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Abstract

We present a purely category-theoretic characterization of retracts of Fräıssé
limits. For this aim, we consider a natural version of injectivity with respect to
a pair of categories (a category and its subcategory). It turns out that retracts
of Fräıssé limits are precisely the objects that are injective relatively to such a
pair. One of the applications is a characterization of non-expansive retracts of
Urysohn’s universal metric space.
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1 Introduction

Recall that a Fräıssé class is a countable class F of finitely generated models of a fixed
first-order language, satisfying the following conditions:

(i) Given a, b ∈ F there exists d ∈ F such that both a and b embed into d (Joint
Embedding Property).

(ii) Given a, b ∈ F and embeddings i : c → a, j : c → b, there exist w ∈ F and
embeddings k : a → w and ℓ : b → w such that k ◦ i = ℓ ◦ j (Amalgamation
Property).

(iii) Given a ∈ F , every substructure of a is isomorphic to an element of F .

The Fräıssé limit of F is a countable model U such that, up to isomorphism,

F = {a ⊆ U : a is a finitely generated substructure of U}

and for every isomorphism h : a → b between finitely generated substructures of U
there exists an automorphism H : U → U such that H ⊇ h. The latter property is
called ultrahomogeneity. It is a classical theorem of Roland Fräıssé [9] that the Fräıssé
limit exists and is unique, up to isomorphism. Uncountable versions of Fräıssé limits
were studied by Jónsson [12, 13].

A recent result of Dolinka [5] characterizes, under certain assumptions, countable models
that are embeddable as retracts into the Fräıssé limit. Namely, he proves that, under
certain conditions on the Fräıssé class, retracts of the Fräıssé limit are precisely the
(countable) algebraically closed models.

The aim of this note is to extend Dolinka’s characterization to the case of category-
theoretic Fräıssé limits, at the same time weakening the assumption on the class of
objects. Namely, Dolinka’s result assumes that models are finite and for each natural
number n there exist only finitely many isomorphic types of models generated by a set
of cardinality n. We do not make any such assumptions. Our result relates retracts of
Fräıssé limits to a natural variant of injectivity. Among new applications, we character-
ize non-expansive retracts of the universal metric space of Urysohn. This metric space is
formally not a Fräıssé limit, because the category of finite metric spaces is uncountable.
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However, it can be “approximated” by Fräıssé limits of countable subcategories (e.g.
by considering rational distances only).

Category-theoretic approach to Fräıssé limits comes from the author’s paper [14], mo-
tivated by a much earlier work of Droste and Göbel [8] and by a recent work of Irwin
and Solecki [11] on projective Fräıssé limits. In [14] the key notion is a Fräıssé sequence
rather than a Fräıssé limit. This turns out to be convenient because it allows to work
in one category (corresponding to finitely generated models), forgetting about the exis-
tence or non-existence of colimits. In order to speak about retractions, we need to work
with a pair of categories, both with the same objects; the first one allows “embeddings”
only, while the second one allows all possible homomorphisms.

1.1 Categories of sequences

Fix a category K. We shall treat K as the class of arrows, the class of objects will be
denoted by Ob (K) and the set of K-arrows with domain x and codomain y will be
denoted by K(x, y). A sequence in K is simply a covariant functor from ω into K. One
can think that the objects of K are “small” structures (e.g. finitely generated models
of a fixed language). Sequences in K form a bigger category of “large” structures. For
category-theoretic notions we refer to [15].

We shall use the following convention: Sequences in K will be denoted by capital letters
X, Y, Z, . . . and the objects of K will be denoted by small letters x, y, z, . . . . Fix a
sequence X : ω → K. Recall that formally X assigns to each natural number n an
object X(n) of K and X assigns a K-arrow X(n,m) : X(n) → X(m) for each pair
〈n,m〉 of natural numbers such that n 6 m. We shall always write xn instead of X(n)
and xmn instead of X(n,m). Note that being a functor imposes the conditions xnn = idxn

and xmk = xmℓ ◦ x
ℓ
k for k 6 ℓ 6 m.

An arrow from a sequence X to a sequence Y is, by definition, a natural transformation
from the functor X into the functor Y ◦ ψ, where ψ : ω → ω is increasing (i.e. ψ is a
covariant functor from ω to ω). We identify some arrows that “potentially converge”
to the same limit. More precisely, given natural transformations τ0 and τ1 from the
sequence X to Y ◦ ψ0 and Y ◦ ψ1, respectively, we say that τ0 is equivalent to τ1, if
the diagram consisting of both sequences X , Y together with all arrows induced by τ0
and τ1 is commutative. This is indeed an equivalence relation and it commutes with the
composition, therefore σK indeed becomes a category. In order to illustrate this idea,
observe that every sequence is isomorphic to its cofinal subsequence. Indeed, if X is a
sequence and k = {kn}n∈ω is a strictly increasing sequence of natural numbers, then the
σK-arrow I : X ◦ k → X defined by I = {in}n∈ω, where in = idxkn

, is an isomorphism.
Its inverse is J = {jn}n∈ω, where jn = xkmn and m = min{s : ks > n}. The composition
I ◦ J is formally {jn}n∈ω regarded as an arrow from X to X . Clearly, I ◦ J is equivalent
to the identity {idxn

}n∈ω. Similarly, J ◦ I is equivalent to the identity of X ◦ k.

The original category K may be regarded as a subcategory of σK, identifying an object
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x with a sequence

x
idx // x

idx // x
idx // . . .

Thus, we shall always assume that K ⊆ σK. Given a sequence X and n ∈ ω, we shall
denote by x∞n the arrow from xn to X induced by the nth object of X . Formally, x∞n is
the equivalence class of {xmn }m>n.

1.2 Fräıssé sequences

Fräıssé classes and limits can be described using categories. Let K be a fixed category.

A Fräıssé sequence in K is a sequence U satisfying the following two conditions.

(F1) For every object x in K there exist n ∈ ω and a K-arrow x→ un.

(F2) For every n ∈ ω and for every K-arrow f : un → y there existm > n and a K-arrow
g : y → um such that g ◦ f = umn .

Recall that K has the amalgamation property if for every K-arrows f : c→ a, g : c→ b
there exist K-arrows f ′ : a→ w, g′ : b→ w satisfying f ′ ◦ f = g′ ◦ g. A Fräıssé sequence
exists whenever K has the amalgamation property, the joint embedding property and
has countably many isomorphic types of arrows. A Fräıssé sequence is unique up to
isomorphism. We refer to [14] for the details.

A standard induction shows that the amalgamation property partially extends to the
category of sequences. Namely:

Proposition 1.1. Assume K has the amalgamation property. Then for every σK-arrows
f : c → A, g : c → B with c ∈ Ob (K), there exist σK-arrows f ′ : A → W , g′ : B → W
satisfying f ′ ◦ f = g′ ◦ g.

However, it is shown in [14] that in general the amalgamation property of K does not
imply the same property of σK.

Now, let K ⊆ L be a pair of categories such that K has the same objects as L. For in-
stance, K is a category of finitely generated models of a fixed language with embeddings
and L allows all homomorphisms. Note that σK as a subcategory of σL. We shall need to
deal with the category R = σ(K,L) whose objects are ω-sequences in K and the arrows
come from L, i.e., Ob (R) = Ob (σK) and R(X, Y ) = σL(X, Y ) for X, Y ∈ Ob (R).

For example, if K, L are as above, R is the category of countable models with all possible
homomorphisms, while σK is the category of countable models with embeddings.
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2 Main result

Let K ⊆ L be two fixed categories with the same objects. We say that 〈K,L〉 has the
mixed amalgamation property if for every arrows f : c → a and g : c → b such that
f ∈ K and g ∈ L, there exist arrows f ′ : a→ w, g′ : b→ w satisfying f ′ ◦ f = g′ ◦ g and
such that g′ ∈ K and f ′ ∈ L. The mixed amalgamation is described in the following
diagram, where // // denotes an arrow in K.

a
f ′

// w

c
OO

f

OO

g
// b

OO g
′

OO

We say that 〈K,L〉 has the amalgamated extension property if for every commutative
L-diagram

a
f // x

c
OO

i

OO

//
j

// b

g

OO

with i, j ∈ K, there exist K-arrows e : x → y, k : a → w, ℓ : b → w and an L-arrow
h : w → y such that e ◦ f = h ◦ k, e ◦ g = h ◦ ℓ and k ◦ i = ℓ ◦ j. That is, the following
diagram is commutative.

y

x
?? e

??�������

a

f

66nnnnnnnnnnnnnn//
k

// w

h

55

c
OO

i

OO

//
j

// b

g

GG��������������OO
ℓ

OO

We now define the following axioms for a pair of categories 〈K,L〉, needed for our main
result.

(H0) K ⊆ L and Ob (K) = Ob (L).

(H1) K has both the amalgamation property and the joint embedding property.

(H2) 〈K,L〉 has the mixed amalgamation property.

(H3) 〈K,L〉 has the amalgamated extension property.

Definition 2.1. A pair of categories 〈K,L〉 has property (H) if it satisfies conditions
(H0) – (H3).
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It is necessary to make some comments on the properties described above. Namely, the
condition Ob (K) = Ob (L) can be removed from (H0), it appears there for the sake of
convenience only. The role of L is offering more arrows than K, some of them will be
needed for constructing retractions. One can think of the K-arrows as “embeddings”.
In most cases, these will be indeed monics. Condition (H1) is needed mainly for the ex-
istence and good properties of a Fräıssé sequence in K. Recall that the joint embedding
property follows from amalgamations, whenever K has an initial object (or at least a
weakly initial object). Condition (H2) will be crucial for proving that the Fräıssé se-
quence and its retracts are K-injective (see the definition below). Finally, the somewhat
technical condition (H3) will be needed for the argument in the main lemma relating
K-injective objects with the Fräıssé sequence. If L has a terminal object then (H3) im-
plies that K has the amalgamation property. Summarizing, if K has a weakly initial
object and L has a terminal object, then we may ignore condition (H1). Condition (H3)
becomes trivial if K has pushouts in L. We say that K has pushouts in L if for every
pair of K-arrows i : c→ a, j : c→ b, there exist K-arrows k : a→ w, ℓ : b→ w such that

a // k // w

c
OO

i

OO

//
j

// b

OO ℓ

OO

is a pushout square in L. It is obvious from the definition of a pushout that 〈K,L〉 has
the amalgamated extension property (with y = x and e = idx) whenever K has pushouts
in L. Let us remark that for all examples with property (H) appearing in this note, the
amalgamated extension property holds with x = y and e = idx (see the definition and
diagram above).

Below is the crucial notion, whose variations appear often in the literature (see, e.g.,
[1], where a definition similar to ours can be found). Let K ⊆ L be two categories with
the same objects.

Definition 2.2. We say that A ∈ Ob (σK) is K-injective in σ(K,L) if for every K-arrow
i : a → b, for every σ(K,L)-arrow f : a → X , there exists a σ(K,L)-arrow f : b → X
such that f ◦ i = f .

a
��

i

��

f // A

b
f

88q
q

q
q

q
q

q

This definition obviously generalizes to an arbitrary pair of categories K ⊆ R. We
restrict attention to the special case R = σ(K,L), since more general versions will not
be needed.

Following is a useful criterion for injectivity.
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Proposition 2.3. Assume 〈K,L〉 has the mixed amalgamation property and X ∈
Ob (σK). Then X is K-injective in σ(K,L) if and only if for every n ∈ ω, for every
K-arrow f : xn → y, there exist m > n and an L-arrow g : y → xm satisfying

g ◦ f = xmn .

Proof. Suppose X is K-injective and fix a K-arrow f : xn → y. Applying K-injectivity
for x∞n : xn → X , we find G : y → X such that G◦f = x∞n . The arrow G factors through
some L-arrow g : y → xm for some m > n, that is, G = x∞m ◦ g. Finally, g ◦ f = xmn .

Suppose now that X satisfies the condition above and fix a K-arrow j : a → b and a
σ(K,L)-arrow F : a→ X . Then F = x∞n ◦f for some L-arrow f , where n ∈ ω. Applying
the mixed amalgamation property, find a K-arrow h : xn → y and an L-arrow g : b→ y
such that g ◦ j = h ◦ f . By assumption, there exist m > n and an L-arrow k : y → xm
such that the following diagram commutes.

a
��

j

��

f // xn
��

h

��

!!
xm
n

!!C
CC

CC
CC

b g
// y //

k
// xm

Finally, taking G = x∞m ◦ k ◦ g, we get G ◦ j = F .

Our interest in K-injectivity comes from the following fact, which is an immediate
consequence of the criterion above.

Proposition 2.4. Assume 〈K,L〉 has the mixed amalgamation property and U is a
Fräıssé sequence in K. Then U is K-injective in σ(K,L).

We shall need the following “injective” version of amalgamated extension property.

Lemma 2.5. Assume 〈K,L〉 satisfies (H) and X ∈ Ob (σK) is K-injective in σ(K,L).
Then for every K-arrows i : c → a, j : c → b and for every σ(K,L)-arrows F : a → X,
G : b → X such that F ◦ i = G ◦ j, there exist K-arrows k : a → w, ℓ : b → w and a
σ(K,L)-arrow H : w → X such that the diagram

a
��

k ��@
@@

@@
@@ F

**TTTTTTTTTTTTTTTTTTTT

c
??
i

??�������

��

j
��=

==
==

==
w H // X

b
??

ℓ

??������� G

55jjjjjjjjjjjjjjjjjjjj

commutes.
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Proof. Find n such that F = x∞n ◦ f and G = x∞n ◦ g for some L-arrows f, g, where
x∞n : xn → X is the canonical arrow induced by the nth object of the sequence X .
Using property (H3), we find K-arrows k : a→ w, ℓ : b→ w, e : xn → y and an L-arrow
h : w → y such that h ◦ k = e ◦ f and h ◦ ℓ = e ◦ g. Using the K-injectivity of X we can
find a σ(K,L)-arrow P : y → X such that P ◦ e = x∞n . Let H = P ◦ h. Then

H ◦ k = P ◦ h ◦ k = P ◦ e ◦ f = x∞n ◦ f = F.

Similarly, H ◦ ℓ = G.

The following lemma is crucial.

Lemma 2.6. Assume 〈K,L〉 has property (H) and A is a K-injective object in σ(K,L).
Furthermore, assume U is a Fräıssé sequence in K and F : X → A is an arbitrary
σ(K,L)-arrow. Then there exist a σK-arrow J : X → U and a σ(K,L)-arrow G : U → A
such that G ◦ J = F .

X
��

J

��

F // A

U
G

88q
qqq

qqq

Proof. Recall that we use the usual convention for objects xn = X(n), un = U(n), and
for arrows xmn = X(n,m), umn = U(n,m). We shall construct inductively the following
“triangular matrix” in K, together with commuting σ(K,L)-arrows Fi,j : wi,j → A for
j 6 i+ 1, where we agree that wi,0 = xi and wi,i+1 = uℓi.

x0
��

��

// // uℓ0
��

��

##

##F
FF

FF
FF

F

x1
��

��

// // w1,1
��

��

// // uℓ1
��

��

##

##F
FF

FF
FF

F

x2
��

��

// // w2,1
��

��

// // w2,2
��

��

// // uℓ2
��

��

""

""E
EE

EEE
E

x3
��

��

// // w3,1
��

��

// // w3,2
��

��

// // w3,3
��

��

// // uℓ3
��

��

  

  A
AA

AA
AA

...
...

...
...

...
. . .

The first column in the diagram above is the sequence X , while the diagonal is a cofinal
subsequence of U . Our initial assumption on Fi,j is that {Fn,0}n∈ω = F . It is clear
how to start the construction: Using the Fräıssé property of U , we find ℓ0 and a K-
arrow e0 : x0 → uℓ0. Next, using the K-injectivity of A, we find F0,1 : uℓ0 → A satisfying
F0,1 ◦ e0 = F0,0.
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Suppose the nth row has already been constructed, together with arrows Fi,j for i 6 n,
j 6 n+1. Starting from K-arrows xn+1

n : xn → xn+1 and xn → wn,1, using Lemma 2.5, we
find wn+1,1 ∈ Ob (K) and K-arrows wn,1 → wn+1,1, xn+1 → wn+1,1, and a σ(K,L)-arrow
Fn+1,1 : wn+1,1 → A such that the diagram

wn,1
$$

$$J
JJJJJJJ Fn,1

((xn
<<

<<yyyyyyyy

""

xn+1
n ""E

EE
EE

EE
E

wn+1,1
Fn+1,1 // A

xn+1

::

::tttttttt
Fn+1,0

66

commutes. Continuing this way, using Lemma 2.5, we obtain the (n + 1)st row and
σ(K,L)-arrows Fn+1,i for i 6 n+1 which commute together with the following diagram.

xn
��

��

// // wn,1
��

��

// // wn,2
��

��

// // . . . // // wn,n−1

��

��

// // uℓn
��

��
xn+1 // // wn+1,1 // // wn+1,2 // // . . . // // wn+1,n−1 // // wn+1,n

Now, using the Fräıssé property of U we find ℓn+1 > ℓn and a K-arrow wn+1,n → uℓn+1

making the triangle
uℓn
��

��

%%

%%J
JJJJJJJ

wn+1,n // // uℓn+1

commutative. Using Lemma 2.5 again, we get an arrow Fn+1,n+2 : uℓn+1
→ A commuting

with Fn+1,n, Fn,n+1 and the triangle above.

Finally, the compositions of the horizontal arrows in the triangular “matrix” constructed
above induce an arrow of sequences J : X → U in σK. The inductive construction also
gives a sequence of arrows {Fn,n+1}n∈ω that turns into a σ(K,L)-arrow G : U → A
satisfying G ◦ J = F . This completes the proof.

Theorem 2.7. Let 〈K,L〉 be a pair of categories with property (H). Assume K has a
Fräıssé sequence U and let X be an arbitrary sequence in K. The following properties
are equivalent.

(a) X is K-injective in σ(K,L).

(b) There exist a σK-arrow J : X → U and a σ(K,L) arrow R : U → X such that
R ◦ J = idX .

(c) X is a retract of U in σ(K,L).
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Note that condition (c) is formally weaker than (b), since it is not required in (c) that
the right inverse of a retraction R : U → X is a σK-arrow.

Proof. (a) =⇒ (b) Applying Lemma 2.6 to the identity idX : X → X , we get a σK-
arrow J : X → U and a σ(K,L)-arrow R : U → X such that R ◦ J = idX .

(b) =⇒ (c) This is obvious.

(c) =⇒ (a) Let J : X → U and R : U → X be σ(K,L)-arrows such that R ◦ J = idX .

Fix a K-arrow i : a → b and an L-arrow F : a → X . By Proposition 2.4, U is K-
injective in σ(K,L), so there exists G : b→ U such that G ◦ i = J ◦ F . Finally, we have
R ◦G ◦ i = R ◦ J ◦ F = F .

2.1 Possible extensions of the main result

Theorem 2.7 has a natural generalization to uncountable Fräıssé sequences. More pre-
cisely, let κ be an uncountable regular cardinal and assume that all sequences in K of
length < κ have colimits in L, where the colimiting cocones are K-arrows. In this case
we say that K is κ-continuous in L. Under this assumption, a version of Lemma 2.6 for
κ-sequences is true, with almost the same proof—usual induction is replaced by trans-
finite induction. Proposition 2.4 is valid for arbitrary Fräıssé sequences, the countable
length of the sequence was never used in the proof.

Let Seq6κ(K) denote the category of all sequences in K of length 6 κ, with arrows
induced by natural transformations (like in the countable case). Let Seq6κ(K,L) denote
the category with the same objects as Seq6κ(K), and with arrows taken from Seq6κ(L).
We can now formulate an “uncountable” version of our main result.

Theorem 2.8. Let κ be an uncountable regular cardinal and let 〈K,L〉 be a pair of
categories with property (H), such that K is κ-continuous in L. Assume K has a Fräıssé
sequence U of length κ. Given a sequence X in K of length 6 κ, the following properties
are equivalent.

(a) X is K-injective in Seq6κ(K,L).

(b) There exist a Seq6κ(K)-arrow J : X → U and a Seq6κ(K,L) arrow R : U → X
such that R ◦ J = idX .

(c) X is a retract of U in Seq6κ(K,L).

Let us now come back to the countable case. Assume 〈K,L〉 has property (H) and
moreover K has pushouts in L. Let us look at the proof of Lemma 2.6. We can assume
that all squares in the infinite “triangular matrix” constructed there are pushouts in L.
Using the notation from the proof of Lemma 2.6, let W n denote the sequence coming
from the nth column. Observe that the arrow from W n to W n+1 is determined by
the “horizontal” K-arrow wn+1,n → wn+1,n+1. In other words, all other K-arrows come

10



as a result of the corresponding pushout square. An arrow of sequences F : V → W
determined by pushouts from a single K-arrow will be called pushout generated from
K. Denote by σPOK the category whose objects are ω-sequences in K, while arrows
are pushout generated from K. A deeper analysis of the proof of Lemma 2.6 gives the
following observation, which may be of independent interest.

Proposition 2.9. Assume 〈K,L〉 is a pair of categories with property (H) and K has
pushouts in L. Let X ∈ Ob (σK) be K-injective in σ(K,L). Then:

(1) X is σPOK-injective in σ(K,L).

(2) Let U be a Fräıssé sequence in K. There exists a sequence

X0 → X1 → X2 → . . .

in σPOK such that X0 = X and U is the colimit of this sequence in σK.

Clearly, (1) and (2) imply immediately that X is a retract of U .

3 Applications

We start with some more comments on property (H). In concrete cases (especially
in model-theoretic categories), it is much easier to prove the (mixed) amalgamation
property for special “primitive” arrows rather than for arbitrary arrows. In order to
formalize this idea, fix a pair of categories 〈K,L〉 satisfying condition (H0) and fix a
collection F ⊆ K (actually F might be a proper class). We say that K is generated by
F if for every f ∈ K there exist n ∈ ω and g0, . . . , gn−1 ∈ F such that f = gn−1 ◦ . . .◦g0.
For example, if K is the category of embeddings of finite models of a fixed first-order
language, F may be the class of embeddings f : S → T such that T is generated by
f [S] ∪ {b} for some b ∈ T . We define the amalgamation property for F and the mixed
amalgamation property for 〈F ,L〉, as before.

Proposition 3.1. Let K ⊆ L be two categories with the same objects, such that K has
the joint embedding property. Assume further that K is generated by a family F such
that F has the amalgamation property and 〈F ,L〉 has both the mixed amalgamation
property and the amalgamated extension property. Then 〈K,L〉 has property (H).

Proof. Given an arrow f ∈ K, we say that f has length 6 n if f = gn−1 ◦ . . . ◦ g0, where
g0, . . . , gn−1 ∈ F . In particular, all arrows from F have length 1. Easy induction shows
that if i : c→ a, j : c→ b are K-arrows such that the length of i is 6 m and the length
of j is 6 n, then there exist K-arrows k : a → w, ℓ : b → w such that k ◦ i = ℓ ◦ j and
k has length 6 n, while ℓ has length 6 m. Since every K-arrow has a finite length, this
shows that K has the amalgamation property.
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A similar induction on the length of K-arrows shows that 〈K,L〉 has the amalgamated
extension property. Finally, using the fact that 〈F ,L〉 has the mixed amalgamation
property, we prove by induction that for every K-arrow i : c→ a of length 6 n, and for
every L-arrow f : c → b, there exist an L-arrow g : a → w and a K-arrow ℓ : b → w of
length 6 n such that g ◦ i = ℓ ◦ f . This shows that 〈K,L〉 has the mixed amalgamation
property.

Another simplification for proving property (H) is the concept of mixed pushouts.

Let K ⊆ L be two categories with the same objects. We say that 〈K,L〉 has the mixed
pushout property if for every arrows f : c→ a and g : c→ b such that f ∈ K and g ∈ L,
there exist arrows f ′ : a→ w and g′ : b→ w such that f ′ ∈ L, g′ ∈ K and

a
f ′

// w

c
OO

f

OO

g
// b

OO g
′

OO

is a pushout square in L. Note that if both f, g are K-arrows in the definition above,
then so are f ′, g′, by uniqueness of the pushout.

The definition above makes sense (and is applicable) in case where K is an arbitrary
family of arrows, not necessarily a subcategory. This is presented in the next statement.

Proposition 3.2. Let K ⊆ L be two categories with the same objects. Assume that K
has the joint embedding property and F ⊆ K is such that 〈F ,L〉 has the mixed pushout
property and F generates K. Then 〈K,L〉 has property (H).

Proof. Suppose first that F = K. The amalgamation property (condition (H1)) follows
from the remark above, namely that the pushout of two K-arrows consists of K-arrows.
Mixed amalgamation property (condition (H2)) is just a weaker version of the mixed
pushout property. Finally, the amalgamated extension property (condition (H3)) follows
immediately from the definition of a pushout.

Suppose now that F 6= K. It suffices to prove that 〈K,L〉 has the mixed pushout
property. Like in the proof of Proposition 3.1, we use induction on the length of K-
arrows, having in mind that the obvious “composition” of two pushout squares is a
pushout square. More precisely, the inductive hypothesis says: Given a K-arrow i : c→ a
of length < n, and an L-arrow f : c→ b, there exist an L-arrow g : a→ w and a K-arrow
ℓ : b→ w of length < n such that

b // ℓ // w

c

f

OO

//
i

// a

g

OO

is a pushout square in L.
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Many natural pairs of categories, in particular coming from model theory, have the
mixed pushout property. Concrete well-known examples are finite graphs, partially or-
dered sets, semilattices; each class is considered as a pair of two categories, the first
one with embeddings and the second one with all homomorphisms. These examples are
mentioned in [5]. A typical example of a pair 〈K,L〉 with property (H), failing the mixed
pushout property is the category L of all finite linear orders with increasing (i.e. order
preserving) functions and K the category of all finite linear orders with embeddings.

In contrast to the above results, it is worth to mention a Fräıssé class that does not
fit into our framework. Namely, the Fräıssé class of finite Kn-free graphs (where Kn

denotes the complete graph with n vertices and n > 2) has the pushout property
(formally the class of embeddings has pushouts in the class of all homomorphisms), yet
the corresponding pair of categories fails to have mixed amalgamations. Specifically, a
graph is meant to be a structure with one symmetric irreflexive binary relation, so a
homomorphism of graphs cannot identify vertices connected by edges. In other words,
every graph homomorphism restricted to a complete subgraph becomes an embedding.
It has been proved by Mudrinski [18] that for n > 2, the Fräıssé limit of Kn-free graphs
(called the Henson graph Hn) is retract rigid, i.e. identity is the only retraction of Hn.
On the other hand, we have the following easy fact (also stated in [6, Example 3.3]).

Proposition 3.3. No Kn-free graph with n > 2 is injective for finite Kn-free graphs.

Proof. Suppose X is such a graph. Using injectivity for S = ∅ and T = Kn−1, we see
that X contains an isomorphic copy K of Kn−1. Now let S be a graph with n − 1
vertices and no edges and let f : S → X be a bijection onto K. Let T = S ∪{v}, where
v is connected to all the vertices of S. By injectivity, there exists a homomorphism
g : T → X extending f . But now K ∪ {g(v)} ⊆ X is a copy of Kn, a contradiction.

Before discussing concrete examples of pairs with property (H), we make a simple
remark on injectivity. Recall that an arrow j : x→ y is left-invertible in L if there exists
f ∈ L such that f ◦ j = idx. Following is an easy consequence of our main result.

Corollary 3.4. Let 〈K,L〉 be a pair of categories such that every K-arrow is left-
invertible in L. Assume that 〈K,L〉 has property (H) and U is a Fräıssé sequence in
K. Then for every sequence X ∈ Ob (σK) there exist a σK-arrow J : X → U and a
σ(K,L)-arrow R : U → X such that R ◦ J = idX .

Proof. In view of Theorem 2.7, it suffices to show that every sequence is K-injective
in σ(K,L). Fix X ∈ Ob (σK), a K-arrow j : a → b, and a σ(K,L)-arrow f : a → X .
Choose an L-arrow r : b→ a such that r ◦ j = ida. Then g = f ◦ r has the property that
g ◦ j = f . This shows that X is K-injective in σ(K,L).

This corollary applies to finite Boolean algebras (also noted in [5]) and, as we shall see
later, to finite linear orderings.
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3.1 Fräıssé classes and algebraically closed models

Let M be a class of finitely generated models of a fixed first-order language L. It is
natural to consider the category homM whose objects are all elements of M and arrows
are all homomorphisms (i.e. maps that preserve all relations, functions and constants).
It is also natural to consider the category embM whose objects are again all elements of
M, while arrows are embeddings only. In many cases, 〈embM, homM〉 has property (H).

Simplifying the notation, we shall say that M has the pushout property or mixed amal-
gamation property if 〈embM, homM〉 has such a property. Denote by M the class of all
(countable) models that are unions of ω-chains of models fromM. It is clear that σembM

is equivalent to M with embeddings and σ(embM, homM) is equivalent to M with all
homomorphisms.

Recall that a model X ∈M is algebraically closed if for every formula

ϕ(x0, . . . , xk−1, y0, . . . , yℓ−1)

that is a finite conjunction of atomic formulae, for every a0, . . . , ak−1 ∈ X , if there exists
an extension X ′ ⊇ X in M satisfying

X ′ |= (∃ y0, . . . , yℓ−1) ϕ(a0, . . . , ak−1, y0, . . . , yℓ−1)

then there exist b0, . . . , bℓ−1 ∈ X such that X |= ϕ(a0, . . . , ak−1, b0, . . . , bℓ−1).

Proposition 3.5. Let M be a class of finitely generated models of a fixed first-order
language. Every M-injective model in M is algebraically closed.

Proof. Fix an M-injective model X ∈M. Fix X ′ ⊇ X and assume X ′ |= (∃ ~y) ϕ(~a, ~y)
for some k-tuple ~a of elements of X , where ϕ(~x, ~y) is a finite conjunction of atomic
formulae and ~x, ~y are shortcuts for (x0, . . . , xk−1) and (y0, . . . , yℓ−1), respectively.

Let S ∈ M be a submodel of X that contains ~a. Let T ∈ M be a submodel of X ′

containing S and a fixed tuple ~b such that X ′ |= ϕ(~a,~b). Then also T |= ϕ(~a,~b), because
this property is absolute for ϕ. Using the M-injectivity of X , find a homomorphism
f : T → X satisfying f ↾ S = idS. Finally, let ~c = (f(b0), . . . , f(bℓ−1)), where ~b =
(b0, . . . , bℓ−1). Since f is a homomorphism and ϕ is a conjunction of atomic formulae,
we have that X |= ϕ(~a,~c).

We shall say that a structure M is n-generated if there exists S ⊆M such that |S| 6 n
and S generates M , that is, no proper submodel of M contains S. Recall that a first-
order language is finite if it contains finitely many predicates (constant, relation and
function symbols).

Proposition 3.6. Let M be a class of finite models of a fixed first-order language L. As-
sume that either L is finite or for every n ∈ ω there exist finitely many isomorphic types
of n-generated models in M. Assume furthermore that M has the mixed amalgamation
property. Then every algebraically closed L-model X ∈M is M-injective.
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Proof. Fix S, T ∈ M such that S is a submodel of T . Fix a homomorphism f : S →
X . Using the mixed amalgamation, we can find an extension X ′ ∈ M of X and a
homomorphism f ′ : T → X ′ such that f ′ ↾ S = f . Let G be the set of all functions
g : T → X satisfying g ↾ S = f . We need to show that some g ∈ G is a homomorphism.

Suppose first that there exist only finitely many |T |-generated structures in M and let
N ⊆M be a finite set that contains isomorphic types of all of them.

Given g ∈ G, denote by g′ a fixed isomorphism from the submodel generated by g[T ]
onto a fixed model from the collection N . Note that g is a homomorphism if and only
if g′ ◦ g is a homomorphism. Now observe that the set H = {g′ ◦ g : g ∈ G} is finite.

Let S = {si}i<k and T \S = {tj}j<ℓ. Fix g ∈ G and suppose it is not a homomorphism.
There exists either a relation R or a function F and a finite sequence of elements of T
that witness this fact. Let ψg be an atomic formula describing this fact. We may assume
that ψg has k + ℓ free variables, the first k are supposed to denote s0, . . . , sk−1 and the
latter ones t0, . . . , tℓ−1. Let ϕ be the conjunction of all formulae ψg, where g ∈ G. Then
T |= ϕ(s0, . . . , sk−1, t0, . . . , tℓ−1) and, since f

′ is a homomorphism,

(1) X ′ |= ϕ
(

f(s0), . . . , f(sk−1), f
′(t0), . . . , f

′(tℓ−1)
)

.

Using the fact that X is algebraically closed, find ~u = (u0, . . . , uℓ−1) in X such that

(2) X |= ϕ
(

f(s0), . . . , f(sk−1), u0, . . . , uℓ−1

)

.

Let g ∈ G be such that g(tj) = uj for j < ℓ. Then g is a homomorphism. Indeed,
otherwise there would be a witness (a relation or a function, plus some elements of T )
saying that g′◦g is not a homomorphism; however ϕ “knows” all these witnesses, which
gives rise to a contradiction.

Suppose now that L is finite and consider again the set G. For each g ∈ G, if g is
not a homomorphism, this is witnessed by an atomic formula ψg and some elements of
T . Now, even though the set G may be infinite, the number of atomic formulae with
parameters in T is finite. As before, let ϕ(~x, ~y) collect all of them. Again, X |= ϕ(~s,~t)
and consequently (1) holds. Since X is algebraically closed, we can find ~u such that (2)
holds. Finally, g ∈ G satisfying g(tj) = uj (j < ℓ) is the desired homomorphism.

Following Dolinka [5], we say that a class of models M has the 1-point homomorphism
extension property (briefly: 1PHEP) if for every embedding i : A → B and for every
surjective homomorphism f : A→ C, where A,B,C ∈M and B is generated by A∪{b}
for some b ∈ B, there exist an embedding j : C → D and a homomorphism g : B → D
for which the diagram

C // j // D

A

f

OOOO

//
i

// B

g

OOOO
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commutes. Let us say that an embedding i : A→ B is primitive if B is generated by one
element from i[A]. Clearly, every embedding is a composition of primitive embeddings.
Furthermore, every homomorphism is the composition of a surjective homomorphism
and an embedding. These facts, together with easy induction (see Proposition 3.1) show
that 1PHEP is equivalent to the mixed amalgamation property of 〈embM, homM〉.

Combining Theorem 2.7, Propositions 3.5, 3.6 and the remarks above, we obtain a
strengthening of Dolinka’s result [5]:

Corollary 3.7. Let M be a Fräıssé class of finite models of a fixed first-order language
L. Assume that L is finite or for every n ∈ ω the number of isomorphism types of n-
generated structures in M is finite. Assume further that M has the pushout property and
the 1PHEP. Let U ∈ M be the Fräıssé limit of M. For a model X ∈ M the following
conditions are equivalent.

(a) X is a retract of U .

(b) X is algebraically closed.

The “pushout property” in the statement above means that embM has pushouts in
homM. This assumption may of course be replaced by a weaker one, namely, that
〈embM, homM〉 has the amalgamated extension property.

Note that a Fräıssé class of finite models of a finite language mail fail the condition
concerning the number of n-generated models. For example, let L consist of a unique
unary function symbol P and let M be the class of all finite L-models. That is, every
model S ∈M is endowed with a function P S : S → S and f : S → T is a homomoprhism
iff f(P S(x)) = P T (f(x)) for every x ∈ S. It is an easy exercise to check that M is a
Fräıssé class with the mixed pushout property, therefore the corollary above applies.
On the other hand, for each n ∈ ω there exists a 1-generated structure Sn ∈ M of
cardinality n. Namely, Sn = {0, . . . , n−1} with the function P defined by P (n−1) = 0
and P (i) = i+ 1 for i < n − 1. Thus, there are infinitely many 1-generated structures
in M. Note that a countable L-structure 〈X,P 〉 belongs to M if and only if for every
finite set A ⊆ X there exists a finite set S ⊆ X such that A ⊆ S and P [S] ⊆ S.

There are some natural Fräıssé classes of finite models of infinite languages and with
infinitely many n-generated structures, for which Proposition 3.6 (and consequently
the corollary above) still hold. In section 3.3 below, we shall investigate Fräıssé classes
of metric spaces, showing that the possibility of characterizing injectivity by “being
algebraic closed” depends on the language specifying the objects.

3.2 A note on homomorphism-homogeneous structures

In connection with (classical model-theoretic) Fräıssé limits, there is an interesting no-
tion of homomorphism-homogeneous structures, introduced recently by Cameron and
Nešetřil [4] and studied already by several authors (see [16], [10], [3], [20], [17]). Namely,
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a (usually countable) structure M is homomorphism-homogeneous if every homomor-
phism between its finitely-generated substructures extends to an endomorphism of M .
It is clear that this notion can be defined in category-theoretic language, using a pair
of categories 〈K,L〉 as before, where L-arrows mean “homomorphisms” and K-arrows
mean “embeddings”. It turns out that homomorphism-homogeneity is strictly related
to injectivity, as we show below.

As usual, fix two categories K ⊆ L with the same objects.

Definition 3.8. We say that an object X ∈ Ob (σK) is L-homogeneous in σ(K,L) if
for every σK-arrow j : a→ X such that a ∈ Ob (K), for every σ(K,L)-arrow f : a→ X ,
there exists a σ(K,L)-arrow F : X → X satisfying F ◦ j = f . This is described in the
diagram below.

a // j //

f
&&MMMMMMMMMMMMM X

F

���
�
�

X

Note that the arrow f is of the form x∞n ◦f
′ for some f ′ ∈ L. That is why the definition

above really speaks about L-homogeneity, not σ(K,L)-homogeneity. It can actually be
viewed as a variation on the mixed amalgamation property, which is witnessed by the
results below.

Lemma 3.9. Let 〈K,L〉 be a pair of categories such that K ⊆ L and let X, Y ∈ Ob (σK)
be such that X is K-injective in σ(K,L). Then for every σK-arrow j : a → Y with
a ∈ Ob (K), for every σ(K,L)-arrow f : a→ X, there exists a σ(K,L)-arrow F : Y → X
for which the diagram

a // j //

f
&&MMMMMMMMMMMMM Y

F

��
X

commutes.

Proof. The arrow j factorizes through some yk, that is, j = y∞k ◦ i for some K-arrow
i : a→ yk. Using K-injectivity, we construct inductively L-arrows fn : yn → X for n > k
so that fk◦i = f and fn+1◦yn+1

n = fn for n > k. This gives rise to an arrow of sequences
F = {fn}n>k satisfying F ◦ j = f .

Letting X = Y in the lemma above, we obtain:

Corollary 3.10. Let K ⊆ L be a pair of categories. Every K-injective object is L-
homogeneous in σ(K,L).

The equivalence (b)⇐⇒(c) in the next statement, in the context of model theory, has
been noticed by Dolinka [6, Prop. 3.8].
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Proposition 3.11. Let K ⊆ L be a pair of categories and let K have a Fräıssé sequence
U ∈ Ob (σK). The following properties are equivalent:

(a) U is K-injective in σ(K,L).

(b) U is L-homogeneous in σ(K,L).

(c) 〈K,L〉 has the mixed amalgamation property.

Proof. Implication (c) =⇒ (a) has been proved in Proposition 2.4. Implication (a) =⇒
(b) is a consequence of Corollary 3.10. It remains to show that (b) =⇒ (c).

Suppose U is L-homogeneous in σ(K,L) and fix a K-arrow j : c → a and an L-arrow
f : c→ b. Using the property of being a Fräıssé sequence, find K-arrows i : a→ uk and
e : b→ uℓ with some k, ℓ < ω. Since U is L-homogeneous, there exists a σ(K,L)-arrow
F : U → U satisfying F ◦ u∞k ◦ i ◦ j = u∞ℓ ◦ e ◦ f . Finally, find an L-arrow g : uk → um
with m > ℓ, such that u∞m ◦ g = F ◦ u∞k . The situation is described in the following
diagram.

c // j //

f

��

a // i // uk
g

!!C
CC

CC
CC

C
// // U

F

��
b //

e
// uℓ //

um
ℓ

// um // // U

Thus, j and f are amalgamated by a K-arrow umℓ ◦ e and an L-arrow g ◦ i.

Under certain natural assumptions, we are able to characterize homomorphism-homo-
geneous objects. In the next statement we speak about countable categories, but what
we really have in mind is the existence of countably many isomorphic types of arrows.
For example, the category of finite sets is a proper class, yet it can obviously be regarded
as a countable category.

Theorem 3.12. Let K ⊆ L be a pair of categories such that 〈K,L〉 has the mixed pushout
property, L is countable, and K has the initial object 0. For a sequence X ∈ Ob (σK),
the following properties are equivalent.

(a) X is L-homogeneous in σ(K,L).

(b) There exists a subcategory K0 of K such that 0 is initial in K0, X ∈ Ob (σK0),
〈K0,L〉 has the mixed pushout property, and X is K0-injective in σ(K0,L).

(c) There exists a subcategory K0 of K such that 0 is initial in K0, X ∈ Ob (σK0),
〈K0,L〉 has the mixed pushout property, and X is a retract of a Fräıssé sequence
in K0.

The existence of the initial object in K is not essential, but removing it we would have
to make more technical assumptions involving the joint embedding property.
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Proof. The equivalence (b)⇐⇒(c) is contained in Theorem 2.7. The fact that K0 is
countable has been used here for the existence of a Fräıssé sequence. Implication (b) =⇒
(a) is contained in Corollary 3.10. It remains to show that (a) =⇒ (b).

We may assume that x0 = 0 in the sequence X . Let S = {xmn : n 6 m, n,m ∈ ω}.
Then S is a subcategory of K that contains the intial object 0. We first check that X is
S-injective. Fix a σ(K,L)-arrow f : xn → X and fix m > n. Since X is L-homogeneous,
there exists a σ(K,L)-arrow F : X → X satisfying F ◦x∞n = f . Note that x∞n = x∞m ◦x

m
n ,

therefore (F ◦ x∞m ) ◦ xmn = f , which shows the S-injectivity of X .

Now let K0 consist of all K-arrows j : c → a such that X is j-injective in σ(K,L) and
there exists at least one σ(K,L)-arrow from c to X . That is, for every σ(K,L)-arrow
f : c → X , there exists a σ(K,L)-arrow g : a → X satisfying g ◦ j = f . The second
assumption is needed for keeping 0 initial in K0, namely, X should also be injective
for the (unique) arrow 0 → a. It is clear that K0 is a subcategory of K containing S.
In particular, X ∈ Ob (σK0). It remains to show that 〈K0,L〉 has the mixed pushout
property. For this aim, fix an K0-arrow j : c→ b, an L-arrow p : c→ a, and let k : a→ w,
q : b→ w be such that k ∈ K, q ∈ L and

b
q // w

c
OO

j

OO

p
// a
OO
k

OO

is a pushout square in L. Fix a σ(K,L)-arrow f : a → X . Since X is j-injective, there
exists a σ(K,L)-arrow g : b → X satisfying g ◦ j = f ◦ p. Both arrows f and g are
factorized through some xn, namely, f = x∞n ◦ f

′ and g = x∞n ◦ g
′ for some L-arrows

f ′, g′. Using the property of a pushout, we find a unique L-arrow h : w → xn satisfying
h ◦ k = f ′ and h ◦ q = g′. In particular, f = x∞n ◦ h has the property that f ◦ k = f .
This shows that X is k-injective in σ(K,L) and completes the proof.

Unfortunately, the result above is not fully applicable to Fräıssé classes. Namely, in case
where K is a countable Fräıssé class, K0 may not be a full subcategory of K. This is
demonstrated below, for the class of finite graphs.

Example 3.13. Let X be the two-element complete graph. It is clear that X is
homomorphism-homogeneous (and also ultrahomogeneous). We consider graphs with-
out loops, therefore every endomorphism of X is an automorphism. More precisely,
we consider the pair 〈K,L〉, where Ob (K) = Ob (L) are all finite simple graphs, the
K-arrows are embeddings and the L-arrows are graph homomorphisms.

Let K0 be any subcategory of K that has pushouts in L and contains all the embed-
dings of subgraphs of X . So, Ob (K0) contains the empty graph and complete subgraphs
of size 6 2. The pushout with embeddings of the empty graph is just the coproduct
(disjoint sum), there Ob (K0) contains the 2-element graph D with no edges. Further-
more, Ob (K0) contains the graph G whose set of vertices is {−1, 0, 1} and the edges are
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{−1, 0} and {0, 1}. Such a graph comes from the pushout of two embeddings of the one-
element graph into X . Now consider an embedding j : D → G such that j[D] = {−1, 1}.
Let f : D → X be one-to-one. Clearly, f is a homomorphism and no homomorphism
g : G→ X satisfies g ◦ j = f . This shows that X is not j-injective. In particular, K0 is
not a full subcategory of K.

3.3 Metric spaces

We shall now discuss a concrete model-theoretic application of our result: Retracts of
the universal metric space of Urysohn. Let M be the category of finite metric spaces
with isometric embeddings. The objects of M are models of a first-order language: For
each rational r > 0 we can define the binary relation Dr(x, y)⇐⇒ d(x, y) < r, where d
denotes the metric on a fixed set X . The axioms of a metric can be rephrased in terms
of the relations Dr. For example, the triangle inequality follows from the following
(infinitely many) formulae:

Dr(x, z) ∧Ds(z, y) =⇒ Dr+s(x, y).

It is clear that, in this language, a homomorphism of metric spaces is a non-expansive
map. Recall that f : X → Y is non-expansive if dY (f(p), f(q)) 6 dX(p, q) for every
p, q ∈ X , where dX , dY denote the metrics on X and Y respectively.

It is also possible to describe a metric space by similar relations Dr, now meaning that
the distance is 6 r. We shall see later that, even though both languages describe the
same objects, the notion of being algebraically closed is completely different.

Clearly, the language of metric spaces is infinite and there exist infinitely many types
of 2-element metric spaces (even when restricting to rational distances), therefore one
cannot apply Dolinka’s result here. Moreover, M is formally not a Fräıssé class, because
it contains continuum many pairwise non-isomorphic objects. It becomes a Fräıssé class
when restricting to spaces with rational distances. However, in that case we cannot
speak about complete metric spaces. In any case, our main result is applicable to the
complete metric space of Urysohn, as we show below.

The following lemma, in a slightly different form, can be found in [7, Lemma 3.5].

Lemma 3.14. Let f : X → Y be a non-expansive map of nonempty finite metric spaces.
Assume X∪{a} is a metric extension of X. Then there exists a metric extension Y ∪{b}
of Y such that

Y // // Y ∪ {b}

X

f

OO

// //X ∪ {a}

g

OO
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where g ↾ X = f and g(a) = b, is a pushout square in the category of metric spaces
with non-expansive maps. Furthermore

(M) d(y, b) = min
x∈X

(

d(y, f(x)) + d(x, a)
)

for every y ∈ Y .

The statement obviously fails when X = ∅ and Y 6= ∅.

Proof. We first need to show that (M) defines a metric on Y ∪ {b}. Of course, only
the triangle inequality requires an argument. Fix y, y1 ∈ Y . Find x1 ∈ X such that
d(y1, b) = d(y1, f(x1)) + d(x1, a). Using the triangle inequality in Y , we get

d(y, b) 6 d(y, f(x1)) + d(x1, a) 6 d(y, y1) + d(y1, f(x1)) + d(x1, a) = d(y, y1) + d(y1, b).

Now find x ∈ X such that d(y, b) = d(y, f(x)) + d(x, a). Using the triangle inequalities
in X and Y , and the fact that d(f(x), f(x1)) 6 d(x, x1), we obtain

d(y, b) + d(y1, b) = d(y, f(x)) + d(x, a) + d(y1, f(x1)) + d(x1, a)

> d(y, f(x)) + d(x, x1) + d(y1, f(x1))

> d(y, f(x)) + d(f(x), f(x1)) + d(y1, f(x1))

> d(y, y1).

Thus, d defined by (M) fulfills the triangle inequality.

Given x ∈ X , we have d(g(x), g(a)) = d(f(x), b) 6 d(f(x), f(x)) + d(x, a) = d(x, a).
This shows that g is non-expansive.

Finally, assume p : X ∪ {a} → W and q : Y → W are non-expansive maps such that
p ↾ X = q ◦ f . We need to show that there exists a unique non-expansive map h : Y ∪
{b} → W satisfying h ◦ g = p and h ↾ Y = q. The uniqueness of h is clear, namely
h(b) = h(g(a)) = p(a). It remains to verify that h is non-expansive.

Suppose otherwise and fix y ∈ Y such that d(h(y), h(b)) > d(y, b). Find x ∈ X such
that d(y, b) = d(y, f(x)) + d(x, a). So we have

(*) d(h(y), p(a)) > d(y, f(x)) + d(x, a).

Knowing that p and q are non-expansive, we get

(**) d(p(x), p(a)) 6 d(x, a) and d(q(y), q(f(x)) 6 d(y, f(x)).

Note that q(f(x)) = p(x) and q(y) = h(y). Finally, (*) and (**) give

d(h(y), p(a)) > d(p(x), p(a)) + d(h(y), p(x))

which contradicts the triangle inequality in W . This completes the proof.
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We say that a metric space 〈X, d〉 is finitely hyperconvex if for every finite family of
closed balls

A =
{

B(x0, r0),B(x1, r1), . . . ,B(xn−1, rn−1)
}

such that
⋂

A = ∅, there exist i, j < n such that

d(xi, xj) > ri + rj.

This is a weakening of the notion of a hyperconvex metric space, due to Aronszajn &
Panitchpakdi [2], where the family above may be of arbitrary cardinality. Actually, the
authors of [2] had already considered κ-hyperconvex metric spaces; finite hyperconvexity
corresponds to ℵ0-hyperconvexity. A variant of finite hyperconvexity (with closed balls
replaced by open balls) has been recently studied by Niemiec [19] in the context of
topological absolute retracts.

The following facts relate this definition to our main topic. The first one should be well
known for readers familiar with the notion of a hyperconvex metric space, namely, every
metric space embeds isometrically into a hyperconvex one.

Lemma 3.15. Let X be a finite metric space and let A = {B(xi, ri)}i<N be a family
of closed balls such that N ∈ ω and d(xi, xj) 6 ri + rj for every i, j < N . Then there
exists a metric extension X ∪ {a} of X such that d(a, xi) 6 ri for every i < N .

Proof. Fix a /∈ X and define

(*) d(a, x) = min
i<N

(

d(x, xi) + ri

)

.

Obviously, d(a, xi) 6 ri. It remains to check that (*) indeed defines a metric on X∪{a}.
It is the triangle inequality that requires a proof. Fix x, y ∈ X and fix k < N such that
d(a, y) = d(y, xk) + rk. Then

d(a, x) 6 d(x, xk) + rk 6 d(x, y) + d(y, xk) + rk = d(x, y) + d(y, a).

This shows that d(x, a) 6 d(x, y)+d(y, a). Now fix i < N such that d(a, x) = d(x, xi)+ri.
We have that d(xi, xk) 6 ri + rk, therefore

d(a, x) + d(a, y) = d(x, xi) + ri + d(y, xk) + rk

> d(x, xi) + d(y, xk) + d(xi, xk) > d(x, y).

This shows that d defined by (*) satisfies the triangle inequality.

Lemma 3.16. A metric space is finitely hyperconvex if and only if it is injective with
respect to isometric embeddings of finite metric spaces.
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Proof. Let X be a finitely hyperconvex metric space and fix a non-expansive map
f : S → X , where S is a finite metric space. It suffices to show that f can be extended to
a non-expansive map f ′ : T → X whenever T is a metric extension of S and T \S = {a}.
Fix T = S ∪ {a} and let

A = {B(f(s), rs) : s ∈ S},

where rs = d(s, a). Given s, s1 ∈ S, we have that d(f(s), f(s1)) 6 d(s, s1) 6 rs + rs1 .
Since X is finitely hyperconvex, there exists b ∈

⋂

A. This means that d(b, f(s)) 6

d(s, a) for every s ∈ S. Thus, setting f ′(a) = b and f ′ ↾ S = f , we obtain a non-
expansive extension of f . This shows the “only if” part.

For the “if” part, fix a family A = {B(xi, ri)}i<N in X , so that d(xi, xj) 6 ri + rj for
i, j < N . Let S = {x0, x1, . . . , xN−1} and endow S with the metric inherited from X .
Let T = S ∪ {a} be a metric extension of S such that d(a, xi) 6 ri for i < N . It exists
by Lemma 3.15. Applying the injectivity of X , we can find a non-expansive extension
g : T → X of the inclusion S ⊆ X . Let b = g(a). Then d(b, xi) 6 d(a, xi) 6 ri for i < N .
This shows that

⋂

A 6= ∅.

Theorem 3.17. Given a Polish space 〈X, d〉, the following properties are equivalent:

(a) 〈X, d〉 is a non-expansive retract of the universal Urysohn space U.

(b) 〈X, d〉 is finitely hyperconvex.

(b’) 〈X, d〉 is injective with respect to isometric embeddings of finite metric spaces.

Proof. The equivalence (b)⇐⇒(b’) is contained in Lemma 3.16.

(a) =⇒ (b’) Assume X ⊆ U and r : U → X is a non-expansive retraction. Fix finite
metric spaces S ⊆ T and a non-expansive map f : S → X . Using the mixed pushout
property (a consequence of Lemma 3.14 and Proposition 3.2), we can find an isometric
embedding j : f [S] → W and a non-expansive map g : T → W such that W is a finite
metric space and g ↾ S = j ◦ f . Using the ultrahomogeneity of U, we can find an
isometric embedding h : W → U such that h ◦ j is the inclusion f [S] ⊆ U. Finally, let
p = r ◦ h ◦ g. Then p : T → X is a non-expansive map and p ↾ S = f .

(b’) =⇒ (a) Fix a Polish space X satisfying (b’). Fix a countable dense set D ⊆ X .
Let K0 = Q ∪ {d(x, y) : x, y ∈ D} and let K be the subsemigroup of 〈R,+〉 generated
by K0. Consider the category of nonempty finite metric spaces with distances in K
(we call them K-metric spaces). This category is countable, therefore it has a Fräıssé
sequence. This Fräıssé sequence defines a countable metric space E whose completion
is, by uniqueness, the Urysohn space. Enlarging D to a countable set, we may assume
that it is injective with respect to isometric embeddings of finite K-metric spaces. By
Theorem 2.7, D is a non-expansive retract of E and consequently X is a non-expansive
retract of U.
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It is easy to check that the results above remain valid when restricting to S-metric
spaces, where S is a fixed subsemigroup of 〈[0,+∞),+〉. In case S is proper and closed
in [0,+∞), the universal ultrahomogeneous S-metric space is different from the Urysohn
space. Further generalization is obtained by bounding the distances by some constanct
C ∈ S ∪ {+∞}. Namely, one can consider the class MC

S of finite metric spaces 〈X, d〉,
where d[X ×X ] ⊆ S ∩ [0, C]. It is clear that analogues of Lemmata 3.14, 3.15 and 3.16
hold for the class MC

S , when C = +∞. For the case C < +∞, notice that there is a
natural functor mapping 〈X, d〉 ∈M+∞

S to 〈X, dC〉 ∈MC
S , where

dC(x, y) = min{d(x, y), C}.

Applying this functor, we can easily conclude that Lemmata 3.14, 3.15 and 3.16 hold
for arbitrary classes of the form MC

S . However, we need to specify the more general
version of hyperconvexity. Namely, we say that 〈X, d〉 is finitely (S, C)-hyperconvex if
for every finite family of closed balls B = {B(xi, ri)}i<n with ri ∈ S ∩ (0, C] for i < n,
it holds that

⋂

B 6= ∅ whenever d(xi, xj) 6 ri + rj for every i, j < n. Finally, we obtain
the following generalization of Theorem 3.17.

Theorem 3.18. Let S be a closed subsemigroup of 〈[0,+∞),+〉 and let C ∈ S be a
positive constant. Given a separable C-bounded complete S-metric spaceX, the following
conditions are equivalent.

(a) X is a non-expansive retract of the C-bounded S-metric Urysohn space UC
S .

(b) X is finitely (S, C)-hyperconvex.

(c) X is injective with respect to isometric embeddings of finite C-bounded S-metric
spaces.

Note that a particular case S = ω and C = 2 can be regarded as the class of finite
simple graphs, where d(x, y) = 1 iff there is an edge between x and y. Being finitely
hyperconvex is rephrased to “algebraically closed” in the language of graphs1.

The theorem above speaks about complete metric spaces, so in most cases it is not about
Fräıssé classes. However, we can also formulate a version dealing with a countable (not
necessarily closed) subsemigroup S of [0,+∞). In that case, MS is a Fräıssé class (since
it is countable) and we can consider its Fräıssé limit US ∈MS, a (usually non-complete)
countable ultrahomogeneous S-metric space. By the remarks above, we conclude that
X ∈ MS is a non-expansive retract of US if and only if it is finitely S-hyperconvex.
This gives rise to the announced example showing that “being algebraically closed” for
metric spaces may or may not be equivalent to injectivity.

1 Actually, when viewing a graph as a metric space, a homomorphism allows identifying vertices
connected by edges.
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Example 3.19. Consider the class MQ of finite rational metric spaces. Assume that
the language consists of relations Dr (r ∈ Q), where Dr(x, y) means “d(x, y) < r”.
Using finite conjunctions of atomic formulae, there is no way to say that X is finitely
Q-hyperconvex. Indeed, consider Q as a metric space with the usual distance and take
X = Q \ {1}. Clearly, Q is finitely Q-hyperconvex, hence algebraically closed (see
Proposition 3.5). Thus, X is algebraically closed too, because of the strict inequalities
in the relations Dr. On the other hand, X is obviously not MQ-injective: The inclusion
{0, 2} ⊆ X has no non-expansive extension onto {0, 1, 2}.

Finally, consider the same language forMQ, but with a different interpretation. Namely,
letDr(x, y) mean “d(x, y) 6 r” (r ∈ Q). Now it is clear that “being algebraically closed”
implies “being finitely Q-hyperconvex”, because of a version of Lemma 3.15 for rational
metric spaces. Thus, both properties are equivalent and now it is true that a countable
rational metric space is MQ-injective if and only if it is algebraically closed.

3.4 Linear orders

Let κ be an infinite cardinal and let LO<κ denote the class of all linearly ordered sets of
cardinality < κ. A homomorphism of linearly ordered sets will be called an increasing
map. As mentioned before, LO<ω gives a natural example of a pair 〈embLO<ω,

homLO<ω〉
failing the pushout property. However, we have the following

Proposition 3.20. For every infinite cardinal κ, the pair 〈embLO<κ,
homLO<κ〉 has prop-

erty (H).

Proof. Condition (H1) follows from (H3), because
embLO<κ has an initial object (the

empty set) and homLO<κ has a terminal object, the 1-element linearly ordered set. It
remains to show (H2) and (H3).

Call an embedding j : A→ B primitive if |B \j[A]| 6 1. It is clear that every increasing
embedding is the colimit of a transfinite sequence of primitive embeddings. We shall
use an uncountable version of Proposition 3.1, which can be easily proved by transfinite
induction, using the fact that the category embLO<κ is κ-continuous in homLO<κ.

Denote by P the class of all primitive embeddings in embLO<κ. Let us prove first that
〈P, homLO<κ〉 has the amalgamated extension property (condition (H3)). Fix linearly
ordered sets C,A,B such that A = C ∪ {a} and B = C ∪ {b}. Fix increasing maps
f : A → L and g : B → L such that f ↾ C = g ↾ C. Formally, we have to assume that
a 6= b. Let W = A ∪ B. We let a < b if f(a) < g(b); we let a > b otherwise. It is clear,
using the compatibility of f and g, that this defines a linear order on W , extending the
orders of A and B. The unique map h : W → L satisfying h ↾ A = f and h ↾ B = g is
increasing. This shows (H3).

Now fix linearly ordered sets C,A,B such that A = C ∪ {a} with a /∈ C, and fix an
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increasing map f : C → B. Let

L =
⋃

c<a

(←, f(c)] and R =
⋃

c>a

[f(c),→),

where (←, x] = {p : p 6 x} and [x,→) = {p : p > x}. Note that B = L ∪ R and L ∩ R
is either empty or a singleton. Let W = B ∪ {w}, where either w ∈ L ∩R or w /∈ B in
case where L ∩ R = ∅. In the latter case, define x < w and w < y for x ∈ L, y ∈ R.
Define g : A → W by setting g(a) = w and g ↾ C = f . Clearly, g is increasing and the
inclusion B ⊆W is primitive. This shows (H2) and completes the proof.

Note that every increasing embedding of finite linear orders is left-invertible. Thus, as a
corollary, we obtain the fact that every countable linear order is an increasing retract of
the rational numbers. Of course, this result can be proved directly, realizing that X ·Q
with the lexicographic ordering is isomorphic to Q, whenever X is a countable linear
order.

Passing to the uncountable case, let us note that LO<ω1
has the Fräıssé limit if and only

if the Continuum Hypothesis holds. Denote this Fräıssé limit by Qω1
. It is easy to check

that a linearly ordered set X of cardinality ω1 is injective for countable linear orders
(isomorphic to Qω1

) if and only if for every countable sets A,B ⊆ X such that a < b
for a ∈ A, b ∈ B, there exists x ∈ X such that a 6 x 6 b (a < x < b) whenever a ∈ A,
b ∈ B (one of the sets A, B may be empty here). For example, the closed unit interval
[0, 1] satisfies this condition, therefore it can be embedded as an increasing retract of
Qω1

.

We finally make a short remark on reversed Fräıssé sequences, in the context of linear
orders. General theory of reversed Fräıssé limits of finite models (of a first-order lan-
guage) was developed in [11]. The idea comes just by considering the opposite category.
More specifically, fix a class M of finite models and consider the pair 〈quoM, homM〉,
where quoM is the category whose objects are the elements of M and the arrows are
quotient maps. Now property (H) is defined by reversing the arrows in all the diagrams.
For example, amalgamation is replaced by “reversed amalgamation” and pushouts are
replaced by pulbacks. Sequences are now contravariant functors and it is natural to
consider their limits endowed with the topology (inherited from the product of finite
sets). It is not hard to see that precisely the continuous homomorphisms are induced by
arrows between sequences. It is worth noting that if M is closed under finite products
and substructures then quoM has pullbacks in homM. The pullback of two quotient maps
f : z → x, g : z → y is provided by the structure

w = {〈s, t〉 ∈ x× y : f(s) = g(t)}.

Coming back to finite linear orders, consider the pair 〈quoLO<ω,
homLO<ω〉. It is straight

to see that quoLO<ω has no pullbacks in homLO<ω. On the other hand, it is easy and
standard to check that this pair has (the reversed variant of) property (H). Note that
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every increasing quotient of finite linearly ordered sets is right-invertible. Thus, all
sequences in quoLO<ω are “finitely projective”. It is clear that the inverse Fräıssé limit of
LO<ω is the Cantor set endowed with the standard linear order. Thus, using Theorem 2.7
(or, more precisely, Corollary 3.4), we obtain the following well known fact that belongs
to the folklore.

Corollary 3.21. Every compact metric totally disconnected linearly ordered space is a
continuous increasing retract of the standard Cantor set.

Of course, again it is not hard to prove this directly, by showing that a metric compact
totally disconnected linearly ordered space K can be isomorphically embedded into the
Cantor set and constructing the retraction “manually”. Note that the reversed Fräıssé
theory would only say that K is a continuous increasing quotient of the Cantor set,
however not all continuous increasing quotient maps of the Cantor are right-invertible.
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