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Abstract

We use the knot homology of Khovanov and Lee to construct link concordance
invariants generalizing the Rasmussen s-invariant of knots. The relevant invariant for
a link is a filtration on a vector space of dimension 2|L|. The basic properties of the
s-invariant all extend to the case of links; in particular, any orientable cobordism Σ
between links induces a map between their corresponding vector spaces which is filtered
of degree χ(Σ). A corollary of this construction is that any component preserving
orientable cobordism from a Kh-thin link to a link split into k components must have
genus at least ⌊k2⌋. In particular, no quasi-alternating link is concordant to a split link.

1 Introduction

Using Lee’s modification [17] of Khovanov homology [13], Rasmussen [25] introduced for
every knot K an even integer valued invariant, known as the s-invariant. It shares some
of the basic properties of the knot signature; in particular it is a homomorphism from the
group of smooth concordance classes of knots to 2Z, and gives a lower bound for twice
the smooth slice genus (though the signature also does this in the topological category,
whereas the s-invariant does not). The definition of the s-invariant is purely combinatorial,
and, like many other knot invariants coming out of quantum algebra, it so far lacks any
intrinsic geometric definition. One of the main reasons for interest in this invariant is that
it is by definition algorithmically computable (though some cleverness is needed to do large
calculations quickly, c.f. Bar-Natan [3] and Freedman, Gompf, Morrison, and Walker [8]), and
is one of the few tools known to give useful lower bounds on the smooth slice genus of knots.
In particular, Rasmussen [25] showed via direct calculation that s(Tp,q) = (p−1)(q−1), thus
proving the Milnor conjecture that g4(Tp,q) =

1
2
(p−1)(q−1), a hard theorem of Kronheimer

and Mrowka [14, 16] [15] proved (twice) using gauge theory.
In this paper, we consider the natural generalization of the s-invariant to a concordance

invariant of links. Everything we do will be in the smooth category. Since the s-invariant can
detect the deep differences between the smooth and topological categories in four dimensions,
this restriction is in fact necessary for this theory. In particular, knot and link concordance
is meant in the smooth sense.

Let us denote the Khovanov–Lee homology groups of a link by Kh∗
Lee(L). Lee [17] showed

that Kh∗
Lee(L) is a surprisingly simple group: there is an isomorphism

⊕

orientations of L Q
∼
−→

Kh∗
Lee(L). We denote the former group by O(L), and in Section 4, we will define it as a
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functor (we will specify the maps associated to cobordisms). Kevin Walker (communication
on MathOverflow [26]) informs the author that there is an equivalence of functors between
O and Kh∗

Lee (Rasmussen [25] [24] has proved a sort of approximate equivalence of functors).
The natural generalization of the s-invariant is thus the pull-back of the s-filtration on
Kh∗

Lee(L) to a filtration on O(L). To get a numerical invariant, we take the following (which
is perhaps slightly coarser).

Definition 1.1. For a link L ⊆ R3, we associate a function dL : Z × Z → Z≥0 defined by
dL(h, s) = dim (Khh

Lee(L))
s/(Khh

Lee(L))
s+1 (here (Kh∗(L))s denotes the subspace of elements

of filtration level ≥ s).

For a knot K, it is a theorem of Rasmussen [25] that dK(0, s(K) ± 1) = 1 and dK is
otherwise zero (this is the defining property of the s-invariant). For a link L, the vector
space Kh∗

Lee(L) has dimension 2|L|, and, as one might expect, the support of the function dL
can be much more complicated.

Theorem 1.2. Let L be a link with orientation o1. The invariant dL : Z×Z → Z≥0 satisfies
the following basic properties:

1.
∑

s≡|L|+k mod 4 dL(h, s) equals one half the number of orientations o of L such that

lk(o)− lk(o1) = −j if k is even, and zero otherwise. Here lk(o) =
∑

i<j lk(L
o

i , L
o

j) (sum
over the components of L).

2. dL1⊔L2
= dL1

∗ dL2
(convolution).

3. dL̄(h, s) = dL(−h,−s).

4. If Σ is a component preserving orientable cobordism between L1 and L2 (i.e. H0(Li)
∼
→

H0(Σ)), then
∑

s≥a dL1
(h, s) ≤

∑

s≥a+χ(Σ) dL2
(h, s) for all h ∈ Z.

5. dL is a link concordance invariant.

For links with a large number of components, it is reasonable to expect that the invariant
dL will be a strong invariant of link concordance. As one sees in the theorem above, the
invariant dL is best suited for studying cobordisms which do not merge components of L.
In general, if one wants to derive information about a given orientable cobordism, then
the relevant object is the s-filtration restricted to the subspace of O(L) generated by those
orientations extending to orientations of the cobordism. The larger this subspace, the more
likely the invariant is to be useful.

Beliakova and Wehrli have defined an integer s(L, o) for a link with an orientation [5].
This corresponds to the s-filtration restricted to the 2-dimensional subspace of Kh∗

Lee(L)
corresponding to that orientation and its reverse. Just like for knots, one shows that on this
subspace, the filtration is supported in two levels s±1, and this defines s(L, o). This invariant
is best suited for studying oriented cobordisms which are allowed to merge components of
L. Examples show that the function o 7→ s(L, o) is a weaker invariant that dL. One expects
that dL is a weaker invariant that the filtration on O(L) but we don’t have any examples
to prove this at present (mainly because dL is often easy to derive from Kh∗—which there
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exist programs to compute—whereas the s-filtration is not). We discuss examples in Section
5 and at the end of Section 4.1.

In Section 3, we use the invariants dL to derive the following corollary, which appears to
be new.

Corollary 1.3. A component preserving orientable cobordism between a Kh-thin link and a
link split into m components must have genus at least ⌊m

2
⌋. In particular, Kh-thin links (in

particular quasi-alternating links [Definition 3.5]) are not concordant to split links.

It is known (via properties of the Alexander module) that alternating links are not con-
cordant to split links [12]. It would be interesting to try to prove Corollary 1.3 (say, restricted
to quasi-alternating links) using the Alexander module.

This corollary is interesting because the s-invariant for alternating knots is equal to
the knot signature, and thus gives no new information (the inequality gtop4 (K) ≥ 1

2
|σ(K)| is

classical, see Murasugi [20, p416, Theorem 9.1]). It is very interesting to note that Khovanov
homology has a reputation for being easy to compute (at least, compared to gauge theoretic
invariants which give results similar to the Milnor conjecture), but hard to use to prove
general theorems, since its structure in general is still poorly understood. Thus the above
corollary is interesting in that it is a general statement which doesn’t intrinsically involve
Khovanov homology (at least, if one restricts to quasi-alternating links).

There have recently been efforts (see Freedman, Gompf, Morrison, and Walker [8]) to
prove that some specific proposed counterexamples to the smooth 4-dimensional Poincaré
conjecture are in fact exotic by proving some links are not slice in the standard B4 (links that,
by virtue of coming from Kirby diagrams for the proposed counterexample, are by definition
slice in the proposed exotic B4). By slice, we mean strongly slice, i.e. bounding a disjoint
union of disks in B4. Since these are usually multi-component links, it may be helpful to
compute the entire filtration on Kh∗

Lee(L): for a link with many many components, this a
priori may be a much stronger invariant than the set of s-invariant values for some associated
knots which are implied to be slice if the link is slice (computing these s-invariant values was
the strategy employed in [8]). We should, however, also note that, in accordance with the
growing relations between Khovanov homology and gauge theory, some would conjecture that
the s-filtration should be invariant under concordance of links in any homotopy R3 × [0, 1],
and thus would not imply in any straightforward manner that any homotopy B4 is exotic.

One thinks that an invariant of links similar to dL could be defined using the Link Floer
Homology of Ozsvath–Szabó [21, 23] as an appropriate generalization of the τ -invariant. One
would expect this invariant to satisfy similar properties as the s-filtration on Kh∗

Lee(L). It is
perhaps interesting to note that the vector space O(L) appears in the Link Floer Homology
theory in the guise of ∧∗H1(#

|L|S1×S2) (once we take the union of our link with the unknot).

1.1 Acknowledgments

This paper represents part of the author’s Senior Thesis at Princeton University, advised by
Zoltán Szabó. I thank him for lots of generous time spent meeting and discussing mathe-
matics. John Baldwin, the second reader for my thesis, also made some useful comments.
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2 Khovanov–Lee homology

In this section, we give a quick review of Lee’s version [17] of Khovanov homology [13]
aimed at our intended application. In the following definition, we set the Lee deformation
parameter to a = 2. This is slightly more convenient than Lee’s original a = 1, since the
genus of the cobordism doesn’t introduce multiplicative factors. For a good introduction to
Khovanov, see Bar-Natan’s articles [1] and [2]. The maps for cobordisms were first proved
consistent by Jacobsson [11].

Theorem 2.1. For every oriented link L, there is an associated Z-graded vector space
Kh∗

Lee(L) over Q (the grading ∗ is called the homological grading). Furthermore, each
Khh

Lee(L) carries a descending filtration, called the s-filtration. Each oriented cobordism
Σ ⊆ R3 × [0, 1] from L1 to L2 induces a homomorphism FΣ : Kh∗

Lee(L1) → Kh∗
Lee(L2) (de-

fined up to ±1) which respects the homological grading, and which is filtered of degree χ(Σ).
We have the following additional properties:

1. Khh
Lee(L) carries an absolute Z/4Z grading which is supported in gradings ≡ |L| mod 2,

and these two pieces have equal dimensions. The s-filtration breaks up as a filtration
on each of the pieces, and furthermore the s-filtration on the degree k ∈ Z/4Z piece is
supported on integers s ≡ k mod 4.

2. Kh∗
Lee(L1 ⊔ L2) = Kh∗

Lee(L1) ⊗ Kh∗
Lee(L2) (naturally), and this is an isomorphism of

the homological grading and the s-filtration.

3. Kh∗
Lee(L̄) is naturally the dual of Kh∗

Lee(L).

4. (due to Lee [17]) dimKh∗
Lee(L) = 2|L|. In fact, dimKhh

Lee(L) is the number of orienta-
tions o of L such that lk(o)− lk(o1) = −h, where o1 is the given orientation of L, and
lk(o) =

∑

i<j lk(L
o

i , L
o

j) (sum over the components of L).

5. Kh∗
Lee is a functor from the appropriately defined category of links and cobordisms (see

[7]).

Remark 2.2. Clark, Morrison, and Walker [7] and Caprau [6] have shown how to define
Khovanov homology (with indeterminate a) so that the maps associated to cobordisms no
longer have a sign ambiguity. This requires adjoining i to the coefficient ring.

Definition 2.3. For a link L ⊆ R3, we associate a function dL : Z × Z → Z≥0 defined by
dL(h, s) = dim (Khh

Lee(L))
s/(Khh

Lee(L))
s+1. Here (Khh

Lee(L))
s means the subspace of filtration

level ≥ s.

Theorem 1.2 (the basic properties of dL) follows directly from the basic properties of
Kh∗

Lee listed in Theorem 2.1.

3 Applications to link concordance

Definition 3.1. A cobordism Σ between two links L1 and L2 is component preserving iff
H0(Li)

∼
→ H0(Σ) for i ∈ {1, 2}. Note that a component preserving orientable cobordism of

genus 0 is exactly a link concordance.

4



Figure 1: Local pictures of L0, L1, L∞.

Remark 3.2. One is perhaps also interested in relaxing the restrictive notion of component
preserving cobordism to color preserving cobordism, where multiple components of the link
could have the same color. Now certainly this case is also easily handled using the invariant
Kh∗

Lee(L). The necessary data is a coloring of the link, and a choice of relative orientation
on each colored component (by relative orientation, we mean an orientation up to overall
reversal). Then one is just interested in the restriction of the s-filtration to the subspace of
Kh∗

Lee(L) generated by all orientations agreeing with the given relative orientations on each
colored component.

Lemma 3.3. The map FΣ : Kh∗
Lee(L1) → Kh∗

Lee(L2) induced by a component preserving
orientable cobordism is an isomorphism of vector spaces.

Proof. This follows from Rasmussen [25, p434 Proposition 4.1].

Definition 3.4. A link L is said to be Kh-thin iff Kh∗(L) is supported on exactly two
diagonals of the form q = 2h+ a± 1 (h = ∗ is the homological grading).

By virtue of the spectral sequence from Kh∗(L) to Kh∗
Lee(L), it follows that for a Kh-thin

link, we have that the support of dL is contained in the same two diagonals s = 2h+ a± 1.

Definition 3.5. Oszváth and Szabó [22] define the set of quasi-alternating links to be the
set of links generated by the unknot using the following skein operation: if L0 and L1 are
quasi-alternating and detL∞ = detL0 + detL1, then so is L∞ (where L0, L1, L∞ are given
as in Figure 1).

It is standard that all non-split alternating links are quasi-alternating. Quasi-alternating

links are known to be both Kh-thin and ĤFK-thin by Manolescu–Ozsváth [19], though
Greene [9] has shown that there are non-quasi-alternating links that are both Kh-thin and

ĤFK-thin.

Proposition 3.6 (Corollary 1.3). Let L be a Kh-thin link, and suppose Σ is a component
preserving orientable cobordism between L and M = M1 ⊔ · · · ⊔Mk. Then g(Σ) ≥ ⌊k

2
⌋.

Proof. Fix an orientation on L, which thus orients each Mi.
We know (from Theorem 1.2 property 1) that the support of the s-filtration on Kh0

Lee(Mi)
has diameter at least 2. Thus (by Theorem 1.2 property 2) Kh0

Lee(M) has s-filtration of
diameter at least 2k. Since L is Kh-thin, the s-filtration on Kh0

Lee(L) has diameter equal to
2 (using the spectral sequence from Kh∗ to Kh∗

Lee).
The cobordism and its reverse induce two maps:

Kh0
Lee(L)

FΣ−→ Kh0
Lee(M)

F
−Σ

−−→ Kh0
Lee(L) (3.1)
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These are both isomorphisms by Lemma 3.3. Also, we know that both maps are filtered of
degree −2g(Σ).

Without loss of generality, say the s-filtration on Kh0
Lee(L) is supported in degrees

±1. Then since Kh0
Lee(M)

F
−Σ

−−→ Kh0
Lee(L) is filtered of degree −2g(Σ), the s-filtration on

Kh0
Lee(M) must be supported in degrees ≤ 1 + 2g(Σ). Similarly, looking at Kh0

Lee(L)
FΣ−→

Kh0
Lee(M), we see that the s-filtration on Kh0

Lee(M) must be supported in degrees ≥ −1 −
2g(Σ). Thus we have 2 + 4g(Σ) ≥ 2k, so g(Σ) ≥ ⌈k−1

2
⌉ = ⌊k

2
⌋.

The following corollary to Proposition 3.6 is already known via properties of the Alexan-
der module [12].

Corollary 3.7. No non-split alternating link is concordant to a split link.

4 The orientation group

In this section we define a (almost tautological) (1 + 1)-dimensional TQFT which we call
the orientation group. It is isomorphic to the TQFT used to define Lee homology (with Lee
deformation parameter a = 2). In fact, Kevin Walker (communication on MathOverflow

[26]) informs us that the orientation group is isomorphic to Kh∗
Lee as a functor. The point

of this construction in this section is to give a natural intrinsic description of the maps
associated to cobordisms.

For any manifold X , we let |X| denote the number of connected components of X .

Definition 4.1. For an orientable manifold X , let O(X) denote the set of orientations of X .
Let O(X) denote the Q-vector space with generators canonically associated to the elements
of O(X). We also define a natural inner product 〈·, ·〉 on O(X) by declaring that this basis
be orthonormal.

Definition 4.2. Let o 7→ ō denote reversal of orientation; this is an involution of O(X) and
of O(X).

By a relative orientation on a manifold X , we mean an orientation up to overall reversal
of orientation, that is, an element of O(X)/(o 7→ ō).

Definition 4.3. We define a mod 4 grading on O(X) by declaring that the +1 eigenspace
of o 7→ ō have grading − |X| and that the −1 eigenspace of o 7→ ō have grading 2− |X|.

Lemma 4.4. We have a natural isomorphism O(X1 ∪X2) = O(X1)⊗O(X2) which respects
the involution o 7→ ō as well as the mod 4 grading.

Proof. Clearly O(X1 ∪X2) = O(X1)× O(X2), and this gives us the desired isomorphism of
vector spaces, which clearly respects reversal of orientation. Now by examining the definition
of the mod 4 grading in terms of the map o 7→ ō, one easily sees that this implies that the
mod 4 grading is preserved as well.

Henceforth we shall only be interested in O(X) in the case that X is a 1-manifold.
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Definition 4.5. If A is an orientable cobordism between X and Y , then we define a map
FA : O(X) → O(Y ) (up to overall multiplication by ±1) as follows. Let σ : O(A) → {±1}
satisfy the property that reversing the orientation on some component A1 ⊆ A multiplies the
value of σ by (−1)(χ(A1)−|A1∩X|+|A1∩Y |)/2 (note that since A is orientable, χ(A1)− |A1 ∩X|+
|A1 ∩ Y | ≡ χ(closed surface) ≡ 0 mod 2). Clearly there are two such functions σ, differing
by a sign. Then we define (up to ±1):

FA(α) :=
∑

o∈O(A)

σ(o)〈α, o|X〉 o|Y (4.1)

By definition, orientations of X which do not extend to A get annihilated by FA. More
generally, an orientation is sent to a linear combination of those orientations on Y which
are compatible with the cobordism A and the input orientation of X . Rasmussen [25, p434
Proposition 4.1] showed a similar property of Kh∗

Lee in the process of defining the s-invariant.

Lemma 4.6. The maps associated to cobordisms are functorial in the sense that if A is a
cobordism between X and Y and B is a cobordism between Y and Z, then FA∪Y B = FB ◦FA.

Proof.

FB(FA(α)) =
∑

oB∈O(B)

∑

oA∈O(A)

σ(oB)σ(oA)〈α, o|X〉〈oA|Y , oB|Y 〉 oB|Z

=
∑

o∈O(A∪Y B)

σ(o|A)σ(o|B)〈α, o|X〉 o|Z (4.2)

Now just observe that the function O(A ∪Y B) → {±1} given by σ(o|A)σ(o|B) satisfies the
property which defines σ : O(A ∪Y B) → {±1} for the construction of FA∪Y B.

Lemma 4.7. The map FA on O is homogeneous of degree χ(A) with respect to the mod 4
grading.

Proof. Note that by definition of the mod 4 grading, we have:

FA(ᾱ) = FA(α) ⇐⇒ FA homogeneous of degree |X| − |Y |

FA(ᾱ) = −FA(α) ⇐⇒ FA homogeneous of degree 2 + |X| − |Y | (4.3)

Now we calculate:

FA(ᾱ) =
∑

o∈O(A)

σ(o)〈ᾱ, o|X〉 ō|Y

=
∑

o∈O(A)

σ(ō)〈α, o|X〉 o|Y (4.4)

Now by the definition of σ, this equals (−1)(χ(A)−|X|+|Y |)/2FA(α). Thus we have:

χ(A)− |X|+ |Y | ≡ 0 mod 4 =⇒ FA homogeneous of degree |X| − |Y |

χ(A)− |X|+ |Y | ≡ 2 mod 4 =⇒ FA homogeneous of degree 2 + |X| − |Y | (4.5)

which exactly says FA is homogeneous of degree χ(A).
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The following description shows the isomorphism with Lee’s TQFT (with a = 2).

Lemma 4.8. The map FA has the following alternative description. We decompose A into
iterated handle additions (e.g. using a Morse function), and then to each of the handle
additions, we associate maps as follows.

For a 0-handle, we map α to α⊗ (o− ō), where o is an orientation on the new circle.
For a 1-handle which splits a component, the map sends every orientation to its extension

to the new manifold.
For a 1-handle which joins two components, the map sends orientations which do not

extend to the new manifold to zero, and sends orientations which do extend to their natural
extension multiplied by ±1 depending on the orientation of the new merged circle.

For a 2-handle, the map sends o⊗ α to α and ō⊗ α to α.

Proof. That it suffices to splice together the maps for elementary cobordisms follows from
Lemma 4.6. We just have to calculate the maps coming from k-handle additions, k ∈
{0, 1, 2}. These are given completely explicitly by Definition 4.5, which gives the result.

It is interesting to note that even with this trivial construction, there is a good reason
why if we want to make O(L) into a functor, we have no choice but to stipulate that maps
are only defined up to ±1. For instance, consider the birth of a circle. Since the birth of
a circle is the same cobordism as the birth of a circle followed by a reflection, they must
induce the same map. However, the image of the birth of a circle is o − ō, and this clearly
changes sign under reflection.

If we are interested in links embedded in R3, and we want functoriality with respect
to orientable cobordisms embedded in R3 × [0, 1], then it is probably possible to twist by
an appropriate homomorphism π1({unoriented loops in R3}) → {±1} to get rid of the sign
ambiguity in O. We note that Hatcher [10] has proved the Smale Conjecture, which implies
that the space of unoriented unknotted loops in R3 deformation retracts onto the space of
unoriented circles in R3, and the fundamental group of this space is indeed Z/2Z. We suspect
this type of twisting is morally what fixes the functoriality of Khovanov homology as in [7]
and [6].

4.1 Properties of the s-filtration on O(L)

Under the equivalence between Kh∗
Lee(L) and O(L), we get a natural definition of the s-

filtration on O(L). The space O(L) carries a number of natural operations, and it is rea-
sonable to ask how they respect the s-filtration. We answer a few of these questions in
this section, using only the functorial properties of O(L) under cobordism. Because we use
these soft methods, the properties we derive here would also be valid for a hypothetical
generalization of the τ -invariant to links.

The following is a rough analogue of Livingston’s result [18] that s(K−) ≤ s(K+) ≤
s(K−) + 2 (here K− and K+ are differ at exactly one crossing, which is positive for K+ and
negative for K−).

Lemma 4.9. Suppose L1 and L2 differ by a single crossing change. There is of course
a natural isomorphism φ : O(L1)

∼
→ O(L2). Let O(L1)

+ denote the space generated by
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orientations in which the given crossing is positive (and similarly define O(L1)
−, O(L2)

+,
and O(L2)

−). Then we have:

1. φ : O(L1)
− → O(L2)

+ is filtered of degree 0.

2. φ : O(L1) → O(L2) composed with a sign flip depending on the orientation of a strand
at the crossing is filtered of degree −2.

Proof. Our strategy is to find cobordisms which induce the required maps.
For statement 2, it suffices to show that φ : O(L1)

± → O(L2)
∓ composed with a sign flip

depending on the orientation of a strand at the crossing is filtered of degree −2. For this,
consider that there is a cobordism of Euler characteristic −2 from L1 to L2 (pass the strands
through each other to get an immersed cobordism of Euler characteristic 0, and then resolve
the double point). The induced map is φ followed by the required sign flip depending on
orientation. Thus this map is filtered of degree −2. We needed to split up O(Li) according
to the sign of the crossing, since this sign dictates how we resolve the double point of the
cobordism.

For statement 1, consider the following. By Rasmussen, O(T2,3) is supported in s-
filtration levels 1 and 3. Since the mod 4 grading agrees with the s-filtration, we see that o+ō

lies in filtration level 3. Thus the map O(L1)
− → O(L1)

−⊗O(T2,3) given by α 7→ α⊗ (o+ ō)
is filtered of degree 3. Now consider an immersed cobordism starting at L1 ⊔ T2,3 which
first passes the strands of the crossing of L1 through each other to get L2, then unknots the
T2,3 in a similar manner, and then merges the resulting unknot with L2. The two double
points are of opposite signs (when the crossing goes from negative in L1 to positive in L2),
so they can be tubed together to obtain a cobordism of genus 1. Thus the resulting map
O(L1)

− ⊗ O(T2,3) → O(L2)
+ is filtered of degree −3. The composite is easily seen to be

φ : O(L1)
− → O(L2)

+, so we are done.

Definition 4.10. Given a specific orientation oi on a component Li of L, let Resoi : O(L) →
O(L) be orthogonal projection onto the subspace where Li is oriented by oi. For a relative
orientation oij of Li ∪ Lj (two components of L), let Resoij ,ōij : O(L) → O(L) be projection
onto the subspace where Li ∪Lj has this relative orientation, composed with multiplication
by σ : O(L) → {±1} which flips sign depending on the orientation on Li.

The following should be thought of as a generalization of Rasmussen’s theorem that
characterizes dK for knots K.

Lemma 4.11. The operators Resoi and Resoij ,ōij are both filtered of degree −2.

Proof. For Resoij ,ōij , consider the cobordism formed by first adding a 1-handle connecting Li

and Lj (in such a way that the given relative orientation extends over the cobordism) and
then adding a second 1-handle splitting the resulting component back into Li ∪ Lj . Clearly
this cobordism induces the map Resoij ,ōij : O(L) → O(L), and it has Euler characteristic −2,
so we are done.

For Resoi , let U be the unknot, and consider the map O(L) → O(L)⊗O(U) = O(L⊔U)
which is α 7→ α⊗ o. This is filtered of degree −1. Now compose with the map O(L ⊔ U) →
O(L) given by the cobordism obtained by adding a 1-handle to merge the unknot and Li

9



(such that the orientation o and the desired orientation oi extend over the 1-handle). This
cobordism has Euler characteristic −1. Thus the composition map is filtered of degree −2;
this map is also clearly Resoi .

Lemma 4.12. The map O(L) → O(L) defined by flipping the sign according to the orienta-
tion of some particular component of L is filtered of degree −2.

Proof. Such a map is a linear combination of Resoi and Resōi .

Suppose we have a relative orientation (o, ō) of L. Let Vo,ō ⊆ O(L) be the subspace
generated by o and ō. Then let us consider the restriction of the s-filtration to Vo,ō =
Q(o + ō)⊕Q(o− ō). Note that this direct sum decomposition is into mod 4 graded pieces,
thus the elements o + ō and o − ō are sent to different mod 4 gradings in Kh∗

Lee(L) which
differ by exactly 2. Thus the s-filtration on Vo,ō is completely described by the two integers
s(o+ ō) and s(o− ō) (which differ by 2 mod 4). By Lemma 4.12, s(o+ ō) and s(o− ō) differ
by exactly two, and we let the oriented s(L, o) = 1

2
[s(o+ ō) + s(o− ō)].

Definition 4.13. The invariant constructed in the previous paragraph is s(L, o). It was
first defined by Beliakova and Wehrli [5].

For a knot K, there is just one relative orientation, and this gives Rasmussen’s invariant
s(K). For links, however, there is much to the s-filtration on Kh∗

Lee(L) that is not captured
by the function o 7→ s(L, o). For example, for any alternating link with zero linking matrix,
all s(L, o) are equal (say, to s0), and dL(h, s) = 2|L|−1δ(h)[δ(s − s0 − 1) + δ(s − s0 + 1)]
(where δ(0) = 1 and δ(nonzero) = 0). The unlink on n components also has all s(L, o) equal
(this time to 1 − n), however in this case dL(h, s) = δ(h)

(

|L|
n
2
+ s

2

)

(the binomial coefficient is

understood to equal zero when the lower entry is not an integer). Thus for link concordance,
dL is a stronger invariant than the function o 7→ s(L, o).

5 Examples

We now summarize some calculations of the invariant dL : Z×Z → Z≥0 for some links L. We
used the package KnotTheory‘ maintained by Bar-Natan [4], in particular the program to
calculate Khovanov homology written by Scott Morrison. This allows us to calculate Kh∗(L)
for the link in question. We use the simple fact that if dimKhh(L) = dimKhh

Lee(L), then
by virtue of the spectral sequence from Kh∗(L) to Kh∗

Lee(L), the support of the s-filtration
on Khh

Lee(L) is given exactly by the q-graded dimension of Khh(L). Many interesting links
have lots of crossings, and thus computing the Khovanov homology is time consuming on a
computer; we just list the cases that we have been able to compute.

Most of the links in the standard link tables are quasi-alternating, so they do not present
a particularly interesting case for the filtration on Kh∗

Lee(L) (it is just supported in two levels,
so only their absolute height is interesting). So instead, we’ve taken as our examples some
links with extra structure.

The function dL is a link concordance invariant, and thus there are some easy corollaries
using Theorem 1.2 distinguishing the link concordance classes of the links we consider below
from other links whose dL one could calculate (e.g. one can easily see which are concordant
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to a quasi-alternating link). Theorem 1.2 also implies effective bounds on the genus of com-
ponent preserving orientable cobordisms between these links and links with certain splitting
numbers.

We use the following notation:

δ(n) =

{

1 n = 0

0 otherwise
(5.1)

5.1 Cablings of T2,p

Let Lp be the (2, 0)-cabling of T2,p. Then the linking matrix of Lp is zero, and we have (for
p odd, 1 ≤ p ≤ 11):

dLp
(h, s) = δ(h)[δ(s) + δ(s− 2) + δ(s− (2p− 4)) + δ(s− (2p− 2))] (5.2)

We conjecture that this is true for all odd p ≥ 1. It should be the case also that δ(s)+δ(s−2)
represents the orientations where the two components are oriented in the opposite direction,
and δ(s− (2p− 4)) + δ(s− (2p− 2)) represents the orientations where the two components
are oriented in the same direction.

5.2 Tp,p

We now consider the (p, p)-torus links for 1 ≤ p ≤ 6. We have:

dT1,1
(h, s) = δ(h)[δ(s− 1) + δ(s+ 1)]

dT2,2
(h, s) = δ(h)[δ(s) + δ(s− 2)]

+ δ(h− 2)[δ(s+ 2) + δ(s)]

dT3,3
(h, s) = δ(h)[δ(s− 3) + δ(s− 5)]

+ δ(h− 4)[δ(s+ 3) + 3δ(s+ 1) + 2δ(s− 1)]

dT4,4
(h, s) = δ(h)[δ(s− 8) + δ(s− 10)]

+ δ(h− 6)[δ(s+ 2) + 4δ(s) + 3δ(s− 2)]

+ δ(h− 8)[δ(s+ 4) + 3δ(s+ 2) + 2δ(s)]

dT5,5
(h, s) = δ(h)[δ(s− 15) + δ(s− 17)]

+ δ(h− 8)[δ(s− 1) + 5δ(s− 3) + 4δ(s− 5)]

+ δ(h− 12)[δ(s+ 5) + 5δ(s+ 3) + 9δ(s+ 1) + 5δ(s− 1)]

dT6,6
(h, s) = δ(h)[δ(s− 24) + δ(s− 26)]

+ δ(h− 10)[δ(s− 6) + 6δ(s− 8) + 5δ(s− 10)]

+ δ(h− 16)[δ(s+ 4) + 4δ(s+ 2) + 14δ(s) + 9δ(s− 2)]

+ δ(h− 18)[δ(s+ 6) + 5δ(s+ 4) + 9δ(s+ 2) + 5δ(s)] (5.3)

For p = 5, 6, computing the final answer requires use of Rasmussen [25, p428 Lemma 3.5],
in particular its consequence that the dimensions of Kh∗

Lee supported in s-filtration level |L|
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and |L| + 2 are equal (this enables us to see which parts of Kh∗ are killed in the spectral
sequence).

Unfortunately, we see no obvious pattern in dTp,p
which is likely to continue for larger

values of p.
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1(2):171–208, 2010.

[9] Joshua Greene. Homologically thin, non-quasi-alternating links. Math. Res. Lett.,
17(1):39–49, 2010.

[10] Allen E. Hatcher. A proof of the Smale conjecture, Diff(S3) ≃ O(4). Ann. of Math. (2),
117(3):553–607, 1983.

[11] Magnus Jacobsson. An invariant of link cobordisms from Khovanov homology. Algebr.
Geom. Topol., 4:1211–1251 (electronic), 2004.

[12] Akio Kawauchi. On alternation numbers of links. Topology Appl., 157(1):274–279, 2010.

[13] Mikhail Khovanov. A categorification of the Jones polynomial. Duke Math. J.,
101(3):359–426, 2000.

[14] P. B. Kronheimer and T. S. Mrowka. Gauge theory for embedded surfaces. I. Topology,
32(4):773–826, 1993.

12



[15] P. B. Kronheimer and T. S. Mrowka. The genus of embedded surfaces in the projective
plane. Math. Res. Lett., 1(6):797–808, 1994.

[16] P. B. Kronheimer and T. S. Mrowka. Gauge theory for embedded surfaces. II. Topology,
34(1):37–97, 1995.

[17] Eun Soo Lee. An endomorphism of the Khovanov invariant. Adv. Math., 197(2):554–586,
2005.

[18] Charles Livingston. Computations of the Ozsváth-Szabó knot concordance invariant.
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