On abelian and additive complexity in infinite words

Hayri Ardal, Tom Brown, Veselin Jungić, Julian Sahasrabudhe

July 2011

Abstract

The study of the structure of infinite words having bounded abelian complexity was initiated by G. Richomme, K. Saari, and L. Q. Zamboni [10]. In this note we define bounded additive complexity for infinite words over a finite subset of \mathbb{Z}^m . We provide an alternative proof of one of the results of [10].

1 Introduction

Recently the study of infinite words with bounded abelian complexity was initiated by G. Richomme, K. Saari, and L. Q. Zamboni [10]. (See also [3] and the references in [3] and [10].) In particular, it is shown (in [10]) that if ω is an infinite word with bounded abelian complexity, then ω has abelian k-factors for all $k \geq 1$. (All these terms are defined below.)

In this note we define *bounded additive complexity*, and we show in particular that if ω is an infinite word (whose alphabet is a finite subset S of \mathbb{Z}^m for some $m \geq 1$) with bounded additive complexity, then ω has *additive k-factors* for all $k \geq 1$. As we shall see, this provides an alternative proof of the just-mentioned result concerning abelian k-factors.

We are motivated by the following question. In [6], [7], [8], and [9], it is asked whether or not there exists an infinite word on a finite subset of \mathbb{Z} in which there do not exist two adjacent factors with equal lengths and equal sums. (The *sum* of the factor $x_1x_2...x_n$ is $x_1 + x_2 + \cdots + x_n$.) This question remains open, although some partial results can be found in [1], [2], [6].

2 Additive complexity

2.1 Infinite words on finite subsets of \mathbb{Z}

Definition 2.1. Let ω be an infinite word on a finite subset S of \mathbb{Z} . For a factor $B = x_1 x_2 \dots x_n$ of ω , $\sum B$ denotes the sum $x_1 + x_2 + \dots + x_n$. Let

 $\phi_{\omega}(n) = \{ \sum B: \ B \text{ is a factor of } \omega \text{ with length } n \}.$

The function $|\phi_{\omega}|$ (where $|\phi_{\omega}|(n) = |\phi_{\omega}(n)|, n \ge 1$) is called the *additive complexity* of the word ω .

If $B_1B_2\cdots B_k$ is a factor of ω such that $|B_1| = |B_2| = \cdots = |B_k|$ and $\sum B_1 = \sum B_2 = \cdots = \sum B_k$, we call $B_1B_2\cdots B_k$ an *additive k-power*.

We say that ω has bounded additive complexity if any one (and hence all) of the three conditions in the following proposition (Proposition 2.1) hold.

Proposition 2.1. Let ω be an infinite word on the alphabet S, where S is a finite subset of \mathbb{Z} . Then the following three statements are equivalent.

1. There exists M_1 such that if B_1B_2 is a factor of ω with $|B_1| = |B_2|$, then $|\sum B_1 - \sum B_2| \le M_1$.

2. There exists M_2 such that if B_1, B_2 are factors of ω (not necessarily adjacent) with $|B_1| = |B_2|$, then $|\sum B_1 - \sum B_2| \le M_2$.

3. There exists M_3 such that $|\phi_{\omega}(n)| \leq M_3$ for all $n \geq 1$.

Proof. We will show that $1 \Leftrightarrow 2$ and $2 \Leftrightarrow 3$.

Clearly $2 \Rightarrow 1$. Now assume that 1 holds, that is, if B_1B_2 is any factor of ω with $|B_1| = |B_2|$, it is the case that $|\sum B_1 - \sum B_2| \le M_1$. Now let B_1 and B_2 be factors of ω with $|B_1| = |B_2|$, and assume that B_1 and B_2 are non-adjacent, with B_1 to the left of B_2 .

Thus, assume that

$$B_1 A_1 A_2 B_2$$

is a factor of ω , where

$$|A_1| = |A_2|$$
 or $|A_1| = |A_2| + 1$.

Let

$$C_1 = B_1 A_1, C_2 = A_2 B_2.$$

Then

$$C_1 = |C_2| \text{ or } |C_1| = |C_2| + 1.$$

Now

$$\sum C_1 - \sum C_2 = (\sum B_1 + \sum A_1) - (\sum A_2 + \sum B_2),$$

or

$$\sum B_1 - \sum B_2 = (\sum C_1 - \sum C_2) + (\sum A_2 - \sum A_1).$$

Therefore, since A_1, A_2 and C_1, C_2 are adjacent, we have

$$|\sum A_2 - \sum A_1| \le M_1 + \max S, |\sum C_1 - \sum C_2| \le M_1 + \max S,$$

and

$$|\sum B_1 - \sum B_2| \le 2M_1 + 2\max S,$$

so that we can take $M_2 = 2M_1 + 2 \max S$. Thus $1 \Rightarrow 2$.

Next we show that $2 \Rightarrow 3$. Thus we assume there exists M_2 such that whenever B_1, B_2 are factors of ω (not necessarily adjacent) with $|B_1| = |B_2|$, it is the case that $|\sum B_1 - \sum B_2| \le M_2$.

Let n be given, and let $\sum B_1 = \min \phi_{\omega}(n)$. Then for any B_2 with $|B_2| = n$, we have $\sum B_2 = \sum B_1 + (\sum B_2 - \sum B_1)$. Therefore $\sum B_2 \leq \sum B_1 + M_2$. This means that $\phi_{\omega}(n) \subset [\sum B_1, \sum B_1 + M_2]$, so that $|\phi_{\omega}(n)| \leq M_2 + 1$.

Finally, we show that $3 \Rightarrow 2$. We assume there exists M_3 such that $|\phi_{\omega}(n)| \le M_3$ for all $n \ge 1$. Suppose that B_1 and B_2 are factors of ω such that $|B_1| = |B_2| = n$ and $\sum B_1 = \min \phi_{\omega}(n)$, $\sum B_2 = \max \phi_{\omega}(n)$. To simplify the notation, for all $a \le b$ let $\omega[a, b]$ denote $x_a x_{a+1} \dots x_b$, and let us assume that $B_1 = \omega[1, n], B_2 = \omega[q+1, q+n]$, where q > 1.

For each $i, 0 \leq i \leq q$, let b_i denote the factor $\omega[i+1, i+n]$. Thus $B_1 = b_0, B_2 = b_q$, and the factor b_{i+1} is obtained by shifting b_i one position to the right. Clearly

$$\sum b_{i+1} - \sum b_i \le \max S - \min S.$$

Since $|b_0| = |b_1| = \cdots = |b_q| = n$, and $|\phi_{\omega}(n)| \leq M_3$, there can be at most M_3 distinct numbers in the sequence $\sum B_1 = \sum b_0, \sum b_1, \ldots, \sum b_q = \sum B_2$. Let these numbers be

$$\sum B_1 = c_1 < c_2 < \dots < c_r = \sum B_2,$$

where $r \leq M_3$.

Since $\sum b_{i+1} - \sum b_i \leq \max S - \min S$, $0 \leq i \leq q$, it follows that $c_{j+1} - c_j \leq \max S - \min S$, $0 \leq i \leq r - 1$, and hence that

$$|\sum B_1 - \sum B_2| \le (M_3 - 1)(\max S - \min S).$$

Theorem 2.2. Let ω be an infinite word on a finite subset of \mathbb{Z} . Assume that ω has bounded additive complexity. Then ω contains an additive k-power for every positive integer k.

Proof. Let $\omega = x_1 x_2 x_3 \cdots$ be an infinite word on the finite subset S of \mathbb{Z} , and assume that whenever B_1, B_2 are factors of ω (not necessarily adjacent) with $|B_1| = |B_2|$, then $|\sum B_1 - \sum B_2| \leq M_2$. (This is from part 2 of Proposition 2.1.)

Define the function f from \mathbb{N} to $\{0, 1, 2, \dots, M_2\}$ by

$$f(n) = x_1 + x_2 + x_3 + \dots + x_n \pmod{M_2 + 1}, n \ge 1.$$

This is a finite coloring of \mathbb{N} ; by van der Waerden's theorem, for any k there are t, s such that

$$f(t) = f(t+s) = f(t+2s) = \cdots f(t+ks).$$

Setting

$$B_i = \omega[t + (i - 1)s + 1, t + is], \quad 1 \le i \le k,$$

we have

$$\sum B_1 \equiv \sum B_2 \equiv \cdots \equiv \sum B_k \pmod{M_2 + 1}.$$

Since $B_1B_2\cdots B_k$ is a factor of ω with $|B_i| = |B_j|, 1 \le i < j \le k$, we have $|\sum B_i - \sum B_j| \le M_2$ and $\sum B_i \equiv \sum B_j \pmod{M_2 + 1}$, hence $\sum B_i = \sum B_j$. Thus $|B_1| = |B_2| = \cdots = |B_k|$ and $\sum B_1 = \sum B_2 = \cdots = \sum B_k$, and ω contains the additive k-power $B_1B_2\cdots B_k$.

2.2 Infinite words on subsets of \mathbb{Z}^m

Let us use the notation $(u)_j$ for the *jth* coordinate of $u \in \mathbb{Z}^m$. That is, if $u = (u_1, \ldots, u_m)$ then $(u)_j = u_j$. Also, $|u| = |(u_1, \ldots, u_m)|$ denotes the vector $(|u_1|, \ldots, |u_m)|$). In other words, $(|u|)_j = |(u)_j|$.

For factors B_1, B_2 of an infinite word ω on a finite subset S of \mathbb{Z}^m , the notation $|\sum B_1 - \sum B_2| \leq M_1$ means that $(|\sum B_1 - \sum B_2|)_j \leq M_1$, $1 \leq j \leq m$.

Now we suppose that ω is an infinite word on a finite subset S of \mathbb{Z}^m for some $m \geq 1$. The definition of ϕ_{ω} and the additive complexity of ω is exactly as in Definition 1.1 above. The function

$$\phi_{\omega}(n) = \{ \sum B : B \text{ is a factor of } \omega \text{ with length } n \}$$

is called the *additive complexity* of the word ω .

By working with the coordinates $(B_1)_j$, $(|\sum B_1 - \sum B_2|)_j$, we easily obtain the following results.

Proposition 2.3. Proposition 2.1 remains true when \mathbb{Z} is replaced by \mathbb{Z}^m .

Theorem 2.4. Let ω be an infinite word on a finite subset of \mathbb{Z}^m for some $m \geq 1$. Assume that ω has bounded additive complexity. Then ω contains an additive k-power for every positive integer k.

The following is a re-statement of Theorem 2.4, in terms of m infinite words on \mathbb{Z} , rather than one infinite word on \mathbb{Z}^m .

Theorem 2.5. Let $m \in \mathbb{N}$ be given, and let S_1, S_2, \ldots, S_m be finite subsets of \mathbb{Z} . Let ω_j be an infinite word on S_j with bounded additive complexity, $1 \leq j \leq m$. Then for all $k \geq 1$, there exists a k-term arithmetic progression in $\mathbb{N}, t, t + s, t + 2s, \ldots, t + ks$ such that for all $j, 1 \leq j \leq m$,

$$\sum \omega_j[t+1,t+s] = \sum \omega_j[t+s+1,t+2s] = \dots = \sum \omega_j[t+(k-1)s+1,t+ks].$$

Thus $\omega_1, \omega_2, \cdots, \omega_m$ have "simultaneous" additive k-powers for all $k \geq 1$.

3 Abelian complexity

Definition 3.1. Let ω be an infinite word on a finite alphabet. Two factors of ω are called *abelian equivalent* if one is a permutation of the other. If the alphabet is $A = \{a_1, a_2, \ldots, a_t\}$, and the finite word B is a factor of ω , we write $\psi(B) = (u_1, u_2, \ldots, u_t)$, where u_i is the number of occurrences of the letter i in the word $B, 1 \leq i \leq t$. We call $\psi(B)$ the *Parikh vector* associated with B.

Let $\psi_{\omega}(n) = \{\psi(B) : B \text{ is a factor of } \omega, |B| = n\}$. The function ρ_{ω}^{ab} , defined by $\rho_{\omega}^{ab}(n) = |\psi_{\omega}(n)|, n \ge 1$, is called the *abelian complexity* of ω .

Thus $\rho_{\omega}^{ab}(n)$ is the largest number of factors of ω of length n, no two of which are abelian equivalent. If there exists M such that $\rho_{\omega}^{ab}(n) \leq M$ for all $n \geq 1$, then ω is said to have bounded abelian complexity.

The word $B_1B_2\cdots B_k$ is called an *abelian k-power* if B_1, B_2, \ldots, B_k are pairwise abelian equivalent. (Being abelian equivalent, they all have the same length.)

Recall that we are using the notation $|(u_1, u_2, \ldots, u_t)| \le M$ to denote $|u_i| \le M, 1 \le i \le t$.

Proposition 3.1. Let ω be an infinite word on a t-element alphabet S. Then the following three statements are equivalent.

1. There exists M_1 such that if B_1B_2 is a factor of ω with $|B_1| = |B_2|$, then $|\psi(B_1) - \psi(B_2)| \leq M_1$.

2. There exists M_2 such that if B_1, B_2 are factors of ω (not necessarily adjacent) with $|B_1| = |B_2|$, then $|\psi(B_1) - \psi(B_2)| \le M_2$.

3. There exists M_3 such that such that $\rho_{\omega}^{ab}(n) \leq M_3$ for all $n \geq 1$.

Proof. We show that $1 \Leftrightarrow 2$ and $2 \Leftrightarrow 3$.

Clearly $2 \Rightarrow 1$. Now assume that 1 holds, that is, if B_1B_2 is any factor of ω with $|B_1| = |B_2|$, it is the case that $|\psi(B_1) - \psi(B_2)| \leq M_1$. Now let B_1 and B_2 be factors of ω with $|B_1| = |B_2|$, and assume that B_1 and B_2 are non-adjacent, with B_1 to the left of B_2 .

Thus, assume that

$$B_1 A_1 A_2 B_2$$

is a factor of ω , where

$$|A_1| = |A_2|$$
 or $|A_1| = |A_2| + 1$.

Now we proceed exactly as in the proof of $1 \Rightarrow 2$ in Proposition 2.1, noting that $|\psi(A_1) - \psi(A_2)| \le M_1 + 1$.

Next we show that $2 \Rightarrow 3$. Thus we assume there exists M_2 such that whenever B_1, B_2 are factors of ω (not necessarily adjacent) with $|B_1| = |B_2|$, it is the case that $|\psi(B_1) - \psi(B_2)| \leq M_2$.

Let n be given, and let $B_1 \in \psi_{\omega}(n)$. Then for any B_2 with $|B_2| = n$, we have $\psi(B_2) = \psi(B_1) + (\psi(B_2) - \psi(B_1))$. Therefore $|\psi(B_2)| \le |\psi(B_1)| + M_2$. (This inequality is component-wise, that is, $(|\psi(B_2)|)_j \le (|\psi(B_1)|)_j + M_2$, $1 \le j \le t$.)

Therefore there are at most $2M_2 - 1$ choices for each component of B_2 , and hence $\rho_{\omega}^{ab}(n) \leq (2M_2 - 1)^t$.

Finally, we show that $3 \Rightarrow 2$. We assume there exists M_3 such that $\rho_{\omega}^{ab}(n) \leq M_3$ for all $n \geq 1$.

Since $|\psi(xB) - \psi(By)| \leq 1$ for all $x, y \in S$, it follows that if ω has factors B_1, B_2 of length n where for some $j, 1 \leq j \leq t, (\psi(B_1))_j = p$ and $(\psi(B_2))_j = p + q$, then ω has factors C_r of length n with $(\psi(C_r))_j = p + r, 0 \leq r \leq q$. (This is discussed in more detail in [10].) Thus $|\psi(B_1) - \psi(B_2)| \geq M_3$ implies $\rho_{\omega}^{ab}(n) \geq M_3 + 1$. Since we are assuming $\rho_{\omega}^{ab}(n) \leq M_3, n \geq 1$, we conclude that $|\psi(B_1) - \psi(B_2)| \leq M_3 - 1$ whenever $|B_1| = |B_2|$. Hence $|\psi(B_1) - \psi(B_2)| \leq M_3 - 1$ whenever $|B_1| = |B_2|$.

Remark 3.1. To see that bounded sum complexity is indeed weaker than bounded abelian complexity, consider the following example. Let $\sigma = x_1 x_2 x_3 \cdots$ be the binary sequence constructed by Dekking [2] which has no abelian 4th power. In σ , replace every 1 by 12, and replace every 0 by 03, obtaining the sequence τ . If τ had an abelian 4th power *ABCD*, then the number of 2s in each of *A*, *B*, *C*, *D* are equal, and similarly for the number of 3s. But then dropping the 2s and 3s from *ABCD* would give an abelian 4th power in σ , a contradiction. Hence τ does not have bounded abelian complexity. Now let a factor *B* of τ be given. By shifting *B* to the right or left, we see, by examining cases, that if |B| is even then $\sum B = \frac{3}{2}|B| + s$, where $s \in \{-1, 0, 1\}$. If |B| is odd, then $\sum B = \frac{3}{2}(|B| - 1) + s$, where $s \in \{0, 1, 2, 3\}$. Hence $|\phi_{\tau}(n)| \leq 4$ for all $n \geq 1$, and τ does have bounded sum complexity.

Definition 3.2. Let $S = \{a_1, a_2, \ldots, a_m\}$ be a subset of \mathbb{Z} , and let $\omega = x_1 x_2 x_3 \cdots$ be an infinite word on the alphabet S. For each $j, 1 \leq j \leq m$, let a'_j be the element of \mathbb{Z}^m which has a_j in the in the *jth* coordinate and 0's elsewhere. Let $\omega' = x'_1 x'_2 x'_3 \cdots$ be the word on the subset S' of $\mathbb{Z}^m, S' = \{a'_1, a'_2, \ldots, a'_m\}$, obtained from ω by replacing each a_j by $a'_j, 1 \leq j \leq m$. It is convenient to visualize each a'_j as a column vector, rather than as a row vector.

Theorem 3.2. Referring to Definition 2.2, consider the following statements concerning ω and ω' :

- 1. ω has bounded abelian complexity.
- 2. ω' has bounded abelian complexity.
- 3. ω' has bounded additive complexity.
- 4. ω' contains an additive k-power for all $k \geq 1$.
- 5. ω' contains an abelian k-power or all $k \geq 1$,
- 6. ω contains an abelian k-power for all $k \geq 1$

Then $1 \Leftrightarrow 2 \Leftrightarrow 3, 4 \Leftrightarrow 5 \Leftrightarrow 6, 3 \Rightarrow 4, and 4 \neq 3$

Proof. Clearly $1 \Leftrightarrow 2$ and $5 \Leftrightarrow 6$.

The linear independence of S' over \mathbb{Z} implies that $2 \Leftrightarrow 3$ and $4 \Leftrightarrow 5$.

The implication $3 \Rightarrow 4$ is a special case of the second part of Theorem 2.4.

To see that $4 \Rightarrow 3$, note that if $4 \Rightarrow 3$ then $6 \Rightarrow 1$, which is shown to be false by the Champernowne word [4]

```
C = 01101110010111011110001001\cdots,
```

obtained by concatenating the binary representations of $0, 1, 2, \ldots$. This word has arbitrarily long strings of 1's (and 0's), hence satisfies condition 6; but C does not satisfy condition 1. (Clearly for the sequence C, $\rho_C^{ab}(n) = n + 1$ for all $n \ge 1$.)

Corollary. Every infinite word with bounded abelian complexity has an abelian k-power for every k.

4 A more general statement

One can cast the arguments above into a more general form, and prove (we leave the details to the reader) the following statement.

Theorem 4.1. Let S be a finite set, and let S^+ denote the free semigroup on S. For $t \in \mathbb{N}$, let

$$\mu: S^+ \to \mathbb{Z}^t$$

be a morphism, that is, for all $B_1, B_2 \in S^+$,

$$\mu(B_1B_2) = \mu(B_1) + \mu(B_2).$$

Let ω be an infinite word on S. Assume further that there exists $M \in \mathbb{N}$ such that

$$|B_1| = |B_2| \Rightarrow ||\mu(B_1) - \mu(B_2)|| \le M,$$

where $|| \cdot ||$ denotes Euclidean distance in \mathbb{Z}^t . Then for all $k \ge 1$, ω contains a k-power modulo μ , that is, ω has a factor $B_1 B_2 \cdots B_k$ with

$$|B_1| = |B_2| = \dots = |B_k|, \ \mu(B_1) = \mu(B_2) = \dots = \mu(B_k).$$

Thus taking S to be a finite subset of \mathbb{Z}^m , and $\mu(B) = \sum B \in \mathbb{Z}^m$, we obtain Theorem 2.4.

Taking S to be a finite set and $\mu(B) = \psi(B) \in \mathbb{Z}^{|S|}$, we obtain the Corollary to Theorem 3.2

References

- Yu-Hin Au, Aaron Robertson, and Jeffrey Shallit, Van der Waerden's Theorem and Avoidability in Words, *Integers* 11 #A6 (electronic), 2011.
- [2] Julien Cassaigne, James D. Currie, Luke Schaeffer, and Jeffrey Shallit, Avoiding Three Consecutive Blocks of the Same Size and Same Sum, arXiv:1106.5204.
- [3] Julien Cassaigne, Gwénaël Richomme, Kalle Saari, Luca Q. Zamboni, Avoiding Abelian powers in binary words with bounded Abelian complexity, arXiv:1005.2514.
- [4] David G. Champernowne, The Construction of Decimals Normal in the Scale of Ten, J. London Math. Soc. (1933) s1-8 (4), 254-260.
- [5] F. M. Dekking, Strongly non-repetitive sequences and progression-free sets, J. Combin. Theory, Series A 27, 181-185, 1979.
- [6] Allen R. Freedman, Sequences on Sets of Four Numbers, to appear in IN-TEGERS.
- [7] Jaroslaw Grytczuk, Thue type problems for graphs, points, and numbers, Discrete Math. 308, 4419-4429, 2008.
- [8] L. Halbeisen and N. Hungerbühler, An application of van der Waerden's theorem in additive number theory, *Integers* $\mathbf{0} \# A7$ (electronic), 2000.
- [9] G. Pirillo and S. Varricchio, On uniformly repetitive semigroups, Semigroup Forum 49, 125-129, 1994.
- [10] Gwénaël Richomme, Kalle Saari, Luca Q. Zamboni, Abelian Complexity in Minimal Subshifts, arXiv:0911.2914.

Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6 hardal@sfu.ca tbrown@sfu.ca vjungic@sfu.ca jds16@sfu.ca