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DECOMPOSITIONS OF COMMUTATIVE MONOID CONGRUENCES

AND BINOMIAL IDEALS

THOMAS KAHLE AND EZRA MILLER

Abstract. We demonstrate how primary decomposition of commutative monoid con-
gruences fails to capture the essence of primary decomposition in commutative rings
by exhibiting a more sensitive theory of mesoprimary decomposition of congruences,
complete with witnesses, associated prime objects, and an analogue of irreducible
decomposition called coprincipal decomposition. We lift the combinatorial theory of
mesoprimary decomposition to binomial ideals in monoid algebras. The resulting
binomial mesoprimary decomposition is a new type of intersection decomposition for
binomial ideals that enjoys computational efficiency and independence from ground
field hypotheses. Furthermore, binomial primary decomposition is easily recovered
from mesoprimary decomposition, as is binomial irreducible decomposition—which
was previously not known to exist—from binomial coprincipal decomposition.
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1. Introduction

Overview. Primary decomposition of ideals and modules has been a mainstay of
commutative algebra since its introduction roughly a century ago [Noe21]. A formally
analogous theory for congruences on commutative monoids made its first appearance
around fifty years ago [Drb63], and subsequently the topic of decompositions has sim-
ilarly played a central role in commutative semigroup theory [Gri01]. Our first goal
is to demonstrate that the formal analogy in the setting of finitely generated monoids
and congruences—the combinatorial setting—fails to capture the essence of primary
decomposition in noetherian rings and modules. We rectify this failure by exhibiting
a more sensitive theory of mesoprimary decomposition of congruences, complete with
witnesses, associated prime objects, and other facets of control afforded in parallel with
primary decomposition in rings. We justify our claim of insufficiency of the formal anal-
ogy in current use by lifting our witnessed theory of mesoprimary decomposition to
the arithmetic setting : binomial ideals in semigroup rings, comprising the interface of
commutative ring theory with finitely generated monoids.

Mesoprimary decomposition of binomial ideals is not binomial primary decomposi-
tion, but a new type of intersection decomposition for binomial ideals, with numerous
advantages over ordinary primary decomposition, such as combinatorial clarity, inde-
pendence from properties of the ground field, and computational efficiency. Neverthe-
less, binomial primary decomposition is easily recovered from mesoprimary decomposi-
tion, as is binomial irreducible decomposition, which was previously not known to exist;
both are consequently seen to be chiefly combinatorial in nature. In essence, by lifting
mesoprimary decomposition of congruences, binomial mesoprimary decomposition dis-
tills the coefficient-free combinatorics inherent in primary decomposition of binomial
ideals and isolates the precise manner in which coefficients subsequently determine the
primary components. The subtlety of coefficient arithmetic causes the lifting procedure
to fail verbatim translation, thus requiring great care, particularly where redundancy is
involved. Part of our study therefore contrasts the slightly different notions of witness
and associatedness in the combinatorial and arithmetic settings.

General motivation. Beyond the intrinsic merit of mesoprimary decomposition, the
need for natural decompositions in the monoid and binomial contexts has become
increasingly important in recent years, in view of appearances and applications in nu-
merous areas. Some of these directly involve commutative monoids, such as schemes
over F1 [CC11, Dei05], where monoids form the foundation just as rings do for usual
schemes. Another instance is the arrival of misère quotients in combinatorial game
theory, where monoids provide data structures for recording and computing winning
strategies [Pla05, PS07] (see also [Mil11a] for a gentle algebraic introduction). At the
same time, binomial ideals are finding ever deeper interactions with other parts of math-
ematics and the sciences, motivating research into applicable descriptions—including
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computational and combinatorial ones—of their decompositions. For example, dynam-
ics of mass-action kinetics, where steady states in detailed-balanced cases are described
by vanishing of binomial trajectories, arise from stoichiometric exponential growth
and decay [AGHMR09]; binomial primary decompositions in mass-action kinetics can
identify which species persist or become extinct [SS10]. In algebraic statistics, decom-
positions of binomial ideals give insight into how a set of conditional independence
statements among random variables can be realized [DSS09, HHHKR10]. The algebra,
geometry, and combinatorics of binomial primary decomposition interacts with systems
of differential equations of hypergeometric type [GGZ87, GKZ89], whose solutions are
eigenfunctions for binomial differential operators encoding the infinitesimal action of
an algebraic torus.

In fact, it was in the hypergeometric framework that the combinatorics of binomial
primary decomposition had its origin [DMM10, DMM09], providing tight control over
series solutions. In the meantime, mesoprimary decomposition serves as an improved
method for presenting and visualizing binomial primary decomposition in algorithmic
output [Kah11]. Beyond that, the methods here have already found a theoretical
application to combinatorial game theory [Mil11b].

Gathering primary components rationally. Staring at output of binomial primary
decomposition algorithms intimates that certain primary components belong together.

Example 1.1. During investigations of presentations of misère quotients of com-
binatorial games (culminating in the definition of lattice games [GMW09, GM10]),
Macaulay2 [GS] produced long lists of primary binomial ideals. In one instance, eight
of the forty or so components were

〈e− 1, d− 1, b− 1, a− 1, c3〉, 〈e− 1, d− 1, b− 1, a+ 1, c3〉,
〈e− 1, d+ 1, b− 1, a− 1, c3〉, 〈e− 1, d+ 1, b− 1, a+ 1, c3〉,
〈e+ 1, d− 1, b+ 1, a− 1, c3〉, 〈e+ 1, d− 1, b+ 1, a+ 1, c3〉,
〈e+ 1, d+ 1, b+ 1, a− 1, c3〉, 〈e + 1, d+ 1, b+ 1, a+ 1, c3〉.

The urge to gather these eight into one piece (a piece of eight?), namely their intersection

〈b− e, e2 − 1, d2 − 1, a2 − 1, c3〉,
is irresistible. (Who would rather sift through the big list?) And it would have become
more so had the exponents in the single gathered component been odd primes, for then
the coefficients in the long list of primary ideals would not even have been rational
numbers, though the intersection would still have been rational.

In general, a binomial prime ideal Iρ,P in a finitely generated monoid algebra k[Q]
is determined by a monoid prime ideal P ⊂ Q and a character ρ : K → k∗ defined
on a subgroup of the local unit group GP ⊆ QP (Theorem 11.15). A given binomial
ideal I ⊆ k[Q] (Definition 2.14) might possess a multitude of associated primes sharing
the same P and K, differing only in the character ρ. We originally conceived of
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mesoprimary ideals (Definition 10.4; see also Proposition 12.6) as data structures for
keeping track of primary components for such groups of associated binomial primes.
The term “group” here is used in the ordinary, nonmathematical sense, but it is entirely
appropriate mathematically: the primary components of a mesoprimary ideal over
an algebraically closed field are indexed by the characters of a finite abelian group,
namely the quotient sat(K)/K of the saturation of K in GP (Proposition 15.7 and
Remark 15.8). The efficiency of space afforded by describing primary decompositions
after gathering components into mesoprimary ideals is thus more or less equivalent to
writing presentations for a collection of finite abelian groups instead of listing every
one of their characters.

The situation is not typically as simple as in Example 1.1. Indeed, upon inspecting
a binomial primary decomposition, it can be difficult to determine which mesoprimary
ideals ought to occur, and which mesoprimary ideal each primary component ought to
contribute to. Furthermore, some primary components of a mesoprimary ideal can be
absent, even if the mesoprimary ideal clearly ought to appear. Nonetheless, mesopri-
mary decompositions of binomial ideals always exist (Definition 13.1 and Theorem 13.2)
in a form that realizes our initial intent (Corollary 15.11 and Theorem 15.14) by canon-
ical primary decomposition of mesoprimary ideals (Proposition 15.7 and Remark 15.8).
In summary, mesoprimary decomposition gathers primary components so that:

1. the decomposition into binomial ideals requires no hypotheses on the ground field;
2. specifying one mesoprimary component takes the place of individually listing all

primary components arising from saturated extensions of a fixed character; and
3. the combinatorics of the components and their associated prime objects accu-

rately and faithfully reflects the combinatorics of the decomposed binomial ideal.

The key role of item 3, in both the existence and chronological development of meso-
primary decomposition, is discussed at length in the remainder of this Introduction.

Example 1.2. The ideal I = 〈y−x2y, y2−xy2, y3〉 ⊆ k[x, y] has primary decomposition
I = 〈y〉 ∩ 〈1+x, y2〉 ∩ 〈1−x, y3〉. The ideal I is unital (Remark 2.16), being generated
by differences of monomials, so the component 〈1 + x, y2〉 feels out of place. Yet there
are no obvious components to gather. What’s missing is a “phantom” component
〈1−x, y2〉, hidden by 〈1−x, y3〉. Gathering yields 〈1+x, y2〉∩〈1−x, y2〉 = 〈1−x2, y2〉.
The mesoprimary decomposition is I = 〈y〉 ∩ 〈1− x2, y2〉 ∩ 〈1− x, y3〉.

What criterion determines when a set of primary components of an ideal I should
be gathered, and when not? Our answer takes its cues from two sources.

The first cue is arithmetic: the gathering problem has already been solved—quite
naturally—when I = 〈tu − tv | u− v ∈ L〉 ⊆ k[t1, . . . , tn] is a lattice ideal in a polyno-
mial ring over an algebraically closed field k = k of characteristic 0, for some sublattice
L ⊆ Zn [ES96, Corollary 2.2] (see Proposition 11.10). Its primary components are the
“twisted lattice ideals” 〈tu−ρ(u−v)tv | u−v ∈ sat(L)〉 for extensions ρ : sat(L) → k∗

of the trivial character on L. In keeping with Example 1.1, if k were not algebraically
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closed, then these characters ρ would not necessarily be defined over k, but the inter-
section of the primes, namely the lattice ideal itself, is defined over k automatically.

The second cue is combinatorial: primary binomial ideals have particularly simple
combinatorics (again, we only know this over fields k = k of characteristic 0), and
primary components of a given binomial ideal are constructed by relatively straightfor-
ward operations [DMM09, Theorem 3.2]. However, the procedure goes only one way:
it is not obvious (even now, given the results in this paper) how to reconstruct the
combinatorics of a binomial ideal from an arbitrary binomial primary decomposition.

Mesoprimary decomposition of a binomial ideal I is an expression of I as an inter-
section of mesoprimary components (Definition 12.15), each of which is a mesoprimary
ideal—a binomial ideal whose combinatorics feels like that of a primary ideal but whose
arithmetic feels like that of a lattice ideal. An arbitrary intersection of mesoprimary
ideals is not a mesoprimary decomposition, even if the intersection is a binomial ideal;
exigent additional conditions must be met regarding the interaction of the combina-
torics and the arithmetic of the mesoprimary components, as compared with that of I
(Remark 13.7). In particular, the combinatorics of I is easily reconstructed from any
mesoprimary decomposition, by fiat (Definition 13.1).

Congruences: binomial combinatorics. Our first approaches to mesoprimary de-
composition reduced to the case of cellular binomial ideals in polynomial rings (Def-
inition 10.4), since all binomial ideals are expressible as intersections of these [ES96,
Section 6]. However, our many attempts, complicated by the non-canonical nature of
cellular decomposition, and restricted by keeping to polynomial rings, inexorably led
us to conclude that a proper combinatorial theory of binomial primary decomposition
could be achieved only with input from the language and theory of monoid congruences
(Section 2; or see [Gil84] for more background).

Every mention of “combinatorics” in binomial contexts prior to this point refers
to congruences on monoids. The simple (and not new) idea is that a binomial ideal
I ⊆ k[Q] in the monoid algebra for a commutative monoid Q determines an equivalence
relation ∼ on Q that sets u ∼ v if I contains a two-term binomial tu − λtv (Defini-
tion 2.14). The quotient Q = Q/∼ modulo this relation is a monoid. When Q = Nn

is finitely generated and free, k[Q] is a polynomial ring, and binomial combinatorics
amounts to a certain type of lattice point geometry.

Example 1.3. The following ideals induce the depicted congruences on N2 and quo-
tient monoids. The congruence classes are the connected components of the graphs
drawn in the left-hand pictures. Each element labeled 0 is the identity of the quotient
monoid. Each element labeled ∞ in the right-hand picture is nil (Definition 2.8 and
Remark 2.9) in the quotient monoid; its congruence class comprises all monomials in
the given binomial ideal. In items 2 and 4, the groups labeling the rows indicate how
the group in the bottom row acts on the higher rows. In all four items, every element
outside of the bottom row of the quotient monoid is nilpotent (Definition 2.8).
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1. For the ideal 〈y〉 ⊂ k[x, y], the quotient monoid is N ∪∞:

x

y

։
0

∞

2. For the ideal 〈1 − x2, y2〉 ⊂ k[x, y], the quotient monoid is a copy of the group
Z/2Z (the bottom row), a free module over Z/2Z (the middle row), and a nil:

x

y

։

Z/2Z

∞

3. For the ideal 〈1−x, y3〉 ⊂ k[x, y], the quotient monoid is the quotient N/(3+N) of
the natural numbers modulo the Rees congruence of the ideal 3+N, which makes
all elements of the ideal equivalent and leaves the other elements of N alone:

x

y

։

0

∞

4. For the ideal 〈y − x2y, y2 − xy2, y3〉 ⊂ k[x, y], the quotient monoid is a disjoint
union of the group Z and three Z-modules:

x

y

։

∞
Z/Z

Z/2Z

Z

We examined monoid congruences on the premise that an appropriate decomposition
theory for them should lift, either analogously or directly, to the desired mesoprimary
theory for binomial ideals. However, although we found rich decomposition theories for
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commutative semigroups [Gri01], the expected analogue of binomial primary decompo-
sition was absent. The most promising development we encountered along these lines
is Grillet’s discovery of conditions guaranteeing that a commutative semigroup can be
realized as a subsemigroup of the multiplicative semigroup of a primary ring—that is, a
ring with just one associated prime [Gri75]. That work covers ground anticipating—in
a more general setting but necessarily with less precise results—the characterization of
primary binomial ideals over algebraically closed fields of characteristic zero [DMM09].

The closest monoid relative in the literature to primary decomposition in rings seems
to be primary decomposition of congruences [Drb63] (see [Gil84] for a treatment in the
context of semigroup rings). However, one of our motivating discoveries is that pri-
mary decomposition of congruences, being much closer to a shadow of cellular binomial
decomposition (by Theorem 10.6), falls quite short of serving as a rubric for either pri-
mary or mesoprimary decomposition of binomial ideals. Indeed, congruences that are
prime, meaning that quotients modulo them are cancellative except perhaps for a nil
(Definition 2.11.4), fail to be irreducible (Example 2.22). Furthermore, congruences
that are primary, meaning that every element in the quotient is either nilpotent or
cancellative (Definition 2.11.1), admit further decompositions into pieces that are vis-
ibly more “homogeneous”, in a manner more analogous to primary decomposition in
the presence of embedded primes than to irreducible decomposition of primary ideals.

Example 1.4. All of the congruences depicted in Example 1.3 are primary, but the first
three are visibly more homogeneous: in each one, the non-nil rows all look the same.
In fact, the fourth congruence is the common refinement (Section 3) of the first three.
This is equivalent to saying that the fourth binomial ideal equals the intersection of the
first three—this is the mesoprimary decomposition from Example 1.2—since the ideals
in question are all unital and contain monomials; see Remark 2.16 and Theorem 9.12.

Given the role of primary (binomial) ideals in the setting of primary decomposition
over noetherian (monoid) rings, it would be reasonable to seek a theory of “primi-
tive decomposition” for congruences, since primary binomial ideals induce primitive
congruences (Definition 2.11 and Theorem 10.6). However, congruences usually do
not admit expressions as intersections (common refinements) of primitive congruences.
The reason stems from the same phenomenon that requires one to assume, for bi-
nomial primary decomposition, that the base field is algebraically closed: even ideals
generated by unital binomials usually require nontrivial roots of unity. Viewed another
way, the arithmetic part of binomial primary decomposition has a combinatorial ram-
ification: intersecting multiple primary ideals inducing the same primitive congruence
results in a single mesoprimary ideal whose associated prime congruence has finite in-
dex in the primitive one (Proposition 15.7). In essence, primary congruences on Q are
too coarse to reflect binomial primary decomposition in k[Q] accurately, and primitive
congruences on Q are too fine, requiring additional arithmetic data from k to resolve
otherwise indistinguishable associated primes in k[Q].
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Thus the true monoid congruence analogue of primary decomposition in rings is a
suitable compromise, developed (in Sections 2–8) as mesoprimary decomposition for
congruences (Definition 8.1 and Theorem 8.3). The type of homogeneity mentioned
before Example 1.4, discovered by Grillet [Gri75] (Remark 2.12.4), characterizes meso-
primary congruences (Corollary 6.6 and Remark 6.7). These are also distinguished
(Theorem 6.1) as those with just one associated prime congruence (Definitions 2.11.4
and 5.2), a notion new to monoid theory.

The development of binomial mesoprimary decomposition in the latter half of the
paper (Sections 9–16) mirrors the first half directly. Arithmetic existence statements
build on combinatorial ones by exhibiting lifts of statements or requirements concern-
ing equivalent elements under congruences to statements or requirements concerning
binomials with nonzero coefficients. The combinatorics and arithmetic are so parallel
that the coming structural outline works, on the whole, simultaneously for both.

It is worth warning the reader at this juncture of the inevitable clash of terminology
in translating between combinatorics and arithmetic; see the table in Section 10, which
in particular explains the source of our term mesoprimary to mean “between the two
occurrences of ‘primary’ ”. To aid readers coming from commutative ring theory, the
basic notions from semigroup theory are reviewed from scratch (Sections 2 and 3). For
readers interested primarily in monoids, we complete the entire combinatorial theory
in Section 8, before starting the arithmetic theory in Section 9.

Irreducible decomposition via coprincipal decomposition. The development of
mesoprimary decomposition, in both the combinatorial and arithmetic settings, mimics
the development of ordinary primary decomposition for ideals in noetherian rings.
In the latter case, irreducible ideals serve as atoms by which existence is derived,
and from which the rest of the theory unfolds readily. The analogous coprincipal
mesoprimary congruences (Definition 7.1) and ideals (Definition 12.18) must be defined
de novo, using intuition derived from characterizations of irreducibility in the context of
monomial ideals in affine semigroup rings. This intuition supplants the inexpressibility-
as-an-intersection condition that works so well for ideals in noetherian rings because
irreducible binomial ideals induce congruences that are slightly too fine (Theorem 15.5;
see the remarks following Example 1.4), and irreducible congruences on monoids are
far too coarse (Example 2.22).

In the absence of true irreducibility, coprincipal objects derive their utility from
combinatorial analogues of the simple socle condition [Vas98, Proposition 3.15] that
characterizes irreducible ideals (see Lemma 15.4). It is not hard to construct coprincipal
congruences and ideals with given socles (Definitions 7.7 and 12.18), once the ambient
data of a congruence or an ideal has been fixed. The crucial task, in contrast, is to
determine the socle elements for the relevant coprincipal objects, so that the intersec-
tion of the coprincipal objects equals the fixed congruence or ideal. These special socle
elements are witnesses (Definitions 4.7, 12.1, and 16.3). In retrospect, hints toward
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the notion of witness, and toward the algebra of mesoprimary decomposition in gen-
eral, appear already in the paper by Eisenbud and Sturmfels [ES96], particularly their
unmixed decomposition for cellular ideals in characteristic zero [ES96, Corollary 8.2].

As in ordinary primary decomposition, witnesses have corresponding prime objects
associated to them (Definitions 4.7, 5.2, and 12.1). Continuing the parallel, these
notions of associatedness are defined by local combinatorial or algebraic conditions,
but are equivalently characterized by consistent appearance of prime objects in ev-
ery primary decomposition (Theorems 4.12 and 15.16). The local conditions defining
witnesses incorporate the combinatorial quiddity of having prime annihilator in the
ordinary setting context of ring theory. This particular analogy took a lot of tweaking,
and generated a lot of subtly incorrect attempts—many spawning examples here.

The proof of concept for mesoprimary decomposition as a mode to connect the
combinatorial and arithmetic settings lies in a fundamental discovery: there is a com-
binatorially defined set of witnesses that captures decompositions of both an ideal and
its induced congruence (Corollary 8.11 and Theorem 13.5). To arrive at a decompo-
sition that is as minimal as possible without disturbing symmetry, however, one must
restrict to a subset of witnesses, the key witnesses for congruences (Definition 4.7) and
the character witnesses for binomial ideals (Definition 16.3), and these subsets differ
(Theorems 8.4 and 16.9). Section 16 serves as a caveat on this point, lest we be lulled
into thinking the combinatorial and arithmetic theories to be completely parallel. Not
only do key witnesses not suffice for binomial ideals (Example 16.6), but in fact some
key witnesses are systematically redundant: a key witness can be a false witness rather
than a character witness (Definition 16.3 and Example 16.5). These and other subtle
distinctions between the combinatorial and arithmetic aspects of the theory demand
care, as they necessitate occasional slight weakenings, or failures of the combinatorics
to lift; see Remarks 12.20 and 12.21, for instance.

Coprincipal decomposition constitutes the true binomial generalization of irreducible
decomposition for monomial ideals (Example 8.6), although nonminimality is forced,
if canonicality is desired (Example 8.7 and Remark 13.8). For this reason, we envision
binomial parallels to much of the extensive body of literature on monomial ideals,
particularly where natural homological constructions are concerned: free and injective
resolutions, local cohomology, and so on (see Section 17, where we detail this and
other open problems). Our expectations are partly based on well behaved interactions
of binomiality with localization.

Indeed, the transition from combinatorics of mesoprimary decomposition in Sec-
tion 13 to arithmetic of irreducible and primary decomposition in Section 15 requires
stronger localization techniques than monomial localization to tease apart primary
components sharing the same associated monoid prime ideal. Binomial localization
(Section 14) purposely falls just far enough shy of ordinary inhomogeneous localization
at a prime ideal to prevent the loss of binomiality while retaining the usual advantages
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of localization, such as scraping away undesired associated primes. Binomial localiza-
tion imposes the effect that ordinary localization at a binomial prime has on monomials
in the quotient by a binomial ideal. More precisely, it identifies monomials that lie in
the kernel of ordinary localization at a binomial prime (Theorem 14.9), and these are
precisely the right monomials in the cellular case.

The development of coprincipal decomposition, together with binomial localization,
culminates in the solution to a question left open by Eisenbud and Sturmfels [ES96,
Problem 7.5]: they ask for a combinatorial characterization of irreducible binomial
ideals, and for the construction of an irreducible decomposition. Both are provided in
Section 15 (Theorem 15.5 and Corollary 15.11). We conceived of coprincipal ideals and
decompositions as analogies to monomial irreducible ideals and decompositions [Mil02,
Theorem 2.4] (see also [MS05, Corollary 11.5 and Proposition 11.41]), drawing partic-
ularly from the monoid ideal case, where the analogy is tight (Example 8.6). But once
the connection between mesoprimary decomposition and ordinary primary decompo-
sition is elucidated (Proposition 15.7), coprincipal decomposition becomes the door to
binomial irreducible decomposition, the key being that for binomial ideals, irreducible
is the combination of primary and coprincipal (Theorem 15.5). The overarching con-
clusion is that binomial primary and irreducible decomposition are naturally governed
by combinatorics almost completely; arithmetic only enters at the end, in decomposing
coprincipal or mesoprimary components.

Acknowledgements. The authors are very grateful to Howard M Thompson for his
detailed reading of a previous draft; his comments led to substantial mathematical
corrections and expositional improvements. TK was supported by an EPDI fellowship
and gratefully acknowledges the hospitality of Institut Mittag-Leffler, where substantial
parts of the research for this paper were carried out. EM had support from NSF grants
DMS-0449102 = DMS-1014112 and DMS-1001437.

Conventions. Unless otherwise stated, Q denotes a finitely generated (equivalently,
noetherian) commutative monoid, and k denotes an arbitrary field.

2. Taxonomy of congruences on monoids

Fix a commutative semigroup Q: a set with an associative, commutative binary
operation (usually denoted by + here). Assume that Q has an identity, usually denoted
by 0 here, so Q is a monoid. An ideal T ⊆ Q is a subset such that T +Q ⊆ T , and T is
prime if t+ s ∈ T implies t ∈ T or s ∈ T . The ideal generated by elements q1, . . . qs is
written 〈q1, . . . , qs〉. A congruence ∼ on Q is an additively closed equivalence relation:
a ∼ b ⇒ a + c ∼ b + c for all a, b, c ∈ Q. The quotient Q/∼ by any congruence is
a monoid. The minimal relation satisfying this definition is equality itself, called the
identity congruence. The congruence that identifies all pairs of elements in Q, and has
trivial quotient, is the universal congruence.
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Definition 2.1. A module over a commutative monoid Q is a non-empty set T with
an action of Q, which means a map Q× T → T , written (q, t) 7→ q · t, that satisfies

• 0 · t = t for all t ∈ T , and
• (q + q′) · t = q · (q′ · t),

the latter meaning that the action respects addition. A congruence on a module is an
equivalence relation that is preserved by the action. A module homomorphism over
a given monoid is a set map that respects the actions. For any element q ∈ Q, the
addition morphism φq : Q → 〈q〉 is the module morphism defined by p 7→ p + q. The
kernel ker(φ) of a module homomorphism φ : T1 → T2 is the congruence on T1 under
which t ∼ s ⇔ φ(t) = φ(s).

Remark 2.2. For general semigroups Grillet defines an act as a set with an action of a
semigroup that satisfies only the second bullet in Definition 2.1, even if the semigroup
was a monoid to start with [Gri07]. To every semigroup S a formal identity element e
can be adjoined (even if S is already a monoid) to form the monoid S ∪ {e}. Upon
this operation an S-act turns into an (S ∪{e})-module as it automatically satisfies the
first item in Definition 2.1.

Definition 2.3. A subgroup of a monoid is a subsemigroup that is a group.

Remark 2.4. The identity of a subsemigroup of a monoid need not equal the identity
of the monoid.

Definition 2.5. Green’s preorder on a monoid is the divisibility preorder p � q ⇔
〈p〉 ⊇ 〈q〉. Green’s relation on a monoid is p ∼ q ⇔ 〈p〉 = 〈q〉.

Lemma 2.6. The quotient of a commutative monoid modulo Green’s relation is par-
tially ordered.

Proof. [Gri01, Proposition I.4.1]. �

Remark 2.7. Green’s relation measures the extent to which group-like behavior is
found in a monoid. Idempotents and units are obstructions to partially ordering a
monoid by divisibility. In particular, a monoid with trivial unit group is partially
ordered if Green’s relation is trivial. Note that our divisibility preorder is the opposite
direction compared to Grillet’s, to be compatible with divisibility of monomials.

Definition 2.8. An element ∞ in a monoid Q is nil if it is absorbing, meaning that
q +∞ = ∞ for all q ∈ Q. An element q ∈ Q is

• nilpotent if one of its multiples nq is nil for some nonnegative integer n ∈ N.
• cancellative if addition by it is injective: q + a = q + b ⇒ a = b in Q.
• partly cancellative if q + a = q + b 6= ∞ ⇒ a = b for all cancellative a, b ∈ Q.
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A set of elements in a monoid is torsion-free if na = nb ⇒ a = b for all n ∈ N,
whenever a and b lie in the given set. An affine semigroup is a monoid isomorphic to a
finitely generated submonoid of a free abelian group. A nilmonoid is a monoid whose
nonidentity elements are all nilpotent.

Remark 2.9. An absorbing element is often called a zero instead of a nil; but when
we work with monoid algebras, we need to distinguish the nil monomial t∞ from the
zero element 0 of the algebra (see Section 9 for ramifications of this distinction), and
we need to identify the identity monomial t0 with the unit element 1 of the algebra.

Remark 2.10. The condition a + c = b + c′ for cancellative c, c′ means that a and b
are off by a unit in the localization Q′ of Q obtained by inverting all of its cancellative
elements. We sometimes say that “a and b differ by a cancellative element,” or that “the
difference of a and b is cancellative.” Note that the natural map Q → Q′ is injective.

Definition 2.11. Fix a commutative monoid Q, a congruence ∼, and use a bar to
denote passage to the quotient Q = Q/∼. The congruence ∼ is

1. primary if every element of Q is either nilpotent or cancellative.
2. mesoprimary if it is primary and every element of Q is partly cancellative.
3. primitive if it is mesoprimary and the cancellative subset of Q is torsion-free.
4. prime if every element of Q is either nil or cancellative.
5. toric if the non-nil elements of Q form an affine semigroup.

Remark 2.12. The notions just defined are nearly or exactly the same as concepts
that have appeared in the literature on monoids.

1. Our definition of prime and primary congruences agrees with those in the litera-
ture [Gil84, §5]. In the case of prime congruences, where the non-nil elements of
Q form a cancellative monoid, this is easy. In the case of primary congruences,
for q ∈ Q the condition Gilmer expresses as q + a ∼ q + b for all a, b ∈ Q is
equivalent to the class q being a nil in Q = Q/∼, so q lies in the nil class; and
the condition that Gilmer expresses by saying that q lies in the radical of the nil
class is equivalent to q being nilpotent in Q.

2. Our definition of affine semigroup differs slightly from [Gri01, §II.7]: Grillet
requires the unit group to be trivial, whereas we do not. Equivalently, our
affine semigroups are the finitely generated, cancellative, torsion-free commuta-
tive monoids, while Grillet additionally requires affine semigroups to be reduced
(trivial unit group).

3. A congruence on Q is primary if and only if Q is a subelementary monoid, by
definition [Gri01, §VI.2.2].

4. A congruence on Q is mesoprimary if and only if the subelementary monoid Q′,
obtained from the monoid Q in the previous item by inverting its cancellative
elements, is homogeneous [Gri01, §VI.5.3]; this is Corollary 6.6, below.
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Lemma 2.13. For monoid congruences,

• toric ⇒ prime ⇒ mesoprimary ⇒ primary; and
• toric ⇒ primitive ⇒ mesoprimary ⇒ primary.

Proof. By Definition 2.11 and Remark 2.12, it suffices to prove that prime ⇒ mesopri-
mary. Assume ∼ is a prime congruence and that q + a = q + b in Q with neither side
being nil. Then q is not nil, whence a = b by cancellativity. �

Notationally, one of the simplest ways to present a congruence on a monoid is using
a unital ideal in its monoid algebra.

Definition 2.14. Fix a commutative ring k. The semigroup algebra k[Q] =
⊕

q∈Q k·tq
is the direct sum with multiplication tptq = tp+q. Any congruence ∼ on Q induces a
grading of k[Q] by Q = Q/∼ in which the monomial tq has degree q ∈ Q whenever
q 7→ q under the quotient map Q → Q. A binomial ideal I ⊆ k[Q] is an ideal generated
by binomials tp − λtq, where λ ∈ k is a scalar, possibly equal to 0 ∈ k. The ideal I
induces the congruence ∼I in which p ∼I q whenever t

p−λtq ∈ I for some unit λ ∈ k∗.

Convention 2.15. In this paper, k is an arbitrary field unless otherwise stated.

Remark 2.16. Giving a congruence on Q is the same as giving a unital ideal in k[Q],
generated by unital binomials tp − tq, with unit coefficients that are negatives of one
another [Gil84, §7]. In particular, every congruence is induced by some binomial ideal.
That said, other binomial ideals can induce the same congruence as the canonical unital
ideal, by rescaling the variables or via Theorem 9.12, for instance.

Example 2.17 (Some congruences from unital ideals).

1. The prime ideal 〈x− y〉 ⊂ k[x, y] induces a toric congruence such that N2 ∼= N.

2. The ideal 〈x2 − y2〉 ⊂ k[x, y] induces a prime congruence with N2 isomorphic
to the submonoid Q ⊆ G = Z ⊕ Z/2Z generated by (1, 0) and (1, 1). Although
Q contains no torsion elements of G, the monoid is not torsion-free, so the
congruence on N2 is not toric, since Q generates G as a group. The torsion in Q
is exhibited by x and y, since x2 = y2 but x 6= y in k[Q].

3. The ideal 〈x2 − x〉 ⊂ k[x] induces the same toric congruence on N as the prime
ideal 〈x〉 does, but 〈x2−x〉 is not even a cellular binomial ideal (Definition 10.4).

4. The 〈x, y〉-primary ideal 〈x2, x−y〉 induces the primitive congruence on N2 with

N2 ∼= {0, x,∞} =: Q. The monoid algebra k[Q] has a presentation k[x, y]/J
where J = 〈x− y, x− x2〉 = 〈x− 1, y − 1〉 ∩ 〈x, y〉 induces the same congruence.

5. The binomial ideal 〈y − x2y, y2 − xy2, y3〉 induces a primary congruence whose
classes are depicted as the connected components of the graph in the figure.
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x

y

This congruence exhibits the distinction between primary and mesoprimary con-
gruences: for a primary congruence, no injectivity is required of addition by a
nilpotent element. In the picture, this means that translating two dots in dif-
ferent classes upward by one unit can force them into the same non-nil class.
To make the congruence mesoprimary, homogenize the bottom three rows by
replacing any two of them with the third; after that, upward translation on
two dots keeps them in separate classes unless both land in the nil class. This
replacement procedure also exhibits the distinction between mesoprimary and
primitive congruences: it results in a primitive congruence only if the bottom
row or the third row is preserved; preserving the second row yields torsion in the
cancellative part of Q.

The following example demonstrates the partly cancellative property.

Example 2.18. Partly cancellative elements can merge congruence classes that do not
differ by cancellative elements. For instance, consider the congruence on N2 induced
by I = 〈x2 − xy, xy − y2, x3, y3〉 ⊆ k[x, y]. In the following figure,

x

y

the congruence on N2 appears at left, and the quotient N2 appears at right. The quo-
tient is the monoid N with two copies of 1, modulo the Rees congruence of 〈3〉 (declare
all elements in 〈3〉 congruent). The two copies of 1 become identified upon addition by
either: 1 + 1 = 1+ 1′ = 1′ + 1′ = 2. Nonetheless, both 1 and 1′ are partly cancellative.

The next result will be applied in the proofs of Theorems 8.4 and 10.6. The con-
clusion says that Q/F is a nilmonoid whose Green’s preorder is an order. (i.e. is
antisymmetric). Equivalently, it says that Q/F is naturally partially ordered, or a
holoid [Gri01, §V.2.2].

Lemma 2.19. Fix a monoid Q whose identity congruence is primary, so the non-
nilpotent elements of Q constitute a cancellative submonoid F ⊆ Q. The quotient
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monoid Q/F defined by the congruence

p ∼ q ⇔ p+ f = q + g for some f, g ∈ F

is a nilmonoid partially ordered by divisibility. If Q is finitely generated, Q/F is finite.

Proof. This is more or less [Gri01, Proposition VI.3.3], but here’s the proof anyway.
Every nonidentity element of Q/F is nilpotent by definition, so when Q is finitely
generated, Q/F is finite. The rest follows because every nilmonoid is partially ordered
by divisibility; this is easy, and can be found in [Gri01, Proposition IV.3.1]. �

Remark 2.20. It is a crucial assumption for Lemma 2.19 that every element is can-
cellative or nilpotent, excluding idempotents. If every cancellative element is a unit,
e.g. after localizing at the nilpotent ideal (see Section 4), then Q/F equals Q modulo
Green’s relation.

Concluding this section we comment on the notion of irreducibility for congruences
which is, despite the close connection between binomial ideals and their congruences,
quite different from irreducibility for ideals.

Definition 2.21. A congruence is irreducible if it cannot be expressed as the common
refinement of two congruences neither of which equals the given one.

The theories of irreducible and primary decomposition for congruences in commuta-
tive monoids are not as nice as for (binomial) ideals in rings. The following example
might come as a nasty surprise (it did to us). Quotients by irreducible congruences are
characterized in [Gri01, Theorem VI.5.3].

Example 2.22. The identity congruence on N2 is reducible: it is the common refine-
ment of the congruences induced by 〈x− 1〉 and 〈y− 1〉. Ring-theoretically, this is due
to the fact that 〈x− 1〉 ∩ 〈y − 1〉 does not contain binomials.

Example 2.22 demonstrates the sad reality that prime congruences need not be
irreducible. In a wider sense, unrestricted primary or irreducible decomposition of
congruences fails to reflect the combinatorics of congruences accurately. The theory of
mesoprimary decomposition, with its well founded notions of associatedness for prime
ideals and prime congruences, is our remedy.

3. Primary decomposition and localization in monoids

We review the notion of primary decomposition for congruences on finitely generated
commutative monoids, which traces back to Drbohlav [Drb63]. This decomposition is
only a coarse approximation of mesoprimary decomposition, a central goal of this
paper. In general, a decomposition of a congruence is an expression of it as a common
refinement of congruences. The notion of common refinement used here is the standard
one: formally, an equivalence relation on Q is a reflexive, symmetric, transitive subset
of Q × Q, and the common refinement of a family of equivalence relations is their
intersection in Q×Q.
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Remark 3.1. Every congruence in this setting admits a primary decomposition: an
expression as the common refinement of finitely many primary congruences [Gil84, The-
orem 5.7]. Similarly to the case of rings, this follows from the existence of irreducible
decomposition using a noetherian induction argument. Mesoprimary decomposition re-
fines the notion of primary decomposition, in the sense that each primary component
could require a nontrivial mesoprimary decomposition. Note that the mesoprimary
components will therefore be coarser congruences than the primary components; that
is, a finer decomposition typically consists of a greater number of coarser components.

Remark 3.2. The preimage under any monoid homomorphism of a prime ideal is
prime. Since Nn has only finitely many prime ideals and a finitely generated commu-
tative monoid Q has a presentation Nn

։ Q, it follows that Q has only finitely many
prime ideals.

Convention 3.3. To avoid tedious case distinctions in the following, we consider the
empty set as an ideal of any monoid. Declare the empty set to be a prime ideal of Q
whenever Q has no nil. The empty set considered as a prime ideal will be denoted by
∅ ⊂ Q; this symbol is never used for any other purpose in this paper.

Remark 3.4. Our definition of the empty prime ideal is motivated by the observa-
tion that localizing by adjoining inverses for elements outside of a prime ideal should
never invert a nil element. It is also in analogy with associated primes in (say) affine
semigroup rings, where the zero ideal is prime, the point being that the zero ideal
in a ring-theoretic setting has as its monoid analogue the empty ideal. This analogy
will become increasingly apparent and nuanced in later sections, when we translate
mesoprimary decomposition from monoids to monoid algebras.

Another way to deal with the empty ideal issue would be to adjoin a new absorbing
element to every monoid and work in the category of “zeroed monoid”: pairs consist-
ing of a monoid and an absorbing element. The new absorbing element is meant to
echo the zero element in the corresponding monoid algebra, which is convenient when
translating between monoids and rings. However, at the expense of having to abide by
Convention 3.3, we chose to avoid the additional absorbing element because it obscures
the role of nil elements in ordinary (“unzeroed”) monoids, and because the first part of
the paper works entirely in the monoid context, without substantial reference to rings.

Definition 3.5. The nilpotent ideal of a congruence ∼ on Q is the ideal of Q consisting
of all elements with nilpotent image in Q/∼. If P is the nilpotent ideal of a primary
congruence ∼, then ∼ is P -primary.

Lemma 3.6. If ∼ is a primary congruence, then the nilpotent ideal is prime. If Q/∼
is cancellative, then ∼ is ∅-primary. �

Lemma 3.7. If q1, . . . , qn generate Q, then a primary congruence defines a partition
of [n] into generators with cancellative and nilpotent images, respectively. In this case
the nilpotent ideal is generated by the generators qi with nilpotent images. �
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Proposition 3.8. The common refinement of finitely many P -primary congruences is
P -primary.

Proof. It suffices by induction to show this for two P -primary congruences ∼1 and ∼2.
Reducing modulo their intersection, we can assume that the intersection is the identity
congruence on Q. Denote by Q1 and Q2 the quotients modulo ∼1 and ∼2, respectively.
By assumption P ⊂ Q is the nilpotent ideal of both ∼1 and ∼2. We claim that if p ∈ P
then p is nilpotent already in Q. Indeed, a sufficiently high multiple of p is congruent
to nil under both ∼1 and ∼2, and since their intersection is trivial this can only happen
if that multiple is nil. On the other hand, if p /∈ P , then it must be cancellative: if
there exist a, b ∈ Q with a + p = b + p, then a ∼1 b and a ∼2 b both hold—whence
a = b, in fact—since p is cancellative modulo ∼1 and ∼2. �

Remark 3.9. Albeit in different language, [Gil84, Theorem 5.6.2] contains a variant
of the statement of Proposition 3.8.

Passing from the theory surrounding P -primary congruences to that for general
congruences is best accomplished by localizing.

Definition 3.10. The localization of Q at a prime ideal P ⊂ Q is the monoid QP

obtained by adjoining inverses for every element outside of P . The image of P in
QP is denoted PP . Any given congruence ∼ on Q induces a congruence on QP , also
denoted ∼. If Q = Q/∼ then we write QP = QP/∼. The group of units at P is the
subgroup GP = QP r PP .

Example 3.11. If Q has no nil, then localizing Q at the empty prime yields the
universal group Q∅. When Q has a nil, we still write Q∅ for the universal group of Q,
but in this case Q∅ is trivial. In fact, the universal group Q∅ is trivial precisely when
Q has a nil. (Proof: If Q∅ is trivial, then q becomes equal to 0 after inverting every
element of Q. Thus there is an element xq ∈ Q such that xq+q = xq. As Q is generated
by a finite set S ⊆ Q, the sum of the elements xs for s ∈ S exists, and it is nil in Q.)

With localization of monoids comes localization of their modules.

Definition 3.12. The localization TP of a Q-module T at a prime ideal P ⊂ Q is
the QP -module of formal differences t − q for t ∈ T and q /∈ P , with t − q and t′ − q′

identified whenever w · q′ · t = w · q · t′ for some w ∈ Qr P .

By definition, the group of units of QP acts on itself and also on the set QP of
equivalence classes modulo any congruence on QP . Here and in what follows, we often
think of the quotient Q explicitly as a set of congruence classes in Q. Thus QP is a set
of congruence classes in QP . We record this fact for future reference.

Lemma 3.13. Let P ⊂ Q be a prime ideal. Given any congruence on Q, the unit
group of QP acts on the quotient QP modulo the induced congruence on QP . �
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4. Witnesses and associated prime ideals of congruences

Our aim in this section is to show that primary decompositions of congruences
in finitely generated commutative monoids have well-defined associated prime ideals.
These, and their witnesses, reflect the combinatorial features of a given congruence
more accurately than does primary decomposition alone.

Definition 4.1. For any ideal T ⊆ Q, the annihilator modulo T is the common refine-
ment ann(T ) =

⋂

t∈T ker(φt) of the kernels of the addition morphisms φt for t ∈ T .

Remark 4.2. If q1 + v = q2 then ker(φq1) refines ker(φq2). Therefore, in the definition
of ann(T ), it suffices to intersect only over generators of T . Equivalently, if T is
generated by t1, . . . , tr, then ann(T ) = ker(φt1⊕ · · · ⊕ φtr : Q → T⊕r).

Example 4.3. To explain the “annihilator” terminology, let Q be a monoid with nil ∞
and write k[Q]− := k[Q]/〈t∞〉 as in Definition 9.3, below. If T ⊆ Q is a monoid ideal,
then ann(T ) is the congruence induced by the binomials (and monomials) in the ideal
(0 : k{T}) = {f ∈ k[Q] | f k{T} = 0 in k[Q]−}.

Definition 4.4. Fix a prime ideal P ⊂ Q with PP ⊂ QP minimally generated by
p1, . . . , pr. The P -covers of q ∈ Q are the elements q + pi ∈ QP for i = 1, . . . , r. The
cover morphisms at P are the morphisms φi : QP → 〈pi〉P defined via q 7→ q + pi; if P
is the maximal ideal, then the φi are called simply the cover morphisms of Q.

Remark 4.5. The set of P -cover morphisms depends on the choice of generators
p1, . . . , pr and may be infinite if, for example, QP has a lot of units. However, modulo
Green’s relation on QP there is a unique finite minimal generating set of any ideal, and
every minimal generating set for PP maps bijectively to it.

Lemma 4.6. For a fixed prime P , the set of kernels of P -cover morphisms is finite.

Proof. Two cover morphisms φp and φp′ for elements p, p′ that are Green’s equivalent
in QP have the same kernel, because if p ∈ 〈p′〉 then there exists an element u such
that p = p′ + u, and thus the kernel of φp′ refines the kernel of φp and vice versa. �

Definition 4.7. Let ∼ be a congruence on Q and P ⊂ Q a prime ideal. Consider the
localized quotient QP . For each q ∈ Q let q be its image in QP . An element q ∈ Q is a

1. witness for P if the class of q is non-singleton under the kernel of each cover
morphism (i.e. the class p + q is non-singleton for all p ∈ P );

2. key witness for P if the class of q is non-singleton under the intersection of the ker-
nels of all cover morphisms, i.e. if the class of q is non-singleton under ann(PP ).

The ideal P is an associated prime ideal of ∼ if the annihilator modulo PP ⊂ QP is
not the identity. Equivalently, P is associated if either there exists a key witness for P
in QP , or Q has no nil and P = ∅ (in which case QP is nontrivial; see Example 3.11).
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Convention 4.8. A (key) witness is a (key) witness for some associated prime ideal P .
When we speak of the set of (key) witnesses for a given congruence we mean the set
of pairs (w, P ) where w ∈ Q is a (key) witness for a prime ideal P ⊂ Q. If the con-
gruence ∼ is not clear from context, a (key) witness may be called a (key) ∼-witness.

In the set of (key) witnesses for a congruence, a single w ∈ Q can occur multiple
times for different P . For instance, this happens when ∅ is associated.

Example 4.9. When Q has no nil, the condition of being a (key) witness for ∅ is
vacuous, as ann(∅) is the universal congruence on Q∅. Thus the empty ideal is prime
and associated to a congruence if and only if the universal group of the quotient modulo
that congruence is nontrivial (see Example 3.11). Every q ∈ Q is a (key) witness in
this case but at the same time Q∅ has only one class under Green’s relation.

The following series of examples demonstrates various features of associatedness of
prime ideals and their witnesses.

Example 4.10. As usual it will be convenient to describe congruences on Nn by unital
binomial ideals in polynomial rings. We use ex, ey, . . . to denote the generators of Nn

corresponding to variables x, y, . . . in the polynomial ring k[Nn], but we denote the
addition morphisms by φx, φy, . . . instead of φex , φey , . . ., for simplicity.

1. Let ∼ be the congruence on N2 induced by the binomial ideal 〈x2−xy, xy−y2〉 ⊂
k[x, y]. The set of associated prime ideals consists of the empty ideal ∅ and the
maximal ideal P = 〈ex, ey〉. Localization at the maximal ideal does nothing and
there are only two cover morphisms, given by adding ex and ey, respectively. To
establish that P is associated, note that ex and ey themselves are key witnesses
for P and congruent under ann(P ). Indeed, ann(P ), the intersection of the two
kernels, contains the pair (ex, ey) since ex + ex ∼ ey + ex and also ex + ey ∼
ey + ey. The identity 0 ∈ N2 is not a witness for P . Neither 〈ex〉 nor 〈ey〉
is associated since adjoining inverses to either turns the quotient N2/∼ into a
cancellative monoid. In this case all kernels of addition morphisms are trivial.
Finally, localizing at the empty prime ideal amounts to considering the induced
congruence on Z2, which is induced by the binomial ideal 〈x − y〉 ⊂ k[x±, y±].
Since the quotient is nontrivial, ∅ is associated too. Every element of N2 is a
witness for ∅, but taken together they form only one Green’s class in Z2.

2. Let ∼ be the congruence on N3 induced by 〈x2−xy, y2−xy, x(z−1)〉 ⊂ k[x, y, z].
The associated prime ideals are 〈ex, ey〉 and ∅. The argument for ∅ is the same
as in item 1. The localization of ∼ at 〈ex, ey〉 is induced by the same ideal,
considered in k[x, y, z±]. This says that ez is cancellative; i.e. that the addition
morphism φz : q 7→ q+ez is injective. The set of key witnesses is invariant under
the φz-action. It consists of ey + kez for k ∈ N. Indeed, any two elements in this
set become equivalent when adding ex or ey because they differ by a multiple
of ez. No ez-translate of ex or 0 is a witness, though. Again, all witnesses are key.
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3. Let ∼ be the congruence on N4 induced by 〈x2−xy, y2−xy, x(z−1), y(w−1)〉 ⊂
k[x, y, z, w]. The associated prime ideals are again ∅ and P = 〈ex, ey〉. The set of
witnesses for P is determined as follows. The element 0 ∈ N4 is a witness that is
not key. The kernel congruences of φx and φy are generated by {(0, ez), (ex, ey)}
and {(0, ew), (ex, ey)} in N4 × N4, respectively. This shows the witness property
and also, because their common refinement leaves it singleton similar to Exam-
ple 2.22, that 0 is not key. In contrast, ex and ey are key witnesses because
φx(ex) = φx(ey) and likewise for φy. For future reference, a mesoprimary de-
composition (Theorem 13.2) of the binomial ideal defining ∼ has components
corresponding to all three witnesses, while a mesoprimary decomposition of the
congruence ∼ itself needs components only for the two key witnesses (Theo-
rem 8.4). Why the extra binomial component? The common refinement of the
congruences induced by 〈z − 1, x2, y〉 and 〈w − 1, x, y2〉 leaves the class of 0
singleton, but the intersection of the ideals is not binomial.

This final example demonstrates how the monoid prime ideal P matters in the defini-
tion of a (key) witness for P , and how the same element can be a witness for different P .

Example 4.11. Fix the congruence ∼ induced by 〈x(z − 1), x(w − 1), y(z − 1), y2〉 ⊂
k[x, y, z, w] on N4. The associated prime ideals of ∼ are 〈ex, ey〉 and 〈ey〉. Consider the
addition morphisms φx and φy. The key witnesses for 〈ey〉 are ey + kex and all their
translates in the ez and ew directions. No element in the ideal 〈ex〉 can be a witness
for a monoid prime containing ex because φx acts injectively on that ideal. Indeed, the
witnesses for 〈ex, ey〉 are 0 ∈ N4 together with all its translates in the ez direction, and
ey together with all its translates in the ez and ew directions.

We finish the section by relating associated prime ideals of congruences to their
primary decompositions.

Theorem 4.12. A prime P ⊂ Q is associated to a congruence on Q if and only if
every primary decomposition of that congruence has a P -primary component.

The proof comes after Lemma 4.14, below.

Lemma 4.13. If P is maximal among the occurring associated primes in a primary
decomposition, then ann(P ) refines all occurring P ′-primary components with P ′ ( P .

Proof. Let P be maximal among the occurring associated primes. Fix elements a, b ∈ Q
that are congruent modulo ann(P ) and a P ′-primary component ≈ with P ′ ( P .
Choose p ∈ P rP ′, so that p ∈ Q/≈ is cancellative. By definition, a+ p and b+ p are
congruent under ≈ if and only if a and b are; thus ann(P ) refines ≈. �

Lemma 4.14. For all primes P 6⊇ P ′, the congruence on QP induced by any P ′-
primary congruence on Q is universal on QP .

Proof. Localization adjoins an inverse for a nilpotent element. �
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Proof of Theorem 4.12. Working modulo ∼ we can assume that the congruence to be
decomposed is the identity congruence on Q. After localizing along P , the induced
congruences on QP form a primary decomposition of the identity there, with all P ′-
primary components for P ′ 6⊆ P being universal and thus redundant by Lemma 4.14.
That is to say, we can assume that P is the maximal monoid prime ideal of Q.

If a primary decomposition has no P -primary component, then by Lemma 4.13
ann(P ) refines all primary components, and thus it refines their intersection. Thus
ann(P ) is trivial and P is not associated.

Conversely, if every decomposition has a P -primary component, then there exists an
irredundant decomposition that has a P -primary component ∼P . Write ≈ for the (not
necessarily primary) common refinement of all other congruences in the decomposition.
Thus ∼P ∩≈ is a nontrivial decomposition of the identity congruence. Choose a 6= b ∈ Q
with a ≈ b but a 6∼P b. Let T = {t ∈ Q | t + a ∼P t + b}. Since P acts nilpotently on
Q/∼P , the radical of T is P . Modulo Green’s relation find a maximal element t̂ not in
the image of T . By definition, if t ∈ Q maps to t̂ then t+ a is a key witness for P . �

Finally, we can conclude that primary decomposition of congruences is, despite the
oddities in Example 2.22, combinatorially well behaved: the associated prime ideals of
a congruence reflect which components are necessary in every primary decomposition.

5. Associated prime congruences

Each primary congruence on a finitely generated commutative monoidQ has a unique
associated prime ideal. One of the most basic insights in this paper is that a single
primary congruence can have several associated prime congruences. The first definition
says how a congruence looks near a given q ∈ Q.

Definition 5.1. Fix a prime ideal P ⊆ Q, a congruence ∼ on Q, and an element q ∈ Q.
The P -prime congruence of ∼ at q is the kernel of the morphism Q →

(

〈q〉/〈q+P 〉
)

)P
induced by the quotient Q → Q/∼ = Q, addition φq : Q → 〈q〉, and localization at P .

Definition 5.2. A prime congruence ≈ onQ is associated to an arbitrary congruence ∼
if ≈ equals the P -prime congruence of ∼ at a key witness for P .

Remark 5.3. The definition implies that the associated prime P of ≈ is associated
to ∼ too. If P is clear from the context, such as after ≈ is fixed, then we also speak of
a key witness for P simply as a key witness.

Lemma 5.4. If p, q ∈ Q are equivalent under Green’s relation, then their P -prime
congruences agree for each P .

Proof. The same argument as for Lemma 4.6 applies. �

Example 5.5. In the situation of Example 4.11, the associated prime congruences are
induced by the ideals 〈x, y〉, 〈x, y, z−1〉, and 〈y, z−1, w−1〉. The first two correspond
to witnesses for 〈ex, ey〉, while the third corresponds to all of the witnesses for 〈ey〉.
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Lemma 5.6. Every infinite subset of a partially ordered noetherian monoid contains
an infinite ascending chain.

Proof. Let Q be a noetherian partially ordered monoid with an infinite subset W all of
whose increasing chains are finite. Write Wmin for the (finite) set of minimal elements
of W . Let W0 = W . For i ∈ N, having defined Wi let Mi be the set of maximal
elements of Wi, and let Wi+1 be Wi r (Mi rWmin). As Mi is an antichain for each i,
it is finite. Therefore Wi is infinite for all i, and hence Mi rWmin is nonempty for all i
(that is, Wi has maximal elements that are not minimal) by the finiteness hypothesis
on the chains in W . Now observe that 〈M0〉 ( 〈M0 ∪M1〉 ( 〈M0 ∪M1 ∪M2〉 ( . . . is
an infinite strictly increasing chain of ideals, contradicting the noetherianity of Q. �

The following and Lemma 2.19 are the central finiteness results, reflected in all of
the following development, particularly Theorem 8.4.

Theorem 5.7. Each congruence on a finitely generated commutative monoid Q has
only finitely many Green’s classes of witnesses. Consequently, each congruence on Q
has only finitely many associated prime congruences.

Proof. Fix a congruence on Q. As Q has finitely many prime ideals—each is generated
by a subset of a generating set for Q—it suffices to bound the number of witnesses for a
fixed prime ideal P . Denote by Q′

P the quotient of QP modulo its Green’s relation, and
likewise Q′

P for QP . If some element of QP in the Green’s class q′ ∈ Q′
P of q ∈ QP is a

witness, then q′ consists of witnesses for the same associated congruence by Lemma 5.4.
Therefore it suffices to consider witnesses in Q′

P , and this monoid is partially ordered
under the partial order ≤ of Lemma 2.19, although Q′

P is generally not finite. For each
witness q′ ∈ Q′

P consider the congruence ∼q′ = ker(φq ◦ π), where π : QP → QP is the

quotient map and φq : QP → QP is the addition morphism; thus a ∼q′ b in QP if and

only if a + q and b + q become congruent in QP . By definition, if q′1 ≤ q′2, then ∼q′
1

refines ∼q′
2
. Since Q′

P is finitely generated, it cannot have an infinite antichain (this is

equivalent to the noetherian property for Q′
P ). Finally, if the original congruence on Q

had infinitely many associated prime congruences, then Lemma 5.6 would produce an
infinite ascending chain of witnesses, giving an infinite ascending chain of congruences.
Since Q is noetherian this is impossible. �

Example 5.8. The congruence in Example 2.18 is primary with respect to the maximal
ideal. The (key) witnesses are ex, ey, and also 2ex, ex+ey, and 2ey, since their class gets
joined to nil under φx and φy. Although the witnesses look combinatorially different,
the only associated prime congruence is the identity congruence on the monoid {0,∞}.
This is forced, as the identity is the only cancellative element in Q.

If on Q the identity congruence is primary, then it is easy to see that the assignment
of witnesses to their P -prime congruences is order preserving. It would be interesting
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to understand which posets of witnesses and associated prime congruences can occur
(Problem 17.4).

6. Characterization of mesoprimary congruences

Our ultimate goal, for the purely monoid-theoretic side of the story, is Corollary 8.10,
via Theorem 8.4: every congruence admits a mesoprimary decomposition satisfying
strict combinatorial conditions. The first step is to characterize the mesoprimary con-
dition in terms of associated prime congruences. In fact, Definition 2.11 was made with
this proposition in mind.

Theorem 6.1. A congruence is mesoprimary if and only if it has exactly one associated
prime congruence.

Proof. Fix a P -primary congruence ∼ on Q. If ∼ is mesoprimary and w is not nil,
then the P -prime congruence of ∼ at w coincides with the P -prime congruence of ∼ at
the identity because w is partly cancellative. The uniqueness of the associated prime
congruence only uses the case where w is a key witness.

On the other hand, assume ∼ has a unique associated prime congruence. Replacing
Q with Q, we may as well assume ∼ is the identity congruence on Q. Suppose that
a and b are distinct cancellative elements. Using the partial order from Lemma 2.19,
choose an element w ∈ Q such that w + a 6= w + b and the image of w modulo the
cancellative elements F ⊆ Q is maximal with this property; this is possible by the
finiteness of Q/F in Lemma 2.19. Now choose an element w′ ∈ Q whose image in
Q/F is maximal among the non-nil elements above w. To prove the partly cancellative
property for all elements of Q, it suffices to show that w and w′ have the same image
in Q/F , for it follows that every non-nil element v ∈ Q satisfies v + a 6= v + b.

The choices of w and w′ make them both key witnesses. Replacing w′ with w′ + c
for some cancellative element c if necessary, assume that w′ = w + q for some q ∈ Q.
Uniqueness of the associated prime congruence, combined with the relation φw′ =
φq ◦ φw among addition morphisms, implies w′ + a 6= w′ + b. Thus w′ and w become
equal in Q/F by maximality of w. �

Quotients by mesoprimary congruences can be described fairly explicitly in terms
related to the action in Lemma 3.13. Making this description into a precise alter-
native characterization of mesoprimary congruences requires some specialized notions
involving monoid actions.

Definition 6.2. The action of a monoid F on an F -module T is semifree if

• t 7→ f · t is an injection T →֒ T for all f ∈ F , and
• f 7→ f · t is an injection F →֒ T for all t ∈ T .

Remark 6.3. The letter “F” stands for “face”: in practice, the monoid F is often a
face of an affine semigroup, and thinking of it that way is good for intuition.
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Lemma 6.4. An action of a cancellative monoid F on an F -module T is semifree if
and only if the localization map T →֒ T∅ is injective and the universal group F∅ acts
freely on T∅.

Proof. The cancellative condition means that the natural map F →֒ F∅ is injective.
Using this fact, the “if” direction is elementary, and omitted. In the other direction,
the semifree case, the first injectivity condition guarantees that t − f = t′ − f ′ ⇔
f ′ · t = f · t′. In particular, t − 0 = t′ − 0 ⇔ t = t′, so the natural map T →֒ T∅

is injective. The second injectivity condition guarantees that the action of F∅ is free:
(f − f ′) · (t− w) = t − w ⇔ f · t− (f ′ + w) = t − w ⇔ (w + f) · t = (f ′ + w) · t, and
by the second injectivity condition this occurs if and only if w + f = f ′ + w, which is
equivalent to f = f ′ because F is cancellative. �

In contrast to group actions, monoid actions need not define equivalence relations,
because the relation t ∼ f · t can fail to be symmetric. The relation is already reflexive
and transitive, however, precisely by the two axioms for monoid actions.

Definition 6.5. An orbit of a monoid action of F on T is an equivalence class under
the symmetrization of the relation {(s, t) | f · s = t for some f ∈ F} ⊆ T × T .

Combinatorially, from an F -module T , one can construct a directed graph with
vertex set T and an edge from s to t if t = f + s for some f ∈ F . Then an orbit is a
connected component of the underlying undirected graph.

Corollary 6.6. A congruence ∼ on a finitely generated commutative monoid Q is
mesoprimary if and only if the set F of non-nilpotent elements in Q = Q/∼ is a
cancellative monoid that acts semifreely on Qr {∞} with finitely many orbits.

Proof. Whether we assume the mesoprimary condition on ∼ or the condition on the
non-nilpotent elements in Q, we always deduce that ∼ is P -primary for some prime
P ⊂ Q. The image of QrP in Q is the cancellative submonoid F by definition, which
has finitely many orbits by Lemma 2.19. The only feature of the statement that distin-
guishes mesoprimary congruences from general primary ones is semifreeness, which we
claim is equivalent to uniqueness of the associated prime congruence in Theorem 6.1.
Indeed, F acts semifreely if and only if the P -prime congruences at all non-nil elements
of Q coincide. That condition certainly implies that the P -prime congruences at all
witnesses coincide, in which case ∼ is mesoprimary. On the other hand, if ∼ is meso-
primary, then the P -prime congruences at all key witnesses coincide. They all coincide
with the P -prime congruence at the identity, or else there would be two key witnesses,
one sharing its P -prime congruence with the identity (any element maximal modulo F
among those with that P -prime congruence) and the other not. Since the image in
Q/F of every non-nil element of Q lies between the identity and a key witness, the
P -prime congruence of every non-nil element is forced to agree with the one shared by
the identity and the key witnesses. �
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Remark 6.7. As the proof of Corollary 6.6 shows, one interpretation of the structure
theorem in the statement is that a P -primary congruence has the same P -prime con-
gruence at every non-nil element as soon as it has the same P -prime congruence at
every key witness, and that is what it means to be mesoprimary.

This principle underlies our next few results, especially the proof of Proposition 6.12
and the construction of coprincipal congruences in Definition 7.7. Some of these results
are best phrased using the following notion, borrowed directly from ring theory.

Definition 6.8. The socle of a monoid Q is the set of non-nil elements q ∈ Q such
that q + a = ∞ for all nonunit elements a ∈ Q.

Example 6.9. The socle of the quotient Q of a monoid Q modulo a mesoprimary
congruence ∼ consists of the witnesses for ∼, every one of which is automatically a key
witness by Corollary 6.6.

Example 6.10. In contrast, primary congruences that are not mesoprimary can have
key witnesses that lie outside of the socle. Such is the case for the congruence on N2

induced by the binomial ideal 〈1 − x2, y(1 − x), y2〉 ⊂ k[x, y]: the elements 0 and ey
in N2 are key witnesses for 〈ey〉, but the socle consists entirely of the image of ey in N2.

Remark 6.11. If Q is a group, then the universal quantifier in Definition 6.8 is auto-
matically satisfied, so the socle of Q is the entirety of Q.

Proposition 6.12. If two congruences on Q are mesoprimary with the same associated
prime congruence, then their common refinement is also mesoprimary with that asso-
ciated prime congruence. Furthermore, every common refinement witness is a witness
under one of the two original congruences, and these witnesses are all key.

Proof. First we show why every witness for the common refinement is a witness for one
of the two given congruences. Next we deduce that the common refinement is mesopri-
mary, at which point the proof is done, because every witness is key by Example 6.9.

Call the congruences ∼1 and ∼2, with quotients Q1 = Q/∼1 and Q2 = Q/∼2, and
write qi for the image in Qi of any q ∈ Q. The common refinement is the kernel of
the diagonal morphism δ : Q → Q1 × Q2 of modules. Let P be the shared associated
monoid prime of the given congruences. If, for some p ∈ P and q ∈ Q, the sum pi + qi
fails to be nil in Qi, then the class of p + q in ker δ is singleton because pi is partly
cancellative in Qi. Therefore q can only be a witness for the common refinement if

• qi fails to be nil for some fixed i, but also
• for all p ∈ P both of the elements p1 + q1 and p2 + q2 are nil.

These two conditions imply that q is a witness for ∼i. Now it remains only to note
that the P -prime congruence of ker δ at q coincides with the unique associated prime
congruence shared by ∼1 and ∼2, whether or not q is a witness for the other congruence
∼2−i, by the structure theorem in Corollary 6.6. �
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7. Coprincipal congruences

In commutative rings, irreducible decomposition underlies primary decomposition.
Analogously, coprincipal decomposition underlies mesoprimary decomposition of com-
mutative monoid congruences (but see the remarks and examples after Theorem 8.4).

Definition 7.1. A congruence ∼ on Q is coprincipal if it is P -mesoprimary for some
monoid prime P and additionally the socle of QP modulo its Green’s relation has size 1.

In other words, on top of being mesoprimary, the nil class of a coprincipal congruence
is required to be an irreducible monoid ideal.

Remark 7.2. In Definition 7.1, owing to Corollary 6.6, the quotient of QP modulo its
Green’s relation is simply the quotient of Q modulo its cancellative submonoid.

Definition 7.3. Fix a congruence on Q with quotient Q. The order ideal QP
�q cogener-

ated by q ∈ Q at a prime ideal P ⊂ Q consists of those a ∈ Q whose image precedes that
of q in the partially ordered quotient of QP modulo its Green’s relation (Lemma 2.6).

Example 7.4. Let ∼ be the congruence on N induced by the binomial ideal 〈x3−x6〉 ⊂
k[x]. Set P = 〈e〉, where e = ex is the generator of N. The quotient monoid N/∼ has a
non-trivial kernel (see Definition 9.6) comprising a group of order 3 (with identity 3e).
The order ideal QP

�e consists of e itself and 0 ∈ N. The order ideals QP
�q of q = m · e

for m ≥ 3 are identical and consist of all of N. Thus order ideals QP
�q ⊆ Q need not be

finite, although their images in QP modulo Green’s relation always are. Finally, the
order ideals Q∅

�q are identical and equal to N for all q ∈ N.

Example 7.5. Let ∼ be the identity congruence on Q = N3, and set P = 〈e, f〉, where
e = ex and f = ey are two of the three generators of N3, the third being g = ez. The
order ideal QP

�e+f+2g consists of the translates of the (lattice points on the) nonnegative
z-axis by 0, e, f , and e + f . The answer would have been the same if e + f + 2g had
been replaced by e+ f , or e+ f + g, or e+ f +mg for any m ∈ N.

Lemma 7.6. Fix q ∈ Q, a prime ideal P ⊂ Q, and a congruence ∼ on Q with
quotient Q. The equivalence relation ∼P

q on Q that sets all elements outside of QP
�q

equivalent to one another, and sets a ∼P
q b if u+a = u+b = q ∈ QP for some u ∈ QP ,

is a coprincipal congruence. If QrQP
�q is nonempty then it is the nil class of Q/∼P

q .

Proof. Immediate upon unraveling the definitions, or use Corollary 6.6. �

Definition 7.7. The coprincipal congruence ∼P
q from Lemma 7.6 is cogenerated by q

along P . If q is a witness for an associated P -prime congruence of ∼, then ∼P
q is the

coprincipal component of ∼ cogenerated by q along P . If the prime ideal P is clear
from context, e.g. if q has already been specified to be a witness for the prime ideal P ,
then we simply speak of the coprincipal component cogenerated by q.



DECOMPOSITIONS OF COMMUTATIVE MONOID CONGRUENCES AND BINOMIAL IDEALS 27

Example 7.8. In the setting of Example 7.4, the coprincipal component of ∼ co-
generated by 3e along ∅ is induced by the binomial ideal 〈1 − x3〉. The component
cogenerated by the key witness 2ex along 〈e〉 is induced by the binomial ideal 〈x3〉.
Proposition 7.9. Given any witness w for an associated P -prime congruence of ∼,
the coprincipal component of ∼ cogenerated by w along P is refined by ∼.

Proof. Starting from ∼ the coprincipal component is formed by identifying additional
pairs of elements. �

Example 7.10. In the setting of Example 2.18, the coprincipal component cogenerated
by q = (1, 1) along P = 〈ex, ey〉 starts with the given congruence on N2 and then joins
together the two standard basis vectors, so that in the quotient N2/∼P

q the two copies

1 and 1′ are joined. This is the congruence induced by the binomial ideal 〈x− y, x3〉.

8. Mesoprimary decompositions of congruences

Definition 8.1. Fix a congruence ∼ on a finitely generated commutative monoid Q.

1. An expression of ∼ as the common refinement of finitely many mesoprimary
congruences is a mesoprimary decomposition if, for each mesoprimary congru-
ence ≈ that appears in the decomposition with associated prime ideal P ⊂ Q,
the P -prime congruences of ∼ and ≈ at every ≈-witness coincide.

2. Each mesoprimary congruence that appears is a mesoprimary component of ∼.
3. If every ≈-witness for every mesoprimary component ≈ is a key ∼-witness, then

the decomposition is a key mesoprimary decomposition.

Example 8.2. According to Definition 8.1 the decomposition in Example 2.22 is not a
mesoprimary decomposition because the intersectands are not components of the iden-
tity congruence: the combinatorics at the witnesses for the mesoprimary congruences
in the decomposition do not agree with the combinatorics of the identity congruence.
More precisely, the ∅-prime congruence at each element of N2 is the identity congru-
ence, not the congruence induced by 〈x− 1〉 or 〈y − 1〉.
Theorem 8.3. Every congruence on a finitely generated commutative monoid admits
a key mesoprimary decomposition.

Proof. Two examples are the decompositions in Theorem 8.4 and Corollary 8.10, by
Remark 8.5 and finiteness of the set of Green’s classes of witnesses in Theorem 5.7. �

In the remainder of this section, Convention 4.8 leads to a welcome simplification of
terminology. The first statement to benefit is our first main decomposition theorem
(the other being Corollary 8.10), which generalizes to arbitrary monoid congruences
the notion of irreducible decomposition for monoid ideals; see Examples 8.6 and 8.7.

Theorem 8.4. Every congruence on a finitely generated commutative monoid is the
common refinement of the coprincipal congruences cogenerated by its key witnesses.
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Proof. Fix a congruence ∼ on Q. Proposition 7.9 implies that the intersection of all of
the coprincipal congruences for witnesses is refined by ∼. On the other hand, suppose
that q 6∼ q′ for two elements q, q′ ∈ Q. The proof is done once we find a prime P ⊂ Q
and a key witness w ∈ Q whose coprincipal congruence ∼P

w on Q fails to join q to q′.
Let T = {t ∈ Q | t+ q ∼ t+ q′} be the ideal of elements joining q to q′. Fix a prime

ideal P minimal among primes of Q containing T . The images q̂ and q̂′ of q and q′ in the
localizationQP remain incongruent because P contains T . In contrast, every element in
the localized image TP joins q̂ to q̂′; that is, t̂+q̂ ∼ t̂+q̂′ for all t̂ ∈ TP . Since the maximal
ideal PP of QP is minimal over TP , by minimality of P over T , there is a maximal
Green’s class among the elements {t̂ ∈ QP | t̂+ q̂ 6∼ t̂+ q̂′}. Any element w = t+ q ∈ Q
with tmapping to such a Green’s class is a key witness by definition, and the localization
of the congruence ∼P

w satisfies q̂ 6∼P
w q̂′, so q 6∼P

w q′ before localization. �

Remark 8.5. In Theorem 8.4 it makes no difference whether one uses all the key
witnesses or just one per Green’s class. This follows instantly from the definition of a
coprincipal component; indeed, for a given Green’s class of key witnesses, the coprin-
cipal components are all equal—not just equivalent, but literally the same congruence.

Example 8.6. For monomial ideals in finitely generated free commutative monoids,
or more generally in affine semigroup rings, the decomposition of the Rees congruence
of any monoid ideal afforded by Theorem 8.4 is the unique irredundant irreducible
decomposition, as deduced from irreducible decompositions of monomial ideals in the
corresponding monoid algebras [Mil02, Theorem 2.4]; see also [MS05, Corollary 11.5
and Proposition 11.41].

Example 8.7. Unlike the case in Example 8.6, the decomposition in Theorem 8.4
can be redundant in general. This happens for the congruence in Example 2.18. The
decomposition produced by Theorem 8.4 has four mesoprimary components: ∼P

q for
P = 〈ex, ey〉 and q ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}. The one cogenerated by (1, 1) was
described in Example 7.10. The decomposition into four congruences is redundant:
the given congruence is already the common refinement of ∼(1,0) and ∼(1,1), the point
being that once ∼(1,1) is given, one only needs to separate (1, 0) from (0, 1). That said,
the points (1, 0) and (0, 1) represent distinct Green’s classes of key witnesses for the
associated prime congruence induced by the binomial ideal 〈x, y〉. There is simply no
way of constructing an irredundant coprincipal decomposition without breaking the
symmetry: any systematic method of eliminating one of the redundant components in
this example would have no way to choose between them.

Remark 8.8. Coprincipal congruences are generally not irreducible: for the same
reasons as in Example 2.22 they can often be decomposed nontrivially as intersections
of coarser congruences.

Remark 8.9. Any irreducible congruence is mesoprimary: if a congruence is not meso-
primary then it has at least two associated primes by Theorem 6.1, and then it is
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reducible by mesoprimary decomposition. However, irreducible decompositions of con-
gruences do not, in general, reflect the combinatorics of congruences in a manner that
is witnessed combinatorially by the congruence itself.

Combining Theorem 8.4 with Proposition 6.12 and Example 6.9 yields the following,
the culmination of our study of commutative monoid congruence decompositions.

Corollary 8.10. Every congruence on a finitely generated commutative monoid admits
a key mesoprimary decomposition with one component per associated prime congruence.

For comparison with Theorem 13.5, we record the weakening of Theorem 8.4 that
uses all of the witnesses, not just the key witnesses. The statement also includes an
alternate description of what it means to be a decomposition of a congruence.

Corollary 8.11. Every congruence on a finitely generated commutative monoid is
the common refinement of the coprincipal congruences cogenerated by its witnesses.
Equivalently, the morphism

Q/∼ →֒
∏

(w,P )∈W

Q/∼P
w

is injective, where W = {(w, P ) | w is a witness for P} is a system of witnesses, one
for each Green’s class of ∼-witnesses.

Proof. Each of the coprincipal congruences in question is refined by the given congru-
ence by Proposition 7.9, so their common refinement is, too. But already the common
refinement of the coprincipal congruences cogenerated by the key witnesses is the given
congruence by Theorem 8.4. �

Example 8.12. In general the set of key witnesses is properly contained in the set
of witnesses. Example 4.10.3 shows one way how this can happen. Exploiting the
weirdness of irreducible decomposition of the identity congruence is not necessary:
consider the primary congruence induced by the (cellular) binomial ideal

I = 〈a2 − 1, b2 − 1, x(b− 1), y(a− 1), z(a− b), x2, y2, z2〉.
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The geometry of the quotient is shown here, where Zδ
2 is the diagonal copy of Z2 in

Z2 × Z2, i.e. generated by (1, 1):

Zδ
2

Z2 × 0

0× Z2

0

x

y

z

The solid dots indicate key witnesses and are labeled with the quotients of Q modulo
the corresponding stabilizers, under the action from Lemma 3.13. The origin is not a
key witness because the common refinement of the three kernels of addition morphisms
is trivial. According to Theorem 8.4, a coprincipal mesoprimary decomposition of ∼I

is induced by the following decomposition of I into unital binomial ideals:

I = 〈a− 1, b− 1, z2, y2, x2〉 ∩ 〈a2 − 1, b− 1, z, y, x2〉
∩ 〈a− 1, b2 − 1, z, x, y2〉 ∩ 〈ab− 1, a− b, y, x, z2〉.

The heart of the remainder of this paper—the ring-theoretic part—is to make the
corresponding decomposition of arbitrary (non-unital) binomial ideals precise. For
reference, the primary decomposition of I is

I = 〈a− 1, b− 1, z2, y2, x2〉 ∩ 〈a+ 1, b− 1, z, y, x2〉
∩ 〈a− 1, b+ 1, z, x, y2〉 ∩ 〈a+ 1, b+ 1, y, x, z2〉.

9. Augmentation ideals, kernels, and nils

One of our goals is to compare the combinatorics of congruences on a commutative
monoid Q in purely monoid-theoretic settings with their ring-theoretic counterparts.
It is therefore important to note that various binomial ideals I ⊂ k[Q] can induce the
same congruence on Q. One way for this to happen is an arithmetic way, via binomials
involving the same monomials but different sets of coefficients; this occurs for binomial
primes Iρ,P whose characters share their domain of definition (see Section 12).

Example 9.1. In the polynomial ring k[x, y, z] in three variables, both of the ideals
I = 〈x(z − 1), y(z − 1), z2 − 1, x2, xy, y2〉 and I ′ = 〈x(z − 1), y(z + 1), z2 − 1, x2, y2〉
induce the same congruence; note that I ′ contains 〈xy〉, so the only difference between
these two ideals is the character on Z = {0} × {0} × Z ⊆ Z × Z × Z induced by the
monomials y, zy, z2y, . . . due to the generator y(z + 1) instead of y(z − 1).
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Another way, demonstrated in parts 3 and 4 of Example 2.17, is combinatorial: when
Q has a nil ∞, the binomial ideal 〈t∞〉 induces the same (trivial) congruence on Q as
the zero ideal 〈0〉 ⊆ k[Q]. Nils are the only way for this to occur.

Lemma 9.2. Fix a binomial ideal I ⊆ k[Q] whose congruence ∼I is trivial (every class
is a singleton). Then I = 0 or I = 〈t∞〉 for a nil ∞ ∈ Q.

Proof. If I 6= 0 then I must be a monomial ideal with a unique monomial, or else the
congruence ∼I has a class of size at least 2. Hence the result follows because a monoid
can have at most one nil. �

Definition 9.3. If ∞ ∈ Q is a nil, then the truncated algebra is k[Q]− := k[Q]/〈t∞〉.
By convention, if Q has no nil, then we set k[Q]− := k[Q].

Remark 9.4. Truncated algebras arise naturally from monoid algebras because of
differences in the way quotients of monoids and monoid algebras by ideals are formed.
To wit, any ideal F ⊆ Q determines the Rees congruence ∼F in which the only non-
singleton class consists of the elements in F . The morphism from Q to the Rees
factor semigroup Q/∼F takes F to a nil element ∞. On the other hand, the quotient
k[Q] → k[Q]/MF modulo the monomial ideal MF = 〈tf | f ∈ F 〉 equals k[Q/∼F ]

−

rather than k[Q/∼F ] itself. We shall see that if Q has a nil, then k[Q] and k[Q]− reflect
certain aspects of the algebra of Q to varying degrees of accuracy.

More generally, if the congruence induced by a (not necessarily unital) binomial
ideal I results in a quotient Q/∼I that has a nil, then throwing in monomials from the
nil class results in an ideal that determines the same congruence.

Proposition 9.5. Fix a binomial ideal I ⊆ k[Q]. The only binomial ideals containing I
that determine the same congruence ∼I are I itself and, if Q = Q/∼I has a nil ∞, the
ideal I + 〈tq | q = ∞〉, where the bar denotes passage from q ∈ Q to its image q ∈ Q.

Proof. Under the grading of the quotient algebra k[Q]/I by Q = Q/∼I the dimension
of the graded piece (k[Q]/I)q as a vector space over k is either 0 or 1, depending on
whether I contains a monomial in the corresponding class. Since the (exponents on)
monomials in I form a single class, the dimension can only be 0 for at most one q, and
q must be a nil in Q. Now note that k[Q]/I is close enough to the monoid algebra k[Q]
for the argument from Lemma 9.2 to work, and lift the result from k[Q]/I to k[Q]. �

The two binomial ideals in Proposition 9.5 are unequal precisely when I contains no
monomials, and in this case it is trivial to form the second ideal by inserting monomials.
In special circumstances, it is possible to reverse this procedure. To this end, we wish
to examine the transition from k[Q] to the truncated algebra k[Q]− (when Q has a
nil) in terms of primary decomposition of binomial ideals. This naturally leads to the
following familiar concept refining that of a nil.
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Definition 9.6. A kernel of a commutative monoid Q is a nonempty ideal contained
in all nonempty ideals of Q. (Such an ideal might not exist.)

Example 9.7. A nil is the same thing as a kernel of cardinality 1.

The existence of a nil in Q, or a finite kernel more generally, is reflected by a certain
kind of maximal ideal of k[Q] being an associated prime of k[Q].

Definition 9.8. Fix a commutative monoid Q, and write k∗ = k r {0}. The unital
augmentation ideal in the monoid algebra k[Q] is the ideal

I1aug := 〈tq − 1 | q ∈ Q〉
generated by all monomial differences. More generally, an augmentation ideal for a
given binomial ideal I ⊆ k[Q] is a proper ideal of the form

Iaug := 〈tq − λq | q ∈ Q, λq ∈ k∗〉 ⊆ k[Q],

such that I ∩ Iaug is a binomial ideal.

Example 9.9. The ideal I = 〈x2〉 ⊂ k[x, y] induces a primary congruence (a Rees
congruence) identifying all monomials in I. A compatible augmentation ideal is Iaug =
〈x− 1, y − 1〉, which satisfies I ∩ Iaug = 〈x2 − x3, yx2 − x2〉. This intersection induces
the same congruence ∼ as I does. Note that k[x, y]/(I ∩ Iaug) ∼= k[N2/∼] is isomorphic
to the semigroup algebra of N2/∼ while k[N2]/I ∼= k[N2/∼]− is the truncated algebra.

Lemma 9.10. Given an augmentation ideal Iaug as in Definition 9.8, the association
q 7→ λq constitutes a monoid homomorphism φ : Q → k∗.

Proof. The maximal ideals of k[Q] with residue field k are in bijection with the monoid
homomorphisms Q → k; Definition 9.8 guarantees that the image lies in k∗. �

Proposition 9.11. Fix a monoid algebra k[Q] over a field k with Q finitely generated.
An augmentation ideal is associated to k[Q] if and only if Q has a finite kernel, and in
that case the unital augmentation ideal is associated to k[Q].

Proof. If Q has a finite kernel K, then I1aug is the annihilator of the sum f =
∑

k∈K tk.
Indeed, q + K ⊆ K is an ideal of Q ⇒ q + K = K for all q ∈ Q ⇒ tqf = f for all
q ∈ Q ⇒ (tq − 1)f = 0 for all q ∈ Q ⇒ I1aug ⊆ ann(f); but I1aug is a maximal ideal.

Now suppose that an augmentation ideal Iaug is associated to k[Q]. The homo-
morphism q 7→ λq in Lemma 9.10 induces an automorphism of k[Q] that rescales the
monomials by tq 7→ λqt

q. This automorphism takes Iaug to I1aug. Therefore, we may as

well assume Iaug = I1aug is the unital augmentation ideal. Let K ⊆ Q be a nonempty

subset such that f =
∑

k∈K µkt
k is annihilated by I1aug, where µk ∈ k∗ for all k ∈ K.

It suffices to show that K is a kernel of Q. But tqf = f for all q ∈ Q implies that
q+K = K for all q ∈ Q, which implies both that K is an ideal of Q (since q+K ⊆ K
for all q) and also that K is contained in every ideal of Q (since K + q ⊇ K for any
given q). �
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Theorem 9.12. If Iℓ ⊃ · · · ⊃ I0 is a chain of distinct binomial ideals in k[Q] inducing
the same congruence on Q, then ℓ ≤ 1. Moreover, if ℓ = 1 then I1 contains monomials
and I0 does not: I0 = I1 ∩ Iaug for an augmentation ideal Iaug compatible with I1.

Proof. The first sentence follows from Proposition 9.5, as does the statement about
monomials when ℓ = 1. It remains to show that I0 = I1 ∩ Iaug if ℓ = 1. Set I = I0.
Under the grading of the quotient algebra k[Q]/I by Q = Q/∼I the dimension of the
graded piece (k[Q]/I)q as a vector space over k is 1 for all q ∈ Q. Let ∞ ∈ Q be
the nil, which exists because it is the class of all exponents on monomials in I1. Fix
a nonzero element t∞ ∈ k[Q]/I of degree ∞. Then tqt∞ = λqt

∞ for each q ∈ Q. Set
Iaug = 〈tq−λq | q ∈ Q〉. Then Iaug ⊇ I by construction, but Iaug 6⊇ I1, since I1 contains
monomials and Iaug does not. Therefore I1 ) I1∩Iaug ⊇ I, whence I1∩Iaug = I, because
I1/I = 〈t∞〉 ⊆ k[Q]/I has dimension 1 as a vector space over k by Proposition 9.5. �

Example 9.13. The ideal I = 〈x2 − xy, xy − 2y2〉 ⊆ k[x, y] contains monomials even
when char(k) 6= 2, because I contains both of x2y−xy2 and x2y−2xy2, so x2y and xy2

lie in I. However, Theorem 9.12 implies that there is no augmentation ideal compatible
with I. Indeed, every binomial ideal I ′ contained in I and inducing the same congruence
necessarily contains a binomial of the form x2 − λxy and one of the form xy − µy2, so
I ′ contains both x2 − xy and xy − 2y2 (and therefore I ′ = I) since xy /∈ I.

10. Taxonomy of binomial ideals in monoid algebras

The concepts of primary, mesoprimary, primitive, prime, and toric congruence from
Definition 2.11 have precise analogues for binomial ideals in monoid algebras. As a
small measure to aid the reader with conflicting usages of the terms “primary” and
“prime”, long since immovably set in the literature, the items in the following definition
are listed in the order corresponding exactly to Definition 2.11, as Theorem 10.6 makes
precise; for quick reference, consult the following table.

. . . congruence on Q . . . binomial ideal in k[Q]
primary cellular

mesoprimary mesoprimary
primitive primary
prime mesoprime
toric prime

The table explains our choice of terminology: “mesoprimary” sits between the two
occurrences of “primary”, being stronger than one and weaker than the other.

Our choice work over fields that need not be algebraically closed forced us to consider
slight generalizations of group algebras.

Definition 10.1. A twisted group algebra over a field k is a k-algebra that is graded
by a group G and isomorphic over the algebraic closure k to the group algebra k[G]
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via a G-graded isomorphism. A monomial homomorphism from a monoid algebra to
a twisted group algebra takes each monomial to a homogeneous element (possibly 0).

Example 10.2. The ringR = Q[x]/〈x3−2〉 is not isomorphic to the group algebraQ[G]
for G = Z/3Z over Q, because no element of R is a cube root of 2. On the other
hand, the element y = x 3

√
2 ∈ RC := R ⊗Q C generates RC, yielding the presentation

RC = C[y]/〈y3 − 1〉 ∼= C[G]. Therefore R is a nontrivial twisted group algebra for the
group G = Z/3Z over the rational numbers Q.

Generalizing the manipulations in Example 10.2 yields the following.

Proposition 10.3. A twisted group algebra R over k (for a finitely generated group G)
is the same thing as a quotient of a Laurent polynomial ring over k by a binomial ideal.

Proof. Every G-graded piece of R has dimension dimk(Rg) = 1 for all g ∈ G, because

this is true after tensoring with k by definition. Thus R admits a binomial presentation
R ∼= k[Nn]/I [ES96, Proposition 1.11]. Every monomial xu ∈ k[Nn] becomes invertible
in R because every such monomial becomes invertible in Rk := R ⊗k k. Therefore
R ∼= k[Zn]/I is a binomial quotient of a Laurent polynomial ring. On the other
hand, the characterization of Laurent binomial ideals I [ES96, Theorem 2.1] (or see
Lemma 11.11, below) implies that there is a unique sublattice L ⊆ Zn and character
σ : L → k such that I = 〈xq − σ(q) | q ∈ L〉. Over k, not much more can be said,
in general; but over k, the fact that k∗ is an injective abelian group implies that σ
extends to a character ρ : Zn → k∗. If yi is the image in Rk of ρ(xi)xi ∈ k[Zn], then
naturally Rk = k[y1, . . . , yn] = k[G] for G = Zn/L. �

Definition 10.4. A binomial ideal I ⊂ k[Q] in the monoid algebra for a monoid Q is

1. cellular if every monomial tq ∈ k[Q]/I is either a nonzerodivisor or nilpotent.
2. mesoprimary if it is maximal among the proper binomial ideals inducing a given

mesoprimary congruence (as per Theorem 9.12).
3. primary if the quotient k[Q]/I has precisely one associated prime ideal.
4. mesoprime if I is the kernel of a monomial homomorphism from k[Q] to a twisted

group algebra over k.
5. prime if k[Q]/I is an integral domain: fg = 0 in k[Q] implies f = 0 or g = 0.

Remark 10.5. The maximality for a mesoprimary ideal I ⊆ k[Q] amounts to stipulat-
ing that the nil class of ∼I consists of elements q ∈ Q with tq ∈ I, the alternative being
that none of these monomials lie in I but differences of scalar multiples thereof do.

Theorem 10.6. Let α ∈ {1, 2, 4}. A binomial ideal I satisfies part α of Definition 10.4
if and only if its induced congruence satisfies part α of Definition 2.11 and I is maximal
among proper ideals inducing that congruence. For α = 5 the same holds if k is
algebraically closed. When α = 3 the implication Definition 2.11.3 ⇒ Definition 10.4.3
holds in general, and the converse holds if k is algebraically closed of characteristic 0.
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Proof. Fix a binomial ideal I and use notation as in Definition 2.11 for ∼ = ∼I . First
we assume that I satisfies Definition 10.4.α and show that I satisfies Definition 2.11.α.

1. If a monomial tq ∈ k[Q]/I is a nonzerodivisor or nilpotent then the image q ∈ Q
of q is cancellative or nilpotent, respectively.

2. By definition.
3. Pick a presentation Nn

։ Q. The kernel of the induced surjection k[Nn] ։ k[Q]
is a binomial ideal [Gil84, §7], so the preimage of I in k[Nn] is a primary binomial
ideal I ′ ⊆ k[Nn] such that Nn/∼I′ = Q. Replacing I by I ′ if necessary, we there-
fore may as well assume Q = Nn, since the definitions of primitive congruence
and primary ideal depend only on the quotients Nn = Q and k[Nn]/I ′ = k[Q]/I.

Each binomial prime in k[Nn] = k[x1, . . . , xn] can be expressed as a sum
pb + mJ ⊆ k[Nn] of its “binomial portion” pb, which is a prime binomial ideal
containing no monomials, and a monomial prime mJ := 〈xi | i /∈ J〉, which is
generated by the variables whose indices are not contained in J ⊆ {1, . . . , n}
[ES96, Corollary 2.6]; this deduction relies on the algebraically closed hypothe-
sis. Rescaling the variables of k[Nn] if necessary, we can assume that the unique
associated prime p = pb + mJ of k[Nn]/I is unital—that is, pb is a unital ideal.
Given that k is algebraically closed of characteristic 0, the p-primary condition
on I implies that it contains pb [ES96, Theorem 7.1′]. Therefore, replacing k[Nn]
by k[Nn]/pb and I by I/pb, we assume that Q is an affine semigroup and p is
generated by monomials. The desired result now follows from [DMM09, Theo-
rem 2.15 and Proposition 2.13] or [Mil11a, Theorem 2.23], the latter being an
equivalent statement that directly implies the characterization of mesoprimary
congruences in Corollary 6.6.

4. If q is not nil then tq ∈ k[Q] lies outside of I, so tq maps to a nonzero monomial
in the twisted group algebra, whence q is cancellative because G is cancellative.

5. When I is a monomial prime in an affine semigroup ring, the result is obvious.
But prime ⇒ primary, so the reduction to that case in part 3 applies. Moreover,
since I = p contains pb already, the characteristic 0 hypothesis is superfluous.

For this half of the theorem, it remains to explain, for α 6= 2, why I is maximal among
ideals inducing ∼. For that, it suffices by Theorem 9.12 to show that I contains a mono-
mial if Q has a nil ∞. For part 1 (the cellular case), if q = ∞, then by definition of nil
there is for each r ∈ N a binomial tq−λrt

rq ∈ I for some λr ∈ k∗, so tq(1−λrt
(r−1)q) ∈ I,

whence tq is a zerodivisor modulo I and thus nilpotent modulo I—say trq ∈ I; then
tq − λrt

rq ∈ I ⇒ tq ∈ I. For part 3 (the primary case), Theorem 9.12 implies that I
has at least two associated primes—one or more arising from an augmentation ideal—if
maximality fails. For part 4 (the mesoprime case), any monomial tq with q = ∞ must
lie in I because a group has no nil. For part 5 (the prime case), the maximality is a
special case of part 1, because prime ⇒ cellular for binomial ideals.

Next, assuming that I is maximal among the binomial ideals inducing a congruence∼
on Q satisfying Definition 2.11.α, we prove that I satisfies Definition 10.4.α. As a
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matter of notation, write tq for the image of tq in k[Q]/I. In all cases, if q ∈ Q is an
element whose image q ∈ Q is nil, then tq = 0 by Theorem 9.12, using the maximality
property of I. Consequently, if q ∈ Q is nilpotent, then tq is nilpotent in k[Q]/I.

1. By the previous paragraph, if q ∈ Q, then either the monomial tq is nilpotent or
q is cancellative. In the latter case, multiplication by tq is injective on k[Q]/I
because k[Q]/I is Q-graded and addition by q is injective on Q.

2. By definition.
3. The quotient Q satisfies the condition of Corollary 6.6 in which the cancellative

monoid F ⊆ Q is an affine semigroup. Each orbit is a finite union of translates
q + F because Q itself is generated by F and finitely many nilpotent elements.
The proof now proceeds as [DMM09, Proposition 2.13] does: owing to the partial
order on the set of orbits afforded by Lemma 2.19, the Q/F -grading on k[Q]/I
induces a filtration by k[Q]-submodules with associated graded module

gr(k[Q]/I) ∼=
⊕

F -orbits T

k{T},

where k{T} is the vector space over k with basis T . The isomorphism above is
as k[F ]-modules, or equivalently, as k[Q]-modules annihilated by the kernel pF
of the surjection k[Q] ։ k[F ], with the k[F ]-module structure on k{T} induced
by the F -action on T . Since k{T} is torsion-free as a k[F ]-module, the direct
sum over T has only one associated prime, namely pF , whence k[Q]/I does, too.

4. Set Q′ = Qr{∞} if Q has a nil, and Q′ = Q otherwise. By maximality of I, the
quotient k[Q]/I is Q′-graded. By part 1, every nonzero monomial tq ∈ k[Q]/I
is a nonzerodivisor. Therefore k[Q]/I injects into its localization R obtained by
inverting the nonzero monomials. Any presentation Zn

։ G for the universal
group G of Q results in a presentation k[Zn] ։ k[G] ։ k[G]/I = R whose kernel
is a binomial ideal. Thus R is a twisted group algebra over k by Proposition 10.3.

5. The argument for part 4 works in this case, too, but nowQ′ is an affine semigroup,
so that k⊗k R, and hence also k[Q]/I, is an integral domain. �

Corollary 10.7. For binomial ideals in k[Q], over an arbitrary field except where noted,

• prime ⇒ mesoprime ⇒ mesoprimary ⇒ cellular; and
• prime ⇒ primary ⇒ mesoprimary ⇒ cellular (we only claim the second impli-
cation when k is algebraically closed of characteristic 0).

Proof. Use Theorem 10.6: if I is maximal among binomial ideals inducing a congruence
from Definition 2.11, then it is maximal among binomial ideals inducing any of the
weaker congruences from Lemma 2.13. This proves every implication except for prime
⇒ mesoprime, which a priori requires k to be algebraically closed, if Theorem 10.6 is
being applied. But in fact the implication holds in general, even though the quotient
by a prime binomial ideal I need not be an affine semigroup ring if k is not algebraically
closed. This is a consequence of the stronger statement in Theorem 11.15, below. �
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Remark 10.8. The given proof of the implication Definition 10.4.3⇒ Definition 2.11.3
fails in characteristic p, even if the field k is algebraically closed, because primary
binomial ideals in characteristic p do not necessarily contain the binomial part of their
associated prime [ES96, Theorem 7.1’].

Theorem 10.6 implies the following result, which reflects the table preceding Def-
inition 10.4 homogeneously across all of its rows, and shows that all of the richness
in Definition 10.4 is already exhibited by unital ideals : those generated by monomials
and unital binomials.

Corollary 10.9. A congruence satisfies part of Definition 2.11 if and only if the kernel
of the surjection k[Q] ։ k[Q]− satisfies the corresponding part of Definition 10.4. �

11. Monomial localization, characters, and mesoprimes

For arithmetic reasons, intersections of binomial ideals need not reflect their combi-
natorics completely accurately. The simplest example is 〈x2 − 1〉 = 〈x − 1〉 ∩ 〈x+ 1〉,
whose congruence fails to equal the common refinement of the congruences induced by
〈x − 1〉 and 〈x + 1〉. Precise statements about relations between combinatorics and
arithmetic use characters on subgroups of the unit groups of localizations of Q.

Localizations of monoids at their prime ideals corresponds to inverting monomials
in their monoid algebras.

Definition 11.1. For a prime ideal P ⊂ Q, the corresponding monomial ideal in k[Q]
is mP = 〈tp | p ∈ P 〉.
Remark 11.2. When P is maximal, mP is the maximal proper Q-graded ideal in the
monoid algebra k[Q], but it need not be maximal in the set of all proper ideals of k[Q].

Definition 11.3. Themonomial localization k[Q]P of k[Q] along P is the monoid alge-
bra of the localization QP , arising by adjoining inverses to all monomials outside of mP .
The monomial localization of any k[Q]-module M along P is MP = M ⊗k[Q] k[Q]P .

Remark 11.4. Localization behaves well upon passing between algebra and combi-
natorics; it forms part of the justification for characterizing algebraic notions, such as
Definition 12.1 in combinatorial terms.

Lemma 11.5. If I ⊆ k[Q] is a binomial ideal inducing the congruence ∼ on Q with
quotient Q, then for any monoid prime P ⊂ Q, the quotient of QP modulo the congru-
ence induced by IP is the monoid localization QP from Definition 3.10.

Proof. Immediate from the definitions. �

Definition 11.6. For any group L, a character is a homomorphism ρ : L → k∗. A
character ρ′ : L′ → k∗ extends ρ if L ⊆ L′ is a subgroup and ρ′(ℓ) = ρ(ℓ) for ℓ ∈ L.
The extension is finite if L′/L is finite.
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Convention 11.7. The domain L is part of the data of a character ρ : L → k∗; that
is, we simply speak of the character ρ, and write Lρ if it is necessary to specify L.

Definition 11.8. Fix a subgroup K ⊆ GP of the local unit group GP at P . For any
character ρ : K → k∗, the P -mesoprime of ρ is the preimage Iρ,P in k[Q] of the ideal

(Iρ,P )P := 〈tu − ρ(u− v)tv | u− v ∈ K〉+mP ⊆ k[Q]P .

Viewing P as implicit in the definition of ρ, the symbol Iρ refers to the preimage in k[Q]
of the ideal 〈tu − ρ(u− v)tv | u− v ∈ K〉 ⊆ k[Q]P .

Definition 11.9. A subgroup L ⊆ G of an abelian group is saturated in G if there is
no subgroup of G in which L is properly contained with finite index. The saturation
sat(L) of L is the intersection of all saturated subgroups of G that contain L. For any
prime number p ∈ N, the largest subgroup of sat(L) whose quotient modulo L has order

• a power of p is satp(L).
• coprime to p is sat′p(L).

For p = 0 set satp(L) = L and sat′p(L) = sat(L).

The following implies, in particular, that the set of saturations of a character is finite.
The statement is actually a slight generalization of [ES96, Corollary 2.2], in that the
domain L of ρ is allowed to be a subgroup of an arbitrary finitely generated abelian unit
group GP , and Iρ,P is not an arbitrary ideal in a finitely generated group algebra, but
rather an ideal containing the maximal monomial ideal in an arbitrary finitely generated
monoid algebra. However, the generalization follows from the original by working
modulo the maximal monomial ideal and lifting to any presentation of GP , taking note
that all of the characters in question are trivial on the kernel of the presentation.

Proposition 11.10 ([ES96, Corollary 2.2]). Fix an algebraically closed field k of char-
acteristic p ≥ 0. Let ρ : L → k∗ be a character on a subgroup L ⊆ GP , and write g
for the order of sat′p(L)/L. There are g distinct characters ρ1, . . . , ρg on sat′p(L) that
extend ρ. For each ρj there is a unique character ρ′j on sat(L) extending ρj. There is
a unique character ρ′ that extends ρ and is defined on satp(L). Moreover,

1.
√

Iρ,P = Iρ′,P ,
2. Ass(S/Iρ,P ) = {Iρ′j ,P | j = 1, . . . , g}, and
3. Iρ,P =

⋂g

j=1 Iρj ,P .

The following lemma is a variant of [DMM10, Lemma 2.9] and [ES96, Theorem 2.1].

Lemma 11.11. If k[Φ] is the group algebra of a finitely generated abelian group Φ,
then for any proper binomial ideal I ⊂ k[Φ] there is a subgroup L ⊆ Φ and a character
ρ : L → k∗ such that I = Iρ.
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Proof. The binomial ideal is of the form 〈1 − λut
u | u ∈ U〉 for some finite U ⊆ Φ.

First off, U is a subgroup of Φ since 1 − λµtu+v = µtv(1 − λtu) + (1 − µtv) for all
λ, µ ∈ k, including λ = λu and µ = λv. The set U is closed under inverses because
(1 − λtu)/λtu = −(1 − t−u/λ) when λ 6= 0, and I 6= k[Φ] ⇒ λu 6= 0. The very same
arguments show that the map ρ : U → k∗ defined by u 7→ λu is a homomorphism. �

Definition 11.12. Fix a binomial ideal I ⊆ k[Q]. The stabilizer of an element q ∈ Q
along a prime ideal P ⊂ Q is the subgroup KP

q ⊆ GP (sometimes denoted by Kq if P is
clear from context) fixing the class of q ∈ QP under the action from Lemma 3.13 for the
congruence ∼I . The character (of IP ) at q is the homomorphism ρ = ρP

q : KP
q → k∗

such that (Iρ,P )P = (IP : tq) +mP . The ideal Iq
P := Iρ,P is the P -mesoprime of I at q.

Remark 11.13. The ideal (IP : tq)+mP can equivalently be described as the kernel of

the composite map k[Q]P
·tq−→ 〈tq〉P → 〈tq〉P/tq(I+mP ). This kernel is a binomial ideal

in k[Q]P containing mP by construction. Lemma 11.11 with k[Φ] = k[GP ] = k[Q]P /mP

implies the kernel has the form (Iρ,P )P for some character ρ, so Iq
P is a mesoprime.

Saturations of subgroups (Definition 11.9) are more or less combinatorial in nature.
Saturations of characters, on the other hand, are more subtle, because arithmetic
properties of the target field k can enter.

Definition 11.14. Fix a subgroup L of an abelian group G. A character ρ : L → k∗ is

• saturated if the subgroup L is saturated, and
• arithmetically saturated if ρ has no finite proper extensions.

A saturation of ρ is an extension of ρ to sat(L).

The importance of saturated characters has been demonstrated in Proposition 11.10,
which required the algebraically closed hypothesis. Without it, the arithmetically
saturated condition holds sway, and the primality-saturation equivalence can break.

Theorem 11.15. If a binomial ideal in k[Q] over an arbitrary field k is prime then it
is a mesoprime Iρ,P for an arithmetically saturated character ρ. The converse holds if
k is algebraically closed, and it can fail if not.

Proof. Suppose that k[Q]/I is a domain. The ideal of monoid elements p ∈ Q such that
tp ∈ I is a monoid prime P . Replacing Q with the monoid QrP and I with its image
in k[Q r P ] = k[Q]/〈tp | p ∈ P 〉, it suffices to prove that I = Iρ for an arithmetically
saturated character when Q is cancellative and I contains no monomials. Since k[Q]
injects into its localization k[Q]∅ = k[Φ] for the universal group Φ = Q∅, and I
contains no monomials, Lemma 11.11 implies the existence of a subgroup L ⊆ Φ and
a character ρ : L → k∗ such that I = Iρ. It remains to show that Iρ is not prime if ρ
is not arithmetically saturated. Suppose σ : K → k∗ properly extends ρ to a subgroup
K ⊆ sat(L). Then Iσ ) Iρ. By restricting σ to a subgroup of K that still properly
contains L, we can assume that |K/L| > 1 and one of the following occurs:
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• k has positive characteristic p and |K/L| is a power of p;
• k has positive characteristic p and |K/L| is relatively prime to p; or
• k has characteristic 0.

Proposition 11.10 implies that in the first case, the extension Iσ of Iσ to k has the
same radical as the extension Iρ, in which case Iρ itself is not a radical ideal. In the

remaining two cases, Proposition 11.10 implies that Iρ = Iσ ∩ J , with no associated
prime of either intersectand containing an associated prime of the other. It follows that
Iρ = Iσ ∩ J , where Iσ and J := (Iρ | Iσ) both properly contain Iρ, so Iρ is not prime.

The k = k converse is implicit in Proposition 11.10, and anyway follows easily from
[ES96, Theorem 2.1]. Example 11.16 demonstrates failure of the general converse. �

Example 11.16. The ideal Iρ ⊂ Q[x] for the character ρ : 4Z → Q∗ defined by
ρ(1) = −4 is 〈x4 + 4〉. This ideal is not prime because it factors as 〈x4 − 4〉 =
〈x2− 2x+2〉 ∩ 〈x2 +2x+2〉. Nonetheless, ρ is arithmetically saturated because x4+4
has no binomial factors of degree 2.

Example 11.17. The ideal 〈x3−2〉 in Example 10.2 is prime (by Eisenstein’s criterion,
for example). Therefore the character ρ : 3Z → Q∗ sending 3 7→ 2 is arithmetically
saturated, viewing 3Z as a subgroup of Z: any proper extension of ρ to a character
Z → Q∗ would require a cube root of 2.

12. Coprincipal and mesoprimary components of binomial ideals

Definition 12.1. Fix a binomial ideal I ⊆ k[Q] inducing a congruence ∼ on Q.

1. An element w ∈ Q is an I-witness if it is a ∼-witness.
2. The monomial tw is a monomial I-witness if w is an I-witness.
3. A mesoprime Iρ,P is an associated mesoprime if it is the P -mesoprime of I at

some I-witness w for P (Definition 11.12), and then w is an I-witness for Iρ,P .
4. An associated mesoprime is minimal if it is inclusion-minimal among the asso-

ciated mesoprimes, and embedded otherwise.

Example 12.2. If I = 〈y−x2y, y2−xy2, y3〉 is the binomial ideal from Example 2.17.5,
then Iρ,P = 〈x2 − λ, y〉 for P = 〈ey〉, ρ : 〈(2, 0)〉 → k∗ defined by ρ(2, 0) = λ induces
the associated prime congruence of ∼I for any λ ∈ k∗. The monomial xay ∈ k[x, y] is
a witness for any a ∈ N, and it lies in one of two possible witness classes, depending
on the parity of a; see the figure in Example 2.17. However, only λ = 1 gives the
associated mesoprime.

Example 12.3. All associated mesoprimes of a unital binomial ideal (generated by
differences of monomials with unit coefficients) are unital.

Remark 12.4. If Q = Nn and I is unital, then all information about associated meso-
primes is contained in the set of associated lattices L ⊂ ZJ , each of which comes with
an associated subset J ⊆ {1, . . . , n}. Indeed, a prime ideal P of Nn is the complement
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of a face NJ of Nn, and specifying a prime congruence on Nn amounts to choosing
such a face along with a lattice L ⊂ ZJ . To see why, first observe that localization
along P inverts the face, turning Nn into ZJ × NJ = GP × NJ . Subsequently passing
to the quotient by a given prime congruence, the complement of the face maps to nil,
and the subgroup L is the stabilizer of any class under the action of ZJ = GP on
the quotient. The notion of associated lattice was a precursor of what we now call
an associated prime congruence. We were led to it in part by [ES96, Theorem 8.1].
Although that theorem only covers the cellular case, the upshot is that a collection of
associated lattice ideals contributes associated primes. The J-notation for subsets was
central to [DMM09], but we dispensed with it upon consideration of prime ideals and
congruences in arbitrary finitely generated commutative monoids.

Remark 12.5. When the domain K of a character ρ : K → k∗ is a saturated subgroup
of GP , the ideal Iρ,P can be an associated prime of a binomial ideal I without being an
associated mesoprime of I. The reason is that the congruences induced by associated
P -mesoprimes are immediately visible in the congruence induced by IP , whereas the
associated primes of I usually induce coarser congruences (larger congruence classes)
than those visible. The quintessential example to consider is the lattice ideal I for an
unsaturated sublattice of Zn: the lattice ideal for the saturation is an associated prime
of I, but the unique associated mesoprime of I is I itself.

Proposition 12.6. A binomial ideal I ⊆ k[Q] is mesoprimary if and only if I has
exactly one associated mesoprime.

Proof. If I is mesoprimary then it is cellular by Corollary 10.7 and the congruence
∼I is mesoprimary by Definition 10.4. If q is any witness for the unique associated
prime congruence and I ′ = (I : tq) is the annihilator of the image of tq in k[Q]/I, then
multiplication by tq induces an isomorphism IP +mP → I ′P +mP , so every associated
mesoprime of I is equal to I +mP .

On the other hand, assume that I has only one associated mesoprime, and that its
associate monoid prime is P ⊂ Q. The congruence ∼ induced by I is mesoprimary be-
cause the P -prime congruences agree at all I-witnesses, and hence all key ∼-witnesses,
by Definition 12.1 and Theorem 6.1. Now, either I contains a monomial, in which case
it is maximal among ideals inducing its congruence by Theorem 9.12, or else I contains
no monomials, in which case the unique associated monoid prime ideal is P = ∅, so
that no proper ideal containing any monomials can induce the same congruence. �

Remark 12.7. Building on Remark 6.7, Proposition 12.6 says that the character
of IP is the same at every nonzero monomial as soon as it is the same at every witness
monomial, and that is what it means to be a mesoprimary ideal.

Definition 12.8. Fix a binomial ideal I ⊆ k[Q]. The P -socle modulo I is the
set (IP : mP )/I of nonzero elements annihilated by mP in the localization k[Q]P/IP
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along P . A monomial tq ∈ k[Q] lies in the P -socle modulo I if its localized image
in k[Q]P/IP does; that is, if (IP : tq) = mP .

Remark 12.9. The P -socle need not be generated by monomials (Example 12.10).
The concept of socle in the monoid setting (Definition 6.8) captures only the monomi-
als in the P -socle for the maximal ideal P , not the binomials or the elements with more
than two terms. The fact that socles need not be binomial ideals (Example 12.11) con-
vinced us to leave the monoid notion in the land of monomials instead of, say, defining
the socle of a monoid to be a congruence, which would only additionally capture the bi-
nomials. In the end, the true notion of socle in the land of monoids requires knowledge
of multiple congruences, and for us eventually gave rise to the concept of witness and
key witness in Section 4. Explicitly correcting the non-binomiality in the land of bino-
mial ideals in monoid algebras—a process not required in the land of monoids—gave
rise to the notion of character witness in Section 16.

Example 12.10. The P -socle can be nonzero without containing monomials. This
occurs for mP = 〈x, y〉 ⊂ k[x, y] and I = 〈x2−xy, xy−y2〉, where the P -socle is 〈x−y〉.
Example 12.11. Eisenbud and Sturmfels observed that socles modulo binomial ideals
need not be binomial ideals [ES96, Example 1.8]. An example apropos to the develop-
ments here comes from Example 4.10.3: the ideal I = 〈x2−xy, xy−y2, x(z−1), y(w−1)〉
for mP = 〈x, y〉 ⊂ k[x, y, z, w] has P -socle 〈x − y, x(z − 1), y(w − 1), (z − 1)(w − 1)〉,
and there is no remedy for the failure of the final generator to be a binomial.

Definition 12.12. Given a monoid prime P ⊂ Q, a mesoprimary binomial ideal
in k[Q] is P -mesoprimary if the associated prime ideal of its induced congruence is P .

Example 12.13. As in Example 6.9—and in fact, as an immediate consequence of
that example—the P -socle modulo a P -mesoprimary ideal is generated by monomials.

The principal use of the following definition, which builds on the notion of order ideal
from Definition 7.3, concerns the case where the set w consists of a single witness. The
more general case arises during the construction of mesoprimary decompositions with
as few components as possible (Corollary 13.6).

Definition 12.14. Fix a binomial ideal I ⊆ k[Q], a prime P ⊂ Q, and a subset
w ⊆ Q. The monomial ideal MP

w
(I) ⊆ k[Q] cogenerated by w along P is generated by

the monomials tu ∈ k[Q] such that u lies outside of the order ideal QP
�w cogenerated

by w at P (Definition 7.3) under the congruence ∼I for all w ∈ w.

Definition 12.15. Fix a binomial ideal I ⊆ k[Q] and a setw ⊆ Q of elements such that
the P -mesoprime IPw of I at w is Iρ,P for all w ∈ w. The P -mesoprimary component of I
cogenerated by w is the preimage W P

w
(I) in k[Q] of the ideal IP + Iρ+MP

w
(I) ⊆ k[Q]P .

The nomenclature in Definition 12.15 is justified by Proposition 12.17, which requires
a preliminary result.
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Lemma 12.16. Fix binomial ideals I and I ′ in k[Q] inducing congruences ∼ and ∼′,
and let ≈ be the congruence induced by I+I ′. The common refinement ∼′∩∼ refines ≈,
and if ≈ 6= ∼′ ∩ ∼ then ≈ is obtained from ∼′ ∩ ∼ by enlarging its nil class.

Proof. If tu − λtv ∈ I + I ′ and neither of tu and tv lies in I + I ′, then tu − λtv is a
telescoping sum of two-term binomials (i.e., both coefficients nonzero) each of which
lies in I or I ′. �

Proposition 12.17. The ideal W P
w
(I) in Definition 12.15 is mesoprimary with associ-

ated mesoprime Iρ,P . More precisely, if I induces the congruence ∼ on Q, then W P
w
(I)

induces the common refinement of the coprincipal congruences ∼P
w cogenerated by the

elements in w along P . Every witness in w lies in the P -socle modulo W P
w
(I).

Proof. The claim has little content if P = ∅, as then Iρ,P = Iρ = IP , so assume P 6= ∅.
The common refinement ≈ of coprincipal congruences in question is mesoprimary by
Proposition 6.12. Every witness in w lies in the socle modulo ≈ because witnesses
have maximal image, under the further quotient by Green’s relation, among elements
at which the P -mesoprime of I is fixed to be Iρ,P .

By construction (specifically, Definition 7.7 and Lemma 7.6), the mesoprimary con-
gruence ≈ refines the congruence ≈′ induced by W P

w
(I): the monomial ideal MP

w
(I)

sets all elements outside of the order ideal equivalent to one another, and the generators
of Iρ carry out the remaining required identifications. The harder direction is showing
that no more relations are introduced.

Since W P
w
(I) is obtained from an extension to the localization k[Q]P along P , we

may as well assume that Q = QP , so P is the maximal ideal of Q. By construction,
the congruences induced by I and Iρ each individually refine the congruence ≈ (not
to be confused with ≈′ here); for Iρ this uses the fact that the P -mesoprime of I at
w ∈ w induces the P -prime congruence of ∼ at w. Therefore both of I and Iρ are ideals
graded by Q/≈. Furthermore, Lemma 12.16 implies that W P

w
(I) is graded by Q/≈ as

well: although ≈′ is refined by ≈ (which is a priori the wrong way for the refinement
to go if W P

w
(I) is to be graded by Q/≈), the refinement merely partitions the set of

monomials that map to 0 modulo W P
w
(I).

With the gradings in mind, assume a ≈′ b. If both ta and tb lie in MP
w
(I), then there

is nothing to prove, so assume that ta 6∈ MP
w
(I). By Lemma 12.16, it suffices to show

that ta 6∈ W P
w
(I). Choose w ∈ w with a in the order ideal QP

�w = QP
�w(∼), which can

be done by definition of MP
w
(I). Next pick u ∈ Q such that the images of u+ a and w

in Q/≈ are Green’s equivalent to one another; this is possible by definition of the order
ideal QP

�w. Use a double tilde to denote passage from Q to Q/≈, so ≈q ∈ Q/≈ is the
image of q for any q ∈ Q. The choice of the character ρ was made precisely so that the
graded piece (I)≈q of the ideal I contains the graded piece (Iρ)≈q whenever ≈q is Green’s
equivalent to ≈w in Q/≈. This means that Iρ adds no new relations to I in degree ≈q.
Since MP

w
(I) adds no new relations to I in degree ≈q by definition, W P

w
(I)≈q = (I)≈q for
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q = u + a. In other words, u + a ≈′ u + b ⇔ u + a ∼ u+ b. The class of u + a is not
nil in Q/∼ because the character of IP at u+ a is ρ. Hence ta 6∈ W P

w
(I). �

Definition 12.18. A binomial ideal is coprincipal if it is maximal (as per Theo-
rem 9.12) among the ideals inducing a given coprincipal congruence. A coprincipal com-
ponent of I cogenerated by q at P is a P -mesoprimary component W P

q (I) := W P
{q}(I)

cogenerated by a single element q.

Corollary 12.19. If I ⊆ k[Q] is a binomial ideal and q is an I-witness for P , then
the coprincipal component of I cogenerated by q at P is a coprincipal binomial ideal.

Proof. Immediate from Proposition 12.17 and the definitions. �

Remark 12.20. It would be superb if intersecting any pair of mesoprimary ideals with
the same associated mesoprime resulted in another mesoprimary ideal. More precisely,
a direct binomial ideal analogue of Proposition 6.12 for congruences would be desirable.
Unfortunately, the binomial analogue is false, in general: in k[x, y], the intersection of
the mesoprimary ideals 〈xy−2y2〉+〈x, y〉4 and 〈xy−y2〉+〈x, y〉4 is not mesoprimary; it
is not even a binomial ideal. Heuristically, if I1 and I2 are mesoprimary ideals in k[QP ]
with associated mesoprime Iρ,P , then in each of I1 and I2 there are “vertical” binomials
from Iρ, whose coefficients are dictated by the character ρ, and “horizontal” binomials
conglomerating the vertical fibers, with more arbitrary coefficients. (The vertical and
horizontal directions in Examples 1.3 and 2.17 are reversed for aesthetic reasons; the
usage here makes sense in Examples 4.10, 4.11, 8.12, 9.1, 12.11, 16.7, and 17.5.) When
the horizontal coefficients from I1 and I2 conflict, the intersection need not be binomial.

That said, the analogue of Proposition 6.12 is true once control is granted over
binomiality, and that comes for free when I1 and I2 both arise from a single ideal
via sets of witnesses as in Proposition 12.17. In that sense, the binomial analogue of
Proposition 6.12 is “true enough” for the relevant aspects of the theory of mesoprimary
decomposition to succeed, namely Corollary 13.6.

Remark 12.21. The existence of a mesoprimary ideal inducing a given congruence
is automatic by Remark 2.16. However, the question becomes more subtle when a
given associated mesoprime other than the unital one is desired. Roughly, we do not
know how to construct mesoprimary ideals with given associated mesoprimes de novo,
although by Proposition 12.17 we do know how to construct mesoprimary ideals given
the foundation of a binomial ideal to start from. More precisely, fix a monoid prime
P ⊂ Q, a P -mesoprimary congruence ≈ on Q, and a character ρ : K → k∗ on the
stabilizer K of some element that is not nil in the localization of Q/≈ along P . It
would be convenient to say that there exists a mesoprimary ideal J inducing ≈ with
associated mesoprime Iρ,P , but it is not clear to us whether this should be true. What
guarantees existence in the cases we care about, namely Proposition 12.17, is the I-
witnessed nature of≈: each I-witness prefers a particular character over all others—the
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one it sees by virtue of it being an I-witness—and that is the only one required for the
theory of mesoprimary decomposition.

In a different light, the problem is one of automorphisms. The associated mesoprime
of any unital P -mesoprimary ideal I is I1,P for the trivial character. Suppose, for
simplicity, that the ground field k is algebraically closed. Then, for any mesoprime Iρ,P ,
there is an automorphism of k[Q] taking I1,P to Iρ,P ; this amounts to the feasibility
of extending the character ρ : K → k∗ to the entire group GP of units of QP . To
transform I into a mesoprimary ideal with associated mesoprime Iρ,P , however, the
character must be extended appropriately to all of QP , not just to GP . It is not
clear to us whether issues of horizontal coefficients can intervene, particularly when
the inclusion of GP into QP fails to split.

Remark 12.22. Independent of the existence question, it is not clear how to describe
the class of mesoprimary ideals inducing a given congruence and with a given associated
mesoprime. Certainly, a solution to the problem in Remark 12.21 need not be unique.
For instance in the nilpotent situation, the one parameter family 〈x − λy, x2, xy, y2〉
(for λ 6= 0) consists of mesoprimary ideals over the associated mesoprime 〈x, y〉, all
inducing the same congruence.

13. Mesoprimary decomposition of binomial ideals

This section makes precise the sense in which mesoprimary decomposition of con-
gruences lifts to a parallel combinatorial theory for binomial ideals in monoid algebras.

Definition 13.1. Fix a binomial ideal I ⊆ k[Q] in a finitely generated commutative
monoid algebra over a field k.

1. An expression of I as an intersection of finitely many mesoprimary ideals is a
mesoprimary decomposition if, for each prime P ⊂ Q and P -mesoprimary ideal J
in the intersection, the P -mesoprimes of I and J at every J-witness coincide.

2. Each mesoprimary ideal that appears is a mesoprimary component of I.
3. If every J-witness for every mesoprimary component J is an I-witness, then the

decomposition is a combinatorial mesoprimary decomposition.

Theorem 13.2. Fix a finitely generated commutative monoid Q and a field k. Every
binomial ideal in the algebra k[Q] admits a combinatorial mesoprimary decomposition.

Proof. Examples include those in Theorem 13.5 and Corollary 13.6, below. �

The proof has essentially the same structure as that of Theorem 8.4, except that we
are forced (by cases such as Example 16.7) to work with general ∼-witnesses instead
of just key ∼-witnesses. For later use in Theorem 16.9, we separate off the main part
of the argument.
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Proposition 13.3. Fix a binomial ideal I ⊆ k[Q] inducing a congruence ∼ on Q.
Given an element q ∈ Q, there is a monoid prime P ⊂ Q and an element a ∈ Q such
that a+ q is an I-witness for P and the class in Q of q under ∼ coincides with its class
under the coprincipal component W P

a+q(I).

Proof. Consider the liberator of q under ∼, namely the ideal

T (q,∼) = {t ∈ Q | the class in Q of q ∈ Q is not singleton under ker(φt : Q → t+Q)}
of all elements whose addition morphism joins q to some other element in Q = Q/∼.
There is a prime ideal P ⊂ Q minimal among those containing T , since no unit lies
in T . By construction, no other element of Q is joined to q under localization of Q
at P . Minimality of P over T means that the localization TP is primary to the maximal
ideal PP . Therefore there is a maximal Green’s class of elements of Q outside of TP .
Pick t ∈ Q in that class. By maximality, w = t + q is a ∼-witness for P . The classes
of q under ∼ and the coprincipal component W P

w (I) coincide by construction. �

The proof of Theorem 13.5 also requires a general observation about graded ideals.

Lemma 13.4. Let I, J1, . . . , Jr be Q-graded ideals such that Ji contains I for all i. If
there exists a map q 7→ i(q) such that for all q ∈ Q the q-graded piece of I equals that
of Ji(q), then I =

⋂

i Ji.

Proof. The natural diagonal map δ : k[Q]/I → ⊕

i k[Q]/Ji is injective if and only
if I =

⋂

i Ji. The condition on i(q) guarantees that the composite map k[Q]/I →
⊕

i k[Q]/Ji → k[Q]/Ji(q) is injective in degree q for all q ∈ Q, so δ is injective. �

Theorem 13.5. Fix a finitely generated commutative monoid Q and a field k. Every
binomial ideal in the monoid algebra k[Q] is the intersection of the coprincipal ideals
cogenerated by its witnesses.

Proof. Apply Lemma 13.4 to the conclusion of Proposition 13.3. �

Using Theorem 13.2 and Proposition 12.17, one can find a mesoprimary decompo-
sition that minimizes the number of components by intersecting all components for a
given associated mesoprime.

Corollary 13.6. Fix a finitely generated commutative monoid Q and a field k. Every
binomial ideal in the monoid algebra k[Q] admits a combinatorial mesoprimary decom-
position with one component per associated mesoprime.

Remark 13.7. The existence of any mesoprimary decomposition—let alone a combi-
natorial one as in Theorem 13.2—is much stronger than mere existence of a decompo-
sition as an intersection of mesoprimary ideals, essentially because of the phenomenon
in Remark 12.5. The strength is particularly visible when the field k is algebraically
closed of characteristic 0. In that case, every binomial primary decomposition of I ex-
presses I as an intersection of mesoprimary ideals by Corollary 10.7, but a mesoprime
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must honor stringent combinatorial conditions to be an associated mesoprime of I,
and a mesoprimary ideal for an associated mesoprime must honor stringent combina-
torial conditions to be a mesoprimary component. The difference between ordinary
and combinatorial mesoprimary decompositions is a relatively slight distinction among
potential socle locations: in the ordinary case, I is merely required to possess the cor-
rect characters at the socle elements of the mesoprimary components, whereas in the
combinatorial case only maximal elements possessing the correct characters from I are
allowed in the socles of components.

Remark 13.8. No choices are necessary to construct the coprincipal decomposition
in Theorem 13.5: both the combinatorics and the arithmetic are forced. Therefore
coprincipal decomposition into coprincipal components cogenerated by witnesses is
canonical—as canonical as monomial irreducible decomposition of monomial ideals—
but canonicality in the binomial context comes at the price of non-minimality. Some of
the redundancy is eliminated in Section 16, but without arbitrary, unmotivated (and
often symmetry-breaking) choices, redundancy can stubbornly persist.

14. Binomial localization

Upon localization of a binomial quotient k[Q]/I at a binomial prime, some monomials
become units and others are annihilated. The units are easy: if the prime is Iσ,P , then
the monomials outside of mP become units. The question of which monomials die is
much more subtle. There are two potential reasons that a monomial gets killed upon
ordinary localization (Theorem 14.9): a combinatorial one and an arithmetic one.
Combinatorially, a monomial dies if its class under ∼I points into P (Definition 14.1);
arithmetically, a monomial dies if the character of IP at it is incommensurate with ρ
(Definition 14.6). These annihilations result from the inversion of two different types of
binomials: in the combinatorial case the inverted binomials have one monomial outside
of mP , and in the arithmetic case the inverted binomials lie along the unit group GP

locally at P . The relevant monomials die because locally each becomes a binomial unit
multiple of a binomial in I; see the proof of Theorem 14.9.

Definition 14.1. Given a prime P ⊂ Q, and a congruence ∼ on Q, the congruence
class of q ∈ Q points into P if q + p ∼ q in the localization QP for some p ∈ P .

Lemma 14.2. Given a prime P ⊂ Q and a congruence ∼ on Q, the set of elements
in Q whose class points into P is an ideal of Q.

Proof. If q + p ∼ q then u+ q + p ∼ u+ q by additivity of ∼. �

Definition 14.3. The P -infinite ideal MP
∞(∼) ⊆ Q for a prime P ⊂ Q and congru-

ence ∼ on Q is generated by the elements of Q whose classes point into P . If ∼ = ∼I

is induced by a binomial ideal I ⊆ k[Q], then MP
∞(I) ⊆ k[Q] is the corresponding

P -infinite monomial ideal.
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Remark 14.4. The terminology involving infinity stems from [DMM09, Lemma 2.10],
which concerns binomial localization at a monomial prime of an affine semigroup ring:
when the ambient monoid Q is an affine semigroup, a class that points into P is
infinite. The focus on monomial primes in affine semigroup rings arises there because
the field is algebraically closed of characteristic 0 and the ideals to be localized are Iρ,P -
primary (and hence contain Iρ), so the binomial localization procedure can be carried
out in the affine semigroup ring k[Q]/Iρ. Definitions 14.1 and 14.3 lift the picture from
(I + Iρ)/Iρ ⊆ k[Q]/Iρ to I + Iρ ⊆ k[Q] itself; but see Remark 14.7.

Lemma 14.5. Let R be a set of characters on subgroups of the unit group GP of QP .
Given a binomial ideal I ⊆ k[Q], the set {q ∈ Q | the character ρP

q of IP at q is not a
restriction of every character from R} is an ideal of Q.

Proof. The character ρP
p+q of IP at p+ q is an extension of ρP

q . �

Definition 14.6. Given a binomial ideal I ⊆ k[Q] and a mesoprime Iρ,P , the incom-
mensurate ideal of I at ρ is the ideal MP

ρ (I) ⊆ k[Q] spanned over k by all monomials
tq such that the character of IP at q is not a restriction of ρ.

Remark 14.7. The condition for a monomial to lie in the incommensurate ideal is
phrased arithmetically, but in reality many monomials in it are there for combinatorial
reasons: if the domain of the character of IP at q fails to be contained in the (saturation
of) the domain of ρ—that is, if the stabilizer of the class of q in Q/∼I is too big—then
q has no hope of being commensurate with ρ. This type of combinatorial obstruction
to commensurability also contributes infinite classes in [DMM09, Lemma 2.10].

Definition 14.8. The binomial localization of I ⊆ k[Q] at a binomial prime Iσ,P is the
sum I +MP

∞(I) +MP
σ (I) ⊆ k[Q] of I plus its P -infinite and incommensurate ideals.

The point of this section is to compare the previous definition with ordinary (in-
homogeneous) localization of a k[Q]-module at a binomial prime Iσ,P , obtained by
inverting all elements of k[Q] outside of Iσ,P .

Theorem 14.9. Given a binomial ideal I ⊆ k[Q] over an arbitrary field k, the kernel
of the localization homomorphism from k[Q] to the ordinary localization of k[Q]/I at
a binomial prime Iσ,P contains the binomial localization of I at Iσ,P .

Proof. First suppose that the class of q ∈ Q points into P . Pick p ∈ P such that
q + p ∼ q. This congruence means that there is a binomial tq − λtq+p = tq(1 − λtp)
in I. But 1−λtp lies outside of Iσ,P because its image modulo mP is already 1. Therefore
1− λtp is a unit in the ordinary localization of k[Q]/I at Iσ,P , so tq is 0 there.

Next suppose that tq ∈ MP
σ (I). By definition, there is a binomial 1 − λtg for some

g ∈ GP such that λ 6= σ(g) and tq(1−λtg) ∈ IP . The element 1−λtg lies outside of Iσ,P
by definition. Therefore the argument in the previous paragraph works in this case,
too. We conclude that the binomial localization of I is contained in the kernel. �
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Remark 14.10. How is Theorem 14.9 to be applied? While the binomial localization
I ′ of I at Iσ,P might not coincide with the kernel of ordinary localization at Iσ,P , it is
always the case, by Theorem 14.9, that I and I ′ have the same ordinary localization
at Iσ,P . Therefore, for the purpose of detecting Iσ,P -primary components, I ′ is just as
good as I was in the first place. But the combinatorics of I ′ might be much simplified,
thereby clarifying the role of Iσ,P in the primary decomposition of I. See the proof of
Theorem 15.16 for a quintessential example.

15. Irreducible and primary decomposition of binomial ideals

Passing from mesoprimary and coprincipal ideals and decompositions to primary
and irreducible ideals and decompositions requires a minimal amount of knowledge
concerning primary decomposition of mesoprimary ideals themselves. To speak about
binomial primary decomposition of binomial ideals in k[Q] we are forced to assume, in
appropriate locations, that k is algebraically closed (Example 11.16); we write k = k
in that case. Doing so guarantees that each binomial ideal I ⊂ k[Q] has binomial
associated primes (Proposition 11.10). However, most of this section works for an
arbitrary ground field, so we are explicit about our hypotheses in this section. One
reason is that the characterization of binomial prime ideals (Theorem 11.15) does not
rely on properties of k: every binomial prime can be expressed uniquely as a sum
p + mP in which P ⊂ Q is a monoid prime ideal and p is a (not necessarily prime)
binomial ideal that contains no monomials.

Proposition 15.1. Fix an arbitrary field k. If I ⊂ k[Q] is mesoprimary with an
associated mesoprime Iρ,P , then (k[Q]/I)P has a filtration by k[Q]P -submodules whose
associated graded module is a direct sum of copies of (k[Q]/Iρ,P )P .

Proof. Localizing along P , we assume that Q = QP , so P is the maximal ideal of Q.
The group G of units in Q acts freely on the quotient Q = Q/∼I by Corollary 6.6.
Owing to the partial order on the set of orbits afforded by Lemma 2.19, the grading by
Q/G on k[Q]/I induces the desired filtration. As a vector space over k, the associated
graded module is gr(k[Q]/I) ∼=

⊕

orbits T k{T}, where k{T} is the vector subspace
of k[Q]/I with basis the set of monomials tq for q ∈ T . As a k[Q]-module, the vector
space k{T} is isomorphic to k[Q]/Iρ,P by Proposition 12.6 and Remark 12.7. �

Corollary 15.2. Fix an arbitrary field k. If I ⊂ k[Q] is mesoprimary, then the asso-
ciated primes of I are exactly the minimal primes of its unique associated mesoprime.

Proof. If I is P -mesoprimary, then the monomials outside of mP are nonzerodivisors
on k[Q]/I by definition, so the result follows immediately from Proposition 15.1. �

Remark 15.3. Corollary 15.2 says that, although one expects to derive information
about associated primes of I from the characters at its witnesses, when I is mesoprimary
the appropriate characters appear at the identity 1 ∈ k[Q]. This is another manifesta-
tion of semifreeness (Remark 6.7), detailed in the present case at Proposition 15.1.
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Lemma 15.4. Fix a P -coprincipal ideal I ⊆ k[Q] cogenerated by tq such that its asso-
ciated mesoprime p = Iρ,P is prime. Then the ordinary (inhomogeneous) localization
k[Q]p/Ip at p has simple socle: soc(k[Q]p/Ip) = 〈tq〉p, without hypotheses on k.

Proof. The maximal ideal p certainly annihilates the element tq ∈ k[Q]p/Ip. Any other
monomial tv has the property that tutv = tq already in k[Q]P for some u ∈ Q. �

The next result should more honestly be part of the taxonomy of binomial ideals in
Section 10, and truly it belongs in Theorem 10.6. The main reason it doesn’t appear
there is because coprincipal congruences do not appear in Definition 2.11, as they are
introduced at a more leisurely pace in Section 7. In addition, it is hard to fit the lines

. . . congruence on Q . . . binomial ideal in k[Q]
coprincipal coprincipal

primitive and coprincipal irreducible

neatly in the table near the start of Section 10.

Theorem 15.5. Fix a binomial ideal I ⊆ k[Q] for a finitely generated commutative
monoid Q over an arbitrary field k.

1. I is irreducible if I is coprincipal and its associated mesoprime is prime.
2. The converse holds when k = k is algebraically closed of characteristic 0.

Proof. Assume I is coprincipal with prime associated mesoprime. Then I is primary by
Corollary 15.2, and it is irreducible by [Vas98, Proposition 3.15] because of the simple
socle condition in Lemma 15.4.

For the converse, assume k = k and char(k) = 0. If I is irreducible then it is primary
(this is true for any ideal in any noetherian commutative ring), and hence mesoprimary
by Corollary 10.7. Any coprincipal decomposition of I exhibits I as an intersection of
finitely many coprincipal ideals, one of which must equal I because I is irreducible. �

Remark 15.6. The full extent to which the converse in Theorem 15.5.2 holds is in-
scrutable to us: we do not know the general conditions under which a binomial ideal
is mesoprimary, given that it is irreducible (or even primary). Certainly having a base
field that is algebraically closed of characteristic 0 suffices, because then Theorem 10.6.3
yields the mesoprimary conclusion once irreducibility—and thus primaryness—is given.

The transition from binomial irreducible ideals to binomial irreducible decomposi-
tions requires decompositions of mesoprimary ideals.

Proposition 15.7. Fix k = k. If I ⊂ k[Q] is mesoprimary, then its (unique minimal)
primary decomposition is I =

⋂

p∈A I + p, where A is the set of binomial parts of

associated primes of I; that is, A =
{

Iσ | Iσ,P ∈ Ass(k[Q]/I)
}

.
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Proof. Adding the binomials Iσ in an associated prime Iσ,P to a mesoprimary ideal
coarsens its congruence to a primitive one. Since the monomials are untouched, the
result follows from the primary decomposition of mesoprimes in Proposition 11.10. �

Remark 15.8. It is worth keeping in mind how concrete the set A in Proposition 15.7
is: if the unique associated mesoprime of I is Iρ,P = Iρ +mP = I +mP , then the ideals
Iσ ∈ A are indexed by the saturated finite extensions σ of ρ, by Proposition 11.10.

Lemma 15.9. In the situation of Proposition 15.7, every component I + Iσ induces a
primitive congruence.

Proof. Since σ is a saturation of ρ, the quotient of QP modulo the congruence induced
by I+Iσ is exactly the quotient of QP/∼I by the torsion subgroup of its unit group. �

Lemma 15.10. If I is coprincipal in Proposition 15.7, then every primary component
there is a coprincipal ideal.

Proof. The partially ordered monoid of Green’s classes that is used to detect (or con-
struct) coprincipal ideals is the same for I and for I + Iσ. �

Next we come to the main consequences of mesoprimary decomposition for primary
and irreducible decomposition, including the following result and Theorem 15.16.

Corollary 15.11. Fix a binomial ideal I ⊆ k[Q] over an algebraically closed field k.

1. Refining any mesoprimary decomposition of I by canonical primary decompo-
sition of its components yields a binomial primary decomposition of I each of
whose components induces a primitive congruence on Q.

2. If the mesoprimary decomposition used in part 1 is a coprincipal decomposition,
then the resulting primary decomposition is an irreducible decomposition each of
whose components induces a primitive coprincipal congruence on Q.

Proof. The first claim is immediate from Proposition 15.7 and Lemma 15.9. The second
is immediate from the first along with Lemma 15.10 and Theorem 15.5. �

Remark 15.12. Corollary 15.11 implies that binomial primary and irreducible de-
compositions are canonically recovered from essentially combinatorial data, just as in
the monomial case. In the binomial case the decomposition can be redundant, but the
redundancy is already inherent in the combinatorics; that is, it happens at the level of
monoids, congruences, and witnesses, before coefficients enter the picture. Note that by
“canonical” we mean in the sense of “determined without extra data or requirements”.
In contrast, Ortiz [Ort59] uses the adjective “canonical” in an unfortunate manner
to refer to primary decompositions that minimize a certain index of nilpotency. We
view Ortiz’s decompositions as optimized for a particular choice of “cost function”
rather than as canonical; it could be possible to use cost functions other than index of
nilpotency to define other optimized primary decompositions. Regardless of the name,
Ojeda [Oje10] proves that the components in Ortiz’s “canonical” decompositions are
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binomial when the original ideal is binomial, but these decompositions generally differ
from the ones here, which rely solely on intrinsic data.

Remark 15.13. Corollary 15.11 produces primary and irreducible decompositions
whose components are mesoprimary binomial ideals. However, we do not know whether
all binomial primary or irreducible ideals are mesoprimary over algebraically closed
fields of positive characteristic.

When the base field k is not algebraically closed, the binomial ideal I need not
possess a binomial primary decomposition over k (see Example 11.16, for instance),
but it does have one over the algebraic closure k. One of our original motivations for
seeking a theory of mesoprimary decomposition was to gather primary components in
such a way that Galois automorphisms (of k over k) permute them. In particular, if
two primes are Galois translates of one another, then we wanted their corresponding
primary components to look combinatorially the same.

Theorem 15.14. If the ideal I in Corollary 15.11 is defined over a subfield k of its
algebraic closure k, then the primary (or irreducible) decomposition there is fixed by the
Galois group Gal(k/k). More precisely, if π ∈ Gal(k/k) is a Galois automorphism and
C is one of the primary (or irreducible) components of I from Corollary 15.11, then
π(C) is another of the primary (or irreducible) components of I from Corollary 15.11.

Proof. The Galois group fixes every mesoprimary component of I elementwise, and the
primary decomposition of a mesoprimary ideal (Proposition 15.7) is canonical. �

Our final result on the primary-to-mesoprimary correspondence shows that, for gen-
eral binomial ideals, every associated prime is detected by an associated mesoprime.
For cellular binomial ideals, the relationship between associated mesoprimes and asso-
ciated primes is even more perfectly precise. The cellular case of the following result
over an algebraically closed field is [ES96, Theorem 8.1] and its converse; the latter was
stated and used without proof after [ES96, Algorithm 9.5]. First, a matter of notation.

Definition 15.15. Fix a cellular binomial ideal I ⊂ k[Q]. If P ⊂ Q is the prime ideal
of exponents on monomials that are nilpotent modulo I, then I is P -cellular.

Theorem 15.16. Fix a binomial ideal I ⊆ k[Q] over an arbitrary field k.

1. Each associated prime of I is minimal over some associated mesoprime of I.
2. If I is cellular, then the binomial converse holds: every binomial prime that is

minimal over an associated mesoprime of I is an associated prime of I.

Proof. For part 1, apply Corollary 15.2 to the mesoprimary components of I under any
mesoprimary decomposition from Theorem 13.2.

For the cellular converse, suppose that I is P -cellular, and that a binomial prime
Iσ,P is minimal over some associated mesoprime Iρ,P of I. The submodule of k[Q]/I
generated by a witness for Iρ,P is isomorphic to a quotient k[Q]/I ′ for a binomial ideal I ′
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all of whose witness characters are extensions of ρ. After subsequently binomially
localizing at Iσ,P , the only surviving characters are restrictions of σ, and hence sit
between σ and ρ. In particular, this is true for the character at any given monomial tq

in the P -socle. Such a monomial generates a mesoprime submodule with Iσ,P among
its associated primes by Corollary 15.2. Therefore Iσ,P is associated to I ′, and hence
to I by Theorem 14.9; see Remark 14.10. �

Example 15.17. Given an associated prime of I as in Theorem 15.16.1, the associated
mesoprime guaranteed by the theorem need not be unique. This phenomenon is illus-
trated by Example 2.17.5 (a smaller example is 〈y2, y(x− 1), x2 − 1〉, but we already
have a picture in the Example). The binomial prime 〈x− 1, y〉 for the trivial character
on the x-axis N × {0} and J = {1} is associated to I and has two possible choices of
associated mesoprime, namely 〈x − 1, y〉 and 〈x2 − 1, y〉. Combinatorially, the row of
dots at height 1 consists of two classes, each being the nonnegative points in a coset of
an unsaturated lattice, while the row of dots at height 2 comprise just one class, the
nonnegative points in a coset of the saturation. In general, when the group of units
GP acts, there could be a whole GP -orbit of classes corresponding to an unsaturated
subgroup K, and a higher GP -orbit with an associated subgroup anything between K
and its saturation.

Cellular decompositions of binomial ideals make choices and are inherently non-
canonical, so in all of our development we avoided going through cellular decomposition.

16. Character witnesses and false witnesses

The development here of the notion of witness in the monoid algebra setting—that
is, the arithmetic setting—is grounded in the combinatorial precursor in Sections 4–5.

Definition 16.1. Fix a binomial ideal I ⊂ k[Q], an element q ∈ Q, and a monoid prime
ideal P ⊂ Q. A P -cover extension at q is an extension of the character ρP

q : Kq → k∗

of IP at q to the character ρP
p+q : Kp+q → k∗ at a P -cover p+ q of q (Definition 4.4).

There can be many—even infinitely many—choices of minimal generating sets for P
(Remark 4.5), but just as in Lemma 4.6, there are not too many P -cover extensions.

Lemma 16.2. In the situation of Definition 16.1, the set of P -cover extensions at q
is finite, in the sense that only finitely many stabilizers Kp+q occur, and only finitely
many characters defined on each stabilizer occur among the characters ρP

p+q.

Proof. Let Q be the quotient of Q modulo the congruence determined by I. If the
images of p and p′ are Green’s equivalent in Q, then the stabilizers Kp+q and Kp′+q

coincide, as do the extensions to ρP
p+q and ρP

p′+q. Now apply Remark 4.5. �

Definition 16.3. Fix a binomial ideal I ⊂ k[Q], a monoid prime P ⊂ Q, and w ∈ Q.

1. The testimony of w at P is its set TP (w) of P -cover extension characters.
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2. The testimony TP (w) is suspicious if the intersection of the corresponding meso-
primes equals the P -mesoprime IPw of I at w; that is, if IPw =

⋂

ρ∈TP (w) Iρ,P .
3. A false witness is an I-witness w for P whose testimony at P is suspicious.
4. An I-witness that is not false is a character witness.

Remark 16.4. For algebraically closed k = k, Definition 16.3.4 becomes transparent,
as follows. Minimal primary decompositions of mesoprimes Iρ,P (Proposition 11.10) are
easy and canonical in that case: every saturated finite extension of ρ appears exactly
once. A finite intersection of mesoprimes Iσ,P , each containing Iρ,P , equals Iρ,P when,
among all of the saturated finite extensions of the characters σ, every saturated finite
extension of ρ appears at least once. A character witness for P with associated meso-
prime Iρ,P is a witness in possession of a new character (a saturated finite extension)
not present in its testimony. By the same token, a witness is false if it has no new
characters to mention: the set of characters in its testimony is suspiciously complete.

The relation between the different types of witnesses from monoid land (key wit-
nesses) and binomial land (character witnesses) is not as strong as one may hope. For
example, a key witness can be a false witness (Example 16.5), and a character witness
might not be a key witness (Example 16.6). It is also possible for a non-key witness to
be a false witness (Example 16.7).

Example 16.5. Consider the ideal I ′ = 〈x(z − 1), y(z + 1), z2 − 1, x2, y2〉 from Ex-
ample 9.1 and let P be the monoid prime of N3 such that mP = 〈x, y〉. Then 0 ∈ N3

is a key I ′-witness for P that is a false I ′-witness: the P -mesoprimes at the P -covers
of 0 are 〈z − 1〉 and 〈z + 1〉, whose characters form the complete set of saturated
finite extensions of the character for 〈z2 − 1〉. The testimony is suspicious because
〈z − 1〉 ∩ 〈z + 1〉 = 〈z2 − 1〉. In contrast, 0 ∈ N3 is a character I-witness for P , where
the ideal I = 〈x(z − 1), y(z − 1), z2 − 1, x2, xy, y2〉 induces the same congruence as I ′.

Example 16.6. In Definition 16.3, the intersection of the mesoprimes is the analogue
of intersecting the kernels of the cover morphisms in Definition 4.7. The necessity
of allowing all (non-key) witnesses as potential character witnesses stems from the
phenomenon in Example 2.22 (the common refinement of the congruences induced by
〈x− 1〉 and 〈y − 1〉 is trivial whereas the intersection of these ideals not) but is better
illustrated by Example 4.10.3. The ideal 〈x2 − xy, y2 − xy, x(z − 1), y(w − 1)〉 there
induces the same congruence ∼ as the bigger ideal I = 〈x2, xy, y2, x(z − 1), y(w − 1)〉
as per Theorem 9.12. The P -prime congruence at the character I-witness 0 ∈ N4 for
P = 〈ex, ey〉 is trivial because it equals the common refinement of the congruences
induced by 〈z− 1〉 and 〈w− 1〉. This trivial P -prime congruence at 0 indicates a total
lack of binomials in the Q-degree 0 part of the intersection 〈z−1, x2, y〉∩〈w−1, x, y2〉,
but this lack is accompanied by non-binomial elements. A third intersectand, namely
the prime ideal 〈x, y〉 itself, is required to enforce binomiality.
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In terms of Definition 16.3, the testimony consists entirely of saturated but infinite
extensions of the character of IP at 0 ∈ N4. Therefore no saturated finite extensions
occur, in the sense of Remark 16.4, making 0 ∈ N4 a rather strong character I-witness,
even though it is not a key witness for the congruence induced by I.

Example 16.7. Set I = 〈w6−1, x(w2−1), y(w3−1), z(w3+1)〉 ⊂ k[x, y, z, w] and let
P be the monoid prime of N4 such that mP = 〈x, y, z〉. Then 0 ∈ N4 is an I-witness
because the congruence induced by its P -mesoprime 〈w6 − 1〉 changes at its P -covers,
whose P -mesoprimes are 〈w2 − 1〉, 〈w3 − 1〉, and 〈w3 + 1〉, corresponding to x, y, and
z, respectively. The congruences induced by 〈w3 − 1〉 and 〈w3 + 1〉 coincide, but they
are incompatible with the one induced by 〈w2− 1〉; the only elements along the w-axis
joined to 0 under the kernels of all three cover morphisms at P are the multiples of 6.
Therefore 0 ∈ N4 is not a key witness. However, it is still a false witness, because
〈w6 − 1〉 = 〈w2 − 1〉 ∩ 〈w3 − 1〉 ∩ 〈w3 + 1〉 exhibits its suspicious testimony.

Definition 16.8. Fix a binomial ideal I ⊆ k[Q] in a finitely generated commutative
monoid algebra over a field k. A mesoprimary decomposition of I is characteristic if
every J-witness for every mesoprimary component J is a character I-witness.

Next comes the true analogue of Theorem 8.4, closer in spirit than even Theo-
rem 13.5, because we take pains here to eliminate redundancy systematically. It is an
analogue rather than an arithmetization because the eliminated witnesses are different
here than in the combinatorial case, as demonstrated by the previous examples.

Theorem 16.9. Fix a finitely generated commutative monoid Q and a field k. Every
binomial ideal I ⊆ k[Q] admits a characteristic mesoprimary decomposition. In partic-
ular, I is the intersection of the coprincipal ideals cogenerated by its character witnesses.

Equivalently, in the coprincipal decomposition from Theorem 13.5, the components
for false witnesses can be thrown out (with their testimony).

Proof. For a witness w ∈ Q consider a P -cover p + w. The sum W P
w+p(I) + MP

w (I)
of the coprincipal component of I cogenerated by w + p at P plus the monomial
ideal cogenerated by w along P is a coprincipal ideal of k[Q]. Like W P

w (I) itself,
this sum is cogenerated by w along P , but instead of having the same associated
mesoprime IPw as does W P

w (I), the sum has associated mesoprime IPw+p. Equivalently,

if IPw+p = Iσp,P , then W P
w+p(I) + MP

w (I) = W P
w (I) + Iσp

. This ideal is graded by the

quotient of QP/GP modulo the congruence induced on it by W P
w (I). Working in that

grading and monomially localizing along P , it follows that
⋂

p∈P

(

W P
w+p(I) +MP

w (I)
)

=
⋂

p∈P

(

W P
w (I) + Iσp

)

= W P
w (I) +

⋂

p∈P

Iσp
⊇ W P

w (I);

see Proposition 15.1 and its proof.
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Now assume that w is a false witness. That condition precisely guarantees that the
containment at the end of the display is equality. But W P

w (I) already contains MP
w (I)

by definition, so surely W P
w (I) ⊇ ⋂

p∈P W P
w+p(I).

It remains only to show that for each cover q = w + p there is a witness a + q for
a monoid prime P ′ ⊆ P satisfying W P

q (I) ⊇ W P ′

a+q(I). The witness a + q is produced
by Proposition 13.3 applied to QP , once the prime in the proposition is renamed P ′.
Now, W P

q (I) = W P
a+q(I)+MP

q (I), so it suffices to show that W P
a+q(I) ⊇ W P ′

a+q(I). This
containment need not hold in the absence of hypotheses on a+ q (see Example 16.11),
but in fact Proposition 13.3 also guarantees that the class of a + q is the same un-
der the two congruences on Q induced by W P

a+q(I) and W P ′

a+q(I), by semifreeness of
mesoprimary congruences (Corollary 6.6). Therefore the desired result is precisely the
statement of Lemma 16.10, below, with the q there replaced by a+ q. �

Lemma 16.10. Fix a binomial ideal I ⊆ k[Q] and primes P ⊇ P ′ of Q. If the class of
q is the same under the two congruences on Q induced by the coprincipal components
W P

q (I) and W P ′

q (I) at P and P ′, then W P
q (I) ⊇ W P ′

q (I).

Proof. The containment P ⊇ P ′ immediately implies that MP
q (I) ⊇ MP ′

q (I). The co-

principal component W P
q (I) can be equivalently described as MP

q (I) plus the preimage

in k[Q] of IP + Iρ ⊆ k[Q]P , where ρ = ρP
q is the character of IP at q, because MP

q (I)
is closed under localization along P . The hypothesis on the class of q implies that
Iρ = Iρ′ , where ρ′ = ρP ′

q . Suppose that f ∈ k[Q] is a binomial involving two monomi-

als outside of MP
q (I). It is enough to show that if the image of f under localization

along P ′ lies in IP ′ + Iρ, then the image of f under localization along P already lies in
IP +Iρ. Some monomial multiple f ′ of f in k[Q]P has a term that is a (unit) monomial
multiple of tq in k[Q]P . By definition of ρ, the element f ′ lies in IP + Iρ if and only
if f does. But for the same reason—and that fact that a (unit) multiple in k[Q]P is
also a unit multiple in k[Q]P ′—the element f ′ lies in IP ′ + Iρ if and only if f does. �

Example 16.11. Fix I = 〈xz − yz〉 ⊂ k[x, y, z] with mP = 〈x, y, z〉 and mP ′ = 〈z〉.
Set tq = yz. Then MP

q (I) = 〈x2, xy, y2, z2〉 and Iρ = 0 for the character ρ = ρP
q , so

W P
q (I) = I +MP

q (I) = 〈xz − yz, x2, xy, y2, z2〉,

while MP ′

q (I) = 〈z2〉 and Iρ = 〈x− y〉 for the character ρ = ρP ′

q , so

W P ′

q (I) = I + 〈z2〉+ 〈x− y〉 = 〈x− y, z2〉.

Although W P
q (I) has more monomials, it fails to contain the binomial x− y ∈ W P ′

q (I).

In general, the ideals W P
q (I) and W P ′

q (I) are incomparable because W P
q (I) contains

more monomials, but W P ′

q (I) contains more binomials along the local unit group GP ′.

Finally, here is the binomial ideal analogue of Corollary 8.10.
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Corollary 16.12. Fix a finitely generated commutative monoid Q and a field k. Every
binomial ideal in the monoid algebra k[Q] admits a characteristic mesoprimary decom-
position with one component per associated mesoprime.

Proof. The P -mesoprimary component of I cogenerated by the character I-witnesses
for P has a coprincipal decomposition whose components are the coprincipal com-
ponents of I cogenerated by its character I-witnesses by Proposition 12.17. Taken
together over all primes P , the intersection of these is I by Theorem 16.9. �

We make no claim that one needs every character witness in the arithmetic setting,
just as we make no claim that one needs every key witness in the combinatorial setting:
the phenomenon in Example 8.7 lifts without trouble to the arithmetic setting (for
instance unitally). In fact, it is possible that there is a systematic way of throwing out
additional character witnesses beyond the false ones. Let us summarize this problem.

Question 16.13. Are there redundant character witnesses? How about key witnesses?

It is worth stressing: the issue is not whether certain witnesses are redundant in spe-
cific examples; the question is whether there are natural families of redundant witnesses,
in the spirit of false witnesses for binomial ideals or non-key witnesses for congruences.

17. Open problems

Beyond the open problem in Question 16.13, the results of this paper raise other
problems implicitly in the remarks, and still others that constitute future research
directions beyond the scope of this paper. We collect some of these problems here.

17.1. Intersections of binomial ideals.

Problem 17.1. Characterize when an intersection of binomial ideals is binomial.

Problem 17.1 was originally posed by Eisenbud and Sturmfels [ES96, Problem 4.9],
who answered it in the reduced situation [ES96, Theorem 4.1]. In our language, that
theorem contains information about the associated prime ideals of the congruence
induced by a radical binomial ideal. It is possible that the general case could reduce
to the radical case, by considering what the congruence or the P -prime characters
induced by the intersection could possibly look like at each monoid element. This
type of consideration underlies the definition of character witness (Definition 16.3),
where non-binomiality at specific monoid elements would otherwise occur, without
specifically throwing in additional binomials, because of incompatibility of congruences
or characters arising from covers.

As a stepping stone to a full answer to Problem 17.1, one might consider [ES96,
Problem 6.6]: does intersecting the minimal primary components of a binomial ideal
result in another binomial ideal?
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17.2. Choices of vertical coefficients. Remarks 12.21 and 12.22 raise the following.

Problem 17.2. Characterize the mesoprimary ideals that induce a fixed mesoprimary
congruence with a fixed associated mesoprime. In particular, decide when the set of
such mesoprimary ideals is nonempty.

17.3. Primary binomial ideals in positive characteristic. Lack of knowledge con-
cerning the combinatorics of primary binomial ideals in positive characteristic is an
obstacle to characterization of irreducible binomial ideals (Remark 15.6), and it leaves
us wondering whether our particular construction of binomial primary decomposition
is combinatorially stronger than necessary (Remark 15.13). Here is the missing point.

Conjecture 17.3. If k is algebraically closed of arbitrary characteristic, then every
binomial primary ideal in the finitely generated monoid algebra k[Q] is mesoprimary.

17.4. Posets of mesoprimes.

Problem 17.4. Characterize the posets of associated prime congruences of primary
congruences.

The problem could have been stated for arbitrary congruences, but then every finite
poset would be possible, because every finite poset occurs as the set of associated primes
of a monomial ideal (this is a good exercise, but it follows from [Mil98]). Problem 17.4 is
equivalent to characterizing posets of associated mesoprimes of unital cellular binomial
ideals. Such posets always possess a unique minimal element, represented by the
identity element of the finite partially ordered monoid of Green’s classes in Lemma 2.19.
When devising examples for the present paper, we often used a technique to “place”
associated mesoprimes at desired locations, illustrated as follows.

Example 17.5. Let ∆ ( Γ be simplicial complexes on {1, . . . , n} and consider the
polynomial ring in 2n variables S = k[x1, . . . , xn, y1, . . . , yn]. For any A ∈ Γr∆ write
xA :=

∏

i∈A xi. Define

IA = 〈xA(yi − 1) | i ∈ A〉 and IΓr∆ =
∑

A∈Γr∆

IA + 〈x2
i | i = 1, . . . , n〉 ⊂ S.

The poset of associated mesoprimes of the cellular binomial ideal IΓr∆ is isomorphic
to (Γr∆) ∪ {∅}.

The construction in the previous example is fairly general, and one might hope that
complete generality is possible (we did), but it is not: some posets do not occur.

Example 17.6. Set P =
{

∅, {1}, {2}, {3}, {4}, {123}, {124}
}

, with the partial order
being by inclusion. This poset P is not isomorphic to the poset of associated meso-
primes of any cellular binomial ideal. Indeed, if it was, then there would be witness
monomials t1 and t2 for {1} and {2}. By (a variant of) Proposition 13.3 there must
be a witness for their join, but in P the incomparable elements {123} and {124} are
both minimal over the join {1} ∨ {2}.
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In practice this problem will be about understanding what happens to the partial
order on Nn when passing to a quotient and under the order-preserving map that
assigns to a witness its associated prime congruence.

Remark 17.7. Definition 5.2 requires associated prime congruences to appear at key
witnesses. If arbitrary witnesses were allowed, then an a priori different notion of
associated prime congruence would have resulted. Indeed, although the P -prime con-
gruence at an arbitrary witness for P agrees with the P -prime congruence at some
key witness by Proposition 13.3, the key witness might be for a monoid prime that is
smaller than P . This phenomenon does not occur for primary congruences, however,
because they have only one associated monoid prime ideal. Thus Problem 17.4 would
have the same answer if Definition 5.2 had allowed arbitrary witnesses.

Nonetheless, this line of thinking indicates that care must be taken in lifting Prob-
lem 17.4 to the arithmetic setting, where Definition 12.1 requires associated mesoprimes
to appear at arbitrary witnesses, not at a subset of all witnesses. For instance, a P -
mesoprime can be associated to an ideal even though it only appears at a false witness;
this occurs in both Example 16.5 and Example 16.7. This idiosyncracy in the definition
of associated mesoprime motivates a new definition.

Definition 17.8. An associated mesoprime of a binomial ideal I is truly associated if
it is the P -mesoprime of I at a character I-witness for P .

Problem 17.9. Characterize the posets of associated mesoprimes of cellular binomial
ideals. Do the same for posets of truly associated mesoprimes.

Remark 17.10. The family of posets referred to in (either version of) Problem 17.9
contains the family of posets in Problem 17.4 by Remark 17.7 applied to the case of
unital binomial ideals.

17.5. Mesoprimary decomposition of modules. Grillet [Gri07] shows how subdi-
rect decompositions of semigroups induce subdirect decompositions of sets acted on by
semigroups; see Remark 2.2. In a similar vein, mesoprimary decomposition ought to
extend to finitely generated monoid actions.

Problem 17.11. Generalize mesoprimary decomposition of congruences to Q-modules.

The generalization ought to parallel the manner in which ordinary primary decom-
position of ideals in rings extends to primary decomposition of modules over rings. In
the arithmetic setting of mesoprimary decomposition, however, even the first step of
the extension requires thought.

Question 17.12. What is a binomial module over a commutative monoid algebra?

A good theory of such modules should yield the desired generalization.

Problem 17.13. Extend mesoprimary decomposition to binomial k[Q]-modules.
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17.6. Homological invariants of binomial rings. The combinatorics of the free
commutative monoid Nn gives rise to formulas and constructions for all sorts of homo-
logical invariants involving monomial ideals—Betti numbers, Bass numbers, free reso-
lutions, local cohomology, and so on—due to the Nn-grading; see [MS05]. Gradings by
more general affine semigroups yield formulas and constructions for local cohomology
over affine semigroup rings (with maximal support [Ish87] as well as with more arbi-
trary monomial support [HM03, HM04]), and Betti numbers for toric ideals [Sta96,
Theorem I.7.9], etc. Having identified the combinatorics controlling decompositions of
binomial ideals, the way is open to generalize monomial homological algebra.

Question 17.14. Do there exist combinatorial (that is, monoid-theoretic) formulas for
local cohomology, Tor, and Ext involving binomial quotients of polynomial rings?

Remark 17.15. In contrast, it is unclear to us whether combinatorial formulas for
local cohomology with binomial support should exist, partly because of ill-behaved
characteristic dependence; see [ILL+07, Example 21.31].

As soon as there is some control over Betti tables, Boij–Söderberg theory [Flø11]
enters the picture. There one decomposes the Betti table β(M) of a module M over a
polynomial ring S as a rational linear combination of certain pure tables πd:

β(M) =
∑

adπd.

Question 17.16. What combinatorics, if any, explains the coefficients ad of S/Iρ,P as
an S-module when Iρ,P is a mesoprime?

Even the special case of Boij–Söderberg theory for toric ideals is currently open.
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