The Asymptotic Mandelbrot Law of Some Evolution Networks

Li Li

June 22, 2011

Abstract

In this letter, we study some evolution networks that grow with linear preferential attachment. Based upon some recent results on the quotient Gamma function, we give a rigorous proof of the asymptotic Mandelbrot law for the degree distribution $p_{k} \propto(k+c)^{-\gamma}$ in certain conditions. We also analytically derive the best fitting values for the scaling exponent γ and the shifting coefficient c.

Complex networks are now the joint focus of many branches of research ${ }^{[1-3]}$. Particularly, the scale-free property of some networks attracts continuous interests, due to their importance and pervasiveness ${ }^{[4-6]}$. In short, this property means that the degree distribution of a network obeys a power law $P(k) \propto k^{-\gamma}$, where k is the degree and $P(k)$ is the corresponding probability density, and the scaling exponent γ is a constant. A pioneering model that generates power-law degree distribution was presented by Barabási and Albert (BA) ${ }^{[4]}$.

In recent studies, it was found that in some complex networks, e.g. transportation networks ${ }^{[7]}$ and social collaboration networks ${ }^{[8]}$, the degree distribution follows the so-called "shifted power law" ${ }^{[9]} P(k) \propto(k+c)^{-\gamma}$, where the shifting coefficient c is another constant. This property is also called "Mandelbrot law" ${ }^{[10]}$.

To understand the origins of such Mandelbrot law, Ren, Yang and Wang ${ }^{[11]}$ proposed a interesting growing network that is generated with linear preferential attachment. In such networks, there exits a recursive dependence relationship between every two consecutive degrees

$$
\begin{equation*}
p(k)\left[k+\frac{2+2 m \beta}{1-\beta}\right]=p(k-1)\left[k+\frac{2 m \beta}{1-\beta}-1\right] \tag{1}
\end{equation*}
$$

where where $k=2, \ldots, n, n$ is the number of nodes. m is a positive integer constant and $\beta \in[0,1]$ is another constant.

Defining $a=\frac{2 m \beta}{1-\beta}-1, b=\frac{2+2 m \beta}{1-\beta}$, we can abbreviate Eq.(1) as

$$
\begin{equation*}
p_{k}[k+b]=p_{k-1}[k+a] \tag{2}
\end{equation*}
$$

To derive the asymptotic of the degree distribution, Ren, Yang and Wang ${ }^{[11]}$ studied the following three kinds of approximations:
I) forward-difference approximation, assuming

$$
\begin{equation*}
\frac{d p(k)}{d k} \approx p(k)-p(k-1)=p(k)-\frac{k+b}{k+a} p(k)=\frac{a-b}{k+a} p(k) \tag{3}
\end{equation*}
$$

we have an estimation of the power-law as

$$
\begin{equation*}
p(k) \propto(k+a)^{-(b-a)} \tag{4}
\end{equation*}
$$

II) backward-difference approximation, assuming

$$
\begin{equation*}
\frac{d p(k)}{d k} \approx p(k+1)-p(k)=\frac{k+1+a}{k+1+b} p(k)-p(k)=\frac{a-b}{k+1+b} p(k) \tag{5}
\end{equation*}
$$

we have another estimation of the power-law as

$$
\begin{equation*}
p(k) \propto(k+b+1)^{-(b-a)} \tag{6}
\end{equation*}
$$

III) Suppose we must have a Mandelbrot law $p(k) \propto(k+c)^{-\gamma}$. As a result, we have $p(k-1) \propto(k-1+c)^{-\gamma}$. Substitute these two approximations in the logarithm type of Eq.(2), we have

$$
\begin{equation*}
\ln \frac{k+a}{k+b}=\ln \frac{p(k)}{p(k-1)}=-\gamma \ln (k+c)+\gamma \ln (k-1+c) \tag{7}
\end{equation*}
$$

Rewrite Eq.(7) as

$$
\begin{equation*}
\ln \frac{1+a \frac{1}{k}}{1+b \frac{1}{k}}=\gamma \ln \frac{1+(c-1) \frac{1}{k}}{1+c \frac{1}{k}} \tag{8}
\end{equation*}
$$

and apply the second order Taylor expansion of $\frac{1}{k}$ in Eq.(8), we have

$$
\begin{equation*}
p(k) \propto\left(k+\frac{b+a+1}{2}\right)^{-(b-a)} \tag{9}
\end{equation*}
$$

All these three estimations indicates that the scaling exponent of the degree distribution should be $-(b-a)$. Simulation results ${ }^{[11]}$ show that Eq.(9) gives the best approximation accuracy of the empirical distributions. However, we still need a rigorous proof of this interesting finding.

Indeed, further assuming $\sum_{k=1}^{n} p(k)=1$, we have the following matrix equation

$$
\left[\begin{array}{ccccc}
2+a & -(2+b) & 0 & \cdots & 0 \tag{10}\\
0 & 3+a & -(3+b) & \cdots & 0 \\
0 & 0 & \cdots & & \\
1 & 1 & \cdots & n+a & -(n+b) \\
1 & \cdots & 1 & 1
\end{array}\right]\left[\begin{array}{c}
p(1) \\
p(2) \\
\cdots \\
p(n-1) \\
p(n)
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\cdots \\
0 \\
1
\end{array}\right]
$$

Using Gaussian elimination algorithm, we can directly solve $p(n)$ from Eq.(10) as

$$
\begin{align*}
p(n) & =\left[1+\frac{n+b}{n+a}+\ldots+\prod_{j=2}^{n} \frac{j+b}{j+a}\right]^{-1} \\
& =\left[1+\sum_{i=2}^{n} \prod_{j=i}^{n} \frac{j+b}{j+a}\right]^{-1} \tag{11}
\end{align*}
$$

Based on the recursive relationship Eq.(2), for a given n, we have

$$
\begin{align*}
p(k) & =p(n)\left(\prod_{j=k+1}^{n} \frac{j+b}{j+a}\right)=p(n)\left(\frac{\prod_{j=1}^{n} \frac{j+b}{j+a}}{\prod_{j=1}^{k} \frac{j+b}{j+a}}\right) \\
& =p(n)\left(\prod_{j=1}^{n} \frac{j+a}{j+b}\right)\left(\prod_{j=1}^{k} \frac{j+a}{j+b}\right) \tag{12}
\end{align*}
$$

where $k=1, \ldots, n-1$.
It is well known that for Gamma function $\Gamma(z)$, we have $\Gamma(z+1)=z \Gamma(z)$. So, we get

$$
\begin{equation*}
(j+b)=\frac{\Gamma(j+1+b)}{\Gamma(j+b)}, \quad(j+a)=\frac{\Gamma(j+1+a)}{\Gamma(j+a)} \tag{13}
\end{equation*}
$$

where $j=1, \ldots, n-1$.
From Eq.(12), we have

$$
\begin{align*}
p(k) & =p(n)\left(\prod_{j=1}^{n} \frac{j+a}{j+b}\right)\left(\prod_{j=1}^{k} \frac{\Gamma(j+1+a)}{\Gamma(j+a)}\right)\left(\prod_{j=1}^{k} \frac{\Gamma(j+b)}{\Gamma(j+1+b)}\right) \\
& =p(n)\left(\prod_{j=1}^{n} \frac{j+a}{j+b}\right) \frac{\Gamma(k+1+a)}{\Gamma(1+a)} \frac{\Gamma(1+b)}{\Gamma(k+1+b)} \\
& =\lambda \cdot \frac{\Gamma(k+1+a)}{\Gamma(k+1+b)} \tag{14}
\end{align*}
$$

where $\lambda=p(n)\left(\prod_{j=1}^{n} \frac{j+a}{j+b}\right) \frac{\Gamma(1+b)}{\Gamma(1+a)}$ is a constant.
Eq.(14) indicates that $p(k)$ has the same asymptotic behavior of $\frac{\Gamma(k+1+a)}{\Gamma(k+1+b)}$. Actually, the quotient of two Gamma functions is a difficult problem that received consistent attentions ${ }^{[12-15]}$. There are numbers of approximation formulas which are not accurate enough for the above applications. Fortunately, an important results had been obtained very recently ${ }^{[15]}$ as

Lemma $1^{[15]}$ Given two constants s and t, when $x \rightarrow \infty$, we have

$$
\begin{equation*}
\left[\frac{\Gamma(x+t)}{\Gamma(x+s)}\right]^{\frac{1}{t-s}} \sim \sum_{k=0}^{\infty} F_{k}(t, s) x^{-n+1} \tag{15}
\end{equation*}
$$

where $F_{k}(t, s)$ are the polynomials of order n defined by

$$
\begin{gather*}
F_{0}(t, s)=1 \tag{16}\\
F_{n}(t, s)=\frac{1}{n} \sum_{k=1}^{n}(-1)^{k+1} \frac{B_{k+1}(t)-B_{k+1}(s)}{(k+1)(t-s)} F_{n-k}(t, s) \tag{17}
\end{gather*}
$$

where $n \geq 1, B_{k}(t)$ is the Bernoulli polynomials (page 40 of [16]) for t.
Based on Lemma 1, from Eq.(14), we can have an accurate expansion of the degree distribution as follows

$$
\begin{equation*}
\left[\frac{p(k)}{\lambda}\right]^{\frac{1}{a-b}} \sim k+\frac{a+b+1}{2}+\frac{1-(a-b)^{2}}{24} k^{-1}+\ldots \tag{18}
\end{equation*}
$$

As $k \rightarrow \infty$, we have $\left[\frac{p(k)}{\lambda}\right]^{\frac{1}{a-b}} \approx k+\frac{a+b+1}{2}$. Thus, we reach the following conclusion rigorously.

Theorem 1 The degree distribution follows an asymptotic Mandelbrot law Eq.(9) for some complex networks that grow with linear preferential attachment depicted by Eq.(2).

Acknowledgement

We would like to thank Prof. Tao Zhou at School of Computer Science \& Engineering, University of Electronic Science and Technology of China, for drawing our attentions to this problem.

References

[1] R. Albert, A. L. Barabási, "Statistical mechanics of complex networks," Review of Modern Physiscs, vol. 74, no. 1, pp. 47-97 2002.
[2] S. N. Dorogovtsev, J. F. F. Mendes, "Evolution of networks: From Biological Nets to the Internet and WWW," Advances in Physics, vol. 51, no. 4, pp. 1079-1187, 2002.
[3] M. E. J. Newman, "The structure and function of complex networks," SIAM Review, vol. 45, no. 2, pp. 167-256, 2003.
[4] A.-L. Barabási, R. Albert, "Emergence of scaling in random networks," Science, vol. 286, no. 5439, pp. 509-512, 1999.
[5] H.-X. Yang, B.-H. Wang, J.-G. Liu, X.-P. Han, T. Zhou, "Step-by-Step random walk network with power-law clique-degree distribution," Chinese Physics Letters, vol. 25, no. 7, pp. 2718-2720, 2008.
[6] J.-L. Guo, "Scale-free Networks with Self-Similarity Degree Exponents," Chinese Physics Letters, vol. 27, no. 3, id. 038901, 2010.
[7] H. Chang, B.-B. Su, Y.-P. Zhou, D.-R. He, "Assortativity and act degree distribution of some collaboration networks," Physica A, vol. 383, pp. 687702, 2007.
[8] Y.-L. Wang, T. Zhou, J.-J. Shi, "Empirical analysis of dependence between stations in Chinese railway network," Physica A, vol. 388, no. 14, pp. 29492955, 2009.
[9] D.-R. He, Z.-H. Liu, B.-H. Wang, Complex Systems and Complex Networks (Beijing: Higher Education Press), 2009.
[10] B. Mandelbrot, Information Theory and Psycholinguistics (New York: Basic Books Publishing Co.), 1965.
[11] X.-Z. Ren, Z.-M. Yang, B.-H. Wang, "Mandelbrot law of evolution networks," Journal of University of Electronic Science and Technology of China, vol. 40. no. 2, pp. 163-167, 2011.
[12] J. S. Frame, "An approximation to the quotient of Gamma function," The American Mathematical Monthly, vol. 56, no. 8, pp. 529-535, 1949.
[13] A. Erdélyi, F. G. Tricomi, "The asymptotic expansion of a ratio of gamma functions," Pacific Journal of Mathematics, vol. 1, no. 1, pp. 133-142, 1951.
[14] J. Abad, J. Sesma, "Two new asymptotic expansions of the ratio of two gamma functions," Journal of Computational and Applied Mathematics, vol. 173, no. 2, pp. 359-363, 2005.
[15] T. Burić, N. Elezović, "Bernoulli polynomials and asymptotic expansions of the quotient of gamma functions," Journal of Computational and Applied Mathematics, vol. 235, no. 11, pp. 3315-3331, 2011.
[16] A. Jeffrey, H.-H. Dai, eds., Hanndbok of Mathematical Formulas and Integrals, 4th edition, Elsevier, Burlington, MA, 2008.

