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THE HYPERDETERMINANT OF A SYMMETRIC TENSOR

LUKE OEDING

Abstract. The hyperdeterminant of a symmetric tensor factors into several
irreducible factors with multiplicities. Using geometric techniques these factors
are identified along with their degrees and their multiplicities. The analogous
decomposition for the µ-discriminant of a symmetric tensor is found.

1. Introduction

After degree and number of variables, perhaps the most important invariant of
a polynomial is the discriminant ∆(f) - a polynomial in the coefficients of f which
vanishes precisely when f has a double root. Much of the interesting behavior of f
is encoded in ∆(f).

Consider a homogeneous degree d polynomial on n variables xi

f =
∑

0≤ij≤n

ai1,...,id

(
d

m1, . . . ,mn

)
xi1 · · ·xid ,

where ai1,...,id are constants, mj is the number of times that the index j appears

in the set {i1, . . . , id}, and
(

d
m1,...,mn

)
is the multinomial coefficient. In the case

d = 2, the data (ai,j)1≤i,j≤n that describe f equivalently describe a matrix Af =
(ai,j)1≤i,j≤n, which is symmetric; aj,i = ai,j . It is well known that when d = 2,
the discriminant ∆(f) is equal to the determinant det(Af ). In general, the data
(ai1,...,id)1≤i1,...,id≤n that describe f equivalently describe a d-dimensional array or
tensor Af = (ai1,...,id)1≤i1,...,id≤n, which is symmetric for all permutations of the
indices; aiσ(1),...,iσ(n)

= ai1,...,id for all permutations σ ∈ Sn.

A. Cayley [4] introduced the notion of the hyperdeterminant of a multidimen-
sional matrix (tensor) analogous to the determinant of a square matrix. The hy-
perdeterminant, which we define precisely below, may be thought of in analogy to
the discriminant as a polynomial that tells when a tensor is singular.

After 150 years without much attention paid to hyperdeterminants, Gelfand,
Kapranov and Zelevisnki brought hyperdeterminants into a modern light in their
groundbreaking work [7, 8]. In particular they determined precisely when the hy-
perdeterminant is non-trivial and computed the degree. Inspired by their work,
we study the hyperdeterminant applied to a symmetric tensor, or equivalently to
a polynomial. Said another way, this is a study of the symmetrization of the hy-
perdeterminant. Our goal is to determine how the symmetrized hyperdeterminant
factors, to determine the geometric meaning of each factor, and to determine the
degrees and multiplicities of the factors.
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The first example that is not a matrix is binary cubics. The discriminant of a
binary cubic has degree 4. The hyperdeterminant of a 2 × 2 × 2 tensor also has
degree 4 and the formula is well known (see [8, (1.5) p.448]). One can quickly check
that the symmetrization of this polynomial is the discriminant of a binary cubic.
It turns out that this and the quadrics case are the only two cases that have such
simple behavior.

Our curiosity was peaked by the following example that was first pointed out
to us by Giorgio Ottaviani. For plane cubics, the discriminant has degree 12.
The hyperdeterminant of a 3 × 3 × 3 matrix has degree 36. Using Macaulay2 [9]
Ottaviani used Schläfley’s method to compute the hyperdeterminant, applied this to
a symmetric tensor, specialized to a random line and found that the symmetrization
of the hyperdeterminant is a reducible polynomial which splits into a factor of degree
12 (the discriminant) and a factor of degree 4 with multiplicity 6. The degree 4
factor turned out to be Aronhold’s invariant for plane cubics and defines the variety
of Fermat cubics. While Aronhold’s invariant is classical, we refer the reader to [12]
where one finds a matrix construction which can be applied to construct Aronhold’s
invariant for degree 3 symmetric forms on 3 variables, Toeplitz’s invariant [14] for
triples of symmetric 3×3 matrices, and Strassen’s invariant [13] for 3×3×3 tensors.

After this example, Ottaviani posed the problem to understand and describe this
phenomenon in general. Indeed when d or n are larger than the preceding examples,
the hyperdeterminant becomes quite complicated, with much beautiful structure,
[10]. The approach of the current article is to study these algebraic objects from a
geometric point of view, thus avoiding some of the computational difficulties, such
as those that arise in computing an expansion of the hyperdeterminant in terms of
monomials.

The outline of the article is the following. In Section 2 we recall terminology from
combinatorics, namely the notion of one partition being a refinement of another and
present a formula for the number of such refinements. In Section 3 we review facts
from multilinear algebra necessary for our calculations. In Section 4 we recall the
relevant geometric objects (including Segre-Veronese varieties, Chow varieties and
projective duality). Finally in Section 5 we use geometric methods to prove our
main results, which are the following:

Theorem 1.1. The n×d-hyperdeterminant of a symmetric tensor of degree d ≥ 2
on n ≥ 2 variables splits as the product

∏

λ

ΞMλ

λ,n ,

where Ξλ,n is the equation of the dual variety of the Chow variety ChowλP
n−1

when it is a hypersurface in P(
n−1+d

d )−1, λ = (λ1, . . . , λs) is a partition of d, and

the multiplicity Mλ =
(

d
λ1,...,λs

)
is the multinomial coefficient.

Geometrically, this theorem is essentially a statement about the symmetrization
of the dual variety of the Segre variety. In fact, Theorem 1.1 is a special case of the
more general result for Segre-Veronese varieties:

Theorem 1.2. Let µ be a partition of d ≥ 2, and V be a complex vector space of
dimension n ≥ 2. Then

Segµ
(
PV ×t

)∨
∩ P

(
SdV ∗

)
=
⋃

λ≺µ

Chowλ (PV )∨ ,
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where λ ≺ µ is the refinement partial order. In particular,

V(Sym(∆µ,n)) =
∏

λ≺µ

Ξ
Mλ,µ

λ,n

where Ξλ,n is the equation of Chowλ (PV )
∨
when it is a hypersurface in P(SdV ),

and the multiplicity Mλ,µ is the number of refinements from µ to λ.

To properly use the previous two theorems, we need to know which dual varieties
of Chow varieties are hypersurfaces.

Proposition 1.3. Suppose d ≥ 2, dimV = n ≥ 2 and λ = (λ1, . . . , λs) =
(1m1 , . . . , pmp). Then Chowλ (PV )

∨
a hypersurface with the only exceptions

• n = 2 and m1 6= 0
• n > 2, s = 2 and m1 = 1 (so λ = (d− 1, 1)).

We also have a formula for the degree of the hypersurfaces in the binary case.

Theorem 1.4. The degree of Chowλ(P
1)∨ with λ = (1m1 , 2m2 , . . . , pmp), m1 = 0

and m =
∑

i mi is

(m+ 1)

(
m

m2, . . . ,mp

)
1m22m3 · · · (p− 1)mp

In more than 2 variables we have a recursive procedure for computing the degree
which is a consequence of Theorem 1.2.

Corollary 1.5. Suppose dimV ≥ 2. Let dλ denote deg(Chowλ (PV )∨). Then the
vector (dλ)λ is the unique solution to the (triangular) system of equations

deg(∆µ,n) =
∑

λ≺µ

dλMλ,µ.

The degree of ∆µ,n is given by a generating function [7, Theorem 3.1, Proposition
3.2] or also [8, page 454], the multiplicities Mλ,µ are computable via Proposition
2.2, so the corollary gives a recursive way to compute all of the degrees of the duals
of the Chow varieties.

Remark 1.6. The hypersurfaces Chowλ(PV )∨ are SL(V ) invariant, and thus each
defining polynomial is an SL(V ) invariant for polynomials. Since invariants of
polynomials have been well studied, many of the dual varieties to Chow varieties
have alternative descriptions as classically studied objects, however we prefer to
ignore these connections for our proofs in order to have a more uniform treatment.
However we point out that Corollary 1.5 may be used as a way to determine degrees
of classical invariants.

Recently there has been a considerable amount of work on hyperdeterminants,
Chow varieties and related topics. Indeed we have learned from the works [1–3, 5–
7,11,15], and we are particularly grateful for the very rich book [8] which provided
us both with several useful results and techniques, as well as inspiration.

In this paper we will work over C (or any algebraically closed field of characteris-
tic 0), it is likely that some these results can be extended to arbitrary characteristic,
but we do not concern ourselves with this problem here. All polynomials will be
assumed to be homogeneous.
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2. Combinatorial Ingredients

An integer vector λ = (λ1, . . . , λs) is called a partition of an integer d with s
parts if d ≥ λ1, . . . , λs > 0 and

∑
i λi = d. We often shorten this by writing λ ⊢ d

and #λ = s. We do not require the λi to be in order.
Often we would like to keep track of the number of repetitions that occur in λ.

In this case, write λ = (1m1 , 2m2 , . . . , pmp). where imi is to be interpreted as the
integer i repeated mi times.

Suppose λ ⊢ d and µ ⊢ d. We will say λ = (λ1, . . . , λs) is a refinement of
µ = (µ1, . . . , µt) and write λ ≺ µ if there is an expression

(1)

λ1 = µi1,1 + · · ·+ µi1,t1

λ2 = µi2,1 + · · ·+ µi2,t2

. . .
λs = µis,1 + · · ·+ µit,ts

and (after re-ordering) µ = (µi1,1 , . . . , µi1,t1
, . . . , µis,1 , . . . , µis,ts

). Here we empha-
size that we do not distinguish two expressions as different if only the orders of the
summations in (1) change, but we do distinguish the case when different choices
of indices of µ appear in different equations even if some of the µi take the same
value.

Let Mλ,µ denote the number of distinct expressions of the form (1). We will say
that Mλ,µ is the number of refinements from µ to λ.1 Here are some easy properties
of Mλ,µ that follow immediately from the definition.

Proposition 2.1. Let Mλ,µ denote the number of refinements from µ to λ. Then
the following properties hold.

• M(d),µ = 1 for all |µ| = d.
• Mλ,µ = 0 if s > t or if s = t and λ 6= µ, in particular, the matrix (Mλ,µ)λ,µ
is lower triangular for a good choice in ordering of the indices.

• If λ = (1m1 , 2m2 , . . . , pmp), then Mλ,λ = m1! · · ·mp!.

• Mλ,1d =
(
d
λ

)
:=
(

d
λ1,...,λs

)
= d!

λ1!···λs!
, the multinomial coefficient.

Computing Mλ,µ can become complicated. For example (3, 2) is a refinement
of (2, 1, 1, 1) and we find that (3, 2) = (2 + 1, 1 + 1) (in 3 different ways) and
(3, 2) = (1 + 1 + 1, 2) (in one way) so M(2,1,1,1),(3,2) = 4.

We may compute Mλ,µ via brute force, and we state this in the following propo-
sition, which follows directly from the definition. However we would like to know
if there is a more efficient function giving the values of Mλ,µ.

Proposition 2.2. Let B(t, s) denote the set of all surjective maps

φ : {1, . . . , t}−→{1, . . . , s},

and let χ(a, b) = 1 if a = b and = 0 otherwise. Then

Mλ,µ =
∑

φ∈B(t,s)

s∏

i=1

χ


λi,

∑

j∈φ−1(i)

µj


 .

1Unfortunately [7] uses the same symbol Mλ,µ for the Gale-Ryser number, but in [8] they use

dλ,µ for the Gale-Ryser number. We emphasize that our Mλ,µ and dλ,µ are related, but not equal.
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For example, M(3,2,2),(3,1,1,1,1) = 6. We compute this by considering all surjec-
tions φ : {1, 2, 3, 4, 5}−→{1, 2, 3}. One finds that only the surjections that satisfy
φ−1(1) = 1 can contribute non-zero since there is only one way to produce λ1 = 3.
The only remaining φ that can (and do) contribute non-zero to Mλ,µ are the fol-
lowing 6 cases

{φ({2, 3}) = 2, φ({4, 5}) = 3}, {φ({2, 4}) = 2, φ({3, 5}) = 3},
{φ({2, 5}) = 2, φ({3, 4}) = 3}, {φ({3, 4}) = 2, φ({2, 5}) = 3},
{φ({3, 5}) = 2, φ({2, 4}) = 3}, {φ({4, 5}) = 2, φ({2, 3}) = 3}.

Note that this construction accounts for the ambiguity in the location of the 2’s in
the partition (3, 2, 2). This is a counterexample to a näıve guess that Mλ,µ could
be simply the number of unordered refinements from µ to λ times the number of
permutations that fix λ.

Mλ,µ also computes the dimension of the space of (unlabeled) partial sym-
metrization maps

Sµ1V ⊗ Sµ2V ⊗ · · · ⊗ SµtV−→Sλ1V ⊗ Sλ2V ⊗ · · · ⊗ SλsV.

We can see this as follows: The set B(t, s) over-parameterizes all choices of
collections of vector spaces of the form Sµi that will be symmetrized and mapped
to a vector space of the form Sλj . Then for a given φ ∈ B(t, s), the number of
copies Sλi occurs in

⊗
j∈φ−1(i) S

µjV is, via the Pieri formula, equal to 1 precisely

when λi =
∑

j∈φ−1(i) µi, and zero otherwise. In Section 6 we list some examples of

the matrices (Mλ,µ).

3. Some multi-linear algebra

The elementary facts below will turn out to be useful later. By following the
philosophy to not use coordinates unless necessary, we hope to give a more stream-
lined approach. As a reference and for much more regarding multilinear algebra
and tensors we suggest [11], which is where we learned this perspective.

Suppose [F ] is a hyperplane in PV ⊗d. Then F may be considered as a linear map
F : V ⊗d−→C, or equivalently as a multilinear form F : V ×d−→C. More explicitly,
let [v1 ⊗ v2 ⊗ · · · ⊗ vd] ∈ P

(
V ⊗d

)
. Then

(2) F (v1 ⊗ v2 ⊗ · · · ⊗ vd) = F (v1, v2, . . . , vd) ,

where on the left we are thinking of F as a linear map, and on the right as a
multilinear form. Our choice of interpretation of F and how to evaluate F will be
clear from the context so we will not introduce new notation for the different uses.

Now consider µ ⊢ d, µ = (µ1, . . . , µt) and

uµ1

1 ⊗ uµ2

2 ⊗ · · · ⊗ uµt

t ∈ Sµ1V ⊗ · · · ⊗ SµtV.

The form F may be evaluated on points of P (Sµ1V ⊗ · · · ⊗ SµtV ) via the inclusion
into P

(
V ⊗d

)

F (uµ1

1 ⊗ uµ2

2 ⊗ · · · ⊗ uµt

t ) = F (u1, . . . , u1, u2, . . . , u2, . . . , ut, . . . , ut),

where ui is repeated µi times.
Now suppose λ and µ are such that Mλ,µ is non-zero, and consider the inclusion

Sλ1V ⊗ Sλ2V ⊗ · · · ⊗ SλsV ⊂ Sµ1V ⊗ Sµ2V ⊗ · · · ⊗ SµtV,

Let vλ1
1 ⊗ · · · ⊗ vλs

s ∈ Sλ1V ⊗ Sλ2V ⊗ · · · ⊗ SλsV . Since vj = v⊗j for any j,

we may make explicit the above inclusion by writing vλ1
1 ⊗ · · · ⊗ vλs

s in the form
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uµ1

1 ⊗ uµ2

2 ⊗ · · · ⊗ uµt

t , where each vector ui is an element of {v1, . . . , vs} and there
is re-ordering of the factors implied by the inclusion above. In this case, we say
that uµ1

1 ⊗ uµ2

2 ⊗ · · · ⊗ uµt

t symmetrizes to vλ1
1 ⊗ · · · ⊗ vλs

s . In addition, there is an
inclusion SdV ⊂ Sλ1V ⊗ Sλ2V ⊗ · · · ⊗ SλsV , so we may further symmetrize both
points to vλ1

1 · · · vλs
s .

Now suppose [F ] is symmetric hyperplane in PV ⊗d, i.e, F ∈ SdV ∗. Then (2)
implies that F takes the same value at every tensor in PV ⊗d that symmetrizes to
vλ1
1 · · · vλs

s . We will use this fact several times in the sequel.
As a matter of notation, if u ∈ {v1, . . . , vn} we will write v1···vn

u
to denote the

product omitting u.

4. Geometric Ingredients

Hyperdeterminants, the discriminant and their cousins, whose definitions we will
recall below, are all equations of irreducible hypersurfaces in projective space, and
moreover each hypersurface is the dual variety of another variety.

To say that a polynomial splits into many irreducible factors (with multiplicities)
geometrically says that the associated hypersurface decomposes as the union of
many hypersurfaces (with multiplicities). Geometrically, we would like to describe
one dual variety as the union of other dual varieties. Our perspective is to study the
relation between dual varieties and (geometric) symmetrization. In what follows we
will introduce all of the geometric notions we will need to prove our main results.

4.1. Segre-Veronese and Chow varieties. Let V be a complex vector space of
dimension n. Let λ ⊢ d with #λ = s. Consider the Segre-Veronese embedding via
O(λ), which is given by

Segλ : PV ×s |O(λ)|
−→ P

(
Sλ1V ⊗ · · · ⊗ SλsV

)
⊆ P

(
V ⊗d

)

([a1], . . . , [as]) 7→ [aλ1
1 ⊗ · · · ⊗ aλs

s ].

We call the image of this map a Segre-Veronese variety, and denote it by Segλ (PV
×s).

More generally, all of the vector spaces can be different, but we do not need that
generality here.

Notice that when λ = (1d) = (1, . . . , 1) this is the usual Segre embedding, whose
image we will denote by Seg

(
PV ×d

)
, and when λ = (d) the map is the dth Veronese

embedding, whose image we will denote by νd (PV ).
It is easy to see that Segλ (PV

×s) is a smooth, non-degenerate, homogeneous
variety of dimension s(n − 1). Moreover, it is clear that if σ ∈ Ss is a permuta-
tion, then Segσ(λ) (PV

×s) is isomorphic to Segλ (PV
×s), and the isomorphism is an

equality if and only if λ is fixed by σ.
Recall that a consequence of the Pieri formula is that for all λ ⊢ d, there is an

inclusion

SdV ⊂ Sλ1V ⊗ · · · ⊗ SλsV.

Since G = GL(V ) is reductive, there is a unique G-invariant complement to SdV
in Sλ1V ⊗ · · · ⊗ SλsV , which we will denote by Wλ.

Note that the linear span of the Segre-Veronese variety is the whole ambient
space. This means, in particular, that there is always a basis of Sλ1V ⊗ · · · ⊗SλsV
consisting of monomials.

For each λ there is a natural projection from Wλ, namely

πWλ : P
(
Sλ1V ⊗ · · · ⊗ SλsV

)
99K PSdV,
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whose definition on decomposable elements is

[aλ1
1 ⊗ · · · ⊗ aλs

s ] 7→ aλ1
1 · · · aλs

s ,

and is extended by linearity.
For each λ we define a Chow variety, denoted Chowλ(PV ), as the image of the

Segre-Veronese variety under the projection πWλ . Chow varieties are also some-
times called coincident root loci [6], or a split variety when λ = (1d) [?]. One can
check that this is equivalent to the usual definition of a Chow variety, see [3]. No-
tice that the image of the projection is not changed by permutations acting on λ.
In other words, Chowλ(PV

×s) is equally the projection of Segσ(λ)(PV
×s) for any

permutation σ ∈ Ss. The number of unique projections is Mλ,λ.
Notice that when λ = (1d), the Chow variety is the variety of polynomials that

are completely reducible as a product of linear forms, and is sometimes called the
split variety. For general λ, the Chow variety is the closure of the set of polynomials
that are completely reducible as the product of linear forms that are respectively
raised to powers λ1, . . . , λs.

The following is well known (see [6] for example).

Proposition 4.1. Suppose λ ⊢ d with #λ = s. Then dim(Chowλ(PV )) = s(n−1).

Proof. Let dim(V ) = n, and d = |λ|. Note that the Segre-Veronese map PV ×· · ·×
PV−→P

(
Sλ1V ⊗ · · · ⊗ SλsV

)
is an embedding, and in particular the dimension of

the image is s(n− 1). The projection to SdV is a finite morphism, so the image is
also s(n− 1)-dimensional. �

Remark 4.2. It is interesting to note that the refinement partial order on partitions
also exactly controls the containment partial order on Chow varieties. Namely

Chowλ(PV ) ⊂ Chowµ(PV )

precisely when λ ≺ µ.

4.2. Dual varieties. Let U denote a complex, finite dimensional vector space and
let U∗ denote the dual vector space of linear forms {U−→C}. For a smooth pro-
jective variety X ⊂ PU , the dual variety X∨ ⊂ PU∗ is the variety of tangent

hyperplanes to X . Specifically, let T̂xX ⊂ U denote the cone over the tangent
space to X at [x] ∈ X . The dual variety of X in PU∗ is defined as

X∨ :=
{
[H ] ∈ PU∗ | ∃[x] ∈ X, T̂xX ⊂ H

}
.

Remark 4.3. If X ⊂ PU is not smooth the dual variety can still be defined with a
bit more care. Consider the incidence variety (conormal variety)

P = {([x], [H ]) | T̂x ⊂ H} ⊂ PU × PU∗ ⊂ P(U ⊗ U∗),

which we define only for smooth points of X and then take the Zariski closure
(see [16] for a more thorough treatment). The conormal variety is equipped with
projections p1 and p2 to the first and second factors respectively. The projection
p2 to the second factor defines X∨.

Recall that the dual variety of an irreducible variety is also irreducible. Usually,
we expect the dual variety X∨ to be a hypersurface. When this does not occur, we
say that X is defective.

The dual variety of the Veronese νd (PV )
∨
is a hypersurface defined by the clas-

sical discriminant of a degree d polynomial on n variables, which we will denote
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∆(d),n, see [8, Example I.4.15, p.38]. We are told in the same passage that G. Boole

in 1842 introduced this discriminant and found that deg(∆(d),n) = (n)(d − 1)n−1.

The hyperdeterminant of format n×d, denotedHDn,d, is the equation of the (irre-

ducible) hypersurface Seg
(
PV ×d

)∨
⊂ P

(
V ⊗d

)∗
. Note that HDn,d is a polynomial

of degree N(n, d) on
(
V ⊗d

)∗
where N(n, d) can be computed via the generating

functions found in [7, Theorem 3.1, Proposition 3.2] or also [8, Theorem XIV.2.4,
p 454].

Segre-Veronese varieties and their duals are well-studied objects. In particular,
it is known precisely when they are hypersurfaces [8, Proposition XIII.2.3 p.441],
and their degree is given in [8, Theorem XIII.2.4 p.441]. For µ ⊢ d we denote by

∆µ,n the µ-discriminant, which is the equation of Segµ (PV
×t)

∨
when non-trivial.

(Note this notion is often called an A-discriminant in [8].)
When the dual variety Chowλ (PV )

∨
is a hypersurface (see Proposition 1.3), we

will let Ξλ,n denote its equation, which is unique up to multiplication by a non-zero
scalar.

4.3. Projections of dual varieties. The focus of this article is the symmetriza-
tion of the hyperdeterminant. In general the symmetrization of a polynomial is the
map induced by the map that symmetrizes the variables. This may be described
invariantly as follows. If f ∈ Se(V ⊗d)∗ is a degree e homogeneous polynomial on
V ⊗d, then Sym(f) is the image of f under the projection Se(V ⊗d)∗−→Se(SdV )∗.
While this map can be described in bases in complete detail, we do not need this
for the current work.

To study the dual varieties of the varieties we have introduced, we need a state-
ment about the relation between taking dual variety and taking projection. This is
the content of the following proposition, which can be found in Landsberg’s book,
Proposition 9.2.6.1 v.2.25.11:

Proposition 4.4 ( [11]). Let X ⊂ PV be a variety and let W ⊂ V be a linear
subspace. Consider the rational map π : PV 99K P(V/W ). Assume X 6⊂ PW . Then

πW (X)∨ ⊆ PW⊥ ∩X∨

and if πW (X) ∼= X, then equality holds.

When W = Wλ = SdV ⊥ ⊂ Sλ1V ⊗ · · · ⊗ SλsV , the map πW is symmetrization
and we will denote it by Sym.

In the sequel we will perform an intermediate projection. For this we record the
following useful lemma, which follows immediately from the proposition.

Lemma 4.5. Suppose PW ⊂ PU ⊂ PV for vector spaces W,U, V , and X ⊂ PV ,
but X 6⊂ PW and X 6⊂ PV . Consider projections

πV
U : PV 99K PV/U

πU
W : PV/U 99K PV/W

πU
W : PV 99K PV/W.

Then

πU
W (X ∩ PV/W )∨ ⊆ (X ∩ PV/U)∨ ∩ PW⊥ = X∨ ∩ PW⊥.

The following statement, which follows directly from the definition, relates the
symmetrization of the µ-discriminant to the geometric setting.
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Proposition 4.6 (Proposition/Definition). The symmetrization of the µ-discriminant
is the µ-discriminant of a symmetric tensor

V(Sym(∆µ,n)) = Segµ
(
PV ×t

)∨
∩ P

(
SdV ∗

)
.

In particular, the symmetrization of the hyperdeterminant is the hyperdeterminant
of a symmetric multi-linear form;

V(Sym(HDd,n)) = Seg
(
PV ×d

)∨
∩ P

(
SdV ∗

)
.

4.4. Plane cubics again. As a prototypical example, we return to plane cubics.
Let V be a complex vector space with dim(V ) = 3 and let d = 3. Consider

the variety of decomposable plane cubics, denoted Chow1,1,1PV . More concretely,
Chow1,1,1PV = {[f ] ∈ PS3V | f = l1l2l3, 0 6= li ∈ V } ⊂ PS3V .

Proposition 4.7. Chow1,1,1 (PV )
∨

is the orbit of the Fermat cubic, i.e. the 3rd

secant variety to the cubic Veronese:

Chow1,1,1 (PV )∨ = σ3(ν3PV ).

= {h ∈ PS3V ∗ | h = e31 + e32 + e33, ei ∈ V ∗} ⊂ PS3V ∗.

In particular, Chow1,1,1 (PV )∨ is a hypersurface.

Lemma 5.1 below implies that since Chow1,1,1 (PV )∨ is a hypersurface its equa-
tion must divide the symmetrization of the hyperdeterminant of format 3× 3× 3.

Proof. The dual variety is the variety of all tangent hyperplanes. So we need
to calculate TfChow1,1,1 (PV ) for all f ∈ Chow1,1,1 (PV ) for f a general point,
and consider all hyperplanes H such that TfH ⊃ TfChow1,1,1 (PV ). Let f(t) =
l1(t)l2(t)l3(t), t ∈ C be a curve in Chow1,1,1 (PV ) such that f(0) = f = l1l2l3.

Then df(t)
dt |t=0

= l′1l2l3 + l1l
′
2l3 + l1l2l

′
3, where l′i are arbitrary tangent vectors. By

allowing the direction of the curve through f to vary, we obtain,

TfChow1,1,1 (PV ) = V · l2l3 + V · l1l3 + V · l1l2 = V · 〈l1l2, l1l3, l2l3〉 .

Carlini provides a nice geometric interpretation of this tangent space in his study
of Chow varieties, see [3, Prop. 3.4].

A hyperplane H ⊂ PS3V is the zero-set V(h) where h ∈ S3V ∗ is a linear form
on the vector space S3V . Since f was assumed to be general, we may assume
that l1, l2, l3 are linearly independent and hence form a basis of V with dual basis
e1, e2, e3 of V ∗. Then we write h in the ei basis as

h = λ3,0,0e
3
1 + λ2,1,0e

2
1e2 + λ2,0,1e

2
1e3

+λ0,3,0e
3
2 + λ1,2,0e1e

2
2 + λ0,2,1e

2
2e3

+λ0,0,3e
3
3 + λ1,0,2e1e

2
3 + λ0,1,2e2e

2
3

+λ1,1,1e1e2e3,

where the λr,s,t ∈ C are arbitrary parameters. Now h(f) = 0 implies that λ1,1,1 =
0. We apply the condition h(vl1l2) = 0 for v ∈ V . This implies when v = l1
that h(l21l2) = 0 and hence λ2,1,0 = 0. Continuing in this manner, we find that
h = λ3,0,0e

3
1 + λ0,3,0e

3
2 + λ0,0,3e

3
3, by taking closure, this completes the proof of the

first part.
To prove statement about dimension, we count free parameters. The choice

of 3 points ei from P2 amounts to the choice of 6 parameters, and the choice
of [λ3,0,0, λ0,3,0, λ0,0,3] is a choice from another P

2. These choices are generically



10 LUKE OEDING

independent so we have 8 free parameters in total. Thus we have a hypersurface in
P9 = PS3C3. �

Because of our generality assumption, there are six different tensors – l1⊗ l2⊗ l3
and its permutations – that symmetrize to l1l2l3. This fact implies that there are
6 copies of the equation of Chow1,1,1 (PV )∨ in the symmetrized hyperdeterminant.

This example is characteristic of the theme of the rest of the article. The split-
ting of the hyperdeterminant of a polynomial will depend on the dimensions and
multiplicities of the dual varieties of Chow varieties. We also will show that it this
is sufficient.

Remark 4.8. One may carry out a similar calculation for Chowλ(PV ) for any λ ⊢ d,
and #λ = s ≤ n. Let H be a generic symmetric hyperplane tangent to Chowλ(PV )

at lλ1
1 · · · lλs

s . Suppose the li are linearly independent and by choosing more linearly
independent forms if necessary to form a basis of V and let ei be a dual basis. The
form h ∈ SdV associated to H may be written as

h =
∑

i1,...,id≤n

λi1,...,ine
i1
1 · · · einn ,

where λi1,...,in are constants. The condition that H be tangent to Chowλ(PV ) at

lλ1
1 · · · lλs

s does not impose any conditions on the λ0,...0,d,0,...0 if s ≥ 2. This fact
implies that (as long as s ≤ n),

Chowλ(PV )∨ ⊃ σd(νd(PV )), ,

where σd(νd(PV )) is the variety of points on secant d − 1-planes to the Veronese
variety νdPV . Equality does not hold in general. One may use the dual of Chow
varieties as a source for equations for secant varieties of Veronese varieties. The
utility of this fact is limited by the degree of the equations obtained.

4.5. Dimension. Now we would like to prove Proposition 1.3 about the dimension
of the duals of Chow varieties. For convenience, we repeat that we need to show
that for λ = (1m1 , . . . , pmp), and n = dim(V ), Chowλ (PV )

∨
a hypersurface with

the only exceptions

• n = 2 and m1 6= 0
• n > 2, s = 2 and m1 = 1 (so λ = (d− 1, 1)).

The case d = 2 is already well understood, so we will assume d > 2.

Proof of Proposition 1.3. The dimension of a dual variety can be calculated via the
Kac dimension formula, essentially calculating the Hessian at a general point, but
we prefer to work geometrically.

A dual variety X∨ is a hypersurface unless a general tangent hyperplane is
tangent to X in a positive dimensional space. This is the condition that we will
apply in both cases. Our proof follows a standard proof about the non-degeneracy
for the dual of Segre-Veronese varieties.

For any n, the Chow variety Chowλ(PV ) does not contain any linear spaces if
m1 = 0, so in this case the dual is a hypersurface.

Now suppose m1 > 0. We must then show that a generic hyperplane is tangent
to Chowλ(PV ) along (at least) a line precisely when n = 2 or when n > 2 and
λ = (d− 1, 1).
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Consider a general point [x] ∈ Chowλ(PV ) with λ = (1m1 , . . . , pmp) and m1 > 0.
Then we may write x = lf , where f is completely decomposable. Then the tangent
space is

TxChowλ(PV ) = {lf, wf, lf ′z | w, z ∈ V }

= V · f +
∑

i V · l · f
yi
.

,

where yi are the factors of f .
Notice that the linear space PL = P(V · f) is contained in Chowλ(PV ), and up

to reordering of the factors of x, every linear space on Chowλ(PV ) is of this form.
Suppose H is a general hyperplane that contains a general tangent space Tx :=

TxChowλ(PV ) as above, we want to count the number of conditions on a element
l′f ∈ V · f so that H be tangent to Chowλ(PV ) at l′f . The dimension of choices
for l′f avoiding the line through x is n− 1, in other words we must choose l′ from
l⊥ ⊂ V .

Now consider two cases, first #λ = s = 2 and later s > 2.
If s = 2, consider x = l1 · f , with ld−1

2 = f , and generically we may assume l1
and l2 are linearly independent.

Now let y = l3l
d−1
2 be a general point in V ld−1

2 , where l3 is assumed to be
independent of l1 so that x and y are independent.

Since H annihilates Tx, we should calculate Ty modulo Tx. The vectors that

remain are all of the form l3l
′
2l

d−2
2 . Now if l′2 is in the line [l2] then l3l

′
2l

d−2
2

is contained in Tx. Additionally, if l′2 is in the line [l1], then l2l
′
3l

d−2
3 is not on

Chow(1, d− 1)PV . So we generically have a non-trivial condition H(l2l
′
3l

d−2
3 ) = 0

for each l′2 ∈ {l1, l2}
⊥, which is at most n− 2 conditions. Therefore the dimension

of the space of possible points l′f is at least n− 1− (n− 2) = 1, therefore a generic
hyperplane is tangent along a line.

Now suppose s > 2. We will consider first the case s = 3 and later argue that
considering this case suffices.

Let x = l1l
i
2l

j
3, where i + j + 1 = d and i, j > 0, else we revert to the previous

case. Consider y = l4l
i
2l

j
3 ∈ V li2l

j
3. Now compute Ty modulo Tx. Points on Ty have

the form

l′4l
i
2l

j
3 + i · l4l

′
2l

i−1
2 lj3 + j · l4l

i
2l3l

j−1
3 ,

which reduces to

i · l4l
′
2l

i−1
2 lj3 + j · l4l

i
2l3l

j−1
3 ,

modulo Tx. As before, the maximum number of independent conditions we can
impose on the choices of y ∈ V li2l

j
3 will come from the cases when

l′2 ∈ {l1, l2}
⊥ and l′3 ∈ {l1, l3}

⊥,

which are n− 2 + n− 2 = 2n− 4 conditions, and for generic H , this bound will be
achieved. Note when n = 2 no additional conditions are imposed and Chow1,i,jP

1

is not a hypersurface. On the other hand, 2n− 4 independent conditions imposed
on a space of dimension n − 1 will not have positive dimension as soon as n ≥ 3,
and thus Chow1,i,jPV is a hypersurface whenever dimV ≥ 3.

Finally, when s > 3 the analogous calculation provides at least as many condi-
tions to impose on the n − 1 choices of possible additional points in V f where a
generic hyperplane may be tangent to Chowλ(PV ), so the dimension of the resulting
space will not be positive for dimV ≥ 3. �
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5. Proof of main results

We aim to prove Theorem 1.2 in two steps. The first step is the following.

Lemma 5.1. Suppose λ ⊢ d with #λ = s. Then for every µ ⊢ d with #µ = t such
that λ ≺ µ (by refinement)

(3) Chowλ (PV )∨ ⊂ Segµ
(
PV ×t

)∨
∩ P

(
SdV ∗

)
.

Moreover when Chowλ (PV )∨ is a hypersurface it occurs with multiplicity Mλ,µ in

Segµ (PV
×t)

∨
∩ P

(
SdV ∗

)
, where Mλ,µ is the number of refinements from µ to λ.

A formula for Mλ,µ is given in Proposition 2.2.

Proof. Suppose F is a symmetric hyperplane tangent to Chowλ (PV
×s) at a general

point [vλ1
1 · · · vλs

s ]. Then we have

(4) F

(
w
vλ1
1 · · · vλs

s

vi

)
= 0

for all 1 ≤ i ≤ s and for all w ∈ V .
Now we apply the ideas outlined in Section 3. Since λ ≺ µ, we can consider the

inclusion

(5) Sλ1V ⊗ Sλ2V ⊗ · · · ⊗ SλsV ⊂ Sµ1V ⊗ Sµ2V ⊗ · · · ⊗ SµtV.

This implies that vλ1
1 · · · vλs

s ∈ Sµ1V ⊗ · · · ⊗ SµtV , and there exists a tensor
uµ1

1 ⊗ uµ2

2 ⊗ · · · ⊗ uµt

t , where each vector ui is an element of {v1, . . . , vs}, and

in particular uµ1

1 uµ2

2 · · ·uµt

t = vλ1
1 · · · vλs

s . In other words uµ1

1 ⊗ uµ2

2 ⊗ · · · ⊗ uµt

t

symmetrizes to vλ1

1 · · · vλs
s , and thus F (uµ1

1 ⊗ uµ2

2 ⊗ · · · ⊗ uµt

t ) = 0 (see Section 3).
We claim that F is tangent to Segµ (PV

×t) at each [uµ1

1 ⊗ uµ2

2 ⊗ · · · ⊗ uµt

t ].

Any tangent vector through uµ1

1 ⊗ uµ2

2 ⊗ · · · ⊗ uµt

t can be written as

uµ1

1 ⊗ · · · ⊗ u
µi−1

i−1 ⊗ w · uµi−1
i ⊗ u

µi+1

i+1 ⊗ · · · ⊗ uµt

t

for 1 ≤ i ≤ t and w ∈ V . This tensor symmetrizes to

w ·
uµ1

1 · · ·uµt

t

ui

= w ·
vλ1
1 · · · vλs

s

vj

where the equality holds because uµ1

1 ⊗ uµ2

2 ⊗ · · · ⊗ uµt

t symmetrizes to vλ1
1 · · · vλs

s

and moreover ui = vj for some j. Since F is symmetric and takes the same value
at every tensor that symmetrize to the same form, (4) implies that F is tangent to
Segµ (PV

×t) at each [uµ1

1 ⊗ uµ2

2 ⊗ · · · ⊗ uµt

t ].

The number of points uµ1

1 ⊗uµ2

2 ⊗· · ·⊗uµt

t ∈ Sµ1V ⊗· · ·⊗SµtV that symmetrize

to vλ1
1 · · · vλs

s is computed by Mλ,µ and is a lower bound for the multiplicity of
Chowλ in Segµ (PV

×t) ∩ PSdV ∗.
On the other hand, suppose Chowλ(PV )∨ is a hypersurface and is contained in

Segµ (PV
×t) ∩ PSdV ∗.

Suppose uµ1

1 ⊗ uµ2

2 ⊗ · · · ⊗ uµt

t ∈ Sµ1V ⊗ · · · ⊗ SµtV is a tensor which does

not symmetrize to vλ1
1 · · · vλs

s but still [uµ1

1 · · ·uµt

t ] ∈ ChowλPV . In particular

[uµ1

1 · · ·uµt

t ] 6= [vλ1
1 · · · vλs

s ].
If [uµ1

1 · · ·uµt

t ] ∈ T
[v

λ1
1 ···vλs

s ]
Chowλ(PV ) ⊂ [F ], then F is not tangent to Chowλ(PV )

at [uµ1

1 · · ·uµt

t ] else this would violate the hypersurface condition.
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If [uµ1

1 · · ·uµt

t ] is not in the tangent space and Chow(PV ) is not the whole ambient
space, a generic F satisfying s(n−1) independent conditions will miss a point, thus
we can choose an F that does not vanish at [uµ1

1 · · ·uµt

t ].
So Mλ,µ is also the maximum multiplicity of a hypersurface Chowλ(PV )∨ in

Segµ(PV
×t)∨ ∩ PSdV ∗. �

Remark 5.2. Notice that Lemma 4.5 almost provides an effortless proof of Lemma
5.1, but it only implies a lower bound for the multiplicity. So, one may quote
Lemma 4.5 and argue directly as we did for a shorter proof.

The second step of the proof of the main theorem is the following.

Lemma 5.3. Suppose F ⊂ V ⊗d is a symmetric hyperplane which is tangent to the
Segre-Veronese variety Segµ (PV

×t) at [u⊗µ1

1 ⊗ · · · ⊗ u⊗µt

t ]. Suppose λ ≺ µ. Then

[uµ1

1 · · ·uµt

t ] ∈ Chowλ (PV ) and F is also tangent to Chowλ(PV ) at [uµ1

1 · · ·uµt

t ].

Proof. By hypothesis since λ ≺ µ, there is a symmetrization of u⊗µ1

1 ⊗ · · · ⊗ u⊗µt

t

so that uµ1

1 · · ·uµt

t = vλ1
1 · · · vλs

s and for all 1 ≤ i ≤ s, vi ∈ {u1, . . . , ut}.

The conditions that tangent to Segµ (PV
×t) at [u⊗µ1

1 ⊗ · · · ⊗ u⊗µt

t ] are

F (uµ1

1 ⊗ · · · ⊗ u
µi−1

i−1 ⊗ w · uµi−1
i ⊗ u

µi+1

i+1 ⊗ · · · ⊗ uµt

t ) = 0

for 1 ≤ i ≤ t and w ∈ V . Now apply the ideas in Section 3. Indeed uµ1

1 ⊗ · · · ⊗

u
µi−1

i−1 ⊗ w · uµi−1
i ⊗ u

µi+1

i+1 ⊗ · · · ⊗ uµt

t symmetrizes to
u
µ1
1 ···u

µt
t

ui
w, so

F (
u
µ1
1 ···u

µt
t

ui
w) = 0, for all 1 ≤ i ≤ p for all w ∈ V.

But since uµ1

1 · · ·uµt

t = vλ1
1 · · · vλs

s and ui = vj for some i, j,

F (
uµ1

1 · · ·uµt

t

ui

w) = F (
vλ1
1 · · · vλs

s

vj
w) = 0.

This holds for all w ∈ V , and these are the conditions that F be tangent to
Chowλ(PV ) at [uµ1

1 · · ·uµt

t ] = [vλ1
1 · · · vλs

s ] so we are done. �

Proof of Theorem 1.2. Lemma 5.1 showed that
⋃

λ≺µ

Chowλ (PV )
∨
⊂ Segµ

(
PV ×t

)∨
∩ P

(
SdV ∗

)
,

and moreover that each Chowλ (PV )∨ that is a hypersurface occurs with multiplicity
Mλ,µ.

Now for the other direction, apply Lemma 5.3. Suppose F ∈ Segµ (PV
×t)

∨
∩

P
(
SdV ∗

)
. Then F is a symmetric hyperplane, and moreover, F must be tangent

to Segµ (PV
×t) in some point [v⊗µ1

1 ⊗ · · · ⊗ v⊗µt

t ], and tangent to Chowλ (PV ) for

every λ such that vµ1

1 · · · vµt

t ∈ Chowλ(PV ) and more specifically for every λ ≺ µ.

This means that F ∈ Chowλ (PV )
∨
for such λ, and therefore

Segµ
(
PV ×t

)∨
∩ P

(
SdV ∗

)
⊂
⋃

λ≺µ

Chowλ (PV )
∨
.

�
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Theorem 1.1 is a specific case of Theorem 1.2, we only need to note that Mλ,λ =(
d
λ

)
is the binomial coefficient (see Section 2).

Corollary 1.5 also follows from Theorem 1.2. This is because in Section 2 we also
showed that the multiplicities Mλ,µ can be both computed and organized in a lower
triangular matrix. Using the generating function for Dµ = deg(Segµ(PV

×t)), found
[7, Theorem 3.1, Proposition 3.2] or also [8, page 454], we can compute the vector
of degrees (Dµ)µ, so we can then solve the linear system (Dµ)µ = (Mλ,µ)λ,µ(dλ)λ,
where dλ denotes the degree of Chowλ(PV

×s). See the appendix for a few examples.

5.1. Degree formula in the binary case.

Theorem 5.4. Suppose V = C2. Let λ = (1m1 , 2m2 , . . . , pmp), with m =
∑

i mi

and suppose m1 = 0. The degree of Chowλ(P
1)∨

(6) (m+ 1)

(
m

m2, . . . ,mp

)
1m22m3 · · · (p− 1)mp

Proof. To prove this, we want to find a way to relate this dual variety to a resultant
whose degree is equal to the degree we have written above.

If a polynomial is homogeneous of degree di in the each set of ki+1 variables, we
say that a polynomial is a multi-homogeneous form of type (k1, . . . , kp; d1, d2, . . . , dp).

We will use [8, Proposition XIII.2.1], which states that the degree of a the resul-
tant R(f0, . . . , fk) of type (k1, . . . , kr; d1, . . . , dr) with k =

∑
i ki is

(7) (k + 1)

(
k

k1, . . . , kr

)
dk1
1 · · · dkr

r .

Consider the simplest case when λ = (d) and dimV = n. If [F ] is a hyperplane
tangent to Chow(d) at v

d we must have

F (vd) = 0 and F (vd−1w) = 0 for all w ∈ V.

Notice that the second condition includes the first when v = w, so We write these
conditions as

(
∂

∂w
F )(v) = 0,

for all w ∈ V . Then the condition is that n different polynomials ( ∂
∂w

F ) of degree
d − 1 have a common root at v. This is a resultant of n polynomials of type
(n− 1; d− 1), which has degree n

(
n−1
n−1

)
(d− 1)n−1 = n(d− 1)n−1. This agrees with

the usual formula for the degree of the discriminant of a degree d polynomial on n
variables.

Now we proceed analogously. Let [x] be a general point on ChowλP
1 with λ as

in the hypotheses. By arranging the factors of x we may write

x = (w2,1 · · ·w2,m2)
2 · · · (wp,1 · · ·wp,mp

)p

= (w2,1 · · ·w2,m2 · · ·wp,1 · · ·wp,mp
)

·(w2,1 · · ·w2,m2)(w3,1 · · ·w3,m3)
2 · · · (wp,1 · · ·wp,mp

)p−1
,

with the wi,j distinct (set wi,j equal to 1 if mi = 0). For each i, let yi denote the
quantity yi = wi,1 · · ·wi,mi

∈ SmiC
2, so that x = (y2y3 · · · yp)y2y

2
3 · · · y

p−1
p , and we

are now thinking of each yi as a vector in Cmi+1 ∼= SmiC2.
Now suppose [F ] ⊂ PSdV is a hyperplane which is tangent to ChowλP

1 at [x].
Then we must have

(8) F (x) = 0, and F

(
x

wi,j

v

)
= 0,
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for all 2 ≤ i ≤ p,1 ≤ j ≤ mi and all v ∈ V .
We will now translate the conditions (8) as the condition that m + 1 multi-

homogeneous forms of type (m2,m3, . . . ,mp; 1, 2, . . . , p− 1) have a common root.
Consider

G =

(
∂p

∂y2∂y3 · · · ∂yp
F

)
(·) : Cm2+1 ⊗ · · · ⊗ C

mp+1−→C.

This is a multi-homogenous function of type (m2,m3, . . . ,mp; 1, 2, . . . , p− 1). Note
that (8) implies that G(y2, y3, . . . , yp) = 0.

Next, construct for every 2 ≤ i ≤ p and 1 ≤ j ≤ mi,

Gi,j =

(
∂p

∂y2∂y3 · · · ∂yi−1∂gi,j∂yi+1 · · · ∂yp
F

)
: Cm2+1 ⊗ · · · ⊗ C

mp+1−→C,

where gi,j =
vi,j
wi,j

yi and vi,j is a (fixed) vector so that {wi,j , vi,j} form a basis of C2.

Note that each Gi,j is also multi-homogeneous of type (m2,m3, . . . ,mp; 1, 2, . . . , p−
1). There are

∑
imi such G.

The conditions on F now imply that the m =
∑p

i=1 mi functions Gi,j have a
common root, with G namely (y2, y3, . . . , yp). Therefore [8, Proposition XIII.2.1]
applies, and substituting

∑
i mi = m = k, mi+1 = ki, p = r, di = i into the above

formula (7) gives the degree of ChowλP
1 as claimed. �

We would like to know if the degree of ChowλPV may also be calculated as the
degree of some resultant, but we failed in our initial attempts to formulate this
correctly.

6. Computing degrees of duals of Chow varieties

As we mentioned above, Theorem 1.2 and elementary facts about the quantities
Mλ,µ provide a recursive way to compute the degrees of the dual varieties to the
Chow varieties. We illustrate our methods with a few examples that are non-trivial
but don’t take up too much space.

Throughout the following we let dλ denote the degree of Ξλ, and let Dµ denote
the degree of ∆µ,n. First we compute Mλ,µ. Next we use the generating function
from [8] and a easy implementation in Maple to compute Dµ. Then Corollary 1.5
implies that to find the dλ we can find the unique solution to Mλ,µdλ = Dµ. Of
course it suffices to compute an lower triangular sub-matrix ofMλ,µ. We only record
a subset of the columns that corresponds to the set of λ for which Chowλ(PV )∨ is
a hypersurface. So the matrix we display contains all of the multiplicities of the
factors of the symmetrized µ-discriminants, including the hyperdeterminant, which
occupies the last row.
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The first case we consider is n = 2 and d = 7 and solve


1
1
1 1
1 1
1 1
1 1 1
1 3 1
1 2
1 2 1 2
1 2 3 2
1 6 5 6
1 3 3 6
1 5 7 7
1 11 15 50
1 21 35 210







d(7)
d(5,2)
d(4,3)
d(3,2,2)


 =




D(7)

D(6,1)

D(5,2)

D(5,1,1)

D(4,3)

D(4,2,1)

D(4,13)

D(3,3,1)

D(3,2,2),
D(3,2,1,1)

D(3,14)

D(2,2,2,1)

D(2,2,13)

D(2,15)

D(17))




=




12
12
36
36
48
72
120
84
144
216
480
336
720
2016
6816




.

The unique solution to Mλ,µdλ = Dµ is

(d(7), d(5,2), d(4,3), d(3,2,2)) = (12, 24, 36, 24).

The previous calculation shows that the hyperdeterminant of format 2×7, which has
degree 6816, when symmetrized splits into 4 factors of degrees 12, 24, 36 and 24
with multiplicities 1, 21, 35 and 210 respectively. Geometrically, the 4 factors are
the discriminant hypersurface, and three other dual varieties to Chow varieties. The
other µ-discriminants have the same factors, with different multiplicities encoded
by Mλ,µ. The following examples also have analogous interpretations.

Next we use only a relevant lower-triangular sub-matrix ofMλ,µ, when d = 8 and
n = 2 where here we have omitted several rows that are unnecessary for computing
the degrees of Ξλ.


1
1 1
1 1
1 2
1 2 4 2
1 1 2 2
1 4 6 12 120
1 28 56 70 420 560 2520







(d(8)
d(6,2)
d(5,3)
d(4,4)
d(4,2,2)
d(3,3,2)

d(2,2,2,2))




=




(D(8)

D(6,2)

D(5,3)

D(4,2,2)

D(3,3,2)

D(2,2,2,2)

D(18))




=




14
44
62
116
656
848
60032




.

The unique solution to Mλ,µdλ = Dµ is

(d(8), d(6,2), d(5,3), d(4,4), d(4,2,2), d(3,3,2), d(2,2,2,2)) = (14, 30, 48, 27, 36, 48, 5).

Proceeding in the same way, here are two examples when n = 3. Here is the case
d = 4. 



1
1
1 2
1 2 2
1 6 12 24







d(4)
d(2,2)
d(2,1,1)
d(14)


 =




D(4)

D(3,1)

D(2,2)

D(2,1,1)

D(14)




=




27
27
129
225
1269




.

The unique solution to Mλ,µdλ = Dµ is

(d(4), d(2,2), d(2,1,1), d(14)) = (27, 51, 48, 15).
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For d = 5, we have



1
1
1 1
1 1 2
1 2 2
1 4 6 6 6
1 10 20 30 60 120







d(5)
d(3,2)
d(3,1,1)
d(2,2,1)
d(2,13)
d(15))




=




D(5)

D(4,1)

D(3,2)

D(3,1,1)

D(2,1,1)

D(2,13)

D(15)




=




48
48
360
576
1440
7128
68688




.

The unique solution to Mλ,µdλ = Dµ is

(d(5), d(3,2), d(3,1,1), d(2,2,1), d(2,13), d(15)) = (48, 312, 108, 384, 480, 192).
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MA, 1994. MR 1264417 (95e:14045)

9. Daniel R. Grayson and Michael E. Stillman, Macaulay2, a software system for research in

algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/, 2010.
10. P. Huggins, B. Sturmfels, J. Yu, and D. Yuster, The hyperdeterminant and triangulations of

the 4-cube, Math. Comp. 77 (2008), no. 263, 1653–1679. MR 2398786 (2009c:52021)
11. J. M. Landsberg, The geometry of tensors: Applications to complexity, statistics, and other

areas, in preparation, 2011.

12. G. Ottaviani, An invariant regarding Waring’s problem for cubic polynomials, Nagoya Math.
J. 193 (2009), 95–110. MR MR2502909 (2010c:14057)

13. V. Strassen, Rank and optimal computation of generic tensors, Linear Algebra Appl. 52/53
(1983), 645–685. MR 709378 (85b:15039)

http://www.math.uiuc.edu/Macaulay2/


18 LUKE OEDING
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