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Abstract

Recent empirical observations suggest a heterogeneous nature of human activities.
The heavy-tailed inter-event time distribution at population level is well accepted,
while whether the individual acts in a heterogeneous way is still under debate. Mo-
tivated by the impact of temporal heterogeneity of human activities on epidemic
spreading, this paper studies the susceptible-infected model on a fully mixed pop-
ulation, where each individual acts in a completely homogeneous way but different
individuals have different mean activities. Extensive simulations show that the het-
erogeneity of activities at population level remarkably affects the speed of spreading,
even though each individual behaves regularly. Further more, the spreading speed
of this model is more sensitive to the change of system heterogeneity compared
with the model consisted of individuals acting with heavy-tailed inter-event time
distribution. This work refines our understanding of the impact of heterogeneous
human activities on epidemic spreading.
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1 Introduction

To explain, predict and control the epidemic spreading, studies on infectious
diseases and computer virus attract increasing attention of many branches of
science and engineering, ranging from mathematics, physics to biology and
sociology [1,2,3]. Many ingredients affect the spreading processes, such as the
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infectivities of biological virus [4,5] and the multi-dimensional infection mech-
anisms of mobile virus [6]. Recently, quantitative understanding of human be-
havior has refined the traditional models and results [7,8]. These include the
structure of human contact networks, the traveling patterns and the temporal
regularities of human activities. In a word, all of them display heterogeneous
natures, which have remarkable impacts on epidemic spreading.

The inchoate assumptions are limited to spreading on a homogeneous network
such as ER network or lattices [9] or ignoring the network structure on the
hypothesis that all the individuals in a system are in the vicinity [1,2]. With
the small-world [10] and scale-free networks [11] put forward successively, the
development of complex networks breathes new impetus into the study. In-
creasing empirical data indicate that, not only in the real social networks,
but in the virtual webs as well, the degrees of individuals can be better char-
acterized by a heavy-tailed distribution, deviating from the former Poisson
assumption. The hub nodes play a role of ‘super-spreaders’, having a strik-
ing impact on spreading process [12,13]. It has been demonstrated that the
threshold of spreading on the heterogeneous networks is remarkably smaller
than that of the homogeneous networks [14,15]. Recent empirical study indi-
cates that the displacements of people’s traveling have the similar heterogene-
ity that short movements are overwhelming majority while long movements
essentially sprinkle [16]. The spatial structure and human mobility have great
effects on the epidemic spreading [17,18,19,20]. Especially, the heavy-tailed
displacement, integrated with the heterogeneity of networks, fasten the rate
of spreading especially in the global spatial transportation [21]. In addition
to the heterogeneous character materialized in spatial structure, the temporal
activities, characterized by the inter-event and response times, have consider-
able impacts on epidemic spreading and can not be simply approximated by
uniform distributions.

Recent empirical studies indicate that the human activities, quantified by both
the inter-event time and response time, display a heavy-tailed nature that can
not be well characterized by the Poissonian approximation [7,8]. Examples
include the email communication [22], the cell-phone communication [23], the
short-message communication [24,25,26], the web page visits [27,28,29] and
some other online activities [30,31]. To name just a few. The existence of the
power-law-like distribution of inter-event time in the population level (i.e.,
for a crowd of people) has already been well accepted in scientific commu-
nity, yet the understanding in individual level is still under debate. Although
the mainstream opinion is that the individuals also have heavy-tailed tempo-
ral activities [22,33], some scientists, from both theoretical and experimental
aspects, pointed that Poissonian individuals with different acting rates and
periodical activity can also lead to heavy-tails in the population level [34,35].
As we know, some attempts have already been made to understand the in-
fluence of human dynamics, indicating that the heterogeneity and burstiness
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Fig. 1. The average inter-event time versus power-law exponent. Each circle cor-
responds to an average value over 105 data points and the value of M is set as
1000.

of human activities have striking effects on the speed of spreading [36,37,38].
These works base on a strong assumption that individuals display heavy-tailed
temporal behavior (which will of course lead to heavy-tailed inter-event time
distribution in the population level). Although it is reasonable for a number
of real systems, it may fail in explaining some other systems with Poissonian-
like individuals and mathematically speaking, it is still unclear to us whether
the heterogeneity in population level will affect the spreading speed if each
individual is homogeneous.

We try to answer the above question according to a toy model where each
individual behaves in a constant rate but the rates of different individuals are
different, following a power-law distribution. To keep simplicity, we applied
the simplest epidemic spreading model, the so-called susceptible-infected (SI)
model [39,40,41,42,43,44], in a fully mixing environment without consideration
of the effects of network structure and spatial locations. Simulation results
show that even though every individual is homogeneous, the heterogeneity
in the population level has remarkable effects on the epidemic spreading: the
larger heterogeneity of individuals’ activities results in the faster spreading.
In comparison with another toy model where individuals are identical to each
other but each individual displays power-law inter-event time distribution,
we can, to some extent, distinguish the effects from population level and in-
dividual level. Our simulation results indicate that the heterogeneity in the
population level has higher impact rather than that in the individual level,
which has refined some previous understanding.
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2 Model

In the SI model, each individual can only be in two discrete states, either sus-
ceptible or infected. This model is usually applied to describe early epidemic
stages in which no control measures are deployed, and after infected, individ-
uals remain always infective, and cannot go back to the susceptible state. In
a fully mixing environment, there is a certain possibility for every infected
individual to infect all the susceptible ones at each time step. Speak in im-
ages, the infected individual can be associated with gaseous molecules, who
can move with freedom to infect all of other individuals in certain probability.
In this model, the infectivity rate λ, at which susceptible individuals acquire
the infection from an infected individuals, and the total population N are set
as constants.

The susceptible agents are the same to the ones in the traditional model,
namely at each time step they are probably infected if some infected agents
contact them. In contrast, at a given time step, an infected agent can be
inactive, that is to say, she/he will not contact any other susceptible agents at
that time step, while if she/he is active, she/he will contact every susceptible
agents with infectivity rate λ. The inter-event time is then defined as the time
difference between two consequent active steps of an infected individual. Each
infected individual acts in an identical rate with an unchanged inter-event
time. Denote by ∆ti the inter-event time of the ith individual, i will be active
at the time steps ti0, ti0+∆ti, ti0+2∆ti, · · ·, where ti0 is the first active time step
for i. To avoid the bias caused by synchronized actions, for each individual i,
the starting time ti0 is randomly selected in the interval [0,∆ti − 1]. Through
keeping inter-event time of an individual a constant, we can get rid of the
influence brought by the temporal heterogeneity in the individual level and
concentrate on the impact from the heterogeneity of the inter-event times of
different individuals. We assume that the distribution of ∆t obeys a power-law
form as P (∆t) ∼ ∆t−β. Initially, each individual samples an inter-event time
from this distribution.

Power-law distributions come in two basic favors: continuous distributions gov-
ern continuous real numbers and discrete distributions consider integers. The
latter form is needed here, but the way to produce it requires us think about
the continuous case. Avoiding some strikingly long time steps, we set a cell
limit M , and the task turns to be the generating of the following probability
function

P (k) ∝ k−β, (1)

where k is an integer in the range [1,M ]. Accordingly, the cumulative distri-
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Fig. 2. Two typical examples of distributions of generated inter-event times. The
black squares and red circles denote the cases of β = 2 and β = 3, respectively. The
number of individuals is N = 1000 and the cell limit is M = 1000. In this figure,
we have not considered the normalization by m(β).

bution reads

F (k) =
k∑
1

P (k), (2)

and can be approximated by a continuous form as:

F (k) =

k∫

1

P (k). (3)

Denote by r the ratio of F (∆t) (1 ≤ ∆t ≤M) to F (M), as

r =

∫
∆t
1

x−βdx∫M
1

x−βdx
=

∆t1−β
−1

1−β

M1−β
−1

1−β

=
∆t1−β − 1

M1−β − 1
. (4)

Clearly, 0 ≤ r ≤ 1 and ∆t can be obtained by:

∆t = (r × (M1−β − 1) + 1)
1

1−β . (5)

In the large limit of M , M1−β is close to zero and thus Eq. 5 can be approxi-
mated as

∆t ≈ (1− r)
1

1−β , (6)
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which is in accordance with the result shown by Clauset, Shalizi and Newman
[45].

A serious problem in the above method is that for different β, the average
inter-event times 〈∆t〉 are different, and thus it is not fair to compare systems
with different β. In fact, when β ≤ 2, the average inter-event time diverges
for the infinite large systems. Figure 1 reports a simulation result for a finite
system, from which it is obvious that when β decreases from 2 to 1, the average
inter-event time grows very fast. To eliminate the biased influence caused by
different 〈∆t〉, we introduce a factor m(β) to Eq. 5, as

∆t′ = m(β)× (r × (M1−β − 1) + 1)
1

1−β , (7)

where m(β) satisfies

〈∆t〉β1

〈∆t〉β2

=
m(β2)

m(β1)
. (8)

Without the loss of generality, we set m(1) = 1 and thus

m(β) =
〈∆t〉1
〈∆t〉β

. (9)

To summarize, in the initialization, given M and β, m(β) can be estimated
directly by simulation, and then for each individual i, we first generate a
random real r in the range [0, 1] and then calculate her/his characteristic
inter-event time ∆ti according to Eq. 7.

Notice that, the generated inter-event time from Eq. 7 may be not well-pleasing
for our model since it is generally not an integer. Here, for a real ∆t, we
firstly separate its integral and decimal parts as ∆t = ⌊∆t⌋ + b, b ∈ [0, 1).
Then we reset ∆t ← ⌊∆t⌋ with probability 1 − b, while ∆t ← ⌊∆t⌋ + 1 with
probability b. For example, if we obtain ∆t = 3.2 from Eq. 7, it will be reset
as 3 with probability 0.8 while 4 with probability 0.2. Figure 2 shows typical
distributions for a system with N = 1000 individuals for different β, from
which one can see that the generating method for heterogeneous inter-event
times well meets the requirement (The fitting exponents, shown as slopes in
the figure, are obtained by using the maximum likelihood method [46]).
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Fig. 3. Impacts of the power-law exponent β on the epidemic spreading process.
The first three plots show the number of infected nodes I(t) versus the time step t,
where the parameters are: (a) N = 1000, λ = 3× 10−4, (b) N = 2000, λ = 3× 10−4

and (c) N = 1000, λ = 5×10−5. The plot (d) displays the first time step t∗ when the
number of infected nodes exceeds half of the population. In plot (d), black squares,
red circles and blue triangles correspond to the cases shown in plots (a), (b) and
(c), respectively. All the data points are obtained by averaging over 10 independent
runs.

3 Results and Discussion

A set of comparative simulations are carried out to show the impacts of het-
erogeneous activity on spreading speed. Each run starts with one randomly
selected node as infected node and the other N−1 nodes all susceptible. Figure
3 reports how the spreading speed, characterized by the number of infected
nodes I(t), is affected by the heterogeneity of the individual activities. Al-
though each individual behaves in a perfectly uniform pace, the heterogeneity
at the population level has remarkably impacts on the epidemic spreading, and
the spreading can be accelerated by enhancing the heterogeneity (i.e., reducing
the exponent β). To clearly show the relation between speed and heterogene-
ity, we further consider the required time steps t∗ to infect half population
from the initialization. We normalize t∗ by dividing by t∗

max
given a parame-

ter set (N, λ), which is helpful in better displaying several t∗(β) curves with
different parameter sets (N, λ). One can see from figure 3(d), t∗ monotonously
increases with β, again indicating that the spreading can be accelerated by
reducing β.

As we have mentioned before, the heavy-tailed distribution of inter-event time

7



0 2000 4000 6000 8000 10000

0

200

400

600

800

1000

(a)

 

 

I(t
)

t

  
 
 
 
 

0 500 1000 1500

0

500

1000

1500

2000

(b)

 

 

I(t
)

t

  =1.5
  =2.0
  =2.5
  =3.0
  =3.5

0 2000 4000 6000 8000 10000

0

200

400

600

800

1000

(c)

 

 

I(t
)

t

  =1.5
  =2.0
  =2.5
  =3.0
  =3.5

1.5 2.0 2.5 3.0 3.5 4.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

d

 

 

t*

 N=1000, =0.0003
 N=2000, =0.0003
 N=1000, =0.00005

Fig. 4. Impacts of the power-law exponent β on the epidemic spreading process of
the model for comparison. The first three plots show the number of infected nodes
I(t) versus the time step t, where the parameters are: (a) N = 1000, λ = 3× 10−4,
(b) N = 2000, λ = 3 × 10−4 and (c) N = 1000, λ = 5 × 10−5. The plot (d)
displays the first time step t∗ when the number of infected nodes exceeds half of
the population. In plot (d), black squares, red circles and blue triangles correspond
to the cases shown in plots (a), (b) and (c), respectively. All the data points are
obtained by averaging over 100 independent runs.

at the population level is well accepted, but whether the individual is hetero-
geneous is still under debate [34,35]. With the assumption that each indi-
vidual has heavy-tailed temporal activities, previous works have revealed the
non-ignorable impacts on epidemic spreading [36,37,38], yet they have not an-
swered the question whether the heterogeneity in population level will affect
the spreading speed if each individual is homogeneous. Figure 3 clearly says
“YES”!

To make a comparison, we next investigate another model where each indi-
vidual acts with a power-law inter-event time distribution P (∆t) ∼ ∆t−β .
Here β is a system parameter, namely the inter-event time distributions of
all individuals are the same. Of course, at the population level, the inter-
event time distribution is also P (∆t) ∼ ∆t−β . This model is closer to the
assumption of previous works [36,37]. As shown in Fig. 4, the exponent β also
affects the spreading process, but in a more complicated way [47]. In the range
β ∈ [1.5, 4] and for N = 2000, subject to t∗, the fastest spreading is about
twofold faster than the slowest one in Fig. 4(d), while in Fig. 3(d), it can be
tenfold faster. In a word, whatever the individual activities are homogeneous
or not, the heterogeneity at the population level has remarkable impact on
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epidemic spreading. In comparison, a system consisted of heterogeneous in-
dividuals is more sensitive to the temporal heterogeneity of activities at the
population level even though each individual acts in a completely periodical
way. Qualitatively speaking, the difference between a system of regular agents
with different acting rates and a system of non-Poissonian agents with the
same statistics is analogous to the difference between quenched and annealed
systems. In the former system, a few agents are born with very large ∆t, which
play the role of absorbing nodes that are hardly to infect other agents. In the
latter system, each agent has the chance to suffer a very large ∆t, but not
usual. These two systems can be considered as a quenched system and an an-
nealed system, respectively. We believe that the difference of impacts reported
in this paper is similar to the difference of spreading processes in quenched
and annealed networks [48,49], however, to which extent the observed different
impacts can be explained by the difference between quenched and annealed
systems, as well as how to characterize and understand the difference between
quenched and annealed systems are still open questions to us. To summarize,
this work provides complementary information to the previous studies and
refines our understanding of the impact of heterogeneous human activities on
epidemic spreading.
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