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HIGHER COHOMOLOGY FOR ANOSOV ACTIONS ON CERTAIN

HOMOGENEOUS SPACES

FELIPE A. RAMÍREZ

Abstract. We study the smooth untwisted cohomology with real coefficients for the action
on [SL(2,R) × · · · × SL(2,R)]/Γ by the subgroup of diagonal matrices, where Γ is an irre-
ducible lattice. In the top degree, we show that the obstructions to solving the coboundary
equation come from distributions that are invariant under the action. In intermediate de-
grees, we show that the cohomology trivializes. It has been conjectured by A. and S. Katok
that, for a standard partially hyperbolic Rd- or Zd-action, the obstructions to solving the
top-degree coboundary equation are given by periodic orbits, in analogy to Livšic’s theorem
for Anosov flows, and that the intermediate cohomology trivializes, as it is known to do in
the first degree, by work of Katok and Spatzier. Katok and Katok proved their conjecture
for abelian groups of toral automorphisms. For diagonal subgroup actions on SL(2,R)d/Γ,
our results verify the “intermediate cohomology” part of the conjecture, and are a step in
the direction of the “top-degree cohomology” part.
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1. Introduction

The focus of this work is a conjecture (stated below, and in [KK95]) due to A. Katok and
S. Katok on the smooth cohomology for standard partially hyperbolic actions by higher-rank
abelian groups on smooth manifolds. The conjecture seeks to explain the contrast between
rank-one and higher-rank 1-cocycle rigidity phenomena for hyperbolic group actions. For
Anosov flows and diffeomorphisms, Livšic’s theorem (and subsequent extensions by several
authors) gives a full set of obstructions to solving the degree-one coboundary equation.
These obstructions correspond to periodic orbits. For higher-rank Anosov actions, results
of A. Katok and R. Spatzier show that there are no obstructions to solving the degree-one
(almost) coboundary equation. Katok and Katok conjecture that any standard partially
hyperbolic action by Zd or Rd has obstructions to solving the coboundary equation in degree
d, but not in lower degrees. Furthermore, the only obstructions in the top degree come from
periodic orbits of the action. This conjecture frames the theorems for first cohomology of
Livšic and Katok–Spatzier in a general statement involving higher cohomology.

The full problem remains open. At present, only the results of Katok and Katok exist
in the literature [KK95, KK05]. There, they proved their conjecture for actions Zd y TN

by partially hyperbolic toral automorphisms. We treat the case of Anosov Rd-actions on
quotients of d-fold products of SL(2,R).

1.1. Historical context and problem statement. The first cohomology of group actions
has been much studied in dynamics. One of the most celebrated results in this area is from
work of A. N. Livšic [Liv72], and subsequent related work by V. Guillemin and D. Kazhdan
[GK80], and R. de la Llave, J. Marko, and R. Moriyón [dlLMM86], where it was established
that for Anosov flows and diffeomorphisms, the first cohomology is determined by periodic
orbits. Livšic’s theorem states that for an Anosov flow R y M , a given 1-cocycle is a
coboundary if and only if its integral around every closed orbit is 0. It is not hard to see
that this condition from periodic orbits is necessary: one can see a 1-cocycle over the flow
as a closed differential 1-form ω along the orbit foliation. By restricting ω to any closed
orbit, one obtains a 1-form in the usual (de Rham) sense on this orbit. If the form is exact,
then the fundamental theorem of calculus implies that its integral over the orbit must be 0.
Livšic’s theorem gives that, in the hyperbolic setting, this condition coming from periodic
orbits is also sufficient.

For Anosov and partially hyperbolic Rd-actions, d ≥ 2, the first cohomology was studied
by A. Katok and R. Spatzier [KS94]. Here, the situation is different. Katok and Spatzier
showed that the first smooth cohomology trivializes, i.e. any smooth R-valued cocycle is
cohomologous to a constant cocycle; it is an almost coboundary. In other words, for higher-
rank Anosov actions, there are no obstructions to solving the almost coboundary equation.
This comes about as a consequence of having positive codegree. One of the key steps in
the proof of the Katok–Spatzier result is the so-called higher-rank trick ; it is essentially
the observation that if one has a converging sum over two parameters, and one knows that
every sum over the first parameter is the same, then one can conclude that every sum
over the first parameter must be 0. This observation becomes useful in a natural way
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when solving the coboundary equation in positive codegree. Versions of the higher-rank
trick have since appeared in other cocycle rigidity results, not just in the hyperbolic setting
[Mie06, Mie07, Ram09], and a version of it also appears in the intermediate-degree part of
the Katok–Katok result for hyperbolic toral automorphisms [KK95]. Indeed, our Proposition
5.2 can be thought of as a version of the higher-rank trick.

Adopting the point of view that 1-cocycles are closed differential 1-forms along the orbits,
it is then natural to define higher-degree cocycles by closed differential forms in the corre-
sponding degree (see Section 1.3). Now, consider a d-cocycle ω over an Anosov R

d-action on
M . As in the case of flows, one can restrict ω to a periodic orbit, and obtain a top-degree
differential form over this orbit in the usual sense. One sees from Stokes’ theorem that a
necessary condition for being able to solve the coboundary equation dη = ω is that the
integral of ω over every closed orbit is 0. We will say that the action satisfies the Livšic
property for d-cocycles if this condition is also sufficient for the existence of a solution to
the coboundary equation. Thus, we know from [Liv72, GK80, dlLMM86] that Anosov flows
have the Livšic property for 1-cocycles.

The following conjecture is due to A. and S. Katok [KK95], and is one of the principal
motivations for our work.

Conjecture (Katok–Katok). Let α be a standard partially hyperbolic action of Zd
+, Z

d, or
Rd, d ≥ 2. Then the smooth n-cohomology of α trivializes for 1 ≤ n ≤ d− 1, and α satisfies
the Livšic property for d-cocycles. If α is a standard Anosov action the same is true in C1

and Hölder cases.

The conjecture implies that the contrast between the rank-one and higher-rank situations
(for 1-cocycles) lies in the fact that for flows, the first cohomology is the top-degree cohomol-
ogy, whereas for higher-rank actions it is not. With this conjecture in mind, one expects that
cohomology classes in Hd(M) for an Anosov or partially hyperbolic Rd-action on M are de-

termined by integrals over closed orbits; for 1 ≤ n ≤ d− 1, one expects Hn(M) ∼= R(
d
n)—the

cohomology classes are determined by constant functions on M .
Katok and Katok proved the conjecture for Zd-actions by partially hyperbolic toral au-

tomorphisms [KK95, KK05]. Their strategy was to pass to a dual problem on Fourier
coefficients of functions on tori. There, the natural obstructions to the coboundary equation
are distributions on the torus that are invariant under the action. (These are referred to in
the paper as invariant pseudomeasures.) They proved that these are a complete set of ob-
structions, and that these obstructions are approximated by linear combinations of invariant
measures supported on periodic orbits. The latter is an extension of a corresponding result
of W. Veech for a single hyperbolic toral automorphism [Vee86].

1.2. Statements of results. We consider the subgroup A ∼= Rd of diagonal matrices in the
d-fold product

SL(2,R)× · · · × SL(2,R) := SL(2,R)d,
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and its action Rd y SL(2,R)d/Γ on a quotient by an irreducible lattice. Setting the following
elements of the Lie algebra Lie(A) := a ⊂ sl(2,R)d

X1 =

((
1/2 0
0 −1/2

)
, (0), . . . , (0)

)

X2 =

(
(0),

(
1/2 0
0 −1/2

)
, (0), . . . , (0)

)

...

Xd =

(
(0), . . . , (0),

(
1/2 0
0 −1/2

))
,

the coboundary equation for d-forms is equivalent to the problem of finding smooth functions
g1, . . . , gd ∈ C∞(SL(2,R)d/Γ) satisfying

f = X1 g1 + · · ·+Xd gd

for a given smooth function f ∈ C∞(SL(2,R)d/Γ).
We prove

Theorem 1.1. Let Γ ⊂ SL(2,R)d be an irreducible lattice. If f ∈ C∞(L2(SL(2,R)d/Γ)) is
in the kernel of every X1, . . . , Xd-invariant distribution, then there exist smooth functions
g1, . . . , gd ∈ C∞(L2(SL(2,R)d/Γ)) satisfying

f = X1 g1 + · · ·+Xd gd.

Remark. If it is true that the set of linear combinations of invariant measures supported on
periodic orbits of Rd y SL(2,R)d/Γ is dense (in the weak topology) in the space IX1,...,Xd

of invariant distributions, then Theorem 1.1 implies that the action has the Livšic property
for d-cocycles, as conjectured. This would then have an application to Hilbert cusp forms,
through a program, outlined by T. Foth and S. Katok, for finding spanning sets by relative
Poincaré series associated to closed orbits. This program was carried out by S. Katok for
modular forms [Kat85], and later by Foth and Katok in other rank-one situations [FK01].

The presence in Theorem 1.1 of C∞(L2(SL(2,R)d/Γ)) instead of C∞(SL(2,R)d/Γ) is due
to the fact that, as with Katok and Katok’s passage to a dual problem, we work primarily
in the unitary dual of SL(2,R)d. We take C∞(L2(SL(2,R)d/Γ)) to be the set of smooth
vectors, in the representation theoretic sense, of the left-regular representation of SL(2,R)d

on L2(SL(2,R)d/Γ). For cocompact Γ, the set of smooth vectors coincides with the set of
smooth functions C∞(SL(2,R)d/Γ).

A representation theoretic version of Theorem 1.1 (from which Theorem 1.1 follows) ap-
pears as Theorem A in Section 2. It is one of the main results of this paper, and is inspired
by work of D. Mieczkowski [Mie06], where the d = 1 case is proved, and work of L. Flaminio
and G. Forni [FF03], where the coboundary equation for horocycle flows is studied. Our
method relies on an inductive procedure for establishing Theorem A for (d + 1)-fold prod-
ucts, assuming it holds for d-fold products. Thus, Mieczkowski’s work provides our base
case.

For the intermediate cohomology, we have

Theorem 1.2. Let Γ ⊂ SL(2,R)d be an irreducible lattice, A ⊂ SL(2,R)d the subgroup of
diagonal matrices. Then the smooth n-cohomology of the A-action on SL(2,R)d/Γ trivializes
for 1 ≤ n ≤ d− 1.
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Remark. Theorem 1.2 verifies the “intermediate cohomology” part of Katok and Katok’s
conjecture for the actions we consider.

Again, we have a representation theoretic version of Theorem 1.2, listed as Theorem B in
Section 2. It is our second main result. Again, we employ an inductive procedure to establish
the theorem for d-fold products, assuming it is true for (d−1)-fold products. This induction
is analogous to one used by Katok and Katok to establish the “intermediate cohomology”
part of their conjecture for toral automorphisms [KK95] . Our base case can be taken to
come from Katok and Spatzier’s work applied to Anosov R2-actions [KS94], or Mieczkowski’s
results in [Mie07].

1.3. Definitions. Let Rd y M be a locally free action by diffeomorphisms on a smooth
manifold. For 1 ≤ n ≤ d, we define an n-form over the action to be a smooth assignment
taking each point x ∈ M to a map

ωx : (Tx(R
d · x))n ∼= (Rd)n → R

that is multi-linear and skew-symmetric, where Rd ·x denotes the orbit of x, and its tangent
space is denoted Tx(R

d · x) ⊂ TxM ; it is naturally identified with Rd. We use Ωn
Rd(M) to

denote the set of n-forms over the action R
d
y M , often dropping the subscript when there

is no risk of confusion.
The exterior derivative for Rd y M maps n-forms to (n+ 1)-forms by

dωx(V1, . . . , Vn+1) :=

n∑

j=1

(−1)j+1 Vj ωx(V1, . . . , V̂j, . . . , Vn+1),

with “ ̂ ” denoting omission. One can check that d2 = 0.
An n-form ω is said to be closed, and is called a cocycle, if dω = 0. It is said to be exact,

and is called a coboundary, if there there is an (n−1)-form η satisfying dη = ω. Two n-forms
are said to be cohomologous if they differ by a coboundary. We are interested in the set of
cohomology classes, Hn(M).

The first cohomology H1(M) coincides with the set of equivalence classes of smooth R-
valued cocycles in the usual dynamical sense. That is, a smooth R-valued cocycle over the
action Rd y M is usually defined in dynamics as a smooth function α : Rd × M → R

satisfying the cocycle identity :

α(r1 + r2, x) = α(r1, r2.x) + α(r2, x)

for all r1, r2 ∈ Rd and x ∈ M . Two smooth cocycles α1 and α2 are said to be smoothly
cohomologous, according to the usual dynamical definitions, if there is a smooth function
P : M → R satisfying

α1(r, x) = −P (r.x) + α2(r, x) + P (x).

By differentiating α1 and α2 in directions V ∈ Rd, we obtain 1-forms ω1(V ) and ω2(V ) in
the sense described above. That α1 and α2 satisfy the cocycle identity implies that ω1 and
ω2 are closed. That α1 and α2 are smoothly cohomologous is equivalent to the existence of
a smooth function P ∈ C∞(M), or 0-form, satisfying dP = ω2 − ω1.
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2. Main results

We work in a unitary representation H of

SL(2,R)d := SL(2,R)× · · · × SL(2,R).

One of our goals is to solve the degree-d coboundary equation

X1 g1 +X2 g2 + · · ·+Xd gd = f(1)

for a given f ∈ H (see Section 1.2).
We will find that obstructions to solving equation (1) come from elements of E ′(H) (the

dual space of C∞(H)) that are invariant under the vectors X1, . . . , Xd. Let

IX1,...,Xd
(H) = {D ∈ E ′(H) | LXi

D = 0 for all i = 1, . . . , d},

where LXi
is the Lie derivative operator. The condition that LXi

D = 0 is equivalent to
the condition that D(Xi h) = 0 for all h ∈ C∞(H). The set IX1,...,Xd

is exactly the set of
distributions that are invariant under all of X1, . . . , Xd. Define also

Iτ
X1,...,Xd

(H) = {D ∈ W−τ(H) | LXi
D = 0 for all i = 1, . . . , d},

the set of distributions of Sobolev order τ ∈ R that are X1, . . . , Xd-invariant.
It is obviously necessary for f to be in the kernel of all such distributions. We show that

this is also sufficient.

Theorem A (Top-degree cohomology). Let H be a unitary representation of SL(2,R)d, and

let Σ(d) := 1+ d(d−1)
2

. If there exists µ0 > 0 such that σ(�i)∩ (0, µ0) = ∅ for all i = 1, . . . , d,
then the following holds. For any s > 1, and t < s − 1, there is a constant Cµ0,s,t such

that, for every f ∈ ker I
Σ(d)s
X1,...,Xd

(H), there exist g1, . . . , gd ∈ W t(H) satisfying the coboundary
equation (1) for f , and satisfying the Sobolev estimates

‖gi‖t ≤ Cµ0,s,t ‖f‖s

for i = 1, . . . , d.

Remark. There are precise definitions for �i and µ0 in Section 3.4. For now, it is worth
remarking that the condition in Theorem A involving these is a “spectral gap” condition on
the representation H for the Casimir operators �i corresponding to the d copies of SL(2,R).
Later, we will do most of our work in irreducible unitary representations, and the process of
building global solutions for (reducible) unitary representations will depend on this spectral
gap assumption.

Theorem A is a generalization of the following result of Mieczkowski [Mie06], which pro-
vides the base case d = 1 for an induction argument in our proof.

Theorem 2.1 (Mieczkowski). Let Hµ be an irreducible unitary representation of SL(2,R),
and s > 1. If µ > µ0 > 0 then there exists a constant Cµ0,s,t such that, for all f ∈ W s(Hµ),

• if t < −1, or
• if t < s− 1 and D(f) = 0 for all D ∈ Is(Hµ),

then the equation X g = f has a solution g ∈ W t(Hµ), which satisfies the Sobolev estimate
‖g‖t ≤ Cµ0,s,t ‖f‖s.
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Remark. One can state a version of Theorem 2.1 for any unitary representation of SL(2,R)
that has a spectral gap for the Casimir operator �, by picking µ0 to work in every non-trivial
sub-representation, as we have done with our statement of Theorem A. We have chosen to
state the irreducible version of Theorem 2.1 because it will be applied directly as the base
case of our induction.

We also remark that Theorem 2.1 is only proved for PSL(2,R) in [Mie06]. But some
calculations show that it is also valid for the unitary dual of SL(2,R). These are in Appendix
A.

Theorems A and 2.1, and their methods of proof, are inspired by the following analogous
theorem of Flaminio and Forni, for horocycle flows [FF03].

Theorem 2.2 (Flaminio–Forni). Let

U :=

(
0 1
0 0

)
∈ sl(2,R),

and H a unitary representation of PSL(2,R) such that there exists µ0 > 0 with σ(�) ∩
(0, µ0) = ∅. Then the following holds. Let s > 1+ν0

2
and t ∈ R. Then there exists a constant

C := Cν0,s,t such that, for all f ∈ W s(H),

• if either t < −1+ν0
2

and f has no component on the trivial sub-representation of H,
or

• if t < s− 1 and D(f) = 0 for all D ∈ Is
U(Hµ),

then the equation U g = f has a solution g ∈ W t(Hµ), which satisfies the Sobolev estimate

‖g‖t ≤ Cµ0,s,t ‖f‖s .

A solution g ∈ W t(H) of the equation U g = f is unique modulo the trivial sub-representation
if and only if t ≥ −1−ν0

2
.

Remark. Theorem 2.2 was also only proved for representations of PSL(2,R). However, it
remains valid if PSL(2,R) is replaced with SL(2,R). Again, this is just a matter of carrying
out some calculations in the irreducible unitary representations of SL(2,R) that are not
irreducible unitary representations of PSL(2,R).

Before stating the next result, let us briefly define forms in the context of representations.
Let H be a unitary representation of SL(2,R)d. We take an n-form (of Sobolev order at least
τ) over the R

d-action on H to be a map

ω : (Lie(Rd))n → W τ (H)

which is linear and anti-symmetric. The exterior derivative, cocycles, coboundary equation,
and cohomology are then defined in the usual way. Use Ωn

Rd(W
τ(H)) to denote the set of

n-forms of Sobolev order τ over the Rd-action on H. We have

Theorem B (Intermediate cohomology). Let H be a unitary representation of SL(2,R)d

such that almost every irreducible representation appearing in its direct decomposition has
no trivial factor. If there exists µ0 > 0 such that σ(�i)∩ (0, µ0) = ∅ for all i = 1, . . . , d, then
the following holds. Let 1 ≤ n ≤ d − 1. For any s > 1 and t < s − 1, there is a constant
Cµ0,s,t such that, for any n-cocycle ω ∈ Ωn

Rd(W
Σ(d)s(H)), there exists η ∈ Ωn−1

Rd (W t(H)) with
dη = ω and ∥∥η(Xi1, . . . , Xin−1

)
∥∥
t
≤ Cµ0,s,tmin

{
‖ω(Xj1, . . . , Xjn)‖d·s

}
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for all multi-indices 1 ≤ i1 < · · · < in−1 ≤ d, where the minimum is taken over all multi-
indices 1 ≤ j1 < · · · < jn ≤ d that become i1, . . . , in−1 after omission of one index.

Theorems 1.1 and 1.2 follow from Theorems A and B by setting

H = L2
0(SL(2,R)

d/Γ)

and noting that this representation satisfies the spectral gap assumption.

3. Unitary representations of SL(2,R)

The purpose of this section is to recall some essential aspects of the unitary representation
theory of the group SL(2,R).

We note that this exposition follows [FF03] and [Mie06] very closely, with the appropriate
changes made to suit the fact that we are now working with SL(2,R), rather than PSL(2,R).
For detailed exposition of the unitary dual of SL(2,R), one can consult [HT92, Lan75, Tay86].

Fix the following generators of the Lie algebra sl(2,R):

X =

(
1/2 0
0 −1/2

)
; Y =

(
0 −1/2

−1/2 0

)
; Θ =

(
0 1/2

−1/2 0

)
.

The Laplacian operator is defined by ∆ = −X2−Y 2−Θ2 and the Casimir operator is defined
by � = −X2−Y 2+Θ2. The Casimir operator � is in the center of the universal enveloping
algebra of sl(2,R), and so it acts as a scalar in any irreducible unitary representation of
SL(2,R). In fact, this scalar parametrizes the unitary dual of PSL(2,R). We will denote by
Hµ an irreducible unitary representation of SL(2,R) where � acts by multiplication by

µ ∈ R
+ ∪ {−n2 + n | n ∈ Z

+} ∪ {−n2 +
1

4
| n ∈ Z≥0}.

It is also useful to define ν as a complex solution to

ν2 = 1− 4µ,

so that ν ∈ iR ∪ {2n− 1 | n ∈ Z+} ∪ {2n | n ∈ Z≥0} ∪ (−1, 1)\{0}.
The irreducible unitary representation Hµ decomposes as

Hµ =
⊕

k∈Z

mk Vk,

where Vk
∼= C is the irreducible representation of SO(2) ⊂ SL(2,R) where the operator −2iΘ

acts by multiplication by k ∈ Z, and mk is the multiplicity with which this representation
appears. We identify five different possibilities:

(1) First principal series. µ ≥ 1
4
, ν ∈ iR, and

mk =

{
1 if k ∈ 2Z

0 otherwise.

(2) Second principal series. µ > 1
4
, ν ∈ iR\{0}, and

mk =

{
1 if k ∈ 2Z+ 1

0 otherwise.
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(3) Complementary principal series. 0 < µ < 1
4
, ν ∈ (−1, 1)\{0}, and

mk =

{
1 if k ∈ 2Z

0 otherwise.

(4) First holomorphic discrete series. µ = −n2 + n for some n ∈ Z+, ν = 2n− 1, and

mk =

{
1 if k ∈ [2n,∞) ∩ 2Z

0 otherwise.

(5) Second holomorphic discrete series. µ = −n2 + 1
4
for some n ∈ Z+, ν = 2n, and

mk =

{
1 if k ∈ [2n+ 1,∞) ∩ 2Z+ 1

0 otherwise.

Remark. The anti-holomorphic discrete series are not listed here because they are equivalent
to their holomorphic counterparts. It is also worth mentioning that “second holomorphic
discrete series” does not seem to be standard terminology. Most sources just list a holomor-
phic discrete series (and equivalent anti-holomorphic discrete series) without distinguishing
between even and odd spectra. However, it is convenient in this work to make the distinc-
tion. We also remark that for each series, there are standard models that realize the action
of SL(2,R), but we do not need them in our work.

3.0.1. Some useful indices. Define

iν =

⌊
1 +R(ν)

2

⌋

so that

iν =

{
0 for principal series and complementary series

n for discrete series.

Define ǫ := ǫ(Hµ) by

ǫ =

{
0 for first principal and -discrete series, and complementary series

1 for second principal and -discrete series.

This notation is used for convenience. Below, iν is used as the “starting point” for an
indexing set Iν for the spectrum of (−2iΘ), and ǫ determines the parity of this spectrum,
i.e. it determines whether it consists of even numbers or odd numbers. It is also what
distinguishes the unitary dual of SL(2,R) from that of PSL(2,R). For the latter, ǫ = 0
always. Therefore, if one sets ǫ = 0 in what follows, then one recovers the setup from [FF03]
and [Mie06].

We make extensive use of the following orthogonal basis for each irreducible Hµ.

3.1. An orthogonal basis for irreducible unitary representations. This section fol-
lows [FF03] in defining an orthogonal basis {uk} for Hµ.

The elements
η+ = X − i Y and η− = X + i Y

of the universal enveloping algebra of sl(2,R) raise and lower eigenvalues of the operator
−2iΘ by 2.
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Fixing a unit vector viν ∈ V2iν+ǫ, we obtain an orthogonal basis for Hµ by

. . . , η2− v0, η− v0, v0, η+ v0, η
2
+ v0, . . .

for the principal and complementary series, and

vn, η+ vn, η
2
+ vn, . . .

for the discrete series.
We re-scale these by defining

uk = ck (η+ uk−1), ck =
2

2k + ǫ− 1 + ν
for k > iν

uk = ck (η− uk+1), ck =
2

−2k − ǫ− 1 + ν
for k < iν

and uiν = viν . Note that for the discrete series, there is no k < iν , so the second line does
not apply. Defining

Iν :=

{
Z if µ ∈ R+

[n,∞) ∩ Z if µ ∈ {−n2 + n} ∪ {−n2 + 1
4
},

we have a basis {uk}k∈Iν , where uk ∈ V2k+ǫ. It is also convenient to define

Zµ :=

{
Z if µ ∈ R+

N ∪ {0} if µ ∈ {−n2 + n} ∪ {−n2 + 1
4
},

= Iν − iν(2)

so that the basis can also be written {uiν+k}k∈Zµ
, where uiν+k ∈ V2iν+2k+ǫ.

One can compute the norms for the {uk} by the following calculations. First, for k > 0
(or k > n for the discrete series),

‖uk‖
2 = ‖ck‖

2 〈η+uk−1, η+uk−1〉

= −‖ck‖
2 〈η−η+uk−1, uk−1〉,

since η∗+ = −η−. Then, observing that η−η+ = Θ2 + iΘ−�,

= −‖ck‖
2 〈(Θ2 + iΘ−�)uk−1, uk−1〉

=
2k + ǫ− 1− ν

2k + ǫ− 1 + ν̄
‖uk−1‖

2 .

For k ≤ 0, one gets

‖uk‖
2 =

|2k + ǫ| − 1− ν

|2k + ǫ| − 1 + ν̄
‖uk+1‖

2 ,

allowing us to conclude

‖uk‖
2 =

{
‖uk−1‖

2 if ν ∈ iR
|2k+ǫ|−1−ν
|2k+ǫ|−1+ν

‖uk−1‖
2 if ν ∈ R

for k > 0 and

‖uk‖
2 =

{
‖uk+1‖

2 if ν ∈ iR
|2k+ǫ|−1−ν
|2k+ǫ|−1+ν

‖uk+1‖
2 if ν ∈ R

for k < 0.
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Introducing

Πν,ǫ,k =

k∏

i=iν+1

2i+ ǫ− 1− ν

2i+ ǫ− 1 + ν̄
for any k ≥ iν ,

where empty products are set to 1, we have

‖uk‖
2 =

∣∣Πν,ǫ,|k|

∣∣ .
The following lemma is from [FF03].

Lemma 3.1 (Flaminio–Forni). If ν ∈ iR (principal series), for all k ≥ iν = 0,

|Πν,ǫ,k| = 1.

There exists C > 0 such that, if ν ∈ (−1, 1)−{0} (complementary series), for all k > iν = 0,
we have

C−1

(
1− ν

1 + ν

)
(1 + k)−ν ≤ Πν,ǫ,k ≤ C

(
1− ν

1 + ν

)
(1 + k)−ν ;

if ν = 2n+ ǫ− 1, for all k ≥ l ≥ iν = n (discrete series), we have

C−1

(
k − n− ǫ+ 1

l − n− ǫ+ 1

)−ν

≤
Πν,ǫ,k

Πν,ǫ,l

≤ C

(
k − n + ν

l − n+ ν

)
(1 + k)−ν .

Remark. Since Flaminio and Forni only work with representations of PSL(2,R), they prove
the above lemma for ǫ = 0. It is immediate that for the second principal series, |Πν,ǫ,k| = 1,
so it is only left to check that Lemma 3.1 holds in the second holomorphic discrete series,
where ν = 2n and ǫ = 1. This is easily seen, by carrying out the proof in [FF03] and making
the appropriate adjustments.

3.1.1. Sobolev norms. Sobolev norms of the basis elements uk are computed by

‖uk‖
2
τ = 〈(1 + ∆)τuk, uk〉

= 〈(1 +�− 2Θ2)τuk, uk〉

= (1 + µ+ 2(k + ǫ/2)2)τ ‖uk‖
2 ,

and so a vector
∑

f(k) uk ∈ Hµ is in the Sobolev space W τ (Hµ) if and only if the sum

‖f‖τ =

(
∞∑

−∞

(1 + µ+ 2(k + ǫ/2)2)τ
∣∣Πν,ǫ,|k|

∣∣ |f(k)|2
) 1

2

converges.

3.1.2. Action of X on the basis. One can compute the action of X on an element uk of our
basis. We have the following lemma, which is also an SL(2,R)-version of one found in [FF03]:

Lemma 3.2 (Flaminio–Forni). Let Iν = Z if µ parametrizes the principal or complementary
series, and Iν = [n,∞) ∩ Z if µ ∈ {−n2 + n | n ∈ Z+} ∪ {−n2 + 1

4
| n ∈ Z≥0} parametrizes

the holomorphic discrete series. Then

X uk =
2k + ǫ+ 1 + ν

4
· uk+1 −

2k + ǫ− 1− ν

4
· uk−1 for all k ∈ Iν

(for Hµ in the discrete series, the above formula must read X un = (n+ ǫ
2
) · un+1).
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Proof. One calculates

X uk =
1

2
(η+ uk + η− uk)

=
2k + ǫ+ 1 + ν

4
uk+1 −

2k + ǫ− 1− ν

4
uk−1,

for k > iν , and a similar calculation for k < iν (for the principal and complementary series).
In the discrete series, with iν = n, notice that ν = 2n + ǫ− 1, so

2n+ ǫ− 1− ν

4
= 0

and
2n+ ǫ+ 1 + ν

4
= n+

ǫ

2
.

�

Defining

b+(k) =
2k + ǫ+ 1 + ν

4
and

b−(k) =
2k + ǫ− 1− ν

4
,

we have simply

X uk = b+(k) uk+1 − b−(k) uk−1.

Using this notation, the coboundary equation in an irreducible unitary representation of
SL(2,R) becomes a difference equation involving the b±(k)’s and uk’s. It is exactly the
difference equation found in the proof of Theorem 2.1 for the PSL(2,R) case, so that the
solution there works equally well here [Mie06]. We elaborate more on this in Appendix A.

3.2. Representations of products. Since we are concerned in this work with products
SL(2,R)×· · ·×SL(2,R) := SL(2,R)d, we take this opportunity to set some notation for the
irreducible representations.

Irreducible unitary representations of SL(2,R)d are tensor products Hµ1
⊗ · · · ⊗ Hµd

of irreducible unitary representations of SL(2,R). Therefore, we can use the multi-index
(µ1, . . . , µd) to parametrize these. It is sometimes convenient to use the typographical con-
vention of taking bold-faced symbols to denote multi-indices corresponding to these tensor
products. For example, µ := (µ1, . . . , µd).

A basis for Hµ is given by tensor products

{u
(1)
k1

⊗ · · · ⊗ u
(d)
kd
}ki∈Iνi

of basis elements from the different factors. Lemma 3.2 gives us the following formula for
the action of Xi:

Xi(u
(1)
k1

⊗ · · · ⊗ u
(d)
kd
) = b+i (ki) · u

(1)
k1

⊗ · · · ⊗ u
(i)
ki+1 ⊗ · · · ⊗ u

(d)
kd

− b−i (ki) · u
(1)
k1

⊗ · · · ⊗ u
(i)
ki−1 ⊗ · · · ⊗ u

(d)
kd
.

where

b±i (ki) =
2ki + ǫi ± (1 + νi)

4
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and ki ∈ Iνi . We also have

‖uk1 ⊗ · · · ⊗ ukd‖
2 = ‖uk1‖

2 . . . ‖ukd‖
2

= |Πν1,ǫ1,|k1|| · · · |Πνd,ǫd,|kd||

:= |Πν,ǫ,k|,

where we have dropped the parenthetical superscripts, trusting that there is no confusion.
We work with elements f ∈ Hµ that are of the form

f =
∑

(k1,...,kd)∈Iν1×···×Iνd

f(k1, . . . , kd) uk1 ⊗ · · · ⊗ ukd.

Sobolev norms are then given by

‖f‖2τ =
∑

k∈Iν

(1 + ‖µ‖+ 2 |k+
ǫ

2
|2)τ |f(k)|2 ‖uk‖

2 ,

where we have set the multi-indices

µ := (µ1, . . . , µd),

‖µ‖ := µ1 + · · ·+ µd,

ǫ := (ǫ1, . . . , ǫd)

Iν := Iν1 × · · · × Iνd
k := (k1, . . . , kd)

|k|2 := k2
1 + · · ·+ k2

d, and

uk := uk1 ⊗ · · · ⊗ ukd.

We will make use of projected versions of these elements:

(f |kj ,...,kd) =

j−1∑

i=1

∑

ki∈Iνi

f(k1, . . . , kd)
∥∥ukj

∥∥ · · · ‖ukd‖ uk1 ⊗ · · · ⊗ ukj−1

∈ Hµ1
⊗ · · · ⊗ Hµj−1

,

and we compute the restricted Sobolev norm as

∥∥(f |kj ,...,kd)
∥∥2
τ

=

j−1∑

i=1

∑

ki∈Iνi

(1 + µ1 + · · ·+ µj−1 + 2((k1 +
ǫ1
2
)2 + · · ·+ (kj−1 +

ǫj−1

2
)2))τ

· |f(k1, . . . , kd)|
2 ‖uk1‖

2 · · · ‖ukd‖
2 .

It is clear that

∥∥(f |kj ,...,kd)
∥∥2
τ
≤ ‖f‖2τ .
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We will also need the observation that, for any τ, σ ∈ N,
∑

k1∈Iν1

(1 + µ1 + 2(k1 +
ǫ1
2
)2)τ ‖(f |k1)‖

2
σ

=
∑

k1∈Iν1

(1 + µ1 + 2(k1 +
ǫ1
2
)2)τ

·
d∑

i=2

∑

ki∈Iνi

(1 + µ2 + · · ·+ µd + 2((k2 +
ǫ2
2
)2 + · · ·+ (kd +

ǫd
2
)2))σ

· |f(k1, . . . , kd)|
2 ‖uk1‖

2 · · · ‖ukd‖
2

≤
d∑

i=1

∑

ki∈Iνi

(1 + ‖µ‖+ 2 |k+
ǫ

2
|2)τ+σ |f(k, l)|2 ‖uk1 ⊗ · · · ⊗ ukd‖

2

= ‖f‖2τ+σ .

This uses the fact that for positive numbers A and B,

(1 + A)m(1 +B)n ≤ (1 + A +B)m+n

holds for all m,n ∈ N.
We end this section by introducing another notational convenience. For H1⊗· · ·⊗Hd, let

Z
d := Z

d
µ
= Zµ1

× · · · × Zµd

= Iν1 × · · · × Iνd − (iν1 , . . . , iνd),

where Zµi
is defined by (2) in Section 3.1. Thus, Z

d can be thought of as a truncated
Zd—integer d-tuples with non-negative entries in the components corresponding to discrete
series representations. This notation will be used in Section 4.

3.3. Invariant distributions. We are interested in the X-invariant distributions for uni-
tary representations of SL(2,R). For a unitary representation H, we define the following
sets:

IX(H) = {D ∈ E ′(H) | LXD = 0}

and
Is
X(H) = {D ∈ W−s(H) | LXD = 0}.

These are exactly the X-invariant distributions, satisfying D(X h) = 0.
By looking at how X acts in any irreducible unitary representation Hµ of SL(2,R), we see

that for all k ∈ Iν , an X-invariant distribution D must satisfy

D(uk+1)

D(uk−1)
=

b−(k)

b+(k)
:= β(k)(3)

(This formula also works for discrete series, where ν = 2n+ ǫ− 1, because b−(n) = 0.)
In any irreducible representation, there are at most two linearly independent distributions

satisfying these conditions, obtained by alternately setting exactly one ofD(uiν) andD(uiν+1)
to 1 and the other one to 0. (Recall that iν is used to denote the “starting” index in Iν , the
set indexing the basis {uk} of Hµ, and so for the principal and complementary series, iν = 0;
for the discrete series, where ν = 2n + ǫ − 1, we have iν = n.) We will call the resulting

distributions D
Hµ

0 and D
Hµ

1 , respectively.
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Remark. Note that if Hµ is from the discrete series, then the distribution D
Hµ

1 is not X-
invariant.

Formulas for D
Hµ

0 (uk) and D
Hµ

1 (uk) are

D
Hµ

0 (uiν+2k) =

|k|∏

j=1

β(iν + 2j − 1),

D
Hµ

1 (uiν+2k+1) =

|k|∏

j=1

β(iν + 2j).

Calculations from [Mie06] show that the Sobolev order of these distributions is at most
1−R(ν)

2
for the principal and complementary series, and at most 0 for the discrete series.

Similar calculations also hold for representations of SL(2,R)d, and are carried out in Section
3.3.1, in the context of tensor products of representations.

For now, we prove the following

Lemma 3.3. |D
Hµ

0 (uk)| ≤ 1 and |D
Hµ

1 (uk)| ≤ 1 for all k ∈ Iν.

Proof. This follows from the fact that |β(k)| ≤ 1 for all k ≥ 0 (and k ≥ n for discrete series),
which we prove here.

• For the principal series, we have ν ∈ iR, so

|β(k)|2 =

∣∣∣∣
2k + ǫ− 1− ν

2k + ǫ+ 1 + ν

∣∣∣∣
2

=
(2k + ǫ− 1)2 + |ν|2

(2k + ǫ+ 1)2 + |ν|2

≤ 1.

• For the complementary series, we have ν ∈ (−1, 1)\{0} and ǫ = 0, so

|β(k)| =

∣∣∣∣
2k − 1− ν

2k + 1 + ν

∣∣∣∣
≤ 1.

• For the discrete series, we have ν = 2n+ ǫ− 1, so

|β(k)| =

∣∣∣∣
2k + ǫ− 1− ν

2k + ǫ+ 1 + ν

∣∣∣∣

=

∣∣∣∣
2(k − n)

2(k − n) + 4n+ 2ǫ

∣∣∣∣
≤ 1.

This proves the lemma. �

Lemma 3.4. Let σ = 0 or 1. The expression

|D
Hµ
σ (uiν+2k+σ)|

2

‖uiν+2k+σ‖
2

is bounded by a degree 1 polynomial in k.
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Proof. This follows from combining Lemma 3.1 from Section 3.1, and Lemmas A.2, A.3, and
A.4 from Appendix A. �

3.3.1. Invariant distributions in products and their Sobolev order. For representations of
products SL(2,R) × · · · × SL(2,R), we are interested in distributions that are invariant
under the action by the subgroup of diagonal matrices. We define the sets

IX1,...,Xd
(H) = {D ∈ E ′(H) | LXi

D = 0 for all i = 1, . . . , d}

and

Iτ
X1,...,Xd

(H) = {D ∈ W−τ(H) | LXi
D = 0 for all i = 1, . . . , d}.

For an irreducible representation H1⊗· · ·⊗Hd, the X1, . . . , Xd-invariant distributions are
easy to describe. They need only satisfy (3) in each component, and so can be taken to be
products of D0 and D1 in the following sense. Let µ = (µ1, . . . , µd). We define

S(µ) :=

{
n = (σ1, . . . , σd) | σi =

{
0 or 1 if µi is not in the discrete series

0 if it is.

}

to be the set of 1-0-vectors indexing the X1, . . . , Xd-invariant distributions

DHµ

n (uk) := DH1

σ1
(uk1) · · ·D

Hd
σd

(ukd),

where k = (k1, . . . , kd) ∈ Iν1 × · · · × Iνd.

The Sobolev order of D
Hµ

n is the smallest τ ∈ R for which

DHµ

n (f) =
∑

k∈Iν

f(k)DHµ

n (uk)

converges for every f ∈ W τ (Hµ). We have

|DHµ

n (f)|2 =

∣∣∣∣∣∣
∑

k∈Iµ

f(k)DHµ

n (uk)

∣∣∣∣∣∣

2

≤
∑

k∈Iµ

(1 + ‖µ‖+ 2|k+
ǫ

2
|2)τ |f(uk)|

2 ‖uk‖
2

·
∑

k∈Iµ

(1 + ‖µ‖+ 2|k+
ǫ

2
|2)−τ |DHµ

n (uk)|
2 ‖uk‖

−2

≤ ‖f‖2τ ·
∑

k∈Iµ

(1 + ‖µ‖+ 2|k+
ǫ

2
|2)−τ |DHµ

n (uk)|
2 |Πν,ǫ,k|

−1,

which, by Lemma 3.4, converges whenever

τ > d.

This shows that the Sobolev order of the distribution D
Hµ

n is at most d. Therefore, the

distributions D
Hµ

n form a basis for the set Id·s
X1,...,Xd

whenever s > 1.
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3.4. Direct decompositions and spectral gaps. The discussion in this section justifies
our interest in irreducible representations. This is standard, and can be found in [Mau50a,
Mau50b].

Any unitary representation π of SL(2,R)d on a separable Hilbert space H has a direct
integral decomposition over a positive Stieltjes measure on R. That is, the Hilbert space H
decomposes as

H =

∫ ⊕

R

Hλ ds(λ)(4)

where the Hλ are Hilbert spaces with unitary representations πλ of SL(2,R)d, and for every
f ∈ H and g ∈ SL(2,R)d,

π(g)f =

∫ ⊕

R

πλ(g)fλ ds(λ).

That is, the operators π(g) are decomposable with respect to (4). Furthermore, ds-almost
every πλ is an irreducible unitary representation of SL(2,R)d.

Since the π(g) decompose with respect to (4), it is then clear that so do the operators in
the universal enveloping algebra of sl(2,R)d. Therefore, the decomposition (4) also holds for
Sobolev spaces

W τ (H) =

∫ ⊕

R

W τ(Hλ) ds(λ),

and spaces of invariant distributions

Iτ
X1,...,Xd

(H) =

∫ ⊕

R

Iτ
X1,...,Xd

(Hλ) ds(λ).

This allows us to prove Theorems A and B by treating irreducible representations, and
“glueing” solutions to the coboundary equation across this decomposition.

For this glueing to work, we will need the representation H to have a spectral gap for each
Casimir operator �1, . . . ,�d. By this, we mean that there exists a number µ0 > 0 that is
less than every non-zero Casimir parameter appearing in the irreducible sub-representations
in the above direct integral decomposition. Notationally, H has a spectral gap if there is a
number µ0 > 0 with σ(�i) ∩ (0, µ0) = ∅ for i = 1, . . . , d.

4. Top-degree cohomology

Let us collect some of the notation we have defined so far. Our proof of Theorem A involves
an inductive step, where we will look at an irreducible representation H1 ⊗ · · · ⊗ Hd+1 of
a (d + 1)-fold product SL(2,R)× · · · × SL(2,R). It is convenient for us to use bold-faced

letters and symbols to index the last d components of this tensor product. For example, we
now have µ := (µ2, . . . , µd+1). The rest are listed below.

4.1. A collection of the notation.

• µ := (µ2, . . . , µd+1)
ν := (ν2, . . . , νd+1)
iν := (iν2, . . . , iνd+1

)
ǫ := (ǫ2, . . . , ǫd+1)

– These multi-indices are the parameters that define the representation H2⊗· · ·⊗
Hd+1 := Hµ.
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• Iν = Iν2 × · · · × Iνd+1
⊂ Zd

Z
d := Z

d
µ
= Zµ2

× · · · × Zµd+1
⊂ Zd

– These are indexing sets for the basis of Hµ. The two sets are essentially the
same, but shifted by iν .

Z := Zµ1

• ‖µ‖ := µ2 + · · ·+ µd+1

• l, j ∈ Z
d or Iν are elements of Zd

• |l|2 = l22 + · · ·+ l2d+1

|j|2 = j22 + · · ·+ j2d+1

• vl := vl2 ⊗ · · · ⊗ vld+1

– We use the letter v instead of u to denote the adapted basis elements (defined
in Section 3.1) of H2, . . . ,Hd+1, hoping that this makes the computations easier
to read.

• S(µ) :=

{
n = (σ2, . . . , σd+1) | σi =

{
0 or 1 if µi is not in the discrete series

0 if it is.

}

– This is the set of 0-1-vectors that indexes the X2, . . . , Xd+1-invariant distribu-
tions on Hµ.

• D
Hµ

n (vl) := DH2

σ2
(v2) · · ·D

Hd+1

σd+1
(vd+1)

• Σ(d) := 1 + d(d−1)
2

4.2. Preparatory lemmas. Theorem A for d = 1 is just Theorem 2.1. We take an inductive
step for (d+ 1)-fold products. Assume that for d-fold products, the obstructions to solving
the coboundary equation come from invariant distributions.

Now, in an irreducible unitary representation of SL(2,R)d+1, we take an element f ∈
WΣ(d+1)s(H1 ⊗ · · · ⊗ Hd+1) := WΣ(d+1)s(H1 ⊗ Hµ), where s > 1 and µ := (µ2, . . . , µd+1)
denotes the Casimir parameters for the irreducible representations H2, . . . ,Hd+1. Provided
that f ∈ ker IX1,...,Xd+1

, we would like to solve the coboundary equation

f = X1 g1 + · · ·+Xd+1 gd+1.

Our strategy is to split f as f = f1 + fµ, where f1 is in the kernel of all X1-invariant
distributions, and fµ is in the kernel of all X2, . . . , Xd+1-invariant distributions. To this end,

define for k ∈ Iν1, l ∈ Z
d and n ∈ S(µ),

f1(k, iν + 2l+ n) =
m(l)

D
Hµ

n (viν+2l+n)
·
∑

j∈Zd

f(k, iν + 2j + n)DHµ

n (viν+2j+n),(5)

where m : Zd → C such that
∑

l∈Zd m(l) = 1 and |m(l)| decreases to 0 exponentially fast
as |l| → ∞. Use (5) to define fµ = f − f1.

Remark. It is worth emphasizing that f1 is only non-zero on points of the form (k, iν+2l+n)
where n ∈ S(µ). For 0-1-vectors n that do not appear in S(µ), we have implicitly put
f1(k, iν + 2l+ n) = 0.

The following lemma establishes that this “splitting” of f preserves (some of) the regularity
of f . We will use the fact that, for two positive numbers A and B,

(1 + A+B) ≤ (1 + A)(1 +B)
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and

(1 + A)m(1 +B)n ≤ (1 + A+B)m+n.

Lemma 4.1. For s > 1, if f ∈ WΣ(d+1)s(H1 ⊗Hµ) then f1, fµ ∈ WΣ(d)s(H1 ⊗Hµ).

Proof. For f1, compute

‖f1‖
2
Σ(d)s

=
∑

(k,l)∈Iν1×Iν

(1 + µ1 + ‖µ‖+ 2(k +
ǫ

2
)2 + 2|l+

ǫ

2
|2)Σ(d)s |f1(k, l)|

2 ‖uk ⊗ vl‖
2

=
∑

n∈S(µ)

∑

k∈Iν1
l∈Zd

(1 + µ1 + ‖µ‖+ 2(k +
ǫ

2
)2 + 2 |iν + 2l+ n+

ǫ

2
|2)Σ(d)s

·

∣∣∣∣∣
m(l)

D
Hµ

n (viν+2l+n)

∣∣∣∣∣

2
∣∣∣∣∣∣
∑

j∈Zd

f(k, iν + 2j+ n)DHµ

n (viν+2j+n)

∣∣∣∣∣∣

2

‖uk ⊗ viν+2l+n‖
2 .

We then use the Cauchy–Schwartz inequality to bound the terms in the last line, giving

≤
∑

n∈S(µ)

∑

k∈Iν1
l∈Zd

(1 + µ1 + ‖µ‖+ 2(k +
ǫ

2
)2 + 2 |iν + 2l+ n+

ǫ

2
|2)Σ(d)s

∣∣∣∣∣
m(l)

D
Hµ

n (viν+2l+n)

∣∣∣∣∣

2

·


∑

j∈Zd

(1 + ‖µ‖+ 2 |iν + 2j+ n+
ǫ

2
|2)d·s |f(k, iν + 2j + n)|2 ‖uk‖

2 ‖viν+2j+n‖
2




·


∑

j∈Zd

(1 + ‖µ‖+ 2 |iν + 2j+ n+
ǫ

2
|2)−d·s |D

Hµ

n (viν+2j+n)|
2

‖uk‖
2 ‖viν+2j+n‖

2


 ‖uk ⊗ viν+2l+n‖

2 .

Continuing,

≤
∑

n∈S(µ)

∑

k∈Iν1
l∈Zd

(1 + µ1 + ‖µ‖+ 2k2 + 2 |iν + 2l + n+
ǫ

2
|2)Σ(d)s

∣∣∣∣∣
m(l)

D
Hµ

n (viν+2l+n)

∣∣∣∣∣

2

‖(f |k)‖
2
d·s

·


∑

j∈Zd

(1 + ‖µ‖+ 2 |iν + 2j+ n+
ǫ

2
|2)−d·s |D

Hµ

n (viν+2j+n)|
2

‖viν+2j+n‖
2


 ‖viν+2l+n‖

2 ,

by the definition of ‖(f |k)‖d·s. Finally, applying

(1 + A +B) ≤ (1 + A)(1 +B),
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we have

≤
∑

n∈S(µ)


∑

k∈Iν1

(1 + µ1 + 2(k +
ǫ

2
)2)Σ(d)s ‖(f |k)‖

2
d·s




·


∑

j∈Zd

(1 + ‖µ‖+ 2 |iν + 2j+ n+
ǫ

2
|2)−d·s |D

Hµ

n (viν+2j+n)|
2

‖viν+2j+n‖
2




·


∑

l∈Zd

(1 + ‖µ‖+ 2 |iν + 2l+ n+
ǫ

2
|2)Σ(d)s

∣∣∣∣∣
m(l)

D
Hµ

n (viν+2l+n)

∣∣∣∣∣

2

‖viν+2l+n‖
2


 .

Using, from Section 3.2, that

∑

k∈Iν1

(1 + µ1 + 2(k +
ǫ

2
)2)Σ(d)s ‖(f |k)‖

2
d·s ≤ ‖f‖2Σ(d)s+d·s

= ‖f‖2Σ(d+1)s ,

we have

‖f1‖
2
Σ(d)s ≤

∑

n∈S(µ)


∑

j∈Zd

(1 + ‖µ‖+ 2 |iν + 2j+ n+
ǫ

2
|2)−d·s |D

Hµ

n (viν+2j+n)|
2

‖viν+2j+n‖
2




·


∑

l∈Zd

(1 + ‖µ‖+ 2 |iν + 2l+ n+
ǫ

2
|2)Σ(d)s

∣∣∣∣∣
m(l)

D
Hµ

n (viν+2l+n)

∣∣∣∣∣

2

‖viν+2l+n‖
2




· ‖f‖2Σ(d+1)s .

By Lemma 3.4, and because s > 1, the term in the first line is finite. The term in the second
line is finite because m(l) decays exponentially.

This proves that f1 ∈ WΣ(d)s(H1 ⊗ Hµ), as desired, which immediately implies that
fµ ∈ WΣ(d)s(H1 ⊗Hµ). �

The following lemma is then automatic.

Lemma 4.2. If f ∈ WΣ(d+1)s(H1 ⊗ Hµ) then (f1 |l) ∈ WΣ(d)s(H1) for all l ∈ Iν and
(fµ |k) ∈ WΣ(d)s(Hµ) for all k ∈ Iν1.

The next lemma shows that (f1 |l) is in the kernel of all X1-invariant distributions on H1,
and that (fµ |k) is in the kernel of all X2, . . . , Xd-invariant distributions on Hµ.

Lemma 4.3. For every l ∈ Iν , we have (f1 |l) ∈ ker I
Σ(d)s
X1

(H1). Similarly, for every k ∈ Iν1,

we have (fµ |k) ∈ ker I
Σ(d)s
X2,...,Xd

(Hµ).
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Proof. We do the calculations for DH1

0 , DH1

1 , and D
Hµ

n . First, for l ∈ Z
d and any n ∈ S(µ),

DH1

0 (f1 |iν+2l+n)

=
∑

k∈Z

f1(iν1 + 2k, iν + 2l+ n) ‖viν+2l+n‖ DH1

0 (uiν1+2k)

=
∑

k∈Z


 m(l)

D
Hµ

n (viν+2l+n)
·
∑

j∈Zd

f(iν1 + 2k, iν + 2j + n)DHµ

n (viν+2j+n)




· ‖viν+2l+n‖ DH1

0 (uiν1+2k)

=
m(l) ‖viν+2l+n‖

D
Hµ

n (viν+2l+n)
·
∑

k∈Z

∑

j∈Zd

f(iν1 + 2k, iν + 2j+ n)DHµ

n (viν+2j+n)D
H1

0 (uiν1+2k)

=
m(l) ‖viν+2l+n‖

D
Hµ

n (viν+2l+n)
· D

H1⊗Hµ

0,n (f)

= 0,

and, if H1 is not from the discrete series,

DH1

1 (f1 |iν+2l+n)

=
∑

k∈Z

f1(iν1 + 2k + 1, iν + 2l+ n) ‖viν+2l+n‖ DH1

1 (uiν1+2k+1)

=
∑

k∈Z


 m(l)

D
Hµ

n (viν+2l+n)
·
∑

j∈Zd

f(iν1 + 2k + 1, iν + 2j+ n)DHµ

n (viν+2j+n)




· ‖viν+2l+n‖ DH1

1 (uiν1+2k+1)

=
m(l) ‖viν+2l+n‖

D
Hµ

n (viν+2l+n)
·
∑

k∈Z

∑

j∈Zd

f(iν1 + 2k + 1, iν + 2j+ n)DHµ

n (viν+2j+n)D
H1

1 (uiν1+2k+1)

=
m(l) ‖viν+2l+n‖

D
Hµ

n (viν+2l+n)
· D

H1⊗Hµ

1,n (f)

= 0.

We have just shown, for every l ∈ Iν , that (f1 |l) ∈ WΣ(d)s(H1) is in the kernel of every
X1-invariant distribution.
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For fµ, the calculations are somewhat quicker. For any n ∈ S(µ),

DHµ

n (fµ |k)

=
∑

l∈Zd

fµ(k, iν + 2l+ n) ‖uk‖ DHµ

n (viν+2l+n)

=
∑

l∈Zd


f(k, iν + 2l+ n)−

m(l)

D
Hµ

n (viν+2l+n)
·
∑

j∈Zd

f(k, iν + 2j+ n)DHµ

n (viν+2j+n)




· ‖uk‖ DHµ

n (viν+2l+n)

=
∑

l∈Zd

f(k, iν + 2l+ n) ‖uk‖ DHµ

n (viν+2l+n)

−
∑

l∈Zd

m(l) ·
∑

j∈Zd

f(k, iν + 2j+ n) ‖uk‖ DHµ

n (viν+2j+n)

= 0,

proving the lemma. �

We are now prepared to state the proof of a version of Theorem A for irreducible repre-
sentations, from which will follow Theorem A.

4.3. Irreducible case.

Theorem 4.4. Let H = H1⊗· · ·⊗Hd be an irreducible unitary representation of SL(2,R)d,
and let

min{µ1, . . . , µd} > µ0 > 0.

Then, for every s > 1 and t < s − 1, there is a constant Cµ0,s,t such that, for every f ∈
ker IΣ(d)s(H), there exist g1, . . . , gd ∈ W t(H) satisfying the degree-d coboundary equation (1)
for f , and satisfying the Sobolev estimates

‖gi‖t ≤ Cµ0,s,t ‖f‖s

for i = 1, . . . , d.

Proof. The theorem is known to hold for d = 1, by Theorem 2.1. Assume the theorem
holds for d-fold products. Our proof consists of showing that this implies the theorem for
(d+ 1)-fold products. Keep the same notations used in Section 4.

We are given f ∈ ker I
Σ(d+1)s
X1,...,Xd+1

(H1 ⊗ Hµ), with s > 1. We define f1 and fµ as in

(5). By Lemmas 4.2 and 4.3, we have that (f1 |l) ∈ ker I
Σ(d)s
X1

(H1) for all l ∈ Iν , and

(fµ |k) ∈ ker I
Σ(d)s
X2,...,Xd+1

(Hµ) for all k ∈ Iν1.

By the inductive hypothesis, for every l ∈ Iν , there exists gl ∈ W t(H1) satisfying X1 gl =
(f1 |l), where t < s − 1. Similarly, for every k ∈ Iν1, there exists h2,k, . . . , hd+1,k ∈ W t(Hµ)
satisfying

X2 h2,k + · · ·+Xd+1 hd+1,k = (fµ |k),
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where t < s− 1. Also, we have the estimates

‖gl‖t ≤ Cµ0,s,t ‖(f1 |l)‖s
and

‖hi,k‖t ≤ Cµ0,s,t ‖(fµ |k)‖s

for all i = 2, . . . , d + 1, where 0 < µ0 < min{µ1, . . . , µd}, and Cµ0,s,t is the constant from
Theorem 2.1.

Setting

g1(k, l) =
gl(k)

‖vl‖

and

gi(k, l) =
hi,k(l)

‖uk‖

for i = 2, . . . , d+ 1, we have that

d+1∑

i=1

Xi gi =
d+1∑

i=1

Xi

∑

(k,l)∈Iν1×Iν

gi(k, l) uk ⊗ vl

=

d+1∑

i=1

∑

(k,l)∈Iν1×Iν

gi(k, l) (Xi uk ⊗ vl)

=
∑

l∈Iν

‖vl‖
−1 (X1 gl)⊗ vl +

d+1∑

i=2

∑

k∈Iν1

‖uk‖
−1 uk ⊗ (Xi hi,k)

=
∑

l∈Iν

‖vl‖
−1 (f1 |l)⊗ vl +

d+1∑

i=2

∑

k∈Iν1

‖uk‖
−1 uk ⊗ (fµ |k)

= f,

and so g1, . . . , gd+1 constitute a formal solution to the coboundary equation. To see that it
is a bona fide solution, we just check the Sobolev norms,

‖g1‖
2
t =

∑

(k,l)∈Iν1×Iν

(1 + µ1 + ‖µ‖+ 2(k +
ǫ

2
)2 + 2 |l+

ǫ

2
|2)t |g1(k, l)|

2 ‖uk ⊗ vl‖
2

≤
∑

l∈Iν

∑

k∈Iν1

(1 + ‖µ‖+ 2 |l+
ǫ

2
|2)t (1 + µ1 + 2(k +

ǫ

2
)2)t |g1(k, l)|

2 ‖uk‖
2 ‖vl‖

2

=
∑

l∈Iν

(1 + ‖µ‖+ 2 |l+
ǫ

2
|2)t ‖gl‖

2
t

≤ C2
µ0,s,t

∑

l∈Iν

(1 + ‖µ‖+ 2 |l+
ǫ

2
|2)s ‖(f1 |l)‖

2
s

≤ C2
µ0,s,t

‖f‖2s ,
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and, for i = 2, . . . , d+ 1,

‖gi‖
2
t =

∑

(k,l)∈Iν1×Iν

(1 + µ1 + ‖µ‖+ 2(k +
ǫ

2
)2 + 2 |l+

ǫ

2
|2)t |gi(k, l)|

2 ‖uk ⊗ vl‖
2

≤
∑

k∈Iν1

∑

l∈Iν

(1 + ‖µ‖+ 2 |l+
ǫ

2
|2)t (1 + µ1 + 2(k +

ǫ

2
)2)t |gi(k, l)|

2 ‖vl‖
2 ‖uk‖

2

=
∑

k∈Iν1

(1 + µ1 + 2(k +
ǫ

2
)2)t ‖hi,k‖

2
t

≤ C2
µ0,s,t

∑

k∈Iν1

(1 + µ1 + 2(k +
ǫ

2
)2)s ‖(fµ |k)‖

2
s

≤ C2
µ0,s,t

‖f‖2s .

This proves Theorem A in the irreducible case. �

4.4. Proof of Theorem A.

Proof. We have a unitary representation H of SL(2,R)d with spectral gap, as in the the-
orem statement. Let s, t, µ0 be as in the theorem statement. Consider the direct integral
decomposition

H =

∫

⊕

Hλ ds(λ)

where ds-almost all Hλ are irreducible. Also, for all s ∈ R,

W s(H) =

∫

⊕

W s(Hλ) ds(λ).

Any f ∈ ker I
Σ(d)s
X1,...,Xd

(H) decomposes as

f =

∫

⊕

fλ ds(λ),

where fλ ∈ WΣ(d)s(Hλ). Since invariant distributions also decompose

I
Σ(d)s
X1,...,Xd

(H) =

∫

⊕

I
Σ(d)s
X1,...,Xd

(Hλ) ds(λ),

we have that, for ds-almost every λ,

fλ ∈ ker I
Σ(d)s
X1,...,Xd

(Hλ),

and so by Theorem 4.4, there are g1,µ, . . . , gd,µ ∈ W t(Hµ) satisfying the coboundary equation,
and the estimate

‖gi,µ‖t ≤ Cµ0,s,t ‖fµ‖s

in ds-almost every irreducible Hµ appearing in the decomposition. Set

gi :=

∫

⊕

gi,λ ds(λ),
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where gi,λ = gi,µ for all λ where fλ ∈ ker I
Σ(d)s
X1,...,Xd

(Hλ) and Hλ = Hµ is irreducible, and
gi,λ = 0 otherwise. Then

‖gi‖
2
t =

∫

⊕

‖gi,λ‖
2
t ds(λ)

≤ C2
µ0,s,t

∫

⊕

‖fλ‖
2
s ds(λ)

= C2
µ0,s,t

‖f‖2s .

The vectors g1, . . . , gd constitute a solution to the coboundary equation because the oper-
ators X1, . . . , Xd are decomposable with respect to the direct integral decomposition. This
completes the proof of Theorem A. �

5. Intermediate cohomology

Continuing with our usual notation, let H1 ⊗ · · · ⊗Hd be an irreducible unitary represen-
tation of the group SL(2,R)d, with all factors non-trivial. We define an n-form (of Sobolev
order at least τ) over the Rd-action on H1 ⊗ · · · ⊗ Hd to be a map

ω : (Lie(Rd))n → W τ (H1 ⊗ · · · ⊗ Hd)

which is linear and anti-symmetric. There is an exterior derivative, given by the formula

dω(V1, . . . , Vn+1) :=

n+1∑

j=1

(−1)j+1 Vj ω(V1, . . . , V̂j, . . . , Vn+1),

where “ ̂ ” denotes omission. One sees that dω is an (n+1)-form taking values in a lower
Sobolev space W τ−1(H1 ⊗ · · · ⊗ Hd).

One can see ω as an element ω ∈ W τ (H1 ⊗ · · · ⊗ Hd)
(dn), indexed by n-tuples from

{X1, . . . , Xd}. The form ω is said to be closed, and is called a cocycle, if dω = 0, or

dω(XI) :=

n+1∑

j=1

(−1)j+1Xij ω(XIj) = 0,

where I := (i1, . . . , in+1) with ij ∈ {1, . . . , d} is the multi-index, and

Ij := (i1, . . . , îj , . . . , in).

It is exact, and is called a coboundary, if there is an (n− 1)-form η satisfying dη = ω. Two
forms that differ by a coboundary are said to be cohomologous. We denote the space of
n-forms over the Rd-action on H1⊗· · ·⊗Hd by Ωn

Rd(W
τ (H1⊗· · ·⊗Hd)). (These mirror the

usual definitions from de Rham cohomology.)
Notice that if n = d, then ω is given by just one element ω(X1, . . . , Xd) = f ∈ W τ (H1 ⊗

· · · ⊗ Hd); it is automatically closed, and exactness is characterized by the existence of a
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(d− 1)-form η satisfying dη = ω. Or, setting η(XIj) = (−1)j+1gj,

dη(X1, . . . , Xd) =
d∑

j=1

(−1)j+1Xj η(XIj)

=
d∑

j=1

Xj gj

= f.

This is exactly the top-degree coboundary equation (1) from the first part of this paper.
It will be useful to define restricted versions of forms. For an n-form ω ∈ Ωn

Rd(W
τ (H1 ⊗

· · · ⊗ Hd)), define ω1 ∈ Ωn
Rd(W

τ(H1 ⊗ · · · ⊗ Hd)) to be indexed by 2 ≤ i1 < · · · < in ≤ d,

ω1(Xi1 , . . . , Xin) = ω(Xi1, . . . , Xin).

This is just the form ω, with the index 1 “missing.” Fixing a basis element uk ∈ H1, we can
define a restricted version (ω1 |k) ∈ Ωn

Rd−1(W
τ (H2 ⊗ · · · ⊗ Hd)) by

(ω1 |k)(Xi1 , . . . , Xin) = (ω(Xi1, . . . , Xin)) |k .

This is an n-form over the Rd−1-action by X2, . . . , Xd on H2 ⊗ · · · ⊗ Hd. We prove the
following lemma, which shows that if ω is a closed form, then so are ω1 and (ω1 |k).

Lemma 5.1. Let ω ∈ Ωn
Rd(W

τ (H1⊗· · ·⊗Hd)), with dω = 0. Then dω1 = 0 and d(ω1 |k) = 0
for all k ∈ Iν1.

Proof. These are calculations. First, for i1 ≥ 2,

dω1(Xi1 , . . . , Xin+1
) =

n+1∑

j=1

(−1)j+1Xij ω1(Xi1, . . . , X̂ij , . . . , Xin+1
)

=

n+1∑

j=1

(−1)j+1Xij ω(Xi1, . . . , X̂ij , . . . , Xin+1
)

= dω(Xi1, . . . , Xin+1
)

= 0.

The calculation for d(ω1 |k) is equally straight-forward. �

Closed (d − 1)-forms over the Rd-action on H1 ⊗ · · · ⊗ Hd are of special interest here.
The following proposition shows that for ω ∈ Ωd−1

Rd (W τ (H1 ⊗ · · · ⊗ Hd)) with dω = 0, the
top-degree cocycle

(ω1 |k) ∈ Ωd−1
Rd−1(W

τ (H2 ⊗ · · · ⊗ Hd))

is in the kernel of X2, . . . , Xd-invariant distributions, and hence is exact, for every k ∈ Iν1 ,
by Theorem A.

Proposition 5.2. Let ω ∈ Ωd−1
Rd (W τ (H1 ⊗ · · · ⊗ Hd)) be a closed (d − 1)-form. Then for

every k ∈ Iν1, we have that

(ω1 |k)(X2, . . . , Xd) ∈ ker Iτ
X2,...,Xd

.



HIGHER COHOMOLOGY FOR ANOSOV ACTIONS 27

Proof. Setting

fj := (−1)j+1 ω(X1, . . . , X̂j, . . . , Xd),

we have that
X1 f1 + · · ·+Xd fd = 0,

and f1 |k= (ω1 |k)(X2, . . . , Xd) ∈ W τ (H2 ⊗ · · · ⊗ Hd).
Suppose D ∈ W−τ(H2 ⊗ · · · ⊗ Hd) is X2, . . . , Xd-invariant. Define the map

D̄ : W τ (H1 ⊗ · · · ⊗ Hd) → W τ (H1)

by uk ⊗ vl : 7→ D(vl) · uk,

and extending linearly. Then D̄ is also X2, . . . , Xd-invariant, in the sense that D̄(Xi h) = 0
for all h ∈ W τ (H1 ⊗ · · · ⊗ Hd) and i = 2, . . . , d. Therefore,

D̄(X1 f1) = −D̄(X2 f2 + · · ·+Xd fd)

= 0,

since ω is closed. But D̄(X1 f1) = X1 D̄(f1) = 0 implies that D̄(f1) = 0, since H1 is not the
trivial representation.

Now,

D̄(f1) = D̄


∑

k∈Iν1

∑

l∈Iν

f1(k, l) uk ⊗ vl




=
∑

k∈Iν1

(∑

l∈Iν

f1(k, l)D(vl)

)
uk

= 0

implies that for each fixed k ∈ Iν1,∑

l∈Iν

f1(k, l)D(vl) = 0.

Of course, then

D(f1 |k) =
∑

l∈Iν

f1(k, l) ‖uk‖ D(vl) = 0,

proving the proposition. �

We are now prepared to state the proof of Theorem B for irreducible unitary representa-
tions.

5.1. Irreducible case.

Theorem 5.3. Let H1⊗· · ·⊗Hd be an irreducible representation of SL(2,R)d with no trivial
factor. Suppose s > 1 and 1 ≤ n ≤ d− 1. Then, for 0 < µ0 < min {µ1, . . . , µd} and any t <
s−1, there is a constant Cµ0,s,t > 0 such that for any n-cocycle ω ∈ Ωn

Rd(W
Σ(d)s(H1⊗· · ·⊗Hd))

there exists η ∈ Ωn−1
Rd (W t(H1 ⊗ · · · ⊗ Hd)) with dη = ω and
∥∥η(Xi1, . . . , Xin−1

)
∥∥
t
≤ Cµ0,s,tmin

{
‖ω(Xj1, . . . , Xjn)‖d·s

}

for all multi-indices 1 ≤ i1 < · · · < in−1 ≤ d, where the minimum is taken over all multi-
indices 1 ≤ j1 < · · · < jn ≤ d that become i1, . . . , in−1 after omission of one index.
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Proof. By way of induction, suppose intermediate cohomology groups vanish for Rp-actions
on H1 ⊗ · · · ⊗ Hp, where 2 ≤ p ≤ d − 1. The base case is the first cohomology over the
R2-action on H1 ⊗H2, known to vanish from [Mie07].

Let ω1 be obtained as above. Then for every k ∈ Iν1, (ω1 |k) is an n-form over the
Rd−1-action on H2 ⊗ · · · ⊗ Hd generated by X2, . . . , Xd. By Lemma 5.1, (ω1 |k) is closed.

If n < d − 1, the induction hypothesis implies that there exists an (n − 1)-form η1,k ∈
Ωn

Rd−1(W
t(H2 ⊗ · · · ⊗ Hd)) with dη1,k = (ω1 |k) and
∥∥η1,k(Xi1 , . . . , Xin−1

)
∥∥
t
≤ Cµ0,s,t min

{
‖(ω1 |k)(Xj1 , . . . , Xjn)‖(d−1)s

}

where the minimum is taken over multi-indices 2 ≤ j1 < · · · < jn ≤ d that become i1, . . . , in−1

after omission of one index.
On the other hand, if n = d − 1, then (ω1 |k) is a top-degree form over this Rd−1-action,

and Proposition 5.2 implies that

(ω1 |k)(X2, . . . , Xd) ∈ ker I
Σ(d)s
X2,...,Xd

⊂ ker I
Σ(d−1)s
X2,...,Xd

which in turn implies, by Theorem A, that there is an (n− 1)-form η1,k with dη1,k = (ω1 |k),
and satisfying∥∥∥η1,k(X2, . . . , X̂j, . . . , Xd)

∥∥∥
t
≤ Cµ0,s,t ‖(ω1 |k)(X2, . . . , Xd)‖s

≤ Cµ0,s,t ‖(ω1 |k)(X2, . . . , Xd)‖(d−1)s

for all j = 2, . . . , d.
Defining η1 ∈ Ωn−1

Rd (W t(H1 ⊗ · · · ⊗ Hd)) so that (η1 |k) = η1,k for all k ∈ Iν1 , we see that

dη1(Xi1 , . . . , Xin) = ω1(Xi1, . . . , Xin)

for i1 ≥ 2. Also,
∥∥η1(Xi1, . . . , Xin−1

)
∥∥2
t

=
∑

k∈Iν1

∑

l∈Iν

(1 + µ1 + ‖µ‖+ 2(k +
ǫ

2
)2 + 2|l+

ǫ

2
|2)t |η1(Xi1 , . . . , Xin−1

)(k, l)|2 ‖uk ⊗ vl‖
2

≤
∑

k∈Iν1

∑

l∈Iν

(1 + µ1 + 2(k +
ǫ

2
)2)t(1 + ‖µ‖+ 2|l+

ǫ

2
|2)t |η1(Xi1 , . . . , Xin−1

)(k, l)|2 ‖uk‖
2 ‖vl‖

2

=
∑

k∈Iν1

(1 + µ1 + 2(k +
ǫ

2
)2)t

∥∥(η1 |k)(Xi1 , . . . , Xin−1
)
∥∥2
t

≤ C2
µ0,s,t

∑

k∈Iν1

(1 + µ1 + 2(k +
ǫ

2
)2)tmin

{
‖(ω1 |k)(Xj1, . . . , Xjn)‖

2
(d−1)s

}

≤ C2
µ0,s,t

min
{
‖ω1(Xj1, . . . , Xjn)‖

2
d·s

}
.

Repeating the above procedure, define ηm ∈ Ωn−1
Rd (W t(H1 ⊗ · · · ⊗ Hd)) such that

dηm(Xi1 , . . . , Xin) = ωm(Xi1, . . . , Xin)

for m = 1, . . . , d, and the index m ∈ {1, . . . , d} missing. Exactly as above,
∥∥ηm(Xi1 , . . . , Xin−1

)
∥∥2
t
≤ C2

µ0,s,t
min

{
‖ωm(Xj1, . . . , Xjn)‖

2
d·s

}
,
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where the minimum is taken over all multi-indices 1 ≤ j1 < · · · < jn ≤ d (none equal to m)
that become i1, . . . , in−1 after omission of one index.

Setting

η :=
1

d− n+ 1
(η1 + · · ·+ ηd),

we have dη = ω and
∥∥η(Xi1, . . . , Xin−1

)
∥∥
t
≤ Cµ0,s,tmin

{
‖ω(Xj1, . . . , Xjn)‖d·s

}

for all multi-indices 1 ≤ i1 < · · · < in−1 ≤ d, where the minimum is taken over all multi-
indices 1 ≤ j1 < · · · < jn ≤ d that become i1, . . . , in−1 after omission of one index. This
proves the theorem. �

5.2. Proof of Theorem B.

Proof. Let H, µ0, s, t be as in the theorem statement, and 1 ≤ n ≤ d − 1. Let ω ∈
Ωn

Rd(W
Σ(d)s(H)) with dω = 0.

There is a direct decomposition

WΣ(d)s(H) =

∫

⊕

WΣ(d)s(Hλ) ds(λ)

where ds-almost every Hλ is irreducible and without trivial factors (by assumption), and ω
decomposes

ω(Xi1, . . . , Xin) =

∫

⊕

ωλ(Xi1 , . . . , Xin) ds(λ)

such that ds-almost every ωλ is a cocycle in Ωn
Rd(W

Σ(d)s(Hλ)), where Hλ = Hµ is irreducible.

For these λ, Theorem 5.3 supplies ηλ := ηµ ∈ Ωn−1
Rd (W t(Hµ)) with dηµ = ωµ and

∥∥ηµ(Xi1 , . . . , Xin−1
)
∥∥
t
≤ Cµ0,s,t min{‖ωµ(Xj1 , . . . , Xjn)‖d·s}

where the minimum is taken over all 1 ≤ j1 < · · · < jn ≤ d that become i1, . . . , in−1 after
omission of one index. For λ where Hλ is not irreducible without trivial factors, set ηλ = 0.
Defining

η(Xi1, . . . , Xin−1
) :=

∫

⊕

ηλ(Xi1, . . . , Xin−1
) ds(λ),

we have

∥∥η(Xi1, . . . , Xin−1
)
∥∥2
t
=

∫

⊕

∥∥ηλ(Xi1, . . . , Xin−1
)
∥∥2
t
ds(λ)

≤ C2
µ0,s,t

∫

⊕

min{‖ωµ(Xj1, . . . , Xjn)‖
2
d·s}

≤ C2
µ0,s,t min{‖ω(Xj1, . . . , Xjn)‖

2
d·s}.

Since all operators X1, . . . , Xd are decomposable, we have that η ∈ Ωn−1
Rd (W t(H)) satisfies

dη = ω, proving the theorem. �
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6. Proofs of Theorems 1.1 and 1.2

In this section we apply Theorems A and B to prove Theorems 1.1 and 1.2 from the
Introduction (Section 1.2). In fact, we prove versions of Theorems 1.1 and 1.2 for Sobolev
spaces.

For both of these theorems, we will need the left-regular representation of SL(2,R)d on
L2(SL(2,R)d/Γ) to satisfy the spectral gap assumption. This is provided by the following
theorem, which was proved for non-cocompact Γ by D. Kleinbock and G. Margulis in [KM99],
and for cocompact Γ by L. Clozel in [Clo03].

Theorem 6.1. Let G = G1 × · · · × Gk be a product of noncompact simple Lie groups, and
Γ ⊂ G an irreducible lattice. Then the restriction of L2(G/Γ) to every Gi has a spectral gap.

In particular, this implies that if Γ ⊂ SL(2,R)d is an irreducible lattice, then the regular
representation on L2(SL(2,R)d/Γ) has a spectral gap for each �i.

Theorem 6.2 (Sobolev spaces version of Theorem 1.1). Let Γ ⊂ SL(2,R)d be an irreducible
lattice. For s > 1 and t < s − 1 there is a constant Cs,t such that the following holds. For
any

f ∈ I
Σ(d)s
X1,...,Xd

(L2(SL(2,R)d/Γ)),

there exist functions
g1, . . . , gd ∈ W t(L2(SL(2,R)d/Γ))

satisfying

f = X1 g1 + · · ·+Xd gd

and the Sobolev estimates
‖gi‖t ≤ Cs,t ‖f‖s

for i = 1, . . . , d.

Proof. Since the left-regular representation of SL(2,R) on L2(SL(2,R)d/Γ) has spectral gap
for the Casimir operator coming from each copy of SL(2,R), we can apply Theorem A,
setting H = L2(SL(2,R)d/Γ). �

Proof of Theorem 1.1. Theorem 1.1 follows immediately, by noting that for any unitary rep-
resentation H, the space C∞(H) of smooth vectors coincides with the intersection of all
Sobolev spaces W s(H) of positive order s ≥ 0. �

Now, for Γ ⊂ SL(2,R)d an irreducible lattice, let L2
0(SL(2,R)

d/Γ) be the orthogonal
complement to the constant functions in L2(SL(2,R)d/Γ). Similarly, let W s

0 (SL(2,R)
d/Γ)

be the orthogonal complement to the constant functions in W s(SL(2,R)d/Γ). The following
is a version of Theorem 1.2 for forms taking values in Sobolev spaces.

Theorem 6.3 (Sobolev spaces version of Theorem 1.2). Let Γ ⊂ SL(2,R)d be an irreducible
lattice. For any s > 1 and t < s − 1, there is a constant Cs,t such that the following

holds. For 1 ≤ n ≤ d − 1 and any n-cocycle ω ∈ Ωn
Rd(W

Σ(d)s
0 (SL(2,R)d/Γ)), there exists

η ∈ Ωn−1
Rd (W t

0(SL(2,R)
d/Γ)) with dη = ω and

∥∥η(Xi1, . . . , Xin−1
)
∥∥
t
≤ Cµ0,s,tmin

{
‖ω(Xj1, . . . , Xjn)‖d·s

}

for all multi-indices 1 ≤ i1 < · · · < in−1 ≤ d, where the minimum is taken over all multi-
indices 1 ≤ j1 < · · · < jn ≤ d that become i1, . . . , in−1 after omission of one index.
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Proof. The left-regular representation of SL(2,R)d on L2
0(SL(2,R)

d/Γ) has spectral gap for
the Casimir operator coming from each of the factors of SL(2,R)d. Furthermore, since the
flows of X1, . . . , Xd are ergodic on SL(2,R)d/Γ, we know that the direct decomposition

L2
0(SL(2,R)

d/Γ) =

∫

⊕

Hλ ds(λ)

is such that ds-almost every Hλ is irreducible without trivial factors. We now apply Theorem
B. �

Proof of Theorem 1.2. Theorem 6.3 immediately implies that any smooth n-cocycle ω in
Ωn

Rd(C
∞(L2(SL(2,R)d/Γ))) is cohomologous to the constant form ωc given by

ωc(Xi1 , . . . , Xin) =

∫

SL(2,R)d/Γ

ω(Xi1, . . . , Xin) dmHaar.

This proves Theorem 1.2. �

Remark 6.4. If the lattice Γ is cocompact, then in Theorem 1.2 we can replace the space
of smooth vectors for the representation C∞(L2(SL(2,R)d/Γ)) with the space of smooth
functions C∞(SL(2,R)d/Γ).

Appendix A. On the passage from PSL(2,R) to SL(2,R)

For the sake of completeness, we elaborate on the proof of Theorem 2.1. Since it was
originally proved for PSL(2,R), we include here the observations necessary for the same
proof to apply to SL(2,R).

A.1. Difference equation. Let Hµ be an irreducible unitary representation of SL(2,R)
with Casimir parameter µ. For a given f ∈ Is

X(Hµ), where s > 1, we would like to solve the
coboundary equation

X g = f.(6)

Expressing f in the basis defined in Section 3.1, and applying Lemma 3.2, the coboundary
equation becomes the difference equation

b+(k − 1)g(k − 1)− b−(k + 1)g(k + 1) = f(k),(7)

where the sequences b+(k) and b−(k) are those defined in Section 3.1.2.
If Hµ is from the discrete series, we write the difference equation as

b+(n+ k)g(n+ k)− b−(n + k + 2)g(n+ k + 2) = f(n+ k + 1),(8)

for all k ≥ 0, and

−b−(n + 1)g(n+ 1) = f(n).
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A.2. Calculations in the principal and complementary series. Equation (7) is exactly
the difference equation that is solved in [Mie06]. There, Mieczkowski finds solutions g0 and
g1 to the homogeneous equation X g = 0 in the principal and complementary series. These
are defined by

g0(2k) =

|k|−1∏

j=0

b+(2j)

b−(2j + 2)

g0(2k + 1) = 0

and

g1(2|k|+ 1) = g1(−2|k| − 1) =

|k|∏

j=1

b+(2j − 1)

b−(2j + 1)

g1(2k) = 0,

and the initial values g0(0) = 1, g0(1) = 0, g1(0) = 0, and g1(1) = 1. It is easy to check that
these satisfy the homogeneous equation.

The next step is to construct the Green’s function

G(k, l) =

det

(
g0(l) g1(l)
g0(k) g1(k)

)

det

(
g0(l) g1(l)

g0(l + 1) g1(l + 1)

)

from which one can then write a formal solution to (7) as

g(2k) = −
∑

l≤k

G(2k, 2l− 1)

b−(2l)
f(2l − 1)

g(2k + 1) = −
∑

l≤k

G(2k + 1, 2l)

b−(2l + 1)
f(2l).

It is only left to check that this formal solution satisfies the Sobolev estimates from the
theorem. This is done by studying the asymptotic behavior of the homogeneous solutions
g0 and g1. Mieczkowski [Mie06] has estimates on the asymptotic properties of these homo-
geneous solutions for representations of PSL(2,R), i.e. for the case where ǫ = 0. We need
only show that the same estimates apply to the case ǫ = 1 (in the second principal series).
This follows from the following lemma, comparing the two cases.

Lemma A.1. For ν ∈ iR, and for all k > 0,

|g0ǫ=0(2k)| ≤ |g0ǫ=1(2k)| ≤ |g1ǫ=0(2k + 1)| ≤ |g1ǫ=1(2k + 1)| ≤ |g0ǫ=0(2k + 2)|.

Proof. This is routine calculation. �

From [Mie06] we have the following lemmas.

Lemma A.2 (4.3 from [Mie06]). For the principal series, ν ∈ iR, we have,

C−1
ν ((4|k|+ 1)2 + |ν|2)−

1

2 ≤ |g0(2k)|2 ≤ Cν((4|k|+ 3)2 + |ν|2)−
1

2
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and

C−1
ν ((4|k| − 1)2 + |ν|2)−

1

2 ≤ |g1(2k + 1)|2 ≤ Cν((4|k|+ 5)2 + |ν|2)−
1

2

where Cν is bounded in ν.

Lemma A.3 (4.5 from [Mie06]). For the complementary series, −1 < ν < 1, ν 6= 0, we
have,

1 + ν

3− ν
·

(
4|k| − 3 + ν

1 + ν

) ν−1

2

≤ |g0(2k)| ≤

(
4|k|+ 3− ν

3− ν

) ν−1

2

(9)

and

3 + ν

5− ν
·

(
4|k| − 1 + ν

3 + ν

) ν−1

2

≤ |g1(2k + 1)| ≤

(
4|k|+ 5− ν

5− ν

) ν−1

2

.(10)

After combining Lemma A.1 with the Lemma A.2, one can carry out Mieczkowski’s proof
to show that the desired Sobolev estimates hold for the formal solutions to the coboundary
equation in representations from the second principal series.

A.3. Calculations in the discrete series. In a representation Hµ from the discrete series,
we have µ ∈ {−n2 + n} ∪ {−n2 + 1

4
}. Define

g0(n + 2k) =

k−1∏

j=0

b+(n+ 2j)

b−(n + 2j + 2)

g0(n + 2k + 1) = 0

and

g1(n + 2k + 1) =
k∏

j=1

b+(n+ 2j − 1)

b−(n+ 2j + 1)

g1(n + 2k) = 0,

and the initial values g0(n) = 1, g0(n+1) = 0, g1(n) = 0, g1(n+1) = 1. Note that g1 no longer
solves the homogeneous version of Equation (8), because (X g1)(n) = −b−(n+1) = 1/2 6= 0.
Still it is useful to define g1 as above, and to estimate its asymptotic behavior.

Our proof of the following lemma includes the second holomorphic discrete series.

Lemma A.4 (4.6 from [Mie06]). For the discrete series, ν = 2n+ ǫ− 1, we have that

(
2k + ν + 1

ν + 1

) ν−1

2

≤ |g0(n+ 2k)| ≤

(
ν + 1

2

)
k

ν−1

2

and

(
2k + ν − 1

ν − 1

) ν−1

2

≤ |g1(n+ 2k + 1)| ≤
ν + 1

3
(2k − 1)

ν−1

2 .
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Proof. Since ν = 2n+ ǫ− 1, we have

g0(n+ 2k) =

|k|−1∏

j=0

b+(n + 2j)

b−(n+ 2j + 2)

=
k−1∏

j=0

(
1 +

ν − 1

2(j + 1)

)
.

Taking logarithms, and employing the inequality

x

1 + x
≤ log(1 + x) ≤ x,(11)

we have

ν − 1

2

k−1∑

j=0

1

(j + 1) + ν−1
2

=
k−1∑

j=0

ν − 1

2(j + 1) + ν − 1
≤ log |g0(2k)|.

The left-hand side can be estimated by the integral inequality

ν − 1

2

k−1∑

j=0

1

(j + 1) + ν−1
2

≥
ν − 1

2

∫ k

0

dx

(x+ 1) + ν−1
2

=
ν − 1

2
log

(
2k + 1 + ν

1 + ν

)
.

Exponentiating gives the first lower bound.
For the first upper bound, we write

g0(n + 2k) =

(
ν + 1

2

) k−1∏

j=1

(
1 +

ν − 1

2(j + 1)

)
,

and use the second part of (11) to estimate the product:

log

∣∣∣∣∣
k−1∏

j=1

(
1 +

ν − 1

2(j + 1)

)∣∣∣∣∣ =
k−1∑

j=1

log

(
1 +

ν − 1

2(j + 1)

)

≤
k−1∑

j=1

ν − 1

2(j + 1)
,

and this we can bound with the integral

k−1∑

j=1

ν − 1

2(j + 1)
≤

ν − 1

2

∫ k−1

0

dx

x+ 1

=
ν − 1

2
log k.

Exponentiating yields the upper bound.
The same procedure will give the estimates for g1(n+ 2k + 1). �
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A.3.1. Solution to coboundary equation in discrete series. In a representation from the dis-
crete series, where µ ∈ {−n2 + n} ∪ {−n2 + 1

4
}, there is only one X-invariant distribution

up to multiplication by a constant:

D0(un+2k+1) = 0

D0(un+2k) =
k∏

i=1

β(n+ 2i− 1).

As always, empty products are set to 1. That is, D0(un) = 1. The distribution D1, defined
by

D1(un+2k) = 0

D1(un+2k−1) =

k−1∏

i=1

β(n+ 2i),

is not X-invariant because

D1(X un) = D1((n+
ǫ

2
) un+1) = (n +

ǫ

2
) 6= 0.

Given f ∈ kerD0 ∩W s(Hµ), we would like to solve the coboundary equation defined by
the difference equation (8). Notice that we can express any f ∈ W s(Hµ) as

f =
∞∑

k=0

f(n+ 2k) un+2k +
∞∑

k=0

f(n+ 2k + 1) un+2k+1

:= feven + fodd,

and that one always has fodd ∈ kerD0. Therefore, f ∈ kerD0 if and only if feven ∈ kerD0.
Our strategy is to solve the coboundary equation for fe := feven and fo := fodd separately.

Lemma A.5. Let s > 1, t < s − 1. There is a constant Cs,t such that for any f ∈
kerD0 ∩W s(Hµ) of the form

f =
∞∑

k=0

f(n+ 2k) un+2k,

there exists g ∈ W t(Hµ) such that X g = f and ‖g‖t ≤ Cs,t · ‖f‖s.

Proof. By the second part of the difference equation (8), one sees that g(n+1) is determined
by f(n). One can use this to solve Equation (8) for g(n+3) and, successively for g(n+2k+1),
arriving at the formula

−g(n+ 2k + 1) =
1

b−(n + 2k + 1)

k−1∏

j=0

b+(n+ 2j + 1)

b−(n+ 2j + 1)

·
k∑

i=0

f(n+ 2i)

i−1∏

j=0

b−(n + 2j + 1)

b+(n + 2j + 1)

=
1

b−(n + 1)
g1(n+ 2k + 1)

k∑

i=0

f(n + 2i)D0(un+2i).
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Now, by our assumption that D0(f) = 0,

g(n+ 2k + 1) =
1

b−(n+ 1)
g1(n+ 2k + 1)

∞∑

i=k+1

f(n+ 2i)D0(un+2i).(12)

We can set g(n+ 2k) = 0 for all k ≥ 0.
It is only left to compute the Sobolev norm of g.

‖g‖2t =
∞∑

k=0

(1 + µ+ 2(n+ 2k + 1 +
ǫ

2
)2)t |g(n+ 2k + 1)|2 ‖un+2k+1‖

2

=

∞∑

k=0

(1 + µ+ 2(n+ 2k + 1 +
ǫ

2
)2)t

·

∣∣∣∣∣
1

b−(n+ 1)
g1(n+ 2k + 1)

∞∑

i=k+1

f(n+ 2i)D0(un+2i)

∣∣∣∣∣

2

‖un+2k+1‖
2

≤ ‖f‖2s ·

∣∣∣∣
1

b−(n+ 1)

∣∣∣∣
2 ∞∑

k=0

∞∑

i=k+1

(1 + µ+ 2(n+ 2k + 1 + ǫ
2
)2)t

(1 + µ+ 2(n + 2i+ ǫ
2
)2)s

· |g1(n + 2k + 1)|2 · |D0(un+2i)|
2

∣∣∣∣
Πν,ǫ,n+2k+1

Πν,ǫ,n+2i

∣∣∣∣

≤ ‖f‖2s ·
∞∑

k=0

∞∑

i=k+1

(1 + µ+ 2(n+ 2k + 1 + ǫ
2
)2)t

(1 + µ+ 2(n+ 2i+ ǫ
2
)2)s

·

∣∣∣∣
1

b−(n+ 2i+ 1)

∣∣∣∣
2
|g1(n + 2k + 1)|2

|g1(n+ 2i+ 1)|2

∣∣∣∣
Πν,ǫ,n+2k+1

Πν,ǫ,n+2i

∣∣∣∣ .

At this point we refer to estimates in [Mie06] which prove the lemma. �

Lemma A.6. Let s > 1, t < s− 1. There is a constant Cs,t such that for any f ∈ W s(Hµ)
of the form

f =
∞∑

k=0

f(n+ 2k + 1) un+2k+1,

there exists g ∈ W t(Hµ) such that X g = f and ‖g‖t ≤ Cs,t · ‖f‖s.

Proof. A formal solution is given by

− g(n+ 2k)

=
1

b−(n+ 2k)

(
k∑

i=1

f(n+ 2i− 1)
k−1∏

m=i

b+(n+ 2m)

b−(n+ 2m)
− b+(n)g(n)

k−1∏

m=1

b+(n + 2m)

b−(n + 2m)

)

=
1

b−(n+ 2k)

k−1∏

m=1

b+(n+ 2m)

b−(n+ 2m)

(
k∑

i=1

f(n+ 2i− 1)
i−1∏

m=1

b−(n + 2m)

b+(n + 2m)
− b+(n)g(n)

)
,

and we are left to choose g(n). The natural choice is

b+(n)g(n) =

∞∑

i=1

f(n+ 2i− 1)

i−1∏

m=1

b−(n+ 2m)

b+(n+ 2m)
,
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so that we can apply the same calculations here as the ones that conclude the proof of Lemma
A.5. We need to first see that g(n) is finite:

|b+(n)g(n)|2

=

∣∣∣∣∣
∞∑

i=1

f(n+ 2i− 1)
i−1∏

m=1

β(n+ 2m)

∣∣∣∣∣

2

≤
∞∑

i=1

(1 + µ+ 2(n+ 2i− 1 +
ǫ

2
)2)s|f(n+ 2i− 1)|2 ‖un+2i−1‖

2

·
∞∑

i=1

(1 + µ+ 2(n+ 2i− 1 +
ǫ

2
)2)−s

∣∣b+(n)
∣∣2
∣∣∣∣∣
i−1∏

m=0

b−(n + 2m+ 2)

b+(n+ 2m)

∣∣∣∣∣

2

‖un+2i−1‖
−2 ,

and by Lemmas A.4 and 3.1,

≤ ‖f‖2s ·
∞∑

i=1

(1 + µ+ 2(n+ 2i− 1 +
ǫ

2
)2)−s

(
n +

ǫ

2

)2 (2i+ ν + 1

ν + 1

)−ν+1

· C

(
2i

n + 1

)ν

.

The sum converges because s > 1. This shows that |g(n)| < ∞, as we have chosen it.
We now have

g(n+ 2k)

=
1

b−(n+ 2k)

k−1∏

m=1

b+(n+ 2m)

b−(n+ 2m)

∞∑

i=k+1

f(n+ 2i− 1)
i−1∏

m=1

b−(n + 2m)

b+(n + 2m)

=
1

b+(n)
g0(n + 2k)

∞∑

i=k+1

f(n+ 2i− 1)D1(un+2i−1).

The desired Sobolev estimate comes from an argument similar to the one in the proof of
Lemma A.5, starting at (12). �

Lemmas A.5 and A.6 imply Theorem 2.1 for representations of SL(2,R) from the first
and second holomorphic discrete series. This completes the extension of Theorem 2.1 from
PSL(2,R) to SL(2,R).
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