective of the Clifford
multivector Eq. (2.1), we see that it stems from the fact that, during a boost operation, the
terms for spacee1 ande2 become mixed, resulting in the bivector terme1e2, thus creating
a variation in the observers time coordinate. Similarly themomentum multivector, shown
in Eq. (2.7), will follow the same coordinate transformation law between frames shown in
Eq. (2.19), withP′ = e−ι v̂φ/2Peι v̂φ/2.

We find that the Lorentz boost of electromagnetic fields, as opposed to coordinates, is
similar to Eq. (2.19) above, except that we omit theι bivector in the exponent, that is we
are boosting in a perpendicular direction. Given an electric field asE = Exe1+Eye2, then
applying the boost according to Eq. (2.14), using as an example the exponentiation of a
vectorv 7→ φe1, in thee1 direction, we find

e−
v̂φ
2 Ee

v̂φ
2 =

(

cosh
φ
2
−e1sinh

φ
2

)

(Exe1+Eye2)

(

cosh
φ
2
+e1sinh

φ
2

)

(2.22)

= Exe1+Eye2 (coshφ +e1sinhφ)

= Exe1+ γEye2−e1e2
Eyγv

c
,

which are the correct Lorentz transformations for an electromagnetic field. That is, the
parallel field is unaffected, the perpendicular fieldEy has been increased toγEy and the
terme1e2Eyγv/c, represents thee1e2 plane, also describable with an orthogonal vectore3

in three-space, hence this term gives the expected induced magnetic fieldBz.
Hence the exponential map of a Clifford vector, naturally produces the correct Lorentz

transformation of spacetime coordinates and the electromagnetic field in the plane, using
the spacetime coordinate multivector given by Eq. (2.1) andthe field multivectorF =
E+ ιcB.

(ii) Velocity addition rule

If we apply two consecutive parallel boosts,v1 = v1v̂ 7→ φ1v̂ and v2 = v2v̂ 7→ φ2v̂,
where tanhφ = v

c , we have the combined boost operation

eφ1v̂eφ2v̂ = e(φ1+φ2)v̂. (2.23)

Hence we have a combined boost velocity

v= ctanh(φ1+φ2) =
tanhφ1+ tanhφ2

1+ tanhφ1 tanhφ2
=

v1+ v2

1+ v1v2/c2 , (2.24)

the standard relativistic velocity addition formula. By inspection, the velocity addition for-
mula implies that a velocity can never be boosted past the speedc, which confirmsc as a
speed limit.

Hence, we have now demonstrated from the ansatz of the spacetime coordinate de-
scribed by the multivector shown in Eq. (2.1), that we produce the correct Lorentz trans-
formations, where the variablec is indeed found to be an invariant speed limit. Numerically
therefore,c can be identified as the speed of light, since this is the only known physical
object which travels at a fixed speed and represents a universal speed limit.
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8 J. M. Chappell et. al.

3. Applications

(a) π+-meson decay

A classic example of experimental proof for the special theory of relativity is its ap-
plication to the decay ofπ+-mesons, which are observed to enter the atmosphere at high
velocity v from outer space, having a known decay time at rest ofτπ = 2.55× 10−8 s,
giving a spacetime coordinate ofX = ιcτπ . Boosting these coordinates to theπ+-meson
velocity, we have a boost eι v̂φ/2, where tanhφ = v/c, so we therefore find

X′ = RXR† = e−ι v̂φ/2ιcτπeι v̂φ/2 = ιcτπ eι v̂φ = ιcτπ(coshφ + ι v̂sinhφ) = γvτπ + ιγcτπ .
(3.1)

So that we have a decay time in laboratory coordinates ofct = γcτπ , with a track length in
the laboratory ofx= γvτπ , in agreement with experimental determinations [French, 1987].

(b) Thomas rotation

It is known, that a surprising result occurs when we apply twonon-parallel boosts,
followed by their inverse boosts, in that the velocity of theframe does not return to zero.
Furthermore, there is a rotation of the frame, called the Thomas rotation, a result, in fact,
not noticed until 1925 [Taylor and Wheeler, 1966].

For the case of two consecutive general boosts given by

R= e−ιφ2v̂2/2e−ιφ1v̂1/2 = e−ιφcv̂c/2e−ιθ/2, (3.2)

where we use the results from the Appendix A, to write this in terms of a single combined
boostφcv̂c and a rotationθ , finding, using the results from the Appendix A,

tan
θ
2
=

sinδ sinhφ1
2 sinhφ2

2

cosδ sinhφ1
2 sinhφ2

2 − coshφ1
2 coshφ2

2

, (3.3)

whereδ is the angle between the boost directions, given by cosδ = v̂1 · v̂2. Hence we can
see that only for parallel boosts, that isδ = 0, will there not in fact be a Thomas rotation
θ , of the frame.

We can also write the Thomas rotation as a single exponentialof a multivector

R= e−ιφt v̂t/2−ιθt/2, (3.4)

using the results of the Appendix B. Hence the homogeneous Lorentz group defined by
Eq. (2.17), naturally encompasses the rotations, boosts and Thomas rotations of frames.

(c) A circle as seen by a moving observer

We locate a circle on the plane, centered a unit distance along thee2 axis, seen by a
static observer located at the origin as

x̂ = sinθe1+ cosθe2, (3.5)

which forms a position multivector representing the edge

X = x+ ιct = ctx̂+ ιct, (3.6)
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Multivector Spacetime 9

where we have written the position vector, representing a photon trajectory traveling from
the circle asx = ctx̂, assuming propagation at the speed ofc, in the directionx̂. We also
have a moving observer at the origin, with a boostR= eιe1φ/2, where tanhφ = v/c.

Hence we find the new position of the circle, from the boosted coordinates as

X′ = RXR† (3.7)

= cteιe1φ/2sinθe1e−ιe1φ/2+ ctcosθe2+ cteιe1φ/2ιe−ιe1φ/2

= ct(sinθ coshφ + sinhφ)e1+ ctcosθe2+ ιct(sinθ sinhφ + coshφ).

For light, we requirex′ = ct and hence from Eq. (3.7), by equating thee1 and ι coeffi-
cients, we require|ct(sinθ coshφ + sinhφ)e1 + ctcosθe2| = |ιct(sinθ sinhφ + coshφ)|,
and hence the light rays follow the unit vector

x̂′ =
(sinθ coshφ + sinhφ)e1+ cosθe2

sinθ sinhφ + coshφ
. (3.8)

If we consider the vectorm = e2+ sinhφ cosθe1, then

m · x̂′ = coshα cosθ , (3.9)

which shows thatm points towards the center of the moving circle. If we now normalize
m, we find

m̂ · x̂′ = cosθ ′ =
cosθ coshφ

√

1+ sinh2 φ cos2 θ
(3.10)

or tanθ ′ = tanθ
γ . Hence the circle appears to shrink, although still appearsas a circle.

For example, the diameter of the moon is approximately 2θ = 0.5 degree, but if the
earth was moving at half the speed of light relative to the moon, that is tanhφ = 0.5, then
using Eq. (3.10), its diameter would appear to shrink down to2θ ′ = 0.435 degrees, or to
87% of its original size.

As we are working with a two-dimensional Clifford algebra, we can only make con-
clusions about observations in the plane, although it was noted by Penrose [1959] that a
sphere will also remain a sphere in this situation.

(d) Modeling fundamental particles as multivectors

The multivector defined in Eq. (2.1), will now be used as a representation for individual
particles, from which the results of special relativity, such as Lorentz contraction and time
dilatation, also arise.

Using the multivector defined in Eq. (2.9), we can define a particle moving with a
velocityv, given by

P= h̄k+ ι
γh̄ω0

c
, (3.11)

whereh̄k = γmv. As expected the momentum multivector is invariant betweeninertial
frames withP2 = −mc2, in agreement with Eq. (2.8). For a particle at rest, we therefore
haveP0 = ι E

c = ι h̄ω0
c , where we use the de Broglie relation between total energyE and the

frequencyE = h̄ω , to find

ω0 =
mc2

h̄
. (3.12)
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10 J. M. Chappell et. al.

Integrating the momentum multivector with respect to the proper timeτ, remembering that
dt = γdτ, and dividing by the rest massm we find

X = x+ ι
h̄θ0

mc
= x+ ιλcθ0, (3.13)

whereω0 =
dθ0
dt and the constant of integration being zero as we setx = 0 andθ0 = 0 at

τ = 0. Inspecting the bivector component, we find

λcdθ0 = λcw0dt =

(

h̄
mc

)(

mc2

h̄

)

dt = cdt, (3.14)

showing that the local time of the particle can be identified as the phase of the de Broglie

wave, withdt =
(

λc
c

)

dθ0.

The form of the multivector naturally leads to a model for theelectron, analogous to
a zitterbewegungmodel, first described by Schrödinger [1930], an effect nowextensively
verified by experiment, [Wunderlich, 2010, Gerritsma et al., 2010, Zawadzki and Rusin,
2011]. Thezitterbewegungmodel assumes that the electron consists of lightlike particle
oscillating at the speed of light, with an amplitude equal tothe reduced Compton wave-
length, where the macroscopically observed velocityv of the electron now represents the
drift velocity of this lightlike particle.

In order to produce a simplified semi-classical model, we assume a circular periodic
motion with a radius

r0 =
h̄

mec
= λc, (3.15)

whereλc =
h̄

mec is the reduced Compton wavelength, which then gives the tangential ve-

locity v= r0ω0 =
(

h̄
2mec

)(

2mec2

h̄

)

= c as required for azitterbewegungmodel.

We know from inspection of Eq. (3.11), that under a boost, thefrequencyω0 will
increase toω = γω0, with the radius required to shrink tor = r0/γ, so that the tangential

velocity v = rw =
(

r0
γ

)

γw0 = r0w0 = c, remains at the speed of light. We also found in

Section 3 (c), that a circle will shrink by the ratio ofγ in agreement with this result. Hence
this simplified two-dimensional Bohr-type model in Fig. 1, indicates that under a boost, the
de Broglie frequency will increase toγω0 implying an energy and hence a mass increase
γm0, the frequency increase also implies time dilatation, withthe local time being provided
by the phase of the de Broglie wave, and the shrinking radius producing length contraction,
thus producing known relativistic effects.

In the footsteps of previous investigations [Schrödinger, 1930, Penrose, 2004, Hestenes,
1990], a future development is to extend this work to three dimensional space.

(e) Scattering processes

It is established that energy and momentum conservation applies in relativistic dy-
namics, provided that the rest energym0c2 is now included along with the appropriate
relativistic corrections, that is, defining momentum asγmv, and the energy asγmc2. We
now find, however, that the two conservation laws can be bundled into a single momentum
multivector defined in Eq. (2.7).

For example, if we are given a set of particles which are involved in an interaction,
which then produce another set of particle as output. Then, in order to describe this col-
lision interaction process we firstly include a separate momentum multivector for each
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Figure 1. Multivector model for the electron, consisting ofa light-like particle orbiting at the
de Broglie angular frequencyω0 at a radius ofλc in the rest frame, and when in motion described
generally by the multivectorPe = h̄k+ ι γ h̄ω0

2c . Under a boost, the de Broglie angular frequency will
increase toγω0, giving an apparent mass increase and time dilatation, the electron radius will also
shrink byγ , implying length contraction, thus naturally producing the key results of special relativity.

particle, and then energy and momentum conservation between the initial and final states
is simply given by

∑Pinitial = ∑Pfinal, (3.16)

assuming we are dealing with an isolated system. We knowE = |p|c for a massless particle,
so using Eq. (2.7) we write the momentum multivector for a photon asΓ = p+ ι|p|, which
givesΓ2 = 0 and for a massive particleP2 =−m2

0c2 as shown in Eq. (2.8).
For Compton scattering, which involves an input photon striking an electron at rest,

with the deflected photon and moving electron as products, wecan write energy and mo-
mentum conservation using the multivectors as simplyΓi +Pi = Γ f +Pf , which we can
rearrange to

(Γi −Γ f )+Pi = Pf . (3.17)

Squaring both sides we find

(Γi −Γ f )
2+Pi(Γi −Γ f )+ (Γi −Γ f )Pi +P2

i = P2
f , (3.18)

remembering that in general the multivectors do not commute. Now, we have the generic
results thatP2

i = P2
f = −m2

0c2 and (Γi − Γ f )
2 = Γ2

i + Γ2
f − ΓiΓ f − Γ f Γi = −2Γi ·Γ f =

−2(pi ·pi + |pi ||p f |) = 2|pi||p f |(1−cosθ ), usingΓ2
i =Γ2

f = 0. For the following two terms
in Eq. (3.18), usingPi = ιm0c, we havem0c(ι(Γi −Γ f )+(Γi −Γ f )ι) =−2m0c(|p|i −|p| f ).
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We therefore find from Eq. (3.18) that

|pi ||p f |(1− cosθ )−m0c(|pi |− |p f |) = 0. (3.19)

Dividing through by|pi ||p f | and substituting|p|= h
λ we find Compton’s well known for-

mula

λ f −λi =
h

m0c
(1− cosθ ). (3.20)

The advantage of the momentum multivector is that energy andmomentum conservation
can be considered in unison as shown in Eq. (3.17), which alsoprovides a clear solution
path, whereas conventional textbook methods rely on manipulating two separate equations
describing momentum and energy conservation [French, 1987].

4. Discussion

It is well established that Clifford’s geometric algebra, is a natural formalism to study the
geometrical operations of the plane, such as reflections androtations [Doran and Lasenby,
2003]. However, we demonstrate additionally that space time represented as the Clifford
multivector, as shown in Eq. (2.1), is a natural alternativeto Minkowski spacetime, produc-
ing the correct spacetime interval and the required Lorentztransformation, directly from
the properties of the algebra. Hence we propose that multivectors are the natural mathe-
matical structure to describe spacetime.

The definition of a spacetime event as a multivector in Eq. (2.1), also provides a new
perspective on the nature of time, in that rather than being defined as an extra Euclidean di-
mension, it becomes instead a composite quantity of space, the bivectore1e2. Minkowski’s
famous quote is therefore particularly apt,Henceforth space by itself, and time by itself, are
doomed to fade away into mere shadows, and only a kind of unionof the two will preserve
an independent reality[Einstein, 1952].

As we have seen in Eq. (2.11), a bivector represents a rotation, and a possible inter-
pretation is that time is defined by the angular rotation of the de Broglie frequencyw= E

h̄
related to the frequency of thezitterbewegung, as hypothesized by Schrödinger, Penrose
and others [Schrödinger, 1930],[Penrose, 2004],[Hestenes, 1990], and encapsulated by a
two dimensional model derived from the multivector description in Eq. (3.11), shown in
Fig. 1.

Such a view of time as an entity possessing rotational attributes, has also been sup-
ported by recent experiments, which have identified a fluctuating electric field at the de Broglie
frequency for an electron [Catillon et al., 2008], and the use of the rotating electric field in
circularly polarized light as an attosecond clock to probe atomic processes [Pfeiffer et al.,
2011, Ueda and Ishikawa, 2011, Eckle et al., 2008, Krausz andIvanov, 2009]. Hence soci-
ety’s popular description of time, as the ‘river of time’, based in part on the pronouncement
of Newton in the Principia, Book 1 [Newton, 1686], that time. . . flows equably without re-
lation to anything external . . ., along with time being promoted by Minkowski as a fourth
dimension, may perhaps need to be amended to include a rotational aspect, and adopting a
water analogy, time might be viewed descriptively as a whirlpool or an eddy.

The spacetime multivector defined in Eq. (2.1) for the plane,can obviously be ro-
tated into a larger three-dimensional space, without losing its algebraic properties, becom-
ing equivalent to spacetime events conventionally described by the Lorentz four-vectors
xµ = (ct,x), µ ∈ [0,1,2,3], and similarly for the velocity and momentum multivectors de-
fined in Eq. (2.5) and Eq. (2.7) respectively, however the Clifford multivector provides a
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more natural algebraic setting, without the requirement ofmatrices or a metric in order
to describe the Lorentz transformations. Also, Minkowski spacetime diagrams, consisting
of a space axis and a time axis, still apply, though the time axis no longer represents a
Euclidean time dimension, but simply shows the algebraic relationship between time as a
bivector and space as a vector. The abstract nature of Minkowski diagrams is confirmed by
the rotation of the coordinate axes for the moving observer,which are tilted with respect to
the original frame when displayed on the Minkowski diagram,a practice which is purely
formal and not indicating a real rotation of the space or timeaxes between the frames
[French, 1987]. Also the use of the momentum multivector defined in Eq. (2.7) allows
the application of momentum and energy conservation withina single algebraic entity, as
shown in the applications in Section 3, for Compton scattering.

In summary, this approach from a pure mathematical perspective based on the ansatz
of spacetime represented by a Clifford multivector shown inEq. (2.1), produces the correct
spacetime metric and Lorentz transformations directly from the properties of the algebra,
without needing to reference other postulates. This systematic approach, is also shown to
be advantageous in describing the Lorentz transformations, in that an exhaustive explo-
ration of the exponential map of a multivector, naturally produced rotations, boosts and
the Thomas rotation of frames, and in fact the full homogeneous Lorentz group repre-
sented simply as the multivector exponential eφ v̂+ιθ . The Lorentz group is typically seen
asso(3,1), describing three space and one time dimension. However as we have shown,
this is larger than required in order to describe the algebraof space and time defined by the
Lorentz transformations.

We also see educational benefits with the use of multivectorsas a description of space-
time, which allow the Lorentz transformations to arise naturally in a simplified algebraic
setting, without any unnecessary mathematical ‘overheads’, such as matrices, the dot prod-
uct or metric structures.

5. Appendix

(a) Boost-rotation form of a multivector

Given a general two-space multivector

M = a+w1e1+w2e2+ ιb= r cosα + scosβe1+ ssinβe2+ ιr sinα, (5.1)

in order to write this in the exponential form

ρeφ v̂eθι = ρ
(

coshφ cosθ + sinhφ(vx cosθ − vysinθ )e1 (5.2)

+sinhφ(vy cosθ + vxsinθ )e2+ ι coshφ sinθ
)

,

consisting of a separate boost and rotation, we require

θ = α = arctan

(

b
a

)

, ρ =
√

r2− s2 =
√

a2+b2−w2
1−w2

2 (5.3)

φ = arctanh
(s

r

)

= arctanh





√

w2
1+w2

2√
a2+b2





v1 = cos(β −α) =
w1a+w2b

√

w2
1+w2

2

√
a2+b2

, v2 = sin(β −α) =
w2a−w1b

√

w2
1+w2

2

√
a2+b2

,
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from which we can determineθ , φ , v andρ . Hence we can convert from a general multi-
vectorM to the exponential form shown in Eq. (5.2). Inspecting Eq. (5.3), we see that this
form of a multivector will not be possible ifa2+b2 = 0, that is if we have a pure vector,
but as already noted in Eq. (2.12), this will produce a pure reflection. If r2 < s2 thenρ goes
imaginary, however this would imply that we are trying to apply a boost withv

c > 1, which
once again shows that the speed of light is a speed limit. Hence we see that applying boosts
through the exponential maps of the velocity vector, it is impossible to boost past the speed
of light, and hence this also confirms the speedc as a speed limit for particles.

(b) Exponential of the full multivector

We found that exponentiating the even subalgebra, that isa+ ιb, produces rotations,
and exponentiating a vectorv = v1e1+ v2e2, produces a Lorentz boost of the field, so we
now seek the exponential of a full multivector. This cannot simply be split into two separate
operations, as the vector and bivector terms do not commute.

Firstly, we observe that, definingB = v+ ιb, thenB2 = (v+ ιb)2 = v2− b2+ bvι +
bιv = v2− b2, produces a scalar. TheB term can also be separated from the scalara, as
they commute, as follows

eM = ea+v+ιb = eaev+ιb (5.4)

= ea
(

1+B+
v2−b2

2!
+

B(v2−b2)

3!
+

(v2−b2)2

4!
+ . . .

)

= ea
(

1+
v2−b2

2!
+

(v2−b2)2

4!
+ . . .

+
B√

v2−b2

(
√

v2−b2+

√
v2−b2(v2−b2)

3!
+ . . .

))

= ea(cosh|B|+ B̂sinh|B|
)

,

where|B|=
√

v2−b2, assumingv2 > b2, andB̂= B
|B| =

v+ιb
|B| . If v2 < b2 we simply replace

the hyperbolic trigonometric functions with trigonometric functions, and ifv2 = b2, then
referring to the second line of the above derivation, we see that all terms followingB are
zero, and so, in this case eM = ea(1+B) = ea(1+ v+ ιb). The reverse process, of finding
the exponent for a given multivector, represents taking thelog of a multivector.
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R. Dörner, and U. Keller. Attosecond angular streaking.Nature Physics, 4(7):565–570,
2008. doi: 10.1038/nphys982.

Article submitted to Royal Society



Multivector Spacetime 15

A. Einstein. Zur Elektrodynamik bewegter Körper.Annalen der Physik, 322(10):891–921,
1905. doi: 10.1002/andp.19053221004.

A. Einstein.The Principle of Relativity. Dover Publications, New York, 1952.

A. Einstein and R. W. Lawson.Relativity: The Special and General Theory. H. Holt and
Company, 1921.

A. Ernst and J. Hsu. First proposal of the universal speed of light by Voigt in 1887.Chinese
Journal of Physics, 39(3), 2001.

A. P. French.Special Relativity. Van Nostrand Reinhold, Berkshire, England, 1987.

R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, and C. Roos. Quantum simu-
lation of the dirac equation.Nature, 463(7277):68–71, 2010. doi: 10.1038/nature08688.

H. Goenner, J. Renn, J. Ritter, and T. Sauer.The Expanding Worlds of General Relativity.
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