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Characterizations of distributions via order

statistics with random exponential shifts

M. Ahsanullah V.B. Nevzorov G.P. Yanev

Abstract

We characterize probability distributions via equalities in law between

two order statistics shifted by independent exponential variables. An ex-

plicit formula for the quintile function of the identified family of distri-

butions is obtained. The results extend some known characterizations of

exponential and logistic distributions.

Keywords characterizations, order statistics, exponential distribution,

generalized logistic distribution.

1 Introduction

Distributional (in law) relations between order statistics are useful and elegant
tools for characterizing probability distributions. More specifically, there is a
large number of publications on characterizations based on recurrences involving
both order statistics and standard exponential variables. An excellent review
and discussion of the available results on this subject can be found in [3].

AlZaid and Ahsanullah [2] showed that a non-negative random variable X
with an absolutely continuous cumulative distribution function (cdf) has stan-
dard exponential distribution iff for a fixed k, such that 1 ≤ k ≤ n− 1,

Xk,n +
ξ

n− k

d
= Xk+1,n, (1)

where X1,n, X2,n . . . , Xn,n are the order statistics in a sample with parent X
and ξ is standard exponential and independent from Xk,n. Please, see also [9]
and [7] for an alternative proof and some extensions in the context of random
contractions (cf. [6], p.14). On the other hand, it was shown in Ahsanullah et
al. [1], under some additional regularity assumptions, that a random variable
X with absolutely continuous cdf is standard logistic if and only if for a fixed k
such that 1 ≤ k ≤ n− 1,

Xk,n +
ξ1

n− k

d
= Xk+1,n −

ξ2
k
, (2)

where ξ1 and ξ2 are independent standard exponential variables, which are also
independent from Xk,n and Xk+1,n, respectively.
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First, we will study some extensions of the distributional relations (1) and (2)
involving order statistics shifted by independent exponential random variables.
What can be said about the distribution of the parent variable X if the following
more general distributional equality holds

Xk,n + aξ1
d
= Xr,n − bξ2, a ≥ 0, b ≥ 0, 1 ≤ k < r ≤ n, (3)

where ξ1 and ξ2 are independent standard exponential variables, which are also
independent from Xk,n and Xr,n, respectively?

Our first result answers the above question in the case of adjacent order
statistics, i.e., when r = k + 1. Throughout this paper we will use the term
Q(y) to refer to the pseudo-inverse (quintile) function of F (x), i.e., Q(y) =
inf{x : F (x) ≥ y} for y ∈ (0, 1).

Theorem 1 Let k be a fixed integer such that 1 ≤ k ≤ n − 1 and a ≥ 0
and b ≥ 0 be two fixed real numbers such that (a, b) 6= (0, 0). Assume X is a

random variable with continuous cdf F (x) and ξ1 and ξ2 are independent stan-

dard exponential variables, which are also independent from Xk,n and Xk+1,n,

respectively. Then

Xk,n + aξ1
d
= Xk+1,n − bξ2 (4)

holds if and only if the quintile function Q(x) satisfies

Q(x) = log
{

cxbk(1 − x)−a(n−k)
}

, 0 < x < 1, (5)

where c > 0 is an arbitrary constant.

Remarks. The following particular cases of (4) and (5) might be of in-
dependent interest. (i) Setting a = 1/(n − k) and b = 0 in (5), we obtain
F (x) = 1− e−(x−c) for x ≥ c, i.e., an exponential cdf. (ii) If a = 0 and b = 1 we
have F (x) = exp{x− c} for −∞ < x ≤ c. (iii) If bk = a(n− k), then (5) yields
the logistic cdf (cf. [5], p.114)

F (x) =
c1

c1 + exp{−x}
, −∞ < x < ∞, c1 > 0.

(iv) If n = 2k and a = b 6= 0, then Theorem 1 implies

Xk,2k + aξ1
d
= Xk+1,2k − aξ2 iff F (x) =

1

1 + c2 exp{−x/k}
, c2 > 0.

The next result addresses the case when (3) involves non-adjacent (two spac-
ings away) order statistics.

Theorem 2 Let k be a fixed integer such that 1 ≤ k ≤ n − 2 and a ≥ 0
and b ≥ 0 be two fixed real numbers such that (a, b) 6= (0, 0). Assume X is a

random variable with continuous cdf F (x) and ξ1 and ξ2 are independent stan-

dard exponential variables, which are also independent from Xk,n and Xk+2,n,

respectively. Then

Xk,n + aξ1
d
= Xk+2,n − bξ2 (6)
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holds if and only if the quintile function Q(x) satisfies

Q(x) = log
{

cxbk(1 − x)−a(n−k−1)
}

−W (x; k, n), 0 < x < 1, (7)

where c > 0 is an arbitrary constant and

W (x; k, n) =











d log{(n− 2k + 1)x + k + 1}
n− 2k + 1

, if n 6= 2k + 1;

(a + b)kx, if n = 2k + 1,

(8)

where d = bk(n− k) + a(n− k − 1)(k + 1).
Remark. Note that if n = 2k + 1 and a = b = 1/k, then Theorem 2 implies

Xk,2k+1 +
ξ1
k

d
= Xk+2,2k+1 −

ξ2
k

iff Q(x) = log

{

cx

1 − x

}

− 2x.

A number of characterizations of the logistic distribution use distributional
relations between X and order statistics with positive and negative exponential
random shifts. George and Mudholkar [4] (see also [8]) proved that X is standard
logistic if and only if

X
d
= X1,2 + ξ or X

d
= X2,2 − ξ.

More generally, Lin and Hu [8] established that, under some smoothness condi-
tions, X is standard logistic if and only if

X
d
= X1,n +

n−1
∑

j=1

ξj
j
,

where ξj for j = 1, 2, . . . , n− 1 are independent standard exponential variables,
which are also independent from X1,n. Ahsanullah et al. [1] proved that the
standard logistic distribution is characterized by the following distributional
equality holding for a fixed k, such that 1 ≤ k ≤ n− 1,

X
d
= X1,n +

n−k
∑

j=1

ξ1(j)

j
−

k−1
∑

j=1

ξ2(j)

j
,

where X1,n, ξ1(j), and ξ2(j) for j = 1, 2, . . . , n − 1 are mutually independent
and all ξ’s are standard exponential. Finally, Zykov and Nevzorov [10] obtained
characterizations based on either

X
d
= Xn,n − ξ or X + ξ

d
= Xn,n. (9)

Exploring the so-called Fα-scheme (cf. [6], Lecture 25), we will study char-
acterizations of logistic and related distributions based on one extension of (9).
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Theorem 3 Let a ≥ 0 and b ≥ 0 be two fixed real numbers such that

(a, b) 6= (0, 0) and F (x) be a continuous distribution function. Suppose Y1

and Y2 are independent random variables with distribution functions Fα(x) and

F β(x), respectively for α > 0 and β > 0. Furthermore, let ξ1 and ξ2 be inde-

pendent standard exponential variables, which are also independent from Y1 and

max{Y1, Y2}, respectively. Then

Y1 + aξ1
d
= max{Y1, Y2} − bξ2 (10)

holds if and only if the quintile function Q(x) satisfies

Q(x) = log
{

cxbα(1 − xβ)−d
}

, 0 < x < 1, (11)

where c > 0 is an arbitrary constant and d = [a(α + β) + bα]/β.
Remarks. (i) Setting a = 1 and b = 0 in (10), yields the cdf

F (x) =

(

1 − exp

{

−
β

α + β
(x − c)

})1/β

, c ≤ x < ∞.

(ii) If bα = β and d = 1, then (11) is the quintile function of the Type I
generalized logistic cdf (cf. [5], p. 140)

F (x) =

(

c2
c2 + exp{−x}

)1/β

, −∞ < x < ∞, c2 > 0.

The special case of Theorem 3 when α = 1 and β = n − 1 is particularly
noteworthy.

Corollary Let a ≥ 0 and b ≥ 0 be two real numbers such that (a, b) 6= (0, 0).
Assume X is a random variable with continuous cdf F (x) and ξ1 and ξ2 are

independent standard exponential variables, which are also independent from X
and Xn,n, respectively. Then

X + aξ1
d
= Xn,n − bξ2, n ≥ 2, (12)

holds if and only if the quintile function Q(x) satisfies

Q(x) = log
{

cxb(1 − xn−1)−d
}

, 0 < x < 1, (13)

where c > 0 is an arbitrary constant and d = (b + na)/(n− 1).
The rest of the paper is organized as follows. In Section 2, we present an

auxiliary result before proving Theorem 1. Section 3 deals with the case of
non-adjacent order statistics. The proof of Theorem 3 is given in Section 4. We
summarize the findings and discuss potential future work in the last section.
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2 Adjacent order statistics

Let Z1 and Z2 be two random variables with continuous distribution functions
G and H , respectively. Let ξ1 and ξ2 be independent standard exponential
variables, which are also independent from Z1 and Z2, respectively.

Lemma Let a and b be two real numbers such that (a, b) 6= (0, 0). Then

Z1 + aξ1
d
= Z2 − bξ2, (14)

if and only if

bG′(x) + aH ′(x) = G(x) −H(x). (15)

Proof. Let us first prove that (14) implies (15). Assume both a 6= 0 and
b 6= 0. It is not difficult to see that (14) is equivalent to

1

a

∫ x

−∞

G(u) exp

{

u− x

a

}

du =
1

b

∫

∞

x

H(u) exp

{

x− u

b

}

du,

which, in turn, implies

b

∫ x

−∞

G(u) exp
{u

a

}

du = a exp

{

(a + b)x

ab

}
∫

∞

x

H(u) exp
{

−
u

b

}

du.

Since G and H are continuous, we can differentiate with respect to x both sides
of the above equation and obtain

exp
{

−
x

b

}

[bG(x) + aH(x)] =
a + b

b

∫

∞

x

H(u) exp
{

−
u

b

}

du.

Differentiating with respect to x again (using the continuity of H(x)) we obtain
(15). The proof when exactly one of a and b equals zero is similar and is omitted.

To prove that (15) implies (14), one needs to follow the steps in the above
proof in reverse order. The proof of the lemma is complete.

Further on we denote Fi,n(x) = P (Xi,n ≤ x) for 1 ≤ i ≤ n. Recall that

Fi,n(x) =

n
∑

j=i

(

n

j

)

F j(x)(1 − F (x))n−j , 1 ≤ i ≤ n. (16)

Proof of Theorem 1. First, we will prove that (4) implies (5). Assume
both a 6= 0 and b 6= 0. It follows from Lemma 1 with G(x) = Fk,n(x) and
H(x) = Fk+1,n(x), making use of (16), that

bF ′

k,n(x) + aF ′

k+1,n(x) = Fk,n(x) − Fk+1,n(x) (17)

=

(

n

k

)

F k(x)(1 − F (x))n−k.
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On the other hand, for the left-hand side of (17), using again (16), we obtain

bF ′

k,n(x) + aF ′

k+1,n(x) (18)

= (a + b)
d

dx





n
∑

j=k+1

(

n

j

)

F j(x)(1 − F (x))n−j



 + b
d

dx

[(

n

k

)

F k(x)(1 − F (x))n−k

]

= (a + b)n

(

n− 1

k

)

F k(x)(1 − F (x))n−k−1F ′(x)

+bnF k−1(x)(1 − F (x))n−k−1F ′(x)

[(

n− 1

k − 1

)

(1 − F (x)) −

(

n− 1

k

)

F (x)

]

= an

(

n− 1

k

)

F k(x)(1 − F (x))n−k−1F ′(x) + bn

(

n− 1

k − 1

)

F k−1(x)(1 − F (x))n−kF ′(x)

=

(

n

k

)

F k−1(x)(1 − F (x))n−k−1F ′(x)[a(n− k)F (x) + bk(1 − F (x))].

Equating the right-hand sides of (17) and (18), and dividing throughout by
(

n
k

)

F k(x)(1 − F (x))n−k 6= 0, we obtain

bk
F ′(x)

F (x)
+ a(n− k)

F ′(x)

1 − F (x)
= 1,

which, upon integration with respect to x, yields

log
{

F bk(x)(1 − F (x))−a(n−k)
}

= x− c, (19)

for an arbitrary constant c > 0. Finally, replacing x with Q(x) in the last
equation, we obtain (5). The proof for the cases when either a or b is zero is
similar and is omitted here.

To prove the ”if” part of the theorem, i.e., (5) implies (4), one needs to start
with (19) and repeat the steps of the above proof going backwards to (17).

3 Non-adjacent order statistics

In the beginning we will prove that (6) yields (7). Assume both a 6= 0 and
b 6= 0. Referring to (16), we have

Fk,n(x) − Fk+2,n(x) (20)

=

(

n

k

)

F k(x)(1 − F (x))n−k +

(

n

k + 1

)

F k+1(x)(1 − F (x))n−k−1.

On the other hand, similarly to (18), we obtain

bF ′

k,n(x) + aF ′

k+2,n(x) = bk

(

n

k

)

F k−1(x)(1 − F (x))n−kF ′(x) (21)

+ a(n− k − 1)

(

n

k + 1

)

F k+1(x)(1 − F (x))n−k−2F ′(x).
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Lemma 1 with G(x) = Fk,n(x) and H(x) = Fk+2,n(x) implies that the left-
hand sides of (20) and (21) are equal. Equating the right-hand sides of these
equations, it is not difficult to see that

F ′(x) =
(k + 1)F (x)(1 − F (x))2 + (n− k)F 2(x)(1 − F (x))

bk(k + 1)(1 − F (x))2 + a(n− k − 1)(n− k)F 2(x)
.

Replacing x with Q(x) and using that F ′(Q(x)) = 1/Q′(x), we obtain

Q′(x) =
a(n− k − 1)(n− k)x2 + bk(k + 1)(1 − x)2

x(1 − x)(k + 1 + (n− 2k − 1)x)
. (22)

If n 6= 2k + 1, then (22) can be written as

Q′(x) =
a(n− k − 1)

1 − x
+

bk

x
−

a(n− k − 1)(k + 1) + bk(n− k)

k + 1 + (n− 2k − 1)x
. (23)

After integrating with respect to x we obtain (7) with the upper branch of (8).
In the case n = 2k + 1, (22) becomes

Q′(x) =
ak

1 − x
+

bk

x
− (a + b)k (24)

and (7) follows after integrating with respect to x again. The proof when exactly
one of a and b equals zero is omitted.

Starting with (23) and (24) and following the steps of the above proof going
backwards, one can verify that (7) yields (6).

4 F
α scheme

Let us first prove that (10) implies (11). Assume a 6= 0 and b 6= 0. Furthermore,
assume β = 1. It follows from Lemma 1 with G(x) = Fα(x) and H(x) =
Fα+1(x) that

bαFα−1(x)F ′(x) + a(α + 1)Fα(x)F ′(x) = Fα(x) − Fα+1(x),

which, upon division by Fα−1(x) 6= 0, becomes

F ′(x) [bα + a(α + 1)F (x)] = F (x)(1 − F (x)).

This, for F (x)(1 − F (x)) 6= 0, can be written as

1

F ′(x)
=

bα

F (x)
+

(a + b)α + a

1 − F (x)
.

Replacing x with the quintile function Q(x), we obtain

Q′(x) =
bα

x
+

(a + b)α + a

1 − x
.
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Integrating both sides with respect to x, we have

Q(x) = log
{

cxbα(1 − x)−(a+b)α−a
}

, (25)

where c > 0 is an arbitrary constant. This completes the proof when β =
1. To extend this proof to the general case β > 0, consider the independent
random variables Y ′

1 and Y ′

2 with cdf’s (H(x))α/β and H(x), respectively, where
H(xβ) = F (x). It follows from (25) that the quintile function H−1(x) satisfies

H−1(x) = log
{

cxbα/β(1 − x)−(a+b)α/β−a
}

. (26)

Now, taking into account that Q(x) = H−1(xβ), we see that (26) yields (11).
The proof of the cases when either a and b is zero is omitted.

It is not difficult to verify that (11) implies (10), following the steps of the
above proof in reverse order.

5 Concluding remarks

We obtained characterizations based on distributional equalities between two
order statistics plus or minus multiples of independent standard exponential
variables. The resulting family of distributions includes as its members expo-
nential, logistic, and generalized logistic. In case of adjacent order statistics,
the quintile function of the underlying distribution takes on a compact explicit
form. If the order statistics are two spacings away, the expression for the quin-
tile function includes an additional additive term, which is linear if the order
statistics are on both sides of the median. Further calculations show that if
higher-order spacings are involved then the resulting quintile function will have
more additive terms.

Exploring the so called Fα-scheme, we studied the distribution of a contin-
uous X for which X plus a multiple of a standard exponential variable equals
the maximum order statistic minus a multiple of another standard exponential
variable. The obtained results generalize those of Zykov and Nevzorov (2010).

One area of future work will be to study in more detail the distributions
with quintile functions (5), (7), and (11). It also remains to be seen what
the distribution of X is if the corresponding order statistics differ by a linear
combination of standard exponential variables. Some results in this direction
are given in Ahsanullah et al. [1].
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ported by RFBR grants 10-01-00314a , 09-01-00808 and by FCP grant 2010-1.1
-111-128-033.
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