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Abstract

We investigate the existence of Arnold diffusion-type orbits for systems ob-
tained by iterating in any order the flows of a family of Tonelli Hamiltonians.
Our approach is close to the one of Bernard in [3]. When specialized to families
of twist maps, our results are similar to those of Moeckel [20] and Le Calvez
[15], and generalize the connecting results of Mather for a single twist map in
[18].

Résumé

Nous étudions l’existence d’orbites du type “diffusion d’Arnold” pour des
systèmes obtenus en itérant dans un ordre quelconque les flots d’une famille
d’Hamiltoniens Tonelli. Notre approche au problème est inspirée par celle de
Bernard dans [3]. Dans le cas d’une famille d’applications du cylindre déviant la
verticale, nos résultats sont similaires à ceux de Moeckel [20] et Le Calvez [15],
et généralisent les résultats de Mather pour une seule de ces applications dans
[18].
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1 Introduction

Much work has been carried out in order to understand the instability properties of
Hamiltonian systems, especially for Hamiltonians which are convex in the momenta
variables p. The basic case of a periodic Hamiltonian defined on the cotangent space
T ∗T ∼= T×R of the one-dimensional torus T = R/Z corresponds to exact-symplectic
twist maps on the cylinder, see [21]. Quite a lot is known in this case, thanks for
instance to the original works of Birkhoff [4, 5] and to the KAM and Aubry-Mather
theories for twist maps. In particular, a general principle is that the non-contractible
invariant circles are the unique obstruction to instability phenomena, such as the drift
in the p-variable.

The situation becomes more complicated when generalizing to higher dimension,
namely to Hamiltonians defined on T ∗Td, d ∈ N, or, more generally, on the cotan-
gent space T ∗M of a d-dimensional manifold M . In this setting, among others the
variational approach of Mather and Fathi’s weak KAM theory has been fruitful, es-
pecially in the framework of the so-called Tonelli Hamiltonians. The Mather, Aubry
and Mañé sets introduced by Mather and Fathi generalize the invariant circles and
the Aubry-Mather sets for twist maps, and provide at the same time both an ob-
struction and a dynamical skeleton for the instability phenomena. This has allowed
a better comprehension of the mechanisms underlying the phenomenon of Arnold
diffusion which was firstly exhibited in the seminal paper [1] on a concrete example.

Some studies have also been devoted to the following different generalization: one
keeps the dimension one, and consider instead a family of several twist maps at once,
which can be iterated in any order. Following [16], we shall call such a system a
polysystem, and polyorbits its (discrete-time) trajectories, see Definition 1.1 for more
rigour. Of course, the trajectories of a map in the family are also trajectories for
the polysystem, thus the polysystem presents at least the same unstable behaviors
as the single maps in the family. Nevertheless, one expects new kinds of unstable
behavior possibly to be created: some obstructions for a map may be circumvented
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by non-trivial iterations of other maps in the family. Moeckel [20], Le Calvez [15]
and Jaulent [14] have studied this problem, extending some results for single twist
maps to the polysystem case. In particular, the general emerging principle is that
the unique obstructions to instability phenomena, such as the drift in the p-variable,
are the common non-contractible invariant circles.

In this paper, we try to merge both generalizations, i.e. we deal with a family
of several Hamiltonians in arbitrary dimension and we investigate the presence of
unstable polyorbits (often we will call them “diffusion polyorbits” or “connecting
polyorbits”). More precisely, we will consider the polysystem associated to a family
F of one-periodic Tonelli Hamiltonians1 defined on the cotangent space of a compact
d-dimensional manifold M without boundary. Just as in the one-dimensional twist
map case, one expects that some new unstable behavior may be created by non-
trivial iterations of the time-one maps of the family. On the other hand, unlike the
single-Hamiltonian case, there is not a definition of Mather, Aubry and Mañé sets
for polysystems, hence one may expect the obstructions to come expressed in terms
of some more complicated objects.

Our discussion will be in the framework of weak Kam theory, for which we refer
to [12]. The ideas will be close to those in Bernard’s paper [3], of which the present
work may be seen as a generalization to the polysystem case (especially of Section
8 in that paper). We call our method for the construction of unstable polyorbits
“Mather mechanism”, after the paper [19] which introduced some of the basic ideas
of the construction. In [3] a slightly different “Arnold mechanism” is also presented,
more reminiscent of the aforementioned paper [1].

The results which we obtain are rather abstract in nature: essentially, they give
sufficient conditions in order for the diffusion orbits to occur between two cohomology
classes (in the sense of Proposition 1.2). The conditions are encoded, locally around
a cohomology class c, in a subspace R(c) of “allowed cohomological directions for
diffusion” (Theorem 1.3). This subspace is in turn defined (cf. (5.1) and Proposition
5.5) in terms of some sort of generalized Aubry-Mather sets for the polysystem (the
sets IΦ(G) defined in Remark 4.4(i)), which may be in principle quite difficult to
decipher. Maybe some further study may lead to more transparent conditions, at
least in presence of additional hypotheses. However, in the twist map case we are
able to recover “concrete” and “optimal” results (see Corollary 1.4), similar to those
already proved with different methods by Le Calvez and Moeckel, and extending
some other results of Mather for a single twist map in [18]. On the negative side,
using a result of Cui [10] we show that, if the Hamiltonians in the family commute,
our mechanism does not give rise to new instability phenomena, which is somehow
expected.

As for the interest in studying Hamiltonian polysystems, let us mention that a
motivation lies in the fact that the behavior of some complex single-Hamiltonian
systems may be to some extent reduced to the analysis of simpler polysystems. We

1we recall that a one-periodic Tonelli Hamiltonian is a C2 function H(x, p, t) defined on T ∗M×T
which is strictly convex and superlinear in p, and whose Hamiltonian flow is complete.

3



are aware for instance of a recent work of Bounemoura and Pannamen [6], and some
works of Marco therein cited.

1.1 Main results

Before introducing our results, let us review the kind of statements which we want
to generalize.

For an exact-symplectic twist map F on the cylinder T × R, the archetypal
instability result is the following: if, for A < B, the annulus T × [A,B] ⊂ T × R
does not contain any non-contractible invariant circle, then there exists an orbit
(xn, pn)n∈Z such that p0 < A and pN > B for some N ∈ N. This dates back to
Birkhoff [4, 5], and has been improved in various ways. Two improvements in the
framework of Aubry-Mather theory for twist maps will be relevant to us. The first
states that if Mw1 and Mw2 are two Aubry-Mather sets for F of rotation number w1

and w2 respectively, such that there is no non-contractible invariant circle between
them, then there exists an orbit {zn = (xn, pn)}n∈Z ⊂ T× R such that

α - lim zn ⊆ Mw1 and ω - lim zn ⊆ Mw2 .

The second states that if (wi)i∈Z are rotation numbers such that, for any i, there is
no non-contractible invariant circle between the Aubry-Mather sets Mwi

and Mwi+1 ,
then for every sequence (εi)i of positive number there exists an orbit which visits in
turn the εi-neighborhood of Mwi

. Both these results are due to Mather, we refer to
[18] for precise statements.

Of course, for a twist map, non-contractible invariant circles do represent ob-
structions to the drift in the p-variable, because they disconnect the cylinder, hence
the previous statements are optimal. Therefore the principle stemming from these
results is that non-contractible invariant circles are the only obstruction to this kind
of instability.

For a family of exact-symplectic twist maps on the cylinder, the generalization of
the Birkhoff result above obtained by replacing in the statement “non-contractible
invariant circle” with “common non-contractible invariant circle” is true. This and
other stronger results have been proved by Moeckel, Le Calvez and Jaulent [20, 15,
14]. Again, a common non-contractible invariant circle obviously is a real obstruction
to the drift in the p-variable, whence the optimality of these results and the principle
that, for a polysystem of exact twist maps, the common non-contractible invariant
circles are the only obstruction to this kind of instability.

For the case of a single Hamiltonian in higher dimension, usually only sufficient
conditions for the existence of unstable orbits can be proved. A great amount of
work has been devoted to this topic. Our approach is close to the one of Mather in
[19] and of Bernard in [3] (see also [2, 8, 9]). Their results are better expressed in
terms of cohomology classes rather than rotation vectors: in their papers, the au-
thors define equivalence relations in H1(M,R) such that equivalence between classes
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implies existence of diffusing orbits between the corresponding Aubry sets. The
obstruction for the equivalence is represented, roughly speaking, by the size of the
Mañé sets. Notice however that, unlike the one-dimensional case, the obstructions
for the equivalence may not always correspond to real obstructions for the dynamics.
Nevertheless, if d = 1 the obstructions to the equivalence turn out to be exactly the
non-contractible invariant circles. Therefore, the results on twist maps mentioned
above are recovered, and the equivalence relation is then optimal in this case.

The present paper has the same structure: we define (in terms of pseudographs
and of the flows of the Hamiltonians in the family F , see Sections 2 and 3) an
equivalence relation ⊣⊢F between cohomology classes, which is a natural adaptation
to the polysystem case of the relation ⊣⊢ introduced in [3]. We then prove that
the occurrence of such a relation implies the existence of diffusing polyorbits, in the
sense of Proposition 1.2. We find sufficient conditions (in terms of the “homological
size” of some sort of generalized Aubry sets) which ensure, locally around a given
class c, the occurrence of the relation. If d = 1, this conditions turn out to be also
necessary, hence the relation is optimal in this case. For F composed by a single
Hamiltonian, our results exactly reduce to the one in Section 8 of [3].

More precisely, let F be a family of one-periodic Tonelli Hamiltonians on T ∗M ,
where M is a d-dimensional compact manifold without boundary. For H ∈ F , we
denote by

φH : T ∗M → T ∗M

the time-one map of the Hamiltonian flow of H. Let us first rigorously define what
we mean by polyorbit.

Definition 1.1 (F-polyorbit). A bi-infinite sequence {zn}n∈Z ⊆ T ∗M is an F-
polyorbit if for every n ∈ Z there exists H ∈ F such that φH(zn) = zn+1.

We have (Section 3):

Proposition 1.2. There exists an equivalence relation ⊣⊢F on H1(M,R) such that:

- if c ⊣⊢F c′ then for every H,H ′ ∈ F there exists a polyorbit which is α-
asymptotic to the Aubry set ÃH(c) and ω-asymptotic to ÃH′(c′);

- if c ⊣⊢F c′ and if η, η′ are one-forms of cohomology c, c′ respectively, then there
exists a polyorbit (zn)n∈Z ⊂ T ∗M such that z0 ∈ Graph (η) and zN ∈ Graph (η′)
for some N ∈ N;

- let (ci,Hi, εi)i∈Z ⊂ H1(M,R) × F × ]0,+∞[ such that ci ⊣⊢F ci+1 for every
i. Then there exists a polyorbit visiting in turn the εi-neighborhoods of the
Mather sets M̃Hi

(ci). Moreover, if (ci,Hi) = (c̄, H̄) for i small enough (resp.
i big enough), then the polyorbit can be taken α-asymptotic to ÃH̄(c̄) (resp.
ω-asymptotic to ÃH̄(c̄)).

The main result is Theorem 5.7. Let us state it here for finite F , even if it will
hold under a weaker assumption.
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Theorem 1.3. Assume F is finite. Then for every c ∈ H1(M,R) there exist a
vector subspace R(c) ⊆ H1(M,R), a neighborhood W of c and ε > 0 such that

c′ ⊣⊢F c′ +BεR(c) ∀ c′ ∈ W.

Of course one needs to have information on the subspace R(c) for the result to
be interesting. The definition of R(c) is rather abstract and not too easy to handle
(cf. the definition given in (5.1) and some equivalent expressions given in Proposition
5.5).

Nevertheless, we are able to prove (Proposition 5.9) that if there exists a C1,1

weak Kam solution of cohomology c which is common to all the Hamiltonians in F ,
then R(c) = {0}. In addition, if d = 1, the viceversa is true: if R(c) = {0} then
there exists a C1,1 weak Kam solution of cohomology c common to all Hamiltonians
in F , i.e. a common non-contractible invariant circle.

This fact, together with Theorem 1.3 and Proposition 1.2 yields the following
result for families of twist maps (no additional assumptions on F will be eventually
needed):

Corollary 1.4. Let us consider the polysystem associated to an arbitrary family
F of one-periodic Tonelli Hamiltonians on T × R. Let us make the identification
H1(T,R) ∼= R. If, for some A < B ∈ R, the family F does not admit an invariant
common circle with cohomology in [A,B], then:

(i) there exists an F-polyorbit (xn, pn)n∈Z satisfying p0 = A and pN = B for some
N ∈ N;

(ii) for every H,H ′ ∈ F and every c, c′ ∈ [A,B] there exists an F-polyorbit α-
asymptotic to the Aubry set ÃH(c) and ω-asymptotic to ÃH′(c′);

(iii) for every sequence (ci,Hi, εi)i∈Z ⊂ [A,B] × F × ]0,+∞[ there exists an F-
polyorbit which visits in turn the εi-neighborhoods of the Mather sets M̃Hi

(ci).

When d > 1 some information can still be extracted from the subspace R(c). A
sample of what can be obtained will be presented in Proposition 5.11. Very roughly
speaking, among the obstructions which prevent R(c) from being large, we find:

- for every finite string H1, . . . ,Hn of elements of F , the invariant sets for the
map

φ = φHn ◦ · · · ◦ φH1 ;

- for every pair H1,H2 of elements of F , for every c-weak Kam solution u1 for
H1 and dual c-weak Kam solution u2 for H2, the set

Graph (du1) ∩ Graph (du2).

However, unlike the twist map case, such obstructions must be intended in a “nega-
tive” way: their smallness is a sufficient condition for R(c) to be large, the converse
being not necessarily true.
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1.2 Structure of the paper

The paper is organized as follows. In Section 2 we establish some notation and recall
some facts about pseudographs and semiconcave functions.

In Section 3 we define the forcing relation ⊢F and the mutual forcing relation
⊣⊢F , and we show, like in [3], how the occurrence of such relations implies the
diffusion for the polysystem (Proposition 3.2).

In Section 4 we present the objects needed later to put in place what we call the
Mather mechanism: Lagrangian action, Lax-Oleinik operators, operations on costs
(minimum, composition) and families of costs. Eventually we build the semigroup
Σ∞
c which acts on the space of pseudographs and encodes informations on the un-

derlying polysystem dynamics. The Subsection 4.3 gathers some needed results in
weak Kam theory, rephrased in the language of pseudographs.

In Section 5 the Mather mechanism for the construction of diffusion polyorbits is
put in place. The basic step of the mechanism is proved in Subsection 5.1. Then we
heuristically show the application to the twist map case in Subsection 5.2. Finally, in
Subsection 5.3 we define the subspace R(c) and we prove the general abstract result
(Theorem 5.7) which gives sufficient conditions for the occurrence of the relation ⊣⊢F

in terms of R(c). After the theorem we investigate its application to special cases
(such as twist maps and commuting Hamiltonians), and we discuss the properties of
R(c) in relation with the dynamics of the polysystem.

2 Notation. The space of pseudographs

In this section we recall from [3] some facts about pseudographs. We refer to that
article for a more detailed introduction.

Let M be a d-dimensional compact connected Riemannian manifold without
boundary. We denote by Ω the set of smooth closed one-forms on M and by π
the projection from the cotangent space T ∗M to M . If η ∈ Ω we denote by [η] ∈
H1(M,R) its cohomology class and, for S ⊆ Ω, [S] = {[η] : η ∈ S}.

If u : M → R is a Lipschitz function and η ∈ Ω, then the pseudograph Gη,u ⊂ T ∗M
is defined by

Gη,u = {(x, ηx + dux) : x ∈ M and dux exists} .

Given a subset N ⊂ M and a pseudograph G, the symbol G|N denotes the restriction
of G above N , that is G ∩ π−1(N).

Let us notice that Gη,u = Gη+df,u−f+α for any smooth f and α ∈ R. Viceversa, if
Gη,u = Gη′,u′ then η′ = η+df and u′ = u− f for some smooth f determined up to an
additive constant. In particular, every pseudograph G has a well-defined cohomology,
which we denote c(G) ∈ H1(M,R). The space E of pseudographs is then a quotient
of Ω×Lip(M) and inherits from it the structure of a vector space. This vector space
is isomorphic to H1(M,R) ×

(

Lip(M)/ ∼
)

where the relation ∼ means up to the
addition of constants. Given a linear section S : H1(M,R) → Ω (i.e. [S(c)] = c), an
isomorphism is given by (c, u) 7→ GS(c),u. The space E can be given a norm via the
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formula
‖GS(c),u‖ = ‖c‖H1 + |u|,

where |u| denotes half the oscillation of u, i.e. |u| = (max u−minu)/2.
Changing the section S or the norm ‖ · ‖H1 gives rise to an equivalent norm. In

the rest of the paper, S and ‖ · ‖H1 will be considered as fixed. Everything will be
well-defined regardless of our choice of S. Sometimes with a little abuse of language
we will write c in place of S(c), for instance Gc,u in place of GS(c),u.

We will be mostly concerned with a proper subset of E, namely

P =
{

Gc,u : c ∈ H1(M,R), u : M → R semiconcave
}

.

Some basic properties of semiconcave functions are quickly reviewed in Subsection
2.0.1. Every G ∈ P is called an overlapping pseudograph (the motivation for this
terminology is given in [3, Section 2.9]). The set P is closed under sum and multipli-
cation by a positive scalar, but not under difference or multiplication by a negative
scalar. In fact, the dual set P̆ of anti-overlapping pseudographs is defined as

P̆ = −P,

or, in other words, Gη,u ∈ P̆ if and only if u is semiconvex. If c ∈ H1(M,R) and
C ⊆ H1(M,R), the symbols Pc and PC stand for

Pc = {G ∈ P : c(G) = c}, PC =
⋃

c∈C

Pc.

and analogously for P̆c and P̆C .

Given G = Gc,u ∈ Pc and Ğ = Gc,v ∈ P̆c, the set

G ∧ Ğ ⊆ M

is defined as the set of the points of minimum of the difference u− v. This is a non
empty compact set. Moreover, dux and dvx exist for every x in G∧Ğ by semiconcavity,
and they coincide. For this reason, the following definition yields a non-empty subset
of T ∗M :

G∧̃Ğ := G|G∧Ğ = Ğ|G∧Ğ = G ∩ Ğ ∩ π−1(G ∧ Ğ) ⊆ G ∩ Ğ

and the last inclusion may be strict in general. The set G∧̃Ğ is compact and is a
Lipschitz graph over its projection G ∧ Ğ, by properties of semiconcave functions.
Observe that, if G and G′ are two arbitrary pseudographs in E with the same coho-
mology class, the definition of G ∧ G′ is still meaningful, but the set G∧̃G′ could be
empty in general.

Let us also notice that Ω can be naturally regarded as a subset of both P and P̆.
The inclusion is given by η 7→ Gη,0 = Graph (η).
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2.0.1 Semiconcave functions

Let us make a brief digression about semiconcave functions. We refer to [7] for
a comprehensive exposition in the Euclidean case. On a manifold, the notion of
semiconcavity is still meaningful, but the one of semiconcavity constant is chart-
dependent. Nevertheless, this difficulty can be bypassed, for instance by taking a
finite atlas as shown in [3, Appendix 1]. In this way it is still possible to talk about
the best semiconcavity constant of a function u on M (or M×M). It will depend on
the particular finite atlas, but this choice will not affect the final results. We shall
denote it by sc(u). It satisfies

sc (inf
λ
{uλ}) ≤ sup

λ

{sc(uλ)}, (2.1)

for any family of functions {uλ}λ, provided that the infimum is finite. Moreover, if
un converges uniformly to u, then

sc(u) ≤ lim inf sc(un). (2.2)

A semiconcave function is differentiable at every point of local minimum (and the
differential is 0).

A family of functions {uλ}λ is called equi-semiconcave if and only if sc(uλ) ≤ C
for some constant C independent of λ. We will use a lot the following fact: a family
of equi-semiconcave functions is equi-Lipschitz (see for instance [7, Theorem 2.1.7]).

Finally, the set of semiconcave functions is closed under sum and multiplication
by a positive scalar. A function u such that −u is semiconcave is called semiconvex.
A function is both semiconcave and semiconvex if and only if it is C1,1.

3 The forcing relation and diffusion polyorbits

Let F be an arbitrary family of one-periodic Tonelli Hamiltonians on M . In the
sequel we will denote with the same symbol F also the family of Tonelli Lagrangians
associated to the Hamiltonians in F via the Fenchel-Legendre transform. The context
will avoid any confusion.

Our goal is to prove existence of diffusion polyorbits, in the sense discussed in the
Introduction. In this section, we first adapt to the polysystem framework the notion
of forcing relation which was introduced in [3] for the case of a single Hamiltonian.
Then, we show (Proposition 3.2) how this relation implies the diffusion: roughly
speaking, if the cohomology class c forces the class c′, then there will exist diffusion
polyorbits from cohomology c to cohomology c′, in a sense which will be made precise
in the proposition. The aim of the later sections will then be to give sufficient
conditions for the forcing relation to occur between two cohomology classes.

Let us recall that we denote by φH the time-one map of an Hamiltonian H. We
define φF of a subset S ⊆ T ∗M as follows:

φF (S) =
⋃

H∈F

φH(S),
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so that, for instance φ2
F (S) = φF (φF (S)). Given two arbitrary subsets S and S′ of

T ∗M , we write

S ⊢N,F S′ def
⇐⇒ S′ ⊆

N
⋃

n=0

φn
F (S).

Notice that z1 ∈ T ∗M is joined to z2 by a finite F-polyorbit of length less or equal
to N if and only if {z1} ⊢N,F {z2}. We write S ⊢F S′, and we say that S forces S′,
if S ⊢N,F S′ for some N ∈ N. We will mainly interested to the case in which S and
S′ are two pseudographs in P.

We now extend the definition of ⊢F to cohomology classes. If W and W′ are two
subsets of P, we write

W ⊢N,F W′ def
⇐⇒ ∀G ∈ W ∃G′ ∈ W′ : G ⊢N,F G′.

We write W ⊢F W′, and we say that W forces W′, if W ⊢N,F W′ for some N ∈ N. If
W = Pc or W = PC , for some c ∈ H1(M,R) or C ⊆ H1(M,R), we simply write c or
C in place of Pc or PC . Similarly for W′ = Pc. So, for instance, if c and c′ are two
cohomology classes, the relation

c ⊢N,F c′

means that for every G ∈ Pc there exists G′ ∈ Pc′ such that G ⊢N,F G′.
The relation ⊢F is reflexive and transitive (between subsets as well as between

cohomology classes). In the sequel, it will be useful to consider the symmetrized
relation

c ⊣⊢F c′,

which means that c ⊢F c′ and c′ ⊢F c. We say that c and c′ force each other. The
following fact directly follows from the definitions.

Proposition 3.1. The relation ⊣⊢F is an equivalence relation on H1(M,R).

We can now restate and prove Proposition 1.2 about the existence of diffusion
polyorbits. The proof is essentially the same as in [3, Proposition 5.3].

Let us recall that a F-polyorbit (or simply a polyorbit) is a bi-infinite sequence
(zn)n∈Z such that for every n there exists Hn ∈ F satisfying φHn(zn) = zn+1. A
finite polyorbit is a finite segment of a polyorbit.

Proposition 3.2.

1. Let c ⊢F c′. Let H,H ′ ∈ F and η, η′ be two smooth closed one-forms of
cohomology c and c′ respectively. Then:

(i) there exists a polyorbit which is α-asymptotic to ÃH(c) and ω-asymptotic
to ÃH′(c′);

(ii) there exists a polyorbit (zn)n∈Z which satisfies z0 ∈ Graph (η) and zN ∈
Graph (η′) for some N ∈ N;
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(iii) there exists a polyorbit (zn)n∈Z which satisfies z0 ∈ Graph (η) and is ω-
asymptotic to ÃH′(c′);

(iv) there exists a polyorbit (zn)n∈Z which is α-asymptotic to ÃH(c) and sat-
isfies z0 ∈ Graph (η′).

2. Let
(ci,Hi, εi)i∈Z ⊆ H1(M,R)×F × ]0,+∞[

such that ci ⊢F ci+1. Then there exists a polyorbit (zn)n∈Z which visits in turn
the εi-neighborhoods of the Mather sets M̃Hi

(ci). Moreover, if (ci,Hi) = (c̄, H̄)
for i small enough (resp. i big enough), then the polyorbit can be taken α-
asymptotic to ÃH̄(c̄) (resp. ω-asymptotic to ÃH̄(c̄)).

Proof of 1. The proof of any one of the four statements relies on the following fact:
given G ∈ Pc and G′ ∈ P̆c′ , there exists a finite polyorbit joining G to G′. Indeed,
since c ⊢F c′, for any G ∈ Pc there exists G′′ ∈ Pc′ such that G′′ ⊆ ∪N

n=0φ
n
F (G), for

some N . Hence every point in G′∩G′′ (we know from Section 2 that this intersection
is not empty) is joined by a finite polyorbit to G.

The first statement now follows by taking G = Gc,u with u a c-weak Kam solution
for H and G′ = Gc′,u′ with u′ a dual c′-weak Kam solution for H ′. Every point in G
is α-asymptotic for the flow of H to ÃH(c) and every point in G′ is ω-asymptotic for
the flow of H ′ to ÃH′(c′). This is a general property of weak Kam solutions, which
will be recalled in Proposition 4.10. Hence, every finite polyorbit joining G to G′ can
be extended to a bi-infinite polyorbit as in statement (i).

The second statement is obtained in a similar way by taking G = Gη,0 and
G′ = Gη′,0. The remaining two statements are similar.

Proof of 2. It is a natural adaptation of the proof in [3, Proposition 5.3 (ii)].

4 Lagrangian action and Lax-Oleinik operators

In this section we introduce the objects needed to put in place, in the next sec-
tion, the Mather mechanism for the construction of diffusion polyorbits. We start
by summarizing in Proposition 4.1 those aspects of the time-one action of a Tonelli
Lagrangian which will be useful in the sequel. It is standard to associate to these
actions (or, more generally, to any cost, i.e. any continuous function on M ×M) a
Lax-Oleinik operator, which can be interpreted also as an operator on pseudographs
(formula (4.4)). We describe how the properties of the actions have nice counter-
parts in the corresponding Lax-Oleinik operators and in the consequent dynamics
on pseudographs (Remark 4.4). These nice features are not lost under some opera-
tions on costs such as minimums and compositions (Proposition 4.6). In this way,
starting from the “basic bricks” of the time-one actions of the Lagrangians in F , we
will eventually be able to build, for every cohomology c, a large semigroup Σ∞

c of
Lax-Oleinik operators (Subsection 4.4).

11



In the case of just one Tonelli Lagrangian (i.e. F singleton), this language allows
to concisely rephrase some aspects of the weak Kam theory (Subsection 4.3). In the
case of general F , the dynamics of Σ∞

c on P is related to the dynamics on T ∗M of
the semigroup generated by the time-one maps φH , H ∈ F . Crucially, the semigroup
Σ∞
c will contain, after passing to the limit, the operators associated to the Peierls

barriers, along with their successive compositions. This aspect, together with the
possibility of “shadowing” these operators with “finite-time” ones, will be at the
hearth of the Mather mechanism in the next section.

4.1 Lagrangian action

Given a one-periodic Tonelli Lagrangian L on M and a closed smooth one-form η,
the time-one action AL,η : M ×M → R is defined by

AL,η(y, x) = min
γ(0)=y,γ(1)=x

∫ 1

0
L
(

γ(t), γ̇(t), t
)

− ηγ(t)(γ̇(t)) dt (4.1)

where the minimum is taken over absolutely continuous curves γ. It is well-known
that minimizers exist. The following important properties of AL are also well-known.

Proposition 4.1.

(i) AL,η+df (y, x) = AL,η(y, x) + f(y)− f(x); this is immediate from the definition.

(ii) η 7→ AL,η is continuous if Ω is endowed with the topology induced from the
space of pseudographs E introduced in Section 2 (for a proof see [3, Appendix
B.6]).

In view of (i) above, this is equivalent to the continuity of c 7→ AL,S(c).

(iii) AL,η is semiconcave. Even more, if C ⊂ H1(M,R) is compact, then {AL,S(c)}c∈C
is equi-semiconcave (for a proof see [3, Appendix B.7]).

(iv) ∂xAL,η(y, x) exists if and only if ∂yAL,η(y, x) exists and in that case we have

(

x, ηx + ∂xAL,η(y, x)
)

= φH

(

y, ηy − ∂yAL,η(y, x)
)

,

where H is the Hamiltonian associated to L.

The time-n action An
L is defined by letting A1

L = AL and by induction

An+1
L,η (y, x) = min

z∈M

{

An
L,η(y, z) +A1

L,η(z, x)
}

or, equivalently,

An
L,η(y, x) = min

γ(0)=y,γ(n)=x

∫ n

0
L
(

γ(t), γ̇(t), t
)

− ηγ(t)(γ̇(t)) dt,

the minimum being over absolutely continuous curves.

12



It is well-known that, given L, there exists an unique function α : H1(M,R) → R
such that the function

hL,η(y, x) = lim inf
n→∞

An
L,η(y, x) + nα([η])

is real-valued for every η; the family hL ≡ {hL,η}η is called the Peierls barrier of L.
It clearly satisfies the property (i) of Proposition 4.1; it also satisfies the property
(iii), this will be proved in detail in Subsection 4.3.

4.2 Lax-Oleinik operators

For any compact space X, the set of continuous functions C(X) will be endowed
with the standard sup-norm ‖ · ‖∞.

Any continuous function A ∈ C(M ×M) will be called a cost. To any cost A, it
is possible to associate the Lax-Oleinik operator TA : C(M) → C(M) defined by

TAu(x) = min
y∈M

{

u(y) +A(y, x)
}

, u ∈ C(M)

and the dual Lax-Oleinik operator T̆A : C(M) → C(M)

T̆Au(y) = max
x∈M

{

u(x)−A(y, x)
}

, u ∈ C(M).

We call IA(u) ⊆ M the set of points y such that TAu(x) = u(y) + A(y, x) for some
x. Let us now list without proof some basic properties of these objects. We recall
that | · | indicates half the oscillation of a function.

Proposition 4.2.

(i) The minimum and the maximum in the above formulas are actually achieved;
TAu and T̆Au actually belong to C(M) if u ∈ C(M);

(ii) if A′ is another cost and u′ another continuous function, then

‖TA′u′ − TAu‖∞ ≤ ‖A′ −A‖∞ + ‖u′ − u‖∞,

|TA′u′ − TAu| ≤ |A′ −A|+ |u′ − u|
(4.2)

(iii) IA(u) is compact and non-empty;

(iv) the set-valued function (A, u) 7→ IA(u) is upper-semicontinuos;

(v) for every A and u, we have T̆ATAu ≤ u and

IA(u) = {y ∈ M : T̆ATAu(y) = u(y)} = argmin
{

u− T̆ATAu
}

.

(vi) for every A and u, we have

TAT̆ATA u = TA u and T̆ATAT̆A u = T̆A u;
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(vii) if A is semiconcave, then TAu is semiconcave for any u, and sc(u) ≤ sc(A).

We are going to consider families of costs indexed by closed smooth one-forms.
Let us give some definitions.

Definition 4.3. Let A ≡ {Aη}η∈Ω be a family of costs indexed by the closed smooth
one-forms. We say that A is:

(i) geometric if Aη is Lipschitz for every η and

Aη+df (y, x) = Aη(y, x) + f(y)− f(x) ∀ f smooth; (4.3)

(ii) continuous if
Ω ∋ η 7→ Aη is continuous

where Ω is endowed with the topology induced from E, see Section 2. Notice
that if a family A is geometric, the continuity of c 7→ AS(c) is sufficient in
order to have the continuity of η 7→ Aη; here S is the linear section chosen in
Section 2.

(iii) locally equi-semiconcave if, for any compact C ⊂ H1(M,R), the family {AS(c)}c∈C
is equi-semiconcave;

(iv) of F-flow-type if there exists N ∈ N such that the following holds:

∃ ∂xAη(y, x), ∃ ∂yAη(y, x)

⇒
(

y, ηy − ∂yAη(y, x)
)

⊢N,F

(

x, ηx + ∂xAη(y, x)
)

;

We say that A is of N,F-flow-type if we want to specify the N .

If all the above conditions are satisfied, we say for short that A is a F-family.

Observe that the Proposition 4.1 says that the time-one actions {AL,η}η, L ∈ F ,
are F-families. In the next subsection we are going to introduce some operations on
costs which will preserve the property of being an F-family. This will allow to use
the Lagrangian time-one actions as “basic bricks” to build lots of F-families of costs.

The utility of a F-family comes from the following remark.

Remark 4.4.

(i) If A ≡ {Aη}η∈Ω is a geometric family of costs then

TAη+df
(u− f) = TAη(u)− f.

Hence, an induced operator on pseudographs ΦA : E → E is well-defined by

ΦA(Gη,u) = Gη,TAηu
(4.4)
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along with the dual counterpart

Φ̆A(Gη,u) = G
η,T̆Aηu

.

Notice that c(ΦA(G)) = c(Φ̆A(G)) = c(G).

If A′ is another geometric family of costs, and if G = Gc,u,G
′ = Gc′,u′ ∈ E are

two pseudographs, we have the following estimate:

‖ΦA(G)− ΦA′(G′)‖E = ‖c− c′‖H1 + |TAcu− TA′

c′
u′|

≤ ‖G − G′‖E + |Ac −A′
c′ |

(4.5)

where in the second line we used (4.2).

In the same spirit, IAη+df
(u−f) = IAη(u), therefore the set IAη(u) is also well-

defined on pseudographs, and we will denote it by IA(G) or IΦA
(G). Items (v)

and (vi) in Proposition 4.2 translate respectively into

IΦA
(G) = G ∧ Φ̆AΦA(G). (4.6)

and
ΦAΦ̆AΦA = ΦA, Φ̆AΦAΦ̆A = Φ̆A. (4.7)

(ii) If {Aη}η is a continuous geometric family, then ΦA is continuous thanks to
the estimate (4.5). Moreover, IA(G) is upper-semicontinuous viewed as a (set-
valued) function from E to M . Indeed, the composition

(η, u) 7→ (Aη , u) 7→ IAη(u)

is upper-semicontinuous (thanks to Proposition 4.2(iv)), and this remains true
when passing to the quotient space of pseudographs.

(iii) If {Aη}η∈Ω is a locally equi-semiconcave geometric family, then ΦA(P) ⊆ P
and ΦA(PC) is relatively compact for all compact C ⊂ H1(M,R). This is a
consequence of Proposition 4.2(vii) and the Ascoli-Arzelà Theorem (we recall
that equi-semiconcave implies equi-Lipschitz). The analogous result holds true
for Φ̆A.

(iv) If {Aη}η is a N,F-flow-type, locally equi-semiconcave and geometric family of
costs, then

G|IA(G) ⊢N,F ΦA(G) ∀G ∈ P. (4.8)

This important fact is obtained by writing G = Gη,u and then applying Propo-
sition 4.5. The dual statement is also true and is proved analogously. It can
be expressed as

G|ĬA(G) ⊢N,−F Φ̆A(G) ∀G ∈ P̆.

Here we have denoted by −F the family {−H : H ∈ F}; its elements are not
Tonelli Hamiltonians but the relation ⊢−F is still meaningful. We have also
denoted by ĬA(G) the set of points x ∈ M such that T̆Aηu(y) = u(x)−Aη(y, x)
for some y (and η and u are such that G = Gη,u).
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Proposition 4.5. Suppose the family of costs {Aη}η satisfies the assumptions in
Remark 4.4(iv). Let u : M → R be semiconcave and v = TAηu. Then, for every x
such that dvx exists and for every y such that v(x) = u(y) +Aη(y, x), we have

∃ duy and (y, ηy + duy) ⊢N,F (x, ηx + dvx).

Proof. The proof is essentially the same as in [3, Proposition 2.7] but we report it
for completeness. Let x be such that dvx exists, and let y be such that v(x) = u(y)+
Aη(y, x). From the definition of TAη , one gets that the function y′ 7→ u(y′)+Aη(y

′, x)
has a minimum at y. Being the sum of two semiconcave functions, both of them
have to be differentiable at y and

duy + ∂yAη(y, x) = 0.

Similarly, the function x′ 7→ v(x′)−Aη(y, x
′) has a maximum at x. Since dvx exists

and −Aη is semiconvex, we get that

dvx − ∂xAη(y, x) = 0.

Hence by the N,F-flow-type property we get the desired result:

(x, ηy + duy) =
(

x, ηy − ∂yAη(y, x)
)

⊢N,F

(

x, ηx + ∂xAη(y, x)
)

= (x, ηx + dvx).

4.2.1 Operations on costs and families of costs

There are three quite natural operations on costs. For A,A′ two costs and λ ∈ R,
they are defined as follows:

(A,λ) 7→ A+ λ (addition of constant)

(A,A′) 7→ min{A,A′} (minimum)

(A,A′) 7→ A′ ◦A(y, x) = min
z∈M

{

A(y, z) +A′(z, x)
}

(composition).

It is easily checked that the three of them are continuous in their arguments and
that the Lax-Oleinik operators well-behave in the following sense: for u ∈ C(M), we
have

TA+λu = TAu+ λ

Tmin{A,A′} = min{TAu, TA′u} (4.9)

TA′◦Au = TA′ ◦ TAu.

We can define the same operations on families of costs in the obvious way: for
A ≡ {Aη}η and A′ ≡ {A′

η}η,

(A+ λ)η = Aη + λ([η]), min{A,A′}η = min{Aη, A
′
η}, (A′ ◦A)η = A′

η ◦ Aη,

where we suppose that λ is a function from H1(M,R) to R.
The following proposition shows that these operations preserve the properties

expressed in the Remark 4.4.
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Proposition 4.6. Let A,A′ be two F-families of costs, and λ : H1(M,R) → R be
a continuous function. Then A + λ, min{A,A′} and A′ ◦ A are F-families as well.
Moreover, we control the semiconcavity constants as follows (we omit the subscript
η):

sc(A+ λ) = sc(A) sc(min{A,A′}) ≤ max{sc(A), sc(A′)}

sc(A′ ◦ A) ≤ max{sc(A), sc(A′)}.

Proof. We have to verify the four conditions in Definition 4.3. Conditions (i) and
(ii) are easy. The condition (iii), i.e. the local equi-semiconcavity, is obvious for the
family A+ λ and is true for the family min{A,A′} because of (2.1). For A′ ◦ A, we
have, at fixed z, that (x, y) 7→ A(y, z) +A′(z, x) is max{sc(A), sc(A′)}-semiconcave,
hence (x, y) 7→ A′ ◦ A(y, x) is max{sc(A), sc(A′)}-semiconcave too, again by (2.1).

As for the condition (iv), i.e. the F-flow-type property, it is obvious for A + λ.
For min{A,A′}, we notice that, by semiconcavity, ∂xmin{A,A′}η(y, x) exists if and
only if both ∂xAη(y, x) and ∂xA

′
η(y, x) exist and coincide, and in this case

∂xmin{A,A′}η(y, x) = ∂xAη(y, x) = ∂xA
′η(y, x).

The same happens with ∂y. Hence, we can use the F-flow-type property of A to
obtain

(

y, ηy − ∂y min{A,A′}η(y, x)
)

=
(

y, ηy − ∂yAη(y, x)) ⊢N,F

(

x, ηx + ∂xAη(y, x)
)

=
(

x, ηx + ∂xmin{A,A′}η(y, x)
)

.

It remains to prove the F-flow-type property for A′ ◦ A. Let y, x be such that
∂y(A

′ ◦A)η(y, x) and ∂x(A
′ ◦A)η(y, x) exist, and let z be a point of minimum in the

expression
(

A′ ◦ A
)

η
(y, x) = min

z∈M
{Aη(y, z) +A′

η(z, x)}.

Considering here y as a fixed parameter, we can apply Proposition 4.5. Using the
F-flow-type property for A′, we obtain that

(z, ηz + ∂xAη(y, z)) ⊢N ′,F (x, ηx + ∂x(A
′ ◦ A)η(y, x)).

Similarly, we can consider x as a fixed parameter and obtain

(y, ηy + ∂yAη(y, z)) ⊢N,F (z, ηz + ∂xAη(y, z)).

This implies the conclusion.

From (4.9) we also deduce that

ΦA+λ = ΦA, ΦA′◦A = ΦA′ ◦ΦA

IA+λ(G) = IA(G), Imin{A,A′}(G) ⊆ IA(G) ∪ IA′(G), IA′◦A(G) ⊆ IA(G). (4.10)
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Instead, we are not able to find an analogous formula for Φmin{A,A′}. Let us notice
that even if ΦA+λ = ΦA, the operation of adding a constant is not completely
immaterial: it has a role for operators associated to costs such as min{A+λ,A′+λ′}.
If λ′−λ is sufficiently big, then the corresponding operator will be ΦA, and if λ−λ′ is
sufficiently big, the operator will be ΦA′ . Intermediate values of λ′−λ will correspond
to intermediate situations.

4.3 Weak Kam theory

In this subsection we consider the special case F = {L} and we rephrase in the
language of pseudographs some standard results in weak Kam theory. Some of them
have already been used in Proposition 3.2, and some others will be used in Section
5.

An important role in the theory is played by the so-called weak Kam solutions.
There are several equivalent definitions for them. The one which we are going to use
is: given a Tonelli Lagrangian L and a cohomology class c, a c-weak Kam solution
for L is a solution u ∈ C(M) of the equation

u = TAL,c
u+ αL(c),

where αL : H
1(M,R) → R is Mather’s α-function appeared in Subsection 4.1. A

dual weak Kam solution is defined as a solution u ∈ C(M) of the equation

u = T̆AL,c
u− αL(c)

In fact, αL(c) is the unique constant such that the above equations admit a solution.
We say that u is a weak Kam solution (resp. dual weak Kam solution) if it is a
c-weak Kam solution (resp. dual weak Kam solution) for some c.

It is no surprise, in view of the definition of ΦAL
in (4.4), that the language of

pseudographs allows to concisely reformulate these concepts. From that definition it
is indeed immediate that:

u is a c-weak Kam solution for L ⇔ Gc,u is a fixed point of ΦAL
. (4.11)

In view of this, we shall call weak Kam solutions as well the fixed points of ΦAL
,

and c-weak Kam solutions the fixed points in Pc. Analogously for dual weak Kam
solutions, with Φ̆A in place of ΦA. Notice that two c-weak Kam solutions u and u′

differing by a constant correspond to the same weak Kam solution Gc,u = Gc,u′ .
Another important object in weak Kam theory is the Peierls barrier hL, intro-

duced in Subsection 4.1. Let us point out that

hL,c = lim
n→∞

lim
m→∞

min{An
L,c + nα,An+1

L,c + (n+ 1)α, . . . , Am
L,c +mα}, (4.12)

and that, by Proposition 4.6, the families of costs appearing in the right-hand side
are locally equi-semiconcave in the sense of Definition 4.3, with a local (in c) common
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bound for their semiconcavity constants. Hence, they have a local (in c) common
bound for their Lipschitz constants. By the Ascoli-Arzelà theorem, this implies that
the two limits are uniform (for any fixed c). Since uniform limits preserve semicon-
cavity constants, we get that the family of costs hL is locally equi-semiconcave in
the sense of Definition 4.3. Remark 4.4(iii) thus applies.

The next proposition reformulates in our language the well-known identities

min
z∈M

{

hL,c(y, z) +AL,c(z, x) + αL(c)
}

= hL,c(y, x),

min
z∈M

{

AL,c(y, z) + hL,c(z, x) + αL(c)
}

= hL,c(y, x),

min
z∈M

{

hL,c(y, z) + hL,c(z, x)
}

= hL,c(y, x) ∀ y, x ∈ M.

Proposition 4.7. Let hL ≡ {hL,c}c be the family of costs associated to the Peierls
barrier of L. The following identities hold true:

ΦAL
◦ΦhL

= ΦhL

ΦhL
◦ΦAL

= ΦhL

ΦhL
◦ΦhL

= ΦhL

This proposition has important consequences. Indeed, it implies the following
characterizations of weak Kam solutions.

Proposition 4.8. Let L be a Tonelli Lagrangian, c ∈ H1(M,R) and u : M → R be
a continuous function. The following are equivalent:

(i) u is a c-weak Kam solution for L;

(ii) Gc,u is a fixed point of ΦAL
;

(iii) Gc,u is a fixed point of ΦhL
;

(iv) Gc,u belongs to ΦhL
(E).

The dual statement obtained by replacing ‘c-weak Kam solution’ with ‘dual c-weak
Kam solution’, Φ with Φ̆ and P with P̆ is also true.

Proof.
(i) ⇔ (ii) has been already pointed out in (4.11);
(iii) ⇒ (ii): let G be such that ΦhL

(G) = G. We then have, by Proposition 4.7,

ΦAL
(G) = ΦAL

ΦhL
(G) = ΦhL

(G) = G;

(iii) ⇒ (iv) is obvious;
(iv) ⇒ (iii): let G ∈ ΦhL

(E); then there exists G′ ∈ E such that ΦhL
(G′) = G. By

Proposition 4.7,
ΦhL

(G) = ΦhL
ΦhL

(G′) = ΦhL
(G′) = G;

(ii) ⇒ (iii): for a given G ∈ P, the set of costs A such that ΦA(G) = G is closed
under addition of constants, finite minimums, compositions and uniform limits. From
ΦAL

(G) = G and expression (4.12) we thus get ΦhL
(G) = G.
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The dual statement is proved analogously.

It is clear from the previous Proposition that weak Kam solutions belong to P and
dual weak Kam solutions belong to P̆. In d = 1, it is known that the non-contractible
invariant circles are exactly the pseudographs which are both weak Kam solutions
and dual weak Kam solutions. The following proposition will be crucial in the proof
of Proposition 5.9. As usual, H denotes the Tonelli Hamiltonian associated to L via
the Fenchel-Legendre transform.

Proposition 4.9.

(i) A weak Kam solution G ⊂ T ∗M is invariant for φ−1
H . A dual weak Kam

solution is invariant for φ1
H ;

(ii) if G is a weak Kam solution belonging to P̆, then automatically G is a dual weak
Kam solution. Analogously, a dual weak Kam solution belonging to P is a weak
Kam solution;

(iii) if G is both a weak Kam solution and a dual weak Kam solution, then G is a
Lipschitz φH-invariant graph over M ;

Proof.

(i) Let G be a weak Kam solution. From Remark 4.4(iv) we know that

G|IAL
(G) ⊢1,{L} ΦAL

(G).

that is, using the fact that ΦA(G) = G,

G ⊆ φ1
H

(

G|IAL
(G)

)

.

This proves φ−1
H (G) ⊆ G, that is the first claim. The dual claim is obtained

analogously, starting from the dual version of Remark 4.4(iv).

(ii) Let G be a weak Kam solution belonging to P̆. From the dual version of Remark
4.4(iv) and part (i), we deduce

Φ̆AL
(G) ⊆ φ−1

H (G) ⊆ G.

It is easy to verify that if an anti-overlapping pseudograph is contained in an
overlapping one, the two must coincide. Thus Φ̆AL

(G) = G, that is G is a dual
weak Kam solution. The dual statement is analogous.

(iii) Let G be both a weak Kam and a dual weak Kam solution. It is immediate
from part (i) that G is invariant both in the past and in the future. Moreover,
G has to belong to P ∩ P̆, hence it is a Lipschitz graph over M (recall that a
function both semiconcave and semiconvex is C1,1).
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We have just seen that a weak Kam solution G is invariant for φ−1
H . Hence the

sequence φ−n
H (G) is decreasing in n. Moreover, one may prove (see [3], or Proposition

4.16 in which we are going to prove some analogous statements in more general
situations) that its intersection is a compact invariant set in both past and future,
and

⋂

n∈N

φ−n
H (G) = G|IhL(G)

In view of (4.6), this set coincides with G∧̃Φ̆hL
(G).

We now introduce the c-Aubry set of L, denoted by ÃL(c), which appears in
Proposition 3.2. One of the possible definitions is the following:

ÃL(c) =
⋂

{

G|IhL (G) : G is a c-weak Kam solution
}

⊆ T ∗M.

For a weak Kam solution G, the set IhL
(G) = G ∧ Φ̆hL

(G) is also called the Aubry
set of G.

If G ∈ Pc and G′ ∈ P̆c, it is always true (see Section 2) that G∧̃G′ ⊆ T ∗M is a
compact set which is a Lipschitz graph over its projection G ∧ G′ ⊆ M , hence it is
clear that ÃL(c) is a compact Lipschitz graph over its projection too. It is invariant,
being the intersection of invariant sets. It is less obvious from this description, but
true, that ÃL(c) is non-empty.

Let us denote by VL and V̆L respectively the sets of weak Kam solutions and
dual weak solutions for L. The function ΦhL

and Φ̆hL
are inverse to each other when

restricted to these sets. More precisely,

ΦhL
◦ Φ̆hL |VL

= id, Φ̆hL
◦ΦhL |V̆L

= id.

This is due to the formulas (4.7). A pair of the type (G, Φ̆hL
(G)) ∈ V × V̆ is, up to

a constant, a conjugate weak Kam pair in the sense of Fathi (see [12]). Indeed, we
see from Proposition 4.2(v) that if u and ŭ are such that (Gc,u,Gc,ŭ) ∈ V × V̆ and

Gc,ŭ = Φ̆hL
(Gc,u), then u− ŭ is constant on the Aubry set of G (this constant is zero

if we choose ŭ = T̆hL
ThL

u).
The following property (which has been used in the proof of Proposition 3.2)

tells us that weak Kam solutions may be seen as a sort of unstable manifolds of the
Aubry set of L, and dual weak Kam solutions as stable manifolds. For the proof we
refer to [3, Proposition 4.3].

Proposition 4.10. For every c-weak kam solution G and every z ∈ G, the α-limit
of z for φ1

H is contained in Ã(c). Analogously, every point in a dual c-weak Kam
solution is ω-asymptotic to Ã(c).

Let us now give one of the possible definitions of the Mather set M̃L(c): it is the
union of the supports of the invariant measures for φ1

H which are contained in Ã(c).
It is a compact invariant set. Finally, the following is one of the possible definitions
of the Mañé set ÑL(c):

ÑL(c) =
⋃

{

G|IhL(G) : G is a c-weak Kam solution
}

.
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This also can be proved to be a compact invariant set. We have

M̃L(c) ⊆ ÃL(c) ⊆ ÑL(c) ⊆ T ∗M.

We refer to [12], [2] or [17] for a detailed analysis.

4.4 The semigroup Σ∞
c

In this section we somehow generalize the previous subsection to the case of more
than one Tonelli Hamiltonian. Let us recall that our final aim is to get informations
about the forcing relation ⊢F , in order to apply Proposition 3.2. We notice that
the properties in Proposition 4.1 of the time-one action of a Tonelli Lagrangian, and
in particular (iv), point in that direction. Proposition 4.6 tells us that these nice
properties are preserved by addition of constants, minimums and compositions. Let
us then call σ the class of all those families of costs which can be obtained starting
from the time-one actions AL, L ∈ F , through a finite number of these operations;
for instance, if L1, L2 ∈ F , then σ contains An

L1
, min{An

L1
: N ≤ n ≤ N ′}, An2

L2
◦An1

L1
,

min{AL1 + λ1, AL2 + λ2}, and so on, for all possible choices of parameters n,N, . . . .
Of course, σ contains {AL : L ∈ F} and is closed under addition of constants,
minimums and compositions. By Proposition 4.6 we immediately deduce:

Proposition 4.11. Every family A ∈ σ is a F-family according to Definition 4.3.
Hence, all the conclusions of Remark 4.4 apply to A, and in particular we have

G|IA(G) ⊢F ΦA(G) ∀G ∈ P.

We define Σ = {ΦA : A ∈ σ}, where ΦA is the operator defined by the formula
(4.4). By the formula ΦA′ ◦ ΦA = ΦA′◦A, Σ is a semigroup with respect to the
composition.

For a given c ∈ H1(M,R), we define σc = {Ac : A ∈ σ}. Let σ∞
c be the closure of

σc in C(M×M). Observe that the elements of σ∞
c are costs and not families of costs.

It is clear that σ∞
c is the smallest class containing {AL,c : L ∈ F} and closed under

addition of constants, minimums, compositions and uniform limits. Let us point out
the important fact that the Peierls barriers hL,c belong to σ∞

c as well, since the limits
involved in the definition are uniform (see the discussion after relation (4.12)).

In order to have good compactness properties, we will often make the assumption
that F is equi-semiconcave, according to the following definition:

Definition 4.12. We say that the family F is equi-semiconcave if, for every fixed
c, the time-one actions {AL,c : L ∈ F} form an equi-semiconcave set of functions on
M ×M .

Of course, a finite family F composed by Tonelli Hamiltonians is equi-semiconcave.
Let us now assume F equi-semiconcave. The elements of σ∞

c are then equi-
semiconcave by the estimates in Proposition 4.6, hence equi-Lipschitz. By Arzeli-
Ascolà theorem, σ∞

c is then closed under pointwise limits too. Being closed under
minimums, it is also closed under countable inf and liminf, provided that they are
finite. Being a separable space, it is actually closed under arbitrary inf and liminf,
provided that they are finite.
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Let us fix c ∈ H1(M,R). Every element A ∈ σ∞
c is a cost and not a family of costs,

hence in general it will not be associated to an operator from P to P. Nevertheless,
we can still define the operator ΦA : Pc → Pc by

ΦA(Gc,u) = Gc,TAu.

Since the costs in σ∞
c are semiconcave, the image ΦA(Pc) is really contained in Pc

(cf. Remark. 4.4(iii)). We define

Σ∞
c = {ΦA : Pc → Pc : A ∈ σ∞

c }.

This is a semigroup. The action of Σ∞
c gives a dynamics on Pc, which encodes

informations about the dynamics on T ∗M generated by the time-one maps φH , H ∈
F . Moreover, we can identify Σ∞

c with σ∞
c modulo addition of constants. It then

becomes a subset of a normed space by

‖ΦA‖ = |A| =
maxA−minA

2
.

Let us state some other properties. Item (iv) in the following Proposition is a sort
of “shadowing” property.

Proposition 4.13. Let F be equi-semiconcave.

(i) The composition

◦ : Σ∞
c × Σ∞

c → Σ∞
c

(Φ′,Φ) 7→ Φ′ ◦ Φ

is continuous.

(ii) for every Φ,Φ′ ∈ Σ∞
c and G,G′ ∈ Pc, it holds

‖Φ(G)− Φ′(G′)‖P ≤ ‖G − G′‖P + ‖Φ− Φ′‖ (4.13)

and in particular every Φ is 1-Lipschitz.

(iii) The function IΦ(G) is upper-semicontinuous in both Φ ∈ Σ∞
c and G ∈ P.

(iv) For all Φ ∈ Σ∞
c ,G ∈ Pc and U neighborhood of Φ(G) in Pc there exists Φ′ ∈ Σ

such that Φ′(G) ∈ U (in particular G ⊢F U by Proposition 4.11).

Proof. Item (i) is a direct consequence of the continuity of the composition between
costs. Item (ii) is analogous to the estimate (4.5). Item (iii) is an easy consequence
of Proposition 4.2 (iv). For item (iv), it suffices to choose A ∈ σc such that ΦA is
close enough to Φ. The conclusion follows then from item (ii).

Proposition 4.14. If F is an equi-semiconcave family, then σ∞
c is an equi-semiconcave

set of functions and Σ∞
c is compact.
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Proof. We already pointed out the equi-semiconcavity of σ∞
c . This implies equi-

Lipschitzianity. Since everything is up to additive constants, the compactness follows
from Ascoli-Arzelà Theorem.

In the next proposition we gather some properties of the minimal subsets of the
dynamical system (Pc,Σ

∞
c ) which will be needed in the next section. We recall that

a minimal subset is a compact subset of Pc which is stable by the semigroup Σ∞
c and

which does not contain any proper subset with the same properties. For compact
spaces the existence of minimal subsets is a standard Zorn’s Lemma argument (and
actually, for compact metric spaces the Zorn’s Lemma is not needed, see the proof
in [13]), but our space Pc is not compact, so this does not apply. Nevertheless, the
argument can be easily adapted when Σ∞

c is compact, as we are going to show.
The existence of minimal components is the unique point in the mechanism where

the equi-semiconcavity of F seems crucial. Anyway, it is perhaps possible to drop
this assumption, at the cost of slightly complicating the construction in the next
section. In Corollary 5.10 the assumption will be eventually dropped for the case
d = 1. See also Remark 5.12.

Proposition 4.15. Assume F is equi-semiconcave (so that Σ∞
c is compact by Propo-

sition 4.14). Then:

(i) there exists a minimal set; more precisely, for every G ∈ Pc its orbit {Φ(G) :
Φ ∈ Σ∞} contains a minimal set;

(ii) for every G ∈ Pc there exists Φ ∈ Σ∞
c such that Φ(G) belongs to a minimal set;

(iii) G ∈ Pc belongs to a minimal component M if and only if for every Φ ∈ Σ∞
c

there exists Φ′ ∈ Σ∞
c such that Φ′Φ(G) = G; in this case, M coincides with the

orbit of G; in particular, every minimal component M is transitive: for every
G,G′ ∈ M there exists Φ ∈ Σ∞

c such that Φ(G) = G′.

Proof.

(i) Given G ∈ Pc, its orbit is invariant and compact because Σ∞
c is a compact

semigroup. By a general result in topological dynamics, it contains a minimal
set;

(ii) this is immediate from (i);

(iii) let G ∈ M with M minimal, and consider Φ ∈ Σ∞
c . The orbit of Φ(G) contains

a minimal component by the proof of (i), and is contained in M because M is
invariant. By minimality of M, the orbit has to coincide with M. Viceversa,
suppose that for every Φ ∈ Σ∞

c there exists Φ′ ∈ Σ∞
c such that Φ′Φ(G) = G.

We know that the orbit of G contains a minimal set M by (i). The assumption
says that every invariant set contained in the orbit of G must contain G as well.
We deduce that M coincides with the orbit of G.
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In order to have a better understanding of the operators in Σ∞
c and the minimal

components of Pc, let us now further investigate about these objects in some special
cases.

- Case F = {L}. This was the case of the previous subsection. In addition to
what already said there, one can show that Σ∞

c is commutative in this case,
and that ΦΦhL,c

= ΦhL,c
Φ = ΦhL,c

for every Φ ∈ Σ∞
c . It is then easy to verify

that M is a minimal component if and only if M = {G} for some c-weak Kam
solution G.

- Commuting Hamiltonians. If the Hamiltonians in F commute with each other,
i.e. their Poisson bracket satisfies

{H,G} + ∂tH − ∂tG = 0 ∀H,G ∈ F ,

then it is known (see [10] for the time-periodic case and [11, 22] for the au-
tonomous case) that the associated Lax-Oleinik semigroups commute and that
the Hamiltonians in the family share the same weak Kam solutions and the
same Peierls barrier {hc}c. Thus Σ

∞
c is commutative and ΦΦhc = ΦhcΦ = Φhc

for every Φ ∈ Σ∞
c . In particular, the minimal components are exactly the

c-weak Kam solutions of one (hence all) Hamiltonian in F .

- General case. For every ΦA ∈ Σ∞
c it is possible to define an analogous of the

Peierls barrier. Indeed, arguing as for the case A = AL,c, one can show (see
[23]) that there exists a unique real number αA such that the liminf

hA = lim inf
n→+∞

An + nαA (4.14)

is real-valued. Exactly as for the Peierls barrier, we have ΦhA
∈ Σ∞

c , and anal-
ogous statements to Propositions 4.7 and 4.8(ii)-(iii)-(iv) hold. In particular
the image of ΦhA

coincides with its fixed points and with the fixed points of
ΦA.

Even if the general operator in Σ∞
c seems to be quite obscure, something can

be said for particular ones. We discuss the properties of two of them in the
next propositions. Let us pick two Hamiltonians H1 and H2 in F , and call
A1, A2 their c-time-one actions and h1, h2 their c-Peierls barriers (we omit the
subscript c). The two operators in Σ∞

c which we discuss in the propositions
are those associated to the costs A2 ◦ A1 and h2 ◦ h1.

As for the minimal components, they are also quite obscure. It is easy to verify
that if G is a weak Kam solution common to every Hamiltonian in F , then
G is fixed by the whole Σ∞

c and is thus a minimal component. Another easy
property is that every minimal component M must contain a fixed point of
every ΦA ∈ Σ∞

c : indeed, by invariance we have ΦhA
(M) ⊆ M, and, by the

properties of hA, the image of ΦhA
consists of the fixed points of ΦA.
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Proposition 4.16. Let H1,H2 ∈ F , and call A1, A2 their time-one actions and
φ1, φ2 their time-one maps. Let us also denote A = A2 ◦A1 and φ = φ2 ◦ φ1. Let us
consider the operator ΦA. The following hold true:

(i) for every G ∈ Pc and every n ∈ N it holds

φ−n
(

ΦAn(G)
)

⊆ G|IAn (G);

(ii) the fixed points G of ΦA are invariant in the past with respect to φ; more
precisely, they satisfy

φ−n(G) ⊆ G|IAn(G).

(iii) for every fixed point G of ΦA, the set G|IhA(G) is invariant in the past and in
the future with respect to φ;

(iv) every point in G is α-asymptotic to G|IhA(G) with respect to φ.

Proof.

(i) This is a more precise version of the relation

G|IAn (G) ⊢F ΦAn(G)

of Remark 4.4 (iv). It follows by a refinement of the proof of Proposition 4.5,
using property (iv) in Proposition 4.1;

(ii) it is immediate from item (i) since by definition a fixed point satisfies ΦA(G) =
G;

(iii) let G be a fixed point of ΦA. It follows from item (ii) that the set ∩nφ
−n(G), if

non-empty, is invariant both in the past and in the future. Hence it suffices to
show that this intersection is equal to G|IhA(G). For this aim, let us first notice
that

IhA
(G) =

⋂

n

IAn(G) (4.15)

Indeed, from hA ◦ An = hA and relations 4.10, it follows that the first set is
smaller than the second. For the reverse inclusion, write G = Gc,u, consider ȳ
belonging to the intersection in the right-hand side and let xn ∈ M be such that
u(xn) = u(ȳ) +An(ȳ, xn) +nαA. Then by definition of hA every accumulation
point x of the sequence xn satisfies

u(x) ≥ u(ȳ) + hA(ȳ, x)

and since u(x) = miny{u(y) + hA(y, x)}, we get that the minimum is achieved
in ȳ, thus ȳ ∈ IhA

(G). This proves (4.15). In order to conclude the proof of
item (iii), it suffices to prove that

⋂

n

φ−n(G) = G|
⋂

n IAn (G).
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The first set is smaller than the second by item (ii). The reverse inclusion
follows from the fact that, if z ∈ G|I

An+1(G), then φn(z) ∈ G. This follows from
property (iv) in Proposition 4.1 and a refinement of the proof of Proposition
4.5.

(iv) Let z ∈ G. By item (ii), for every N ∈ N the sequence φ−n(z) lies in G|I
AN (G)

for n big enough. Since this is a closed set, every α-limit of the sequence stay
in it. Taking the intersection over N gives the result, by equation 4.15.

Proposition 4.17. Let H1,H2 ∈ F , and call h1, h2 their Peierls barriers. Let us
also denote Ac = h2,c◦h1,c, for a fixed c. Let us consider the operator ΦA,c ∈ Σ∞

c and
the subsets V1,c,V2,c,VA,c ⊂ Pc of the fixed points of Φh1,c ,Φh2,c and ΦA,c respectively.
Then VA,c is contained in V2,c and is isometric to a subset of V1,c.

Proof. Obviously VA,c is contained in the image of ΦA,c, which is contained in the
image of Φh2,c , that is V2,c. Moreover, since ΦA,c = Φh2,c ◦Φh1,c , we get that Φh2,c is
a left inverse for Φh1,c on VA,c. Since both of them are 1-Lipschitz (cf. Proposition
4.13 (ii)), Φh1,c is an isometry between VA,c and Φh1,c(VA,c), which is a subset of
V1,c.

Let us point out that, if d = 1, the whole of Σ∞
c would not be needed for the

purposes of this article. Indeed, the heuristic discussion in Section 5.2 as well as the
proof of Proposition 5.9 show that the Peierls barrier operators ΦhL

, L ∈ F , would
suffice to get optimal results. Nevertheless, if d > 1, considering the whole of Σ∞

c

should in principle give strictly stronger (even if more abstract) results.

5 The Mather mechanism

We are now going to describe the Mather mechanism for the construction of diffusion
polyorbits. This section is organized as follows: we first prove the technical results
which are at the core of the Mather mechanism. Then we heuristically show how they
can be applied to polysystems of twist maps. Finally we prove a general theorem
and discuss some consequences and applications.

Loosely speaking, the mechanism works in the following way: we will be able to
associate to every c ∈ H1(M,R) a subspace R(c) ⊆ H1(M,R) of “allowed cohomo-
logical directions” for the forcing relation ⊣⊢F (and hence for the diffusion, in view
of Proposition 3.2). The obstruction for this subspace to be large will be, roughly,
the homological size of the sets IΦ(G), for G ∈ Pc and Φ ∈ Σ∞

c .

Throughout the whole section, the family F is assumed equi-semiconcave in the
sense of Definition 4.12, unless otherwise stated. For a subset S ⊆ M , we call S⊥ ⊆ Ω
the vector subspace of the smooth closed one-forms whose support is disjoint from
S and [S⊥] its projection on H1(M,R). It follows from the finite dimensionality of
H1(M,R) that there always exists an open set U ⊇ S such that [U⊥] = [S⊥]. Such
a U will be called an adapted neighborhood of S. Let us point out that, if M = T,
we have [S⊥] = {0} if and only if S = T, and otherwise [S⊥] = H1(T,R) ∼= R.
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5.1 The basic step

Let us introduce some notations: for c ∈ H1(M,R), G ∈ Pc,Φ ∈ Σ∞
c , we define

RΦ(G) = [IΦ(G)
⊥] = [G ∧ Φ̆Φ(G)⊥] ⊆ H1(M,R).

Here the second equality follows from 4.6. More generally, for Φ1, . . . ,Φn ∈ Σ∞
c , we

define

RΦ1,...,Φn(G) =
[

IΦn◦···◦Φ1(G)
⊥+IΦn◦···◦Φ2(Φ1(G))

⊥+ · · ·+IΦn

(

Φn−1◦· · ·◦Φ1(G)
)⊥

]

.

We will see in Proposition 5.3 that the subspace RΦ1,...,Φn(G) should be intended
as a subspace of “allowed cohomological directions for the forcing relation, through
the composition Φn ◦ · · · ◦ Φ1, starting from G”. By taking the union over all finite
strings (Φ1, . . . ,Φn), one should get a space of “allowed cohomological directions
for the forcing relation starting from G”. Afterward, by intersecting over all G
in Pc, one should get a space of “allowed cohomological directions for the forcing
relation starting from c”, which is basically what we are looking for in order to apply
Proposition 3.2. This motivates the following definitions:

R(G) =
⋃

Φ1,...,Φn∈Σ∞
c

n∈N

RΦ1,...,Φn(G)

R(c) =
⋂

G∈Pc

R(G) (5.1)

Notice that at this stage it is not clear weather R(G) or R(c) are vector subspaces.
In Proposition 5.5 several equivalent expressions for R(c) will be given. They will
imply that R(c) is indeed a vector subspace, and R(G) is a vector subspace for every
G in a minimal component of Pc.

We shall write RF (c) when we want to emphasize the dependence on the family
F . For a vector subspace V ⊆ H1(M,R), we denote the ε-radius ball centered at
the origin by Bε(V ).

The following lemma is the basic key step in the accomplishment of the Mather
mechanism. Indeed, given a family of costs A ∈ σ, the lemma shows how a pseudo-
graph G may force nearby cohomologies, with the set IA(G) acting as an obstruction
to this phenomenon. Furthermore, the semicontinuity in G of IA(G) allows to extend
the conclusion to a whole neighborhood of G.

Lemma 5.1. Let A be a F-family of costs according to the Definition 4.3 (in par-
ticular, A ∈ σ will work). Let ΦA be the associated operator on pseudographs. Then,
for every G ∈ P and for every neighborhood U of ΦA(G) in P there exist N ∈ N, a
neighborhood W of G and an ε > 0 such that:

∀ G′ ∈ W , ∀ c ∈ c(G′) +BεRΦA
(G) ∃G′′ such that

G′′ ∈ U, G′ ⊢N,F G′′, c(G′′) = c.
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Proof. Let us fix G, U and an adapted neighborhood U of IA(G). The set function
G 7→ IA(G) is upper semicontinuous by Remark 4.4 (ii), so that there exists a neigh-
borhood W′ of G such that IA(G

′) ⊆ U for all G′ ∈ W′. Moreover, by continuity of
Φ, we can suppose that Φ(W′) ⊆ U. The function

P× U⊥ ∋ (G, ν) 7→ G + Gν,0

is continuous, hence there exists a neighborhood W of G and a neighborhood W of 0
in U⊥ such that W+GW,0 ⊆ W′. Projections are open maps, so the projection of W
on the cohomology contains a ball Bε[U

⊥] centered at 0. With these choices of W
and ε, let G′ ∈ W and c ∈ c(G′) +Bε[U

⊥]. We can then take as G′′ the pseudograph
ΦA(G

′ + Gν,0) where ν ∈ W satisfies [ν] = c − c(G′). Indeed, by Remark 4.4(iv) we
find N such that

G′ ⊢0,F G′
|U =

(

G′ + Gν,0

)

|U
⊢N,F ΦA

(

G′ + Gν,0

)

= G′′.

The Lemma 5.1 easily extends to operators in Σ∞
c .

Proposition 5.2. Let Φ ∈ Σ∞
c . Then, for every G ∈ Pc and for every neighborhood

U of Φ(G) in P there exist N ∈ N, a neighborhood W of G and an ε > 0 such that:

∀G′ ∈ W , c ∈ c(G′) +BεRΦ(G) ∃G′′ such that

G′′ ∈ U, G′ ⊢N,F G′′, c(G′′) = c.

Proof. Let us fix G and U, and let us consider IΦ(G) and one of its adapted neigh-
borhoods U . By Proposition 4.13 there exists A ∈ σ such that ΦA(G) ∈ U and
IA(G) ⊆ U . This implies

RΦA
(G) = [IA(G)

⊥] ⊇ [U⊥] = [IΦ(G)
⊥] = RΦ(G).

We apply the previous proposition and we get the result.

In the following proposition we prove two similar results which show how Propo-
sition 5.2 has a good behavior under composition. The second version is in principle
stronger but, at least for an equi-semiconcave family F , the first version would even-
tually lead to the same results. Therefore a posteriori the second version is not
strictly needed here.

The main point in both results is that, if we compose several operators in Σ∞
c , the

set of allowed directions which we get is greater than just the union of the allowed
directions obtained by applying separately Proposition 5.2 to each operator. In fact,
we obtain the vector subspace generated by this union.

Proposition 5.3. Let Φ1, . . . ,Φn ∈ Σ∞
c . Then: for every G ∈ P and for every

neighborhood U of Φn ◦ · · · ◦ Φ1(G) in P there exist N ∈ N, a neighborhood W of G
and an ε > 0 such that:

∀G′ ∈ W, ∀ c ∈ c(G′) +Bε

(

RΦ1(G) +RΦ2(Φ1(G)) + · · · +RΦn

(

Φn−1 ◦ · · · ◦Φ1(G)
)

)

∃G′′ : G′′ ∈ U, G′ ⊢N,F G′′, c(G′′) = c.
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Stronger version. Under the same assumptions,

∀G′ ∈ W, ∀ c ∈ c(G′) +BεRΦ1,...,Φn(G)

∃G′′ : G′′ ∈ U, G′ ⊢N,F G′′, c(G′′) = c.

Proof. We suppose for simplicity n = 2. The result is obtained by applying two
times the Proposition 5.2 and by noticing that if Z ′, Z ′′ are linear subspaces of a
normed space and ε′, ε′′ > 0, then Bε′Z

′ + Bε′′Z
′′ contains Bε(Z

′ + Z ′′) for some
ε > 0.

Proof of the stronger version. Let us suppose n = 2 for simplicity. Let us consider
G ∈ P and a neighborhood U of Φ2Φ1(G). Let U1 and U2 be adapted neighborhoods
in M of IΦ2Φ1(G) and IΦ2(Φ1(G)) respectively. By Proposition 4.13, there exist
A1, A2 ∈ σ and a neighborhood W′ of G in P such that

ΦA2ΦA1(G
′) ∈ U, IA2◦A1(G

′) ⊆ U1 and IA2(ΦA1(G
′)) ⊆ U2 ∀G′ ∈ W′.

Let us now consider η1 ∈ U⊥
1 and η2 ∈ U⊥

2 . Given G′ = Gη,u ∈ W′, we have

Φ2

(

Φ1(G
′ + Gη1,0) + Gη2,0

)

= Gη+η1+η2,v

with
v := TA2,η+η1+η2

w w := TA1,η+η1
u.

Let x ∈ M be a point such that dvx exists. By Proposition 4.5, if z is a point which
realizes the minimum in the formula for v(x), then dwz exists and

dwz + ηz + η1,z + η2,z ⊢N2,F dvx + ηx + η1,x + η2,x

for some N2 ∈ N. In the same way, if y realizes the minimum in the formula for
w(z), then

duy + ηy + η1,y ⊢N1,F dwz + ηz + η1,z

for some N1 ∈ N.
A generalization of the upper-semicontinuity result in 4.4 (ii) shows that if [η1 +

η2] ∈ Bε[U
⊥
1 + U⊥

2 ] with ε small enough, then y ∈ U1 and z ∈ U2. We thus have
η1,y = 0 and η2,z = 0 and therefore

duy + ηy ⊢N1+N2,F dvx + ηx + η1,x + η2,x

which is to say
G′ = Gη,u ⊢N1+N2,F Gη+η1+η2,v.

The proof is now completed with G′′ = Gη+η1+η2,v, up to choosing G′ in a smaller
neighborhood W ⊆ W′ in such a way that ε can be fixed independently of G′.

Notice that, trivially, Lemma 5.1 is a particular case of Proposition 5.2, which in
turn is a particular case of Proposition 5.3.
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5.2 Heuristic application to twist maps

Even without the main general theorem 5.7 of the next subsection, it is possible at
this stage, using just the Proposition 5.3, to derive some results about diffusion in
polysystems of exact-symplectic twist maps on the cylinder. The discussion in this
subsection will just be an heuristic one, even if everything could be made rigorous.
The corresponding rigorous results will be proven in greater generality in the next
subsection (Proposition 5.9 and Corollary 5.10).

Let F be a family of Tonelli Hamiltonians on T×R. For simplicity we assume F =
{H1,H2}, and call L1, L2 the corresponding Lagrangians. Let us fix c ∈ H1(M,R).
We now show that either there exists a circle of cohomology c which is invariant for
both H1 and H2 (which obviously provides an obstruction to diffusion), or c forces
a whole neighborhood of cohomology classes (and thus there exists diffusion in the
sense of Proposition 3.2).

Indeed, suppose that such an invariant common circle exists. It is standard that
it can be identified with a pseudograph G which is invariant for both φH1 and φH2 .
In particular, by the very definition of forcing relation in Section 3, G is the only
pseudograph forced by G, and thus c is the only cohomology class forced by c.

Vice versa, let us suppose that there does not exist such a common invariant
circle. Let us consider G ∈ Pc, and let us apply Φh2 ◦ Φh1 to it (h1 and h2 are the
Peierls barrier of H1,H2). By the first version of Proposition 5.3, we get

G ⊢F c+Bε

(

RΦh1
(G) +RΦh2

(Φh1(G))
)

∀ G ∈ Pc. (5.2)

Recall that the image of Φh1 is contained in P and consists precisely of the weak Kam
solutions for H1, while the image of Φ̆h2 is contained in P̆ and consists of the dual
weak Kam solutions for H2. By assumption there do not exist common invariant
circles, hence, in view of Proposition 4.9,

Φh1(G) 6= Φ̆h2Φh2Φh1(G).

This implies (due to d = 1) that RΦh2
(Φh1(G)) = H1(T,R). Thus the formula (5.2)

implies that every G ∈ Pc forces a whole neighborhood of cohomology classes. In
that formula, ε depends in principle on G, but one can show that by compactness it
is possible to choose it uniformly in G. Therefore c forces a whole neighborhood of
cohomology classes, as claimed.

Notice how in this one-dimensional case our construction is optimal, in the fol-
lowing sense: the obstructions to the mechanism (i.e. the “homological size” of the
sets IΦ(G)) are real obstructions to the diffusion (i.e. the common invariant circles).
On the contrary, in d > 1 the construction likely gives just sufficient conditions for
the diffusion: the obstructions to this mechanism may be circumvented by a different
diffusion mechanism.

5.3 A general theorem and some applications

We can summarize the argument used in Subsection 5.2 for the one-dimensional
case by saying that we have applied Proposition 5.3 to ΦhL2

◦ ΦhL1
, and the result
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turned out to be optimal (so that there were no need to consider any other Φ ∈ Σ∞
c ).

Moreover, switching the order and considering ΦhL1
◦ ΦhL2

would have led to the
same result. The generalization of this argument to an arbitrary dimension d is not
completely straightforward: the choice of the operator could in principle make a
difference, and it is much less clear if the allowed directions which we can obtain are
optimal or not.

In order to overcome these difficulties, we will adopt a slightly more abstract
approach. This will give stronger conclusions, at the cost of a certain difficulty to
interpret the obstructions which we will found.

We start with a “raw” result which follows immediately from Proposition 5.3.

Proposition 5.4. Let c be fixed. For any G ∈ Pc and any finite string s =
(Φ1, . . . ,Φn) of elements of Σ∞

c , there exist ε(G, s) > 0 such that

c ⊢F c+
⋂

G∈Pc

⋃

s=(Φ1,...,Φn)
n∈N

Bε(G,s)

(

RΦ1,...,Φn(G)
)

. (5.3)

Proof. Recall that c ⊢F c′ if and only if G ⊢F c′ for all G ∈ Pc. The result is then a
consequence of Proposition 5.3.

The general theorem 5.7 will consist in a refined (but at the same time simpli-
fied) version of this raw result. Roughly speaking, it will be possible to replace the
intersection over G ∈ Pc with an intersection over a smaller set, to replace the union
with a sum of vector subspaces and to choose ε uniformly in G,Φ. This will simplify
the right-hand side, and will lead in the end to a unique subspace R(c) ⊆ H1(M,R)
encoding all the information. Moreover, exploiting some semicontinuity, the result
will be proved to hold for c′ close enough to c; it will also be possible to replace
the forcing relation ⊢F with the mutual forcing relation ⊣⊢F , and to have a locally
uniform control on the N appearing in its definition.

In order to motivate what follows, let us observe that the map G 7→ R(G) is
non-increasing along the action of elements of Σ∞

c . More precisely,

R(Φ(G)) ⊆ R(G) ∀ G ∈ Pc,Φ ∈ Σ∞
c . (5.4)

This can be interpreted by saying that this map is a sort of multi-valued Lyapunov
function for the dynamics in (Pc,Σ

∞
c ). Since we are interested in the set R(c), which

is the intersection of all the sets R(G), it is natural to look at the minimal components
of the dynamics, whose properties have been analysed in Proposition 4.15.

For a minimal component M of (Pc,Σ
∞
c ) let us define

R(M) =
⋂

G∈M

R(G).

Proposition 5.5 (Equivalent expressions for R(c)).
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(i) We have:

R(c) =
⋂

M minimal

R(M).

(ii) We have the following equivalent expressions for R(M):

R(M) = R(G) =
∑

Φ1,...,Φn∈Σ∞
c

n∈N

RΦ1,...,Φn(G) for any fixed G ∈ M

= RΦ1,...,Φn(G) for some Φ1, . . . ,Φn depending on G

=
∑

G∈M
Φ∈Σ∞

c

RΦ(G).

In particular, R(M) is a vector subspace for every M, and the same holds for R(c).

Proof. Let us prove item (i). By the definition of R(c) and R(M), it is clear that
R(c) ⊆ R(M) for every minimal component M, hence R(c) ⊆ ∩MR(M). For the
reverse inclusion, let us notice that, since F is equi-semiconcave, by Proposition
4.15(ii) for every G ∈ Pc there exists Φ ∈ Σ∞

c such that Φ(G) belongs to a minimal
component. By (5.4),

R(G) ⊇ R(Φ(G)) ⊇
⋂

M

R(M).

By taking the intersection over all G ∈ Pc, one gets the desired inclusion.
Let us now prove item (ii). Thanks to relation (5.4) and the transitivity of

minimal components (Proposition 4.15(iii)), we gets that the function G 7→ R(G)
is constant on every minimal component. This proves that R(M) = R(G) for any
G ∈ M. Moreover, again by transitivity, for every two strings (Φ1, . . . ,Φn) and
(Φ′

1, . . . ,Φ
′
n′) it holds

RΦ1,...,Φn(G) +RΦ′
1,...,Φ

′

n′
(G) = RΦ1,...,Φn,Φ,Φ′

1,...,Φ
′

n′
(G) ⊆ R(G)

where Φ is any operator in Σ∞
c such that Φ ◦Φn ◦ · · · ◦Φ1(G) = G. This proves that

R(G) ⊇
∑

Φ1,...,Φn∈Σ∞
c

n∈N

RΦ1,...,Φn(G) ∀G ∈ M

and the opposite inclusion is easy from the definitions. Moreover, since the dimension
of H1(M,R) is finite, this also prove that, for some n ∈ N,

R(G) = RΦ1,...,Φn(G) for some Φ1, . . . ,Φn ∈ Σ∞
c .

The equality R(M) =
∑

G∈M

∑

Φ∈Σ∞
c
RΦ(G) follows by similar arguments.
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Let us mention that, starting from the last expression for R(M) above, one can
show that considering just the weaker version of Proposition 5.3 would eventually
lead to the same results.

Remark 5.6. The function F 7→ RF (c) is increasing. This is natural in view of the
interpretation of RF (c) as a set of allowed directions for diffusion, and follows by an
inspection of the definitions (in fact, the map F 7→ Σ∞

c (F) is also increasing). In
particular, let us point out that, since RF (c) is a vector subspace,

RF (c) ⊇
⋃

H∈F

R{H}(c).

In general though the inclusion can be strict: we will see that this will be the case for
two twist maps with non-common non-contractible invariant circles of cohomology
c.

We can now restate and prove Theorem 1.3 of the Introduction, which is a gen-
eralization of Theorem 0.11 in [3] to the polysystem case.

Theorem 5.7. Let F be a family of one-periodic Tonelli Hamiltonians defined on
the cotangent space of a boundaryless compact manifold M . Assume that F is equi-
semiconcave in the sense of Definition 4.12. Let c ∈ H1(M,R). Then there exist a
neighborhood W of c in H1(M,R), ε > 0 and N ∈ N such that

c′ ⊣⊢N,F c′ +BεR(c) ∀ c′ ∈ W.

Proof. We subdivide the proof into four steps.

Step 1. For every M ⊂ Pc minimal and every G ∈ M there exist a neighborhood
WG of G in P, a natural number NG and εG > 0 such that

G′ ⊢NG ,F c(G′) +BεGR(c) ∀G′ ∈ WG.

Let M be minimal and G ∈ M. Let Φ1, . . . ,Φn ∈ Σ∞
c such that RΦ1,...,Φn(G) = R(M).

This is possible thanks to Proposition 5.5. Let us then apply Proposition 5.3 to G
and to the composition Φn ◦ · · · ◦ Φ1. Call WG , NG and εG the objects yielded by
that Proposition. Since R(c) ⊆ R(M), we have

G′ ⊢NG ,F c(G′) +BεGR(c) ∀G′ ∈ WG , (5.5)

as desired.

Step 2. For every G ∈ Pc there exist a neighborhood WG of G in P, a natural
number NG and εG > 0 such that

G′ ⊢NG ,F c(G′) +BεGR(c) ∀G′ ∈ WG.

Let G ∈ Pc. By Proposition 4.15, there exists Φ ∈ Σ∞
c such that Φ(G) is in a

minimal component. Moreover, by Proposition 4.13 (iv) there exists A ∈ σ such
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that ΦA(G) ∈ WΦ(G). By continuity, ΦA(G
′) ∈ WΦ(G) if G′ is in a small enough

neighborhood WG of G. By Proposition 4.11 and by Step 1, there exists NA ∈ N
such that

G′ ⊢NA,F ΦA(G
′) ⊢NΦ(G),F c(G′) +BεΦ(G)

R(c) ∀G′ ∈ WG.

Thus we can take NG = NA +NΦ(G) and εG = εΦ(G).

Step 3. There exist a neighborhood W ′ of c in H1(M,R), a natural number N
and ε′ > 0 such that

c′ ⊢N,F c′ +Bε′R(c) ∀ c′ ∈ W ′.

Let us choose A0 in σ (no matter which one, for instance A0 = A1
L with L ∈ F will

work). The closure of ΦA0(Pc) is compact, thus we can extract a finite subfamily
{Gj}j ⊆ ΦA0(Pc) such that W = ∪jWGj

covers ΦA0(Pc). Moreover, it is true that W
also covers ΦA0(PW ′) for a sufficiently small neighborhood W ′ of c. Indeed, consider
an arbitrary neighborhood W ′′ of c. The function G 7→ c(G) is continuous on the
compact set ΦA0(PW ′′) \W, hence its image is compact too. Since c does not belong
to this image, we can take as W ′ the intersection of W ′′ with the complementary of
the image.

In other words, for any G′ ∈ PW ′ there exists j̄ such that ΦA0(G
′) ∈ WGj̄

. Hence
we obtain

G′ ⊢NA0
,F ΦA0(G

′) ⊢maxj NGj
,F c(G′) +Bminj εGj

R(c) ∀G′ ∈ PW ′.

Thus we can take N = NA0 +maxj NGj
and ε′ = minj εGj

, and the Step 3 is proved.

Step 4. There exist a neighborhood W of c in H1(M,R), a natural number N
and ε > 0 such that

c′ ⊣⊢N,F c′ +BεR(c) ∀ c′ ∈ W.

In order to obtain the mutual forcing relation starting from the one-side forcing
relation of Step 3, it suffices to take W ⊆ W ′ and ε ≤ ε′ small enough in such a way
that W + BεR(c) ⊂ W ′. This makes possible to apply the one-side forcing in the
opposite direction. This concludes the proof of Step 4 (we keep the same N as in
the Step 3) and of the Theorem.

Remark 5.8. A careful analysis of the proof of the theorem shows that the multi-
valued function c 7→ R(c) is lower-semicontinuous: for any c there exists a neighbor-
hood Z such that R(c) ⊆ R(c′) for every c′ ∈ Z. Nevertheless, the statement of the
theorem is somehow stronger, because in some sense yields semicontinuity also on
N and ε.

In the sequel we draw some relations between the subspace R(c) and the under-
lying Hamiltonian polysystem dynamics.
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Proposition 5.9. Assume F equi-semiconcave. If there exists a C1,1 c-weak Kam
solution which is common to all H ∈ F , then R(c) = {0}. If d = 1 the viceversa
holds: if R(c) = {0} then all the Hamiltonians in F have an invariant circle in
common.

Proof. If there exists such a weak kam solution as in the statement, we can identify
it with a pseudograph G ∈ Pc ∩ P̆c. It is easy to verify that every Φ ∈ Σ∞

c must then
satisfies Φ(G) = Φ̆(G) = G. The singleton {G} is thus a minimal set for Pc and, in
view of formula (4.6), it satisfies R({G}) = {0}.

On the other hand, if d = 1 and R(c) = {0}, then there exists a minimal set M
such that

∑

G∈M,Φ∈Σ∞
c

[IΦ(G)
⊥] = {0},

which means, thanks once more to (4.6), that G = Φ̆Φ(G) for every G ∈ M and
Φ ∈ Σ∞

c . Let us apply this to the operator Φ = ΦhL,c
associated to the Peierls

barrier hL,c of a Lagrangian L ∈ F . We get

G = Φ̆hL,c
ΦhL,c

(G) ∈ Im(Φ̆hL,c
) ∀L ∈ F ,

hence G is a dual weak kam solution for every L ∈ F , which in addition belongs to
P. This implies the result, by Proposition 4.9.

We now can restate and prove the Corollary 1.4 about families of exact twist
maps. The condition of equi-semiconcavity on F is dropped.

Corollary 5.10. Let M = T = R/Z. Let F be a (non-necessarily equi-semiconcave)
family of one-periodic Tonelli Hamiltonians on T ∗M ∼= T × R. Let us make the
identification H1(T,R) ∼= R. If, for some A < B ∈ R, the family F does not admit
an invariant common circle with cohomology in [A,B], then:

(i) there exists an F-polyorbit (xn, pn)n∈Z satisfying p0 = A and pN = B for some
N ∈ N;

(ii) for every H,H ′ ∈ F and every c, c′ ∈ [A,B] there exists an F-polyorbit α-
asymptotic to the Aubry set ÃH(c) and ω-asymptotic to ÃH′(c′)

(iii) for every sequence (ci,Hi, εi)i∈Z ⊂ [A,B]×F ×R+ there exists an F-polyorbit
which visits in turn the εi-neighborhoods of the Mather sets M̃Hi

(ci).

Proof. If F is finite, the conclusion is immediate: by Proposition 5.9, R(c) = R for
every c ∈ [A,B], hence by Theorem 5.7 [A,B] is contained in the same equivalence
class for ⊣⊢F . Therefore Proposition 3.2 applies, and allows to prove the results: for
instance, in order to prove item (i) one applies Proposition diffusion (ii) with η ≡ A
and η′ ≡ B.

If F is arbitrary, we just reduce to the case of F finite thanks to the following
fact: if the family F does not admit invariant common circles with cohomology in
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[A,B], then there exists a finite subfamily F ′ ⊂ F with the same property. Indeed,
suppose that this is not the case and let us arbitrarily pick H0 in F : then the set
C(F ′) defined by

C(F ′) =
{

G ∈ P[A,B] : G is a C1,1 weak Kam solution for all H ∈ F ′ ∪ {H0}
}

=
⋂

H∈F ′∪{H0}

(

{G : ΦAH
(G) = G} ∩ {G : Φ̆AH

(G) = G}
)

∩ P[A,B]

is non-empty for all finite F ′ ⊆ F . The second line in the above expression tells
us that C(F ′) is also closed, hence compact, because it is contained in ΦAH0

(P[A,B])
which is relatively compact by Remark 4.4(iii). Furthermore, the sets C(F ′) satisfy
the finite intersection property, because

C(F ′
1) ∩ · · · ∩C(F ′

n) = C(F ′
1 ∪ · · · ∪ F ′

n) 6= ∅.

By compactness, the whole intersection is non-empty too:

⋂

F ′⊆F
F ′finite

C(F ′) 6= ∅.

Its elements are the invariant circles common to all the Hamiltonians of the family
F . This contradicts the assumptions.

Let us further discuss about the implications of Theorem 5.7 in some special
cases.

- Case F = {L}. This is the case extensively treated in [3]. In that paper, R(c)
was defined as

R(c) =
⋂

G c-weak Kam solution

[IΦhc
(G)⊥], (5.6)

Let us check that this definition coincides with the one given here. Indeed,
from Section 4.4 we know that the minimal components in Pc are exactly the
c-weak Kam solutions for L, and that Φhc ◦Σ

∞
c = Σ∞

c ◦Φhc = Φhc. Therefore,

IΦ(G) ⊇ IΦhc◦Φ
(G) = IΦhc

(G), ∀ G ∈ Pc,Φ ∈ Σ∞
c

(the first inclusion follows from 4.10). The equality of (5.6) with our definition
of R(c) is then easy to verify.

The obstruction to the diffusion via the Mather mechanism is then the homo-
logical size of IΦhc

(G), for every c-weak Kam solution G. This set is also called
Aubry set of G (see Section 4.3), and taking the union over the c-weak Kam
solutions G one gets the projection on M of the Mañé set Ñ (c) ⊂ T ∗M . In
fact, a relation between R(c) and the homology (in T ∗M) of Ñ (c) is given in
[3, Lemma 8.2].
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- Case d = 1. In this case the mutual forcing relation ⊣⊢F is well understood
thanks to Proposition 5.9: there exists a closed set in H1(M,R) which is the
set of cohomology classes c for which there exists a common invariant circle
of cohomology c. The equivalence classes for ⊣⊢F are the elements of this set
and the connected components of its complementary.

In this case the Mather mechanism is optimal in two ways: first, because it al-
lows a complete description of the equivalence classes for ⊣⊢F ; second, because
the equivalence relation ⊣⊢F completely characterize the possible unstable be-
haviors of the polysystem (in other words, the obstructions for the mechanism,
i.e. the common non-contractible invariant circles, are real obstructions for the
dynamics).

- Commuting hamiltonians. By the discussion in Section 4.4, we know that
there exists an operator Φhc ∈ Σ∞

c such that Φhc ◦ Φ = Φ ◦ Φhc = Φhc for
every Φ ∈ Σ∞

c . We also know that hc is the common Peierls barrier of all the
Hamiltonians in F , and that the minimal components in Pc are exactly the
c-weak Kam solutions for one (hence all) Hamiltonian in F . Arguing as in the
case of a single Hamiltonian, one gets

RF (c) =
⋂

G c-weak Kam solution

[IΦhc
(G)⊥],

hence RF (c) = R{H}(c) for every H ∈ F : the obstructions are the same than
those of every single Hamiltonian in F . Therefore, the polysystem does not
present any new kind of instability phenomena with respect to each system
regarded separately (at least using the Mather mechanism presented here).

- General case. The general situation appears much messier. Nevertheless, some
information can still be extracted. For instance, let us suppose that V is a one-
dimensional subspace of H1(M,R) not contained in R(c). Then, there must
exists a minimal component M such that V is not contained in R(M). In
particular, by Proposition 5.5 and by invariance of M, we have that

V * RΦ1,...,Φn(G) ∀G ∈ M, ∀Φ1, . . . ,Φn ∈ Σ∞
c . (5.7)

By making different choices of G and Φ1, . . . ,Φn, one in principle gets a plethora
of conditions, which may become arbitrarily complicated. Two samples of the
kind of statements which can be obtained are proved in the next proposition.

Let us also point out that the condition above can be interpreted, at least for
some choices of G and Φ as a sort of “homologically transverse intersection”
between some generalized stable and unstable manifolds. Indeed, by defini-
tion of RΦ1,...,Φn(G) the obstructions essentially boil down to the various sets

IΦ(G) = G ∧ Φ̆Φ(G). By property (iv) in Proposition 4.16 and its dual version,
we see that, at least for some choices of G and Φ, we can interpret G as an
unstable manifold for some switched flow and Φ̆Φ(G) as a stable manifold of
another switched flow.
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Proposition 5.11. Suppose that V is a one-dimensional subspace of H1(M,R) not
contained in R(c).

(i) For every arbitrary finite string H1, . . . ,Hk of Hamiltonians in F , there exists
a subset S ⊂ T ∗M such that: it is a Lipschitz graph over its projection on M ,
it is contained in a pseudograph of cohomology c, it is invariant (both in past
and in future) for the switched flow

φ = φHk
◦ · · · ◦ φH1 ,

and its projection π(S) ⊆ M satisfies

V * [π(S)⊥].

(ii) For every pair of Hamiltonians H0,H1 ∈ F there exists a c-weak Kam solution
G0 for H0 and a dual c-weak Kam solution G1 for H1 such that

V *
[

(G0 ∧ G1)
⊥
]

.

Moreover, call h0, h1 the Peierls barriers of H0 and H1. Then without loss of
generality we can also suppose that Φh0Φh1(G0) = G0 and Φh1Φh0(G1) = G1.

Proof.

(i) Call A1, . . . , Ak the time-one actions of H1, . . . ,Hk, and consider the composi-
tion

A = Ak ◦ · · · ◦ A1.

In (5.7) take n = 1, Φ1 = ΦhAc
and G a fixed point of Φ1 belonging to M (let us

recall that, by invariance, every minimal component M contains such a fixed
point). Since V * R(c), we have

V * [IΦ1(G)
⊥].

Set S = G|IΦ1
(G). By a natural generalization of Proposition 4.16, S is invariant

for φ, thus the conclusion of item (i) is achieved.

(ii) Call h0, h1 the Peierls barrier of H0 and H1. In (5.7) take n = 1, Φ1 = Φh1c

and G a fixed point of Φh0c
belonging to M. We have then,

V * [IΦ1(G)
⊥] = [G ∧ Φ̆1Φ1(G)

⊥].

This proves the first part of the result, with G0 = G and G1 = Φ̆1Φ1(G). The
second part follows similarly, by taking as G a fixed point of Φh0,cΦh1,c (see
Proposition 4.17).

We end with two remarks.
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Remark 5.12 (Case F not equi-semiconcave). For an arbitrary family F of Tonelli
Hamiltonians we can still define a subspace RF (c) analogous to the one defined for
an equi-semiconcave family. Indeed, we know that if F ′ and F ′′ are equi-semiconcave
subfamilies of F such that F ′ ⊆ F ′′, then RF ′(c) ⊆ RF ′′(c). This implies that the
union of all RF ′(c),F ′ ⊂ F finite, is a subspace of H1. We can then define RF (c) to
be equal to this union. By the finite dimension of H1, we have RF (c) = RF0(c) for an
equi-semiconcave subfamily F0. Moreover, Theorem 5.7 and Proposition 5.9 remain
true, by just replacing F with F0 in the proofs. Nevertheless, this does not allow
to construct polyorbits for which a non-equi-semiconcave family of Hamiltonians is
genuinely needed.

Remark 5.13 (More on the minimal sets M). A further study of the minimal compo-
nents M leads to some more equivalent expressions for R(M). Recall from Proposi-
tion 5.5 that

R(M) =
∑

G∈M,Φ∈Σ∞
c

RΦ(G).

A first equivalent expression is

R(M) =
∑

A∈σ∞
c

G fixed point of ΦA in M

RΦhA
(G).

Indeed, every addend of the first sum is contained in some addend of the second sum
(the vice versa being obvious): given G ∈ M and Φ ∈ Σ∞

c , let us take Φ′ such that
Φ′Φ(G) = G. Such a Φ′ exists by Proposition 4.15(iii). By definition of Σ∞

c , there
exists A ∈ σ∞

c such that Φ′ ◦Φ = ΦA. Since IΦ′◦Φ(G) ⊂ IΦ(G), we have

RΦ(G) ⊆ RΦA
(G) ⊆ RΦhA

(G),

as claimed.
Another equivalent expression follows from the following ideas. Thanks to the

property IΦ′◦Φ(G) ⊆ IΦ(G), we have that, for a fixed G, the function Φ 7→ IΦ(G) is
non-increasing along the orbits of the dynamical system

Σ∞
c × Σ∞

c → Σ∞
c

(Φ′,Φ) 7→ Φ′ ◦ Φ.

As in Proposition 4.15, one can show that there exist minimal components Λ for
this dynamical system and that for every Φ there exists Φ′ belonging to one of this
minimal components such that IΦ′(G) ⊆ IΦ(G). Moreover if Φ,Φ′ belong to the
same minimal component Λ, then IΦ′(G) = IΦ(G), so that we can call it IΛ(G). We
finally deduce that for every M minimal in Pc

R(M) =
∑

Λ minimal

[IΛ(G)
⊥] ∀G ∈ M.

Finally, one last property of minimal sets: if M,M′ are minimal, then the distance
function G 7→ d(G,M′) is constant on M. Indeed, the distance function is 1-Lipschitz
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andM′ is invariant, therefore d(Φ(G),M′) = d(Φ(G),Φ(M′)) ≤ d(G,M′) for all G ∈ Pc

and Φ ∈ Σ∞
c . We thus have, by transitivity of the dynamics in M,

d(G,M′) = d(G′,M′) ∀G,G′ ∈ M

For the same reasons, the set of those couples (G,G′) ∈ M×M′ such that d(G,G′) =
d(M,M′) is invariant by Σ∞

c .
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