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Abstract

In this letter, we study some evolution networks that grow with linear
preferential attachment. Based upon some recent results on the quotient
Gamma function, we give a rigorous proof of the asymptotic Mandelbrot
law for the degree distribution pk ∝ (k + c)−γ in certain conditions. We
also analytically derive the best fitting values for the scaling exponent γ

and the shifting coefficient c.

Complex networks are now the joint focus of many branches of research[1−3].
Particularly, the scale-free property of some networks attracts continuous inter-
ests, due to their importance and pervasiveness[4−6]. In short, this property
means that the degree distribution of a network obeys a power law P (k) ∝ k−γ ,
where k is the degree and P (k) is the corresponding probability density, and the
scaling exponent γ is a constant. A pioneering model that generates power-law
degree distribution was presented by Barabási and Albert (BA)[4].

In recent studies, it was found that in some complex networks, e.g. trans-
portation networks[7] and social collaboration networks[8], the degree distribu-
tion follows the so-called “shifted power law”[9] P (k) ∝ (k + c)−γ , where the
shifting coefficient c is another constant. This property is also called “Mandel-
brot law”[10].

To understand the origins of such Mandelbrot law, Ren, Yang and Wang[11]

proposed a interesting growing network that is generated with linear preferential
attachment. In such networks, there exits a recursive dependence relationship
between every two consecutive degrees

p(k)

[

k +
2 + 2mβ

1− β

]

= p(k − 1)

[

k +
2mβ

1− β
− 1

]

(1)

where where k = 2, ..., n, n is the number of nodes. m is a positive integer
constant and β ∈ [0, 1] is another constant.

Defining a = 2mβ
1−β

− 1, b = 2+2mβ
1−β

, we can abbreviate Eq.(1) as

pk [k + b] = pk−1 [k + a] (2)

To derive the asymptotic of the degree distribution, Ren, Yang and Wang[11]

studied the following three kinds of approximations:
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I) forward-difference approximation, assuming

dp(k)

dk
≈ p(k)− p(k − 1) = p(k)−

k + b

k + a
p(k) =

a− b

k + a
p(k) (3)

we have an estimation of the power-law as

p(k) ∝ (k + a)
−(b−a)

(4)

II) backward-difference approximation, assuming

dp(k)

dk
≈ p(k + 1)− p(k) =

k + 1 + a

k + 1 + b
p(k)− p(k) =

a− b

k + 1 + b
p(k) (5)

we have another estimation of the power-law as

p(k) ∝ (k + b+ 1)
−(b−a)

(6)

III) Suppose we must have a Mandelbrot law p(k) ∝ (k + c)−γ . As a result,
we have p(k − 1) ∝ (k − 1 + c)−γ . Substitute these two approximations in the
logarithm type of Eq.(2), we have

ln
k + a

k + b
= ln

p(k)

p(k − 1)
= −γ ln(k + c) + γ ln(k − 1 + c) (7)

Rewrite Eq.(7) as

ln
1 + a 1

k

1 + b 1
k

= γ ln
1 + (c− 1) 1

k

1 + c 1
k

(8)

and apply the second order Taylor expansion of 1
k
in Eq.(8), we have

p(k) ∝

(

k +
b+ a+ 1

2

)

−(b−a)

(9)

All these three estimations indicates that the scaling exponent of the degree
distribution should be −(b − a). Simulation results[11] show that Eq.(9) gives
the best approximation accuracy of the empirical distributions. However, we
still need a rigorous proof of this interesting finding.

Indeed, further assuming
∑n

k=1 p(k) = 1, we have the following matrix equa-
tion












2 + a −(2 + b) 0 ... 0
0 3 + a −(3 + b) ... 0

...

0 0 ... n+ a −(n+ b)
1 1 ... 1 1

























p(1)
p(2)
...

p(n− 1)
p(n)













=













0
0
...

0
1













(10)
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Using Gaussian elimination algorithm, we can directly solve p(n) from Eq.(10)
as

p(n) =



1 +
n+ b

n+ a
+ ...+

n
∏

j=2

j + b

j + a





−1

=



1 +

n
∑

i=2

n
∏

j=i

j + b

j + a





−1

(11)

Based on the recursive relationship Eq.(2), for a given n, we have

p(k) = p(n)





n
∏

j=k+1

j + b

j + a



 = p(n)

(
∏n

j=1
j+b
j+a

∏k

j=1
j+b
j+a

)

= p(n)





n
∏

j=1

j + a

j + b









k
∏

j=1

j + a

j + b



 (12)

where k = 1, ..., n− 1.
It is well known that for Gamma function Γ(z), we have Γ(z + 1) = zΓ(z).

So, we get

(j + b) =
Γ(j + 1 + b)

Γ(j + b)
, (j + a) =

Γ(j + 1 + a)

Γ(j + a)
(13)

where j = 1, ..., n− 1.
From Eq.(12), we have

p(k) = p(n)





n
∏

j=1

j + a

j + b









k
∏

j=1

Γ(j + 1 + a)

Γ(j + a)









k
∏

j=1

Γ(j + b)

Γ(j + 1 + b)





= p(n)





n
∏

j=1

j + a

j + b





Γ(k + 1 + a)

Γ(1 + a)

Γ(1 + b)

Γ(k + 1 + b)

= λ ·
Γ(k + 1 + a)

Γ(k + 1 + b)
(14)

where λ = p(n)
(

∏n
j=1

j+a
j+b

)

Γ(1+b)
Γ(1+a) is a constant.

Eq.(14) indicates that p(k) has the same asymptotic behavior of Γ(k+1+a)
Γ(k+1+b) .

Actually, the quotient of two Gamma functions is a difficult problem that re-
ceived consistent attentions[12−15]. There are numbers of approximation formu-
las which are not accurate enough for the above applications. Fortunately, an
important results had been obtained very recently[15] as

Lemma 1
[15] Given two constants s and t, when x → ∞, we have

[

Γ(x+ t)

Γ(x+ s)

]
1

t−s

∼

∞
∑

k=0

Fk(t, s)x
−n+1 (15)
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where Fk(t, s) are the polynomials of order n defined by

F0(t, s) = 1 (16)

Fn(t, s) =
1

n

n
∑

k=1

(−1)k+1Bk+1(t)−Bk+1(s)

(k + 1)(t− s)
Fn−k(t, s) (17)

where n ≥ 1, Bk(t) is the Bernoulli polynomials (page 40 of [16]) for t.
Based on Lemma 1, from Eq.(14), we can have an accurate expansion of

the degree distribution as follows

[

p(k)

λ

]
1

a−b

∼ k +
a+ b+ 1

2
+

1− (a− b)2

24
k−1 + ... (18)

As k → ∞, we have
[

p(k)
λ

]
1

a−b

≈ k + a+b+1
2 . Thus, we reach the following

conclusion rigorously.
Theorem 1 The degree distribution follows an asymptotic Mandelbrot law

Eq.(9) for some complex networks that grow with linear preferential attachment
depicted by Eq.(2).
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[13] A. Erdélyi, F. G. Tricomi, “The asymptotic expansion of a ratio of gamma
functions,” Pacific Journal of Mathematics, vol. 1, no. 1, pp. 133-142, 1951.

[14] J. Abad, J. Sesma, “Two new asymptotic expansions of the ratio of two
gamma functions,” Journal of Computational and Applied Mathematics,
vol. 173, no. 2, pp. 359-363, 2005.
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