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CHANGE OF TOPOLOGY IN MEAN CONVEX MEAN

CURVATURE FLOW

BRIAN WHITE

Abstract. Consider the mean curvature flow of an (n+1)-dimensional com-
pact, mean convex region in Euclidean space (or, if n < 7, in a Riemannian

manifold). We prove that elements of the mth homotopy group of the comple-
mentary region can die only if there is a shrinking S

k ×R
n−k singularity for

some k ≤ m.

1. Introduction

Let K(t) be a time-dependent closed region in a Riemannian manifold such
that the boundary ∂K(t) moves by mean curvature flow. Clearly the topology of
the complement K(t)c can change only if there is a singularity of the flow. It is
natural to ask if we can deduce properties of the singularities from the way the
topology changes. In this paper, we give a rather precise answer if the regions are
mean convex. In particular, consider a mean curvature flow t ∈ [0,∞) 7→ K(t) of
compact regions in an (n+1)-dimensional Riemannian manifold N such that K(0)
is mean convex and has smooth boundary. If n ≥ 7, we require that the metric on
N be flat1. We prove a theorem that implies the following:

1.1. Theorem. Suppose that 0 ≤ a < b. Suppose there is a map of the m-sphere
into K(a)c that is homotopically trivial in K(b)c but not in K(a)c.

Then at some time t with a ≤ t < b, there is a singularity of the flow at which the
Gaussian density is ≥ dm, the Gaussian density of a shrinking m-sphere in Rm+1,
and at which the tangent flow is a shrinking Sk×Rn−k for some k with 1 ≤ k ≤ m.

The following is an interesting special case:

1.2. Corollary. Suppose K is a compact, mean convex subset of Rn+1 with smooth
boundary, and suppose that there is a map of the m-sphere into Kc that is homo-
topically nontrivial.

Then the resulting mean curvature flow has a singularity with Gaussian density
≥ dm.

The corollary follows from the theorem because compact subsets of Euclidean
space disappear in finite time under mean curvature flow. (Thus we can choose b
large enough that K(b) is empty.)
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1None of the arguments in this paper depend on dimension. However, they do require that

the singularities of the flow have convex type (as defined in §2), and in high dimensions it has not
been proved that all singularities have convex type except when the ambient Riemannian metric
is flat.
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2 BRIAN WHITE

More generally, the topological assumption in Theorem 1.1 can be replaced by
the weaker assumption that there is a continuous map

F : Bm+1 → K(b)c with F (∂Bm+1) ⊂ K(a)c

that cannot be homotoped by a 1-parameter family of such maps to a map F ′

whose image F ′(Bm+1) lies in K(a)c. See Theorem 3.1. (The m in Theorem 3.1
corresponds to (m+ 1) here.)

In Theorems 1.1 and 3.1, the moving hypersurfaces ∂K(t) have no boundary.
Those theorems generalize to hypersurfaces with boundary, where the motion of
the boundary is prescribed. See Theorem 5.4.

The reader may wonder whether Theorem 1.1 could be strengthened to say
that there is a shrinking Sk × Rn−k singularity with k = m rather than k ≤ m.
The answer is no, even under the assumption (for the given flow) that there is a
unique m for which the hypothesis holds. Altschuler, Angenent, and Giga [AAG95]
proved that that there is a “doubly-degenerate neckpinch” mean curvature flow in
R3 in which the surfaces are mean convex topological spheres that are rotationally
symmetric about an axis and that are smooth until they collapse to a point at which
the tangent flow is not a shrinking S2 but rather a shrinking S1×R. Compare this
flow to a flow of convex spheres in R3. The two flows are topologically completely
equivalent, yet the singularities are different. In general, for every k and n with
1 ≤ k <n, one can construct a mean convex n-sphere in Rn+1 that shrinks to a
point but whose tangent flow at that point is a shrinking Sk ×Rn−k.

The reader may also wonder what can be said without assuming mean convexity.
Certain analogs of the theorems in this paper hold for arbitrary (i.e., not necessarily
mean convex) hypersurfaces in R2 and R3; see [IW11c]. For hypersurfaces (of any
dimension) that do not fatten under level set flow, there are some restrictions on
the way that the topology of the complement can change, no matter what kinds of
singularities occur: see [Whi95].

In [IW11c], the results of this paper are used to get lower density bounds on
self-similar shrinkers for mean curvature flow, and in [IW11a] and [IW11b] they are
used to get lower density bounds for densities of minimal cones.

The results of this paper rely strongly on properties of singularities of mean
convex mean curvature flow that were proved in [Whi00] and [Whi03]. However,
the results of this paper are vacuously true for flows with singularities with Gaussian
density≥ 2. Thus (for this paper) one only needs the results of [Whi00] and [Whi03]
under the assumption that the singularities have Gaussian density < 2, and the
most complicated parts of those papers are trivially true under that assumption.

2. Preliminaries

In this section, we state the facts about mean curvature flow of mean convex sets
that are important for this paper. Let t ∈ [0,∞) 7→ K(t) be a mean curvature flow
of mean convex subsets of a smooth, (n+ 1)-dimensional Riemannian manifold. If
x ∈ ∂K(t) is a regular point, we let κ1(x) ≤ κ2(x) ≤ · · · ≤ κn(x) be the principal
curvatures of ∂K(t) with respect to the inward unit normal normal. (We could
also write κi(x, t), but since the surfaces ∂K(t) for distinct values of t are disjoint,
t is determined by x.) We let h(x) = κ1(x) + · · · + κn(x) > 0 be the scalar mean
curvature. We say that a singular point x ∈ ∂K(t) (where t > 0) has convex type
provided
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(1) Each tangent flow at x is a self-similarly shrinking Sk × Rn−k for some
k ≥ 1.

(2) If xi ∈ ∂K(ti) is a sequence of regular points converging to x, then

lim inf
κ1(xi)

h(xi)
≥ 0.

(Actually (1) follows from (2), which in turn folllows from the seemingly weaker
assumption that the lim inf in (2) must be > −∞. See [Whi03].)

In many situations, singularities are known to have convex type:

2.1. Proposition. Suppose that K is a compact, mean convex region in an (n+1)-
dimensional Riemannian manifold. Let t 7→ K(t) be the mean curvature flow with
K(0) = K. Suppose that

(1) n < 7, or
(2) ∂K is smooth and the Riemannian metric on N is flat.

Then for t > 0, the singularities of the flow all have convex type.

See [Whi03] for the proof in the case (1) and [Whi11] for the proof in case (2).

2.2. Proposition. Let t 7→ K(t) be a mean curvature flow of mean convex sets,
and suppose that the singularities of the flow are of convex type. Let t > 0 and
let x be a point in the interior of K(t). Let y be a point in ∂K(t) that minimizes
distance to x. Then y is a regular point of the flow.

Proof. Note that K(t) contains the ball with center x and radius dist(x, y), from
which it follows

lim inf
r→0

vol(K(t) ∩B(y, r))

vol(B(y, r))
≥ 1

2
.

On the other hand, if z ∈ ∂K(t) is a singular point of convex type, then it is
straightforward to show that

lim
r→0

vol(K(t) ∩B(z, r))

vol(B(z, r))
= 0.

�

2.3. Proposition (Stone). Let x be a convex-type singularity of a mean convex
mean curvature flow. Then there is a k = k(x) ≥ 1 such that every tangent flow
at x is a shrinking Sk × Rn−k, where k depends only on the Gaussian density Θ
at the point x. (It does not depend on the sequence of dilations used to obtain the
tangent flow.)

Thus the tangent flow is unique up to rotations. For the reader’s convenience,
we give the idea of Stone’s proof. See [Sto94, Appendix A] for details.

Proof. The Gaussian density dk of a shrinking Sk × Rn−k (where Sk is the unit
k-sphere in Rk+1) may be calculated explicitly:

dk =

(

k

2πe

)k/2

σk

=

(

k

2e

)k/2
(

2
√
π

Γ(k+1
2 )

)

,
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where σk is the area of a k-dimensional sphere of radius 1. Using this formula, one
can show that

(1) d1 > d2 > . . . .

Now if a shrinking ∂Bk ×Rn−k is a tangent flow to t 7→ K(t) at the point (x, t),
then dk = Θ. Thus by (1), k is determined by Θ. �

2.4. Proposition. Let Σk be the set of spacetime points (x, t) such that

(1) t > 0,
(2) x ∈ ∂K(t),
(3) x is a singular point of convex type, and
(4) the Gaussian density at (x, t) is dk (or, equivalently, the tangent flows at x

are shrinking Sk ×Rn−ks.)

Then Σk has parabolic Hausdorff dimension at most (n− k).

This follows easily from standard dimension reducing. (It also a special case of
the stratification theory in [Whi97, §9].) Actually, in this paper, we do not need the
full strength of Proposition 2.4. All we need is the following much weaker corollary:

2.5. Corollary. Suppose that at a certain time t > 0, the singularities all have
convex type with Gaussian density ≤ dk. Then K(t) is a smooth (n + 1)-manifold
with boundary except for a closed subset of ∂K(t) whose Hausdorff dimension is at
most (n− k).

2.6. Proposition. Let t > 0 and let p ∈ ∂K(t) be a either a regular point or a
convex-type singular point at which the Gaussian density Θ(p) of the flow is ≤ dm.
Let xi be a sequence of points in the interior of K(t) that converge to p. Let yi be a
point in ∂K(t) that minimizes distance to xi. Translate K(t) by −yi and dilate by
1/ dist(xi, yi) to get a set Ki. Then a subsequence Ki(j) converges to a convex set
K ′ with smooth boundary, and the convergence ∂Ki(j) → ∂K ′ is smooth on bounded
sets.

Furthermore, the homotopy groups πj(∂K
′) are trivial for j < m.

Proof. The assertion is trivially true if p is a regular point (in that case, the set
K ′ is a closed halfspace), so we assume that p is a singular point. Except for the
assertion about homotopy groups, this is proved in [Whi03], which also shows that,
after a rotation, either

(i) ∂K is the graph of an entire function from Rn to R, or
(ii) K has the form C × Rn−k for some k ≥ 1, where C is a compact, convex

subset of Rk+1.

In the first case, all the homotopy groups of ∂K are trivial. Thus we may assume
that K has the form C ×Rn−k as in (ii).

Recall that the entropy of a hypersurface M in Rn+1 is the supremum of

1

(4π)n/2rn

∫

y∈M

e−|y−x|2/4r2 dHny

over all x ∈ Rn+1 and r > 0. Because ∂K is a part of a limit flow at (p, t), its
entropy at most the Gaussian density of the original flow at the point p:

(2) Entropy(∂K) ≤ Θ(p) ≤ dm.
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(This follows easily from Huisken’s monotonicity.) On the other hand, ∂K forms an
Sk×Rn−k singularity under mean curvature flow. (If this not clear, apply Huisken’s
Theorem [Hui84] to see that the mean curvature flow starting with C collapses to
a round point, and then cross that flow with Rn−k to get a mean curvature flow
starting with K and collapsing to a (n− k)-space with an Sk ×Rn−k singularity.)
By Huisken’s monotonicity,

dk ≤ Entropy(∂K),

so dk ≤ dm by (2). Thus k ≥ m (by (1)), which implies that the jth homotopy
group of ∂K (which is diffeomorphic to Sk ×Rn−k) is trivial for all j < m. �

3. The Main Theorem

We begin by recalling some topological terminology. Suppose that Y is a topo-
logical space and that X is a subset of Y . We write

F : (Bk, ∂Bk) → (Y,X)

to indicate that F is a continuous map of the pair (Bk, ∂Bk) into (Y,X), i.e, a
continuous map of Bk into Y such that F (∂Bk) ⊂ X . Two such maps

F,G : (Bk, ∂Bk) → (Y,X)

are called homotopic in (Y,X) provided there is a homotopy H : Bk × [0, 1] → Y
from F to G such that

H(·, s) : (Bk, ∂Bk) → (Y,X)

for all s ∈ [0, 1].
We say that the pair (Y,X) ism-connected if for every k ≤ m, every continuous

map

F : (Bk, ∂Bk) → (Y,X)

is homotopic in (Y,X) to a map G whose image G(Bk) lies in X .
We can now state the main theorem:

3.1. Theorem. Let t ∈ [0,∞) 7→ K(t) be a mean curvature flow of compact, mean
convex subsets of a Riemannian manifold N . Suppose that 0 < a < b and that each
singularity during the the time interval a ≤ t < b has convex type and has Gaussian
density ≤ dm, the Gaussian density of a shrinking m-sphere in Rm+1.

Then the pair (K(b)c,K(a)c) is m-connected.

In particular, the conclusion implies that if a map of Sk (for k < m) into K(a)c

is contractible in K(b)c, then it is also contractible in K(a)c. Thus Theorem 3.1
implies 1.1.

Recall (Proposition 2.1) that if the metric on N is flat and if ∂K(0) is smooth,
or if dim(N) ≤ 7, then the singularities all have convex type.

Note also that if ∂K(0) is smooth, then we can also allow a = 0 in Theorem 3.1,
because the topology cannot not change before the first singular time.

Proof of Theorem 3.1. The theorem follows immediately from Theorem 4.4 and
Proposition 4.3 below. �
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4. An Abstract Form of the Main Theorem

In this section, we state and prove an abstract version (Theorem 4.4) of Theo-
rem 3.1. The abstract version is no harder to prove than the special case, but it
has the advantage of also applying to some variants of mean curvature flow.

4.1. Definition. Suppose K is a closed set in the interior2 of smooth (n + 1)-
dimensional Riemannian manifold. A point in K is a regular point of K if it is an
interior point of K or if it is a boundary point with a neighborhood U such that
K ∩U is smoothly diffeomorphic to a closed halfspace in Rn+1. The singular set

sing(K) of K is the set of points in K that are not regular points of K.

Note that the singular set of K is a closed subset of ∂K.
The following definition captures some of the key features of “having convex type

singularities whose Gaussian densities are all ≤ dm”.

4.2. Definition. Suppose K is a closed set in the interior of a smooth (n + 1)-
dimensional Riemannian. We define Q(K) to be the largest integer m with the
following properties:

(1) The singular set sing(K) has Hausdorff dimension ≤ n−m.
(2) If x is an interior point ofK and y is a singular point ofK, then dist(x, y) >

dist(x, ∂K).
(3) Let xi be a sequence of points in the interior of K converging to a point

in sing(K). Translate K by −xi and dilate by 1/ dist(xi, ∂K) to get Ki.
Then a subsequence of the Ki converges to a convex subset K ′ of Rn+1

with smooth boundary, and the convergence is smooth on bounded sets.
(4) If K ′ is as in (3), then ∂K ′ has trivial kth homotopy for every k < m.

If no such integer exists, we let Q(K) = −∞.

Note that if K has no interior, then (2), (3), and (4) are vacuously true, and
sing(K) = K, so in that case Q(K) is the largest integer less than or equal to
n− dim(sing(K)).

The following proposition describes for mean curvature flow how Q(K(t)) is
related to the Gaussian densities of the singularities at time t:

4.3. Proposition. Let t ∈ [0, T ] 7→ K(t) be a mean curvature flow of mean-convex
regions in the interior of a smooth Riemannian (n+ 1)-manifold. If t ∈ (0, T ] and
if the singularities at time t all have convex type with Gaussian density ≤ dm, then
Q(K(t)) ≥ m.

Proof. The result follows immediately from Proposition 2.2, Corollary 2.5, and
Proposition 2.6. �

For mean convex mean curvature flow, Q(K(t)) will typically equal the smallest
m such that there is a singularity at time t with Gaussian density dm. However,
there are degenerate situations in which Q(K(t)) is strictly less than that m. For
example, at the singular time for the doubly-degenerate neckpinch in R3 mentioned
in the introduction, K(t) is a single point and thus Q(K(t)) = 2 − 0 = 2, but the
Gaussian density at that singularity is d1.

2For now, the reader may as well assume that the ambient manifold has no boundary. In §5,
we will consider sets K that contain portion of the boundary of the ambient manifold.
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4.4. Theorem. Let t ∈ [a, b] 7→ K(t) be a one-parameter family of compact subsets
of a smooth, Riemannian (n+ 1)-manifold. Assume that

(1) K(t) ⊂ interior(K(T )) for a ≤ T < t ≤ b.
(2) K(T ) = ∩t<TK(t) for T ∈ (a, b].
(3) interior(K(T )) = ∪t>T interior(K(t)) for T ∈ [a, b).
(4) Q(K(T )) ≥ m for each T ∈ [a, b).

Then the pair (K(b)c,K(a)c) is m-connected.

Remark. The assumption that the K(t)’s are compact can be replaced by the
weaker assumption that they are closed and that K(a) \K(b) has compact closure.
No changes are required in the proof.

Proof. Let k ≤ m and let

F0 : (Bk, ∂Bk) → (K(b)c,K(a)c).

be a continuous map. Let F be the set of all continuous maps

F : (Bk, ∂Bk) → (K(b)c,K(a)c)

such that F is homotopic in (K(b)c,K(a)c) to F0. We must show that F contains
a map whose image lies in K(a)c, i.e., a map whose image is disjoint from K(a).

Equivalently, if J is the set of t ∈ [a, b] such that F contains a map F whose
image is disjoint from K(t), then we must show that a ∈ J .

We will prove that J = [a, b] (and therefore that a ∈ J) by proving the following
four statements:

(i) b ∈ J .
(ii) J is a relatively open subinterval of [a, b].
(iii) If T is in the closure of J , then F contains a map F whose image is contained

in the union of K(T )c and the regular part of ∂K(T ).
(iv) If T is in the closure of J , then T ∈ J .

Statements (i), (ii), and (iv) imply that J is a nonempty subinterval of [a, b] that
is both open and closed in [a, b], and therefore that J is all of [a, b].

Statement (i) is trivially true (since F0 ∈ F and F0(B
k) is disjoint from K(b).)

Next we prove statement (ii). For F ∈ F , let

JF := {t ∈ [a, b] : F (Bk) ∩K(t) = ∅}.
Note that

(3) J = ∪F∈FJF .

By definition of F , the set JF contains b. Since the K(t)’s are nested, if a ≤ t ≤
t′ ≤ b and if t is in JF , then t′ is also in JF . Thus JF is an interval containing
b. We claim that JF is relatively open in [a, b]. If a ∈ JF , then JF = [a, b], which
is certainly relatively open in [a, b]. Thus suppose a /∈ J , i.e., that K(a) intersects
F (Bk). By hypotheses (1) and (2) of the theorem, there is a last time t such that
K(t) intersects F (Bk). Hence JF = (t, b], which is relatively open in [a, b]. We have
shown that each JF is a relatively open subinterval interval of [a, b] containing b.
Hence their union J is also such a subinterval of [a, b]. This proves statement (ii).

Next we observe that statement (iii) implies statement (iv). For suppose T is in
the closure of J . Then, assuming that statement (iii) holds, F contains a map F
that lies in the union of K(T )c with the regular part of ∂K(T ). Now we simply
push F (Bk) into K(T )c by pushing it (where it touches the regular part of ∂K(T ))
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in the direction of the outward unit normal to K(T ). Thus T ∈ J , which completes
the proof that statement (iii) implies statement (iv).

(The sentence “now we simply push. . . ” may be made more precise as follows.
Let S = F (Bk) ∩ ∂K(T ). Let v be a compactly supported vectorfield defined on
the regular part of ∂K(T ) such that v is nonzero at every point of S and such that
at each point, v is a nonnegative multiple of the outward unit normal to ∂K(T ).
Now extend v to be a smooth vectorfield that vanishes outside of K(a). The flow
generated by v homotopes F to a map in F whose image is disjoint from K(T ).)

It remains only to show statement (iii). Suppose T ∈ [a, b) is in the closure
of J . Let ǫ > 0 (to be specified later). By statements (i) and (ii), there exist
T ∗ ∈ J ∩ (T, b] arbitrarily close to T . Choose such a T ∗ sufficiently close to T that
every point in K(T ) \K(T ∗) is within distance < ǫ of ∂K(T ). (This is possible by
hypotheses (1) and (3) of the theorem.)

Since T ∗ ∈ J , there is a map F ∈ F such that F (Bk) is disjoint from K(T ∗). We
may assume that F is smooth since the C∞ maps are dense in the set of continuous
maps. Now

dim(sing(K(T )) ≤ n−Q(K(T )) ≤ n−m,

and therefore since k ≤ m,

dim(sing(∂K(T )) + k ≤ n < n+ 1.

Consequently, we may assume, by putting F in general position, that F (Bk) con-
tains no singular points of ∂K(T ). (See the appendix if this is not clear.)

We will construct a map G from Bk such that the image of G is contained in
K(T )c together with the regular part of ∂K(T ). We will also construct a homotopy
from F to G in (K(b)c,K(a)c). The homotopy shows that G ∈ F , thus establishing
statement (iii).

Let Ω ⊂ Bk be the inverse image under F of the interior of K(T ). We now
describe the construction of the map G on the open set Ω.

First some terminology. Recall that a d-simplex is the convex hull of (d + 1)
points in a Euclidean space provided those (d + 1) points do not lie in any affine
subspace of dimension < d. The points are called vertices of the simplex. If the
distance between each pair of vertices is 1, we say that the simplex is standard.
Note that any two d-simplices are affinely isomorphic. In particular, given any
d-simplex ∆, there is an affine bijection σ : ∆ → ∆s from ∆ to a standard simplex
∆s. We define the standardized distance ds(·, ·) on ∆ by

ds(x, y) = |σ(x) − σ(y)|.
Given a map F from ∆ into a metric space Z, we define the standardized Lip-

schitz constant Lips(F ) of F to be the Lipschitz constant of F with respect to
the standardized distance on ∆:

Lips(F ) = sup
x 6=y

dist(F (x), F (y))

ds(x, y)
.

We now describe the map G on the portion Ω of Bk. (Later we will extend G
to all of Bk by letting G = F on Bk \ Ω.) First, triangulate Ω. By refining the
triangulation, we may assume that for each simplex ∆ of the triangulation,

diam(F (∆)) < ǫ dist(F (∆), ∂K(T )).

Here dist(X,Y ) denotes the infimum of dist(x, y) among all x ∈ X and y ∈ Y .
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We define G on Ω inductively by defining it first on the 0-skeleton of the triangu-
lation of Ω, then on the 1-skeleton, and so on. For each vertex v in the 0-skeleton,
we choose a point q ∈ ∂K(T ) that minimizes dist(q, F (v)), and we then let G(v)
be that chosen q. Note that q is a regular point of ∂K(T ) (since Q(K(T )) > −∞.)
Having defined G on the (j − 1)-skeleton of Ω, we extend it to the j-skeleton as
follows. For each j-simplex ∆ in the triangulation, we choose a map

g : ∆ → ∂K(T )

that minimizes Lips(g) among all maps g : ∆ → ∂K(T ) such that g = G on ∂∆.
Having chosen such a g, we let G(x) = g(x) for x ∈ ∆. (In Lemma 4.5 below, any
map G constructed by this inductive procedure will be called “F -optimal”.)

Of course we must check that the procedure does not break down in going from
the (j− 1)-skeleton to the j-skeleton. That it does not break down is proved below
in Lemma 4.5 (provided ǫ > 0 is sufficiently small). The lemma shows (for all
sufficiently small ǫ > 0) that:

(4) G(Ω) lies in the regular part of ∂K(T ), and
(5) dist(F (x), G(x)) ≤ C dist(F (x), ∂K(T )) for all x ∈ Ω. (See (6) in the lemma.)

By (5), the map G extends continuously to Bk by setting G(x) = F (x) for
x ∈ Bk \ Ω.

Now define a homotopy H : Bk × [0, 1] → K from F to G by setting

H(x, s) = (1− s)F (x) + sG(x)

if the ambient space is Euclidean. More generally, we define H by letting H(x, ·) :
[0, 1] → K(T ) be the unique shortest geodesic (parametrized with constant speed)
joining F (x) to G(x). (By (5), the shortest geodesic will be unique if ǫ > 0 is
sufficiently small, since dist(F (x), ∂K(T )) < ǫ.)

It remains only to show that (if ǫ > 0 is sufficiently small) the image of H is
disjoint from K(b), i.e., that for x ∈ Ω, the geodesic from F (x) to G(x) is disjoint
from K(b). Choose ǫ with

0 < ǫ <
dist(∂K(T ),K(b))

C
.

(This is possible since ∂K(T ) and K(b) are disjoint.) Thus by (5),

dist(F (x), G(x)) < dist(∂K(T ),K(b)).

This means that the geodesic from G(x) (which is in ∂K(T )) to F (x) is too short
to reach K(b). Thus that geodesic is disjoint from K(b).

We have proved that the image of the homotopy H is disjoint from K(b). The
homotopy proves that G ∈ F . This completes the proof of Theorem 4.4. �

We now turn to the lemma that was used in the proof of Theorem 4.4. First we
need some terminology. Fix a T > 0 and let K = K(T ). Let X be a simplicial
complex and let F be a map from X to K. We say that a map G : X → ∂K is
F -optimal provided:

(1) For each vertex v of X , G(v) realizes the minimum distance from a point
in ∂K to F (v):

dist(F (v), ∂K) = dist(F (v), G(v)).
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(2) For each simplex ∆ of X , the restriction G|∆ is a Lips-minimizing map
from ∆ to ∂K. That is, if g : ∆ → ∂K is any map such that g|∂∆ = G|∂∆,
then

Lips(G|∆) ≤ Lips(g).

4.5. Lemma. Let K be a compact subset of the interior of a smooth, (n + 1)-
dimensional manifold. Let ∆ be a simplex of dimension k ≤ Q(K). Then there is
an ǫ < 0 and a C < ∞ with the following property. If F : ∆ → K is a map such
that

diam(F (∆)) < ǫ dist(F (∆), ∂K)

and such that
dist(F (∆), ∂K) < ǫ,

then each F -optimal map from ∂∆ to ∂K extends to an F -optimal map G from ∆
to ∂K, and for any such extension G,

Lips(G) ≤ C dist(F (∆), ∂K),

and

(6) diam(F (∆) ∪G(∆)) ≤ C dist(F (∆), ∂K).

Note we may assume that the simplex ∆ is standard (since the statement of the
theorem is not affected by affine reparametrizations of the domain.) For purposes
of proof, it is convenient to restate the lemma as follows:

4.6. Lemma. Let K be as in Lemma 4.5, and let ∆ be a standard simplex of
dimension k ≤ Q(K). Let ǫi → 0, and suppose that Fi : ∆ → K is a sequence of
maps such that

(7) diam(Fi(∆)) ≤ ǫi dist(Fi(∆), ∂K)

and such that

(8) dist(Fi(∆), ∂K) < ǫi.

Suppose also that Γi : ∂∆ → ∂K is a sequence of Fi-optimal maps. Then for all
sufficiently large i, there exists an Fi-optimal map Gi : ∆ → ∂K that extends Γi,
and such a Gi must (for all sufficiently large i) have the following properties:

(i) Gi(∆) is contained in the regular part of ∂K.
(ii) The quantities

LipGi

dist(Fi(∆), ∂K)

(if k > 0) and
diam(Fi(∆) ∪Gi(∆))

dist(Fi(∆), ∂K)

are bounded above as i → ∞.

Proof. We prove it by induction on the dimension of ∆.
If ∆ is 0-dimensional, it is a single point p. Let Gi(p) be a point in the interior

of ∂K such that
dist(Fi(p), Gi(p)) = dist(Fi(p), ∂K).

This implies that Gi(p) is a regular point (since Q(K) > −∞), so (i) holds. The
second ratio in (ii) are both trivially equal to 1, so (ii) also holds. This completes
the proof of the lemma when ∆ is 0-dimensional.
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Now suppose that 1 ≤ k = dim(∆) ≤ Q(K). By induction, we may assume that
the lemma is true for each face of ∆. Let pi be a point in Fi(∆) that minimizes the
distance from Fi(pi) to ∂K.

Translate K by −F (pi) and dilate by

λi =
1

dist(Fi(p), ∂K)

to get a set K ′
i. Let F ′

i : S → K ′
i and Γ′

i : ∂∆ → ∂K ′
i be the maps corresponding

to Fi and Γi. Note that

(9) 0 ∈ F ′
i (∆) ⊂ K ′

i

and that

(10) 1 = dist(0, ∂K ′) = dist(F ′
i (∆), ∂K ′

i).

By passing to a subsequence, we may assume that the K ′
i converge smoothly to

a convex set K ′ with

(11) 0 ∈ K ′ and dist(0, ∂K ′) = 1.

By (7) and (10),

diam(F ′
i (∆)) ≤ ǫi dist(F

′
i (∆), ∂K ′

i) = ǫi → 0,

so by (9),

(12) F ′
i (·) → 0 uniformly.

Thus by (11),

(13) dist(F ′
i (·), ∂K ′

i) → 1 uniformly.

By induction we can assume that (ii) holds for the restrictions of Fi and Γi to
each face ∆∗ of ∆. Thus

Lip(Γi|∆∗) ≤ c dist(Fi(∆
∗), ∂K)

for some constant c, which implies by rescaling that

Lip(Γ′
i|∆∗) ≤ c dist(F ′

i (∆
∗), ∂K ′

i).

By (12) and (13), the right hand side tends to c, so

(14) lim sup
i

(Lip(Γ′
i|∆∗)) ≤ c.

If v is a vertex of ∆, then Γ′
i(v) is a point in ∂K ′

i closest to F ′
i (v). Since since

F ′
i (·) → 0 and since K ′

i → K ′ smoothly, this implies that

(15) lim sup
i→∞

dist(Γ′
i(v), 0) = dist(∂K ′, 0) = 1.

By (14) and (15), the Γ′
i form an equicontinuous family, so after passing to a

subsequence, we can assume that the Γ′
i converge uniformly to a Lipschitz map

Γ′ : ∂∆ → ∂K ′.

Now ∂K ′ is smooth. Also, k = dim(∆) ≤ Q(K), so by definition of Q(K), the
(k − 1)-dimensional homotopy of ∂K ′ is trivial. Thus the map Γ′ extends to a
Lipschitz map G′ : ∆ → ∂K ′.
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By the smooth convergence K ′
i → K ′ and the by the bounded Lipschitz norm

convergence Γ′
i → Γ′, it follows that (for all sufficiently large i) there is a Lipschitz

map

G′
i : ∆ → ∂K ′

i

such that G′
i extends Γ

′
i and such that

(16) Lip(G′
i) ≤ Lip(G′) + δi

where δi → 0. We may assume that G′
i : ∂∆ → K ′

i is the extension of smallest
Lipschitz norm. (This minimizing extension exists because ∂K ′

i is compact.) By
passing to a subsequence, the G′

i converge uniformly to a limit map, which we may
assume to be G′. (Otherwise redefine G′ to be that limit map.)

In particular, the smooth convergence ∂K ′
i → ∂K ′ implies that G′

i maps ∆ to
the regular part of ∂K ′

i (if i is sufficiently large).
Note that

Lip(Gi)

dist(Fi(∆), ∂K)
=

Lip(G′
i)

dist(F ′
i (∆), ∂K ′

i)
=

Lip(G′
i)

1

which is bounded as i → ∞ by (16).
Similarly we have

(17)
diam(Fi(∆) ∪Gi(∆))

dist(Fi(∆), ∂K)
=

diam(F ′
i (∆) ∪G′

i(∆))

dist(F ′
i (∆), ∂K ′

i)
=

diam(F ′
i (∆) ∪G′

i(∆)

1

which converges to diam({0} ∪ G′(∆)) as i → ∞ (since F ′
i → 0 and G′

i → G′

uniformly.) In particular, (17) is bounded as i → ∞. �

5. Manifolds with Boundary

So far in this paper, the moving hypersurfaces ∂K(t) under consideration have
been hypersurfaces without boundary. Now we consider the case of hypersurfaces
with boundary, the motion of the boundary being prescribed and the motion away
from the boundary being by mean curvature flow (or possibly by other analogous
flows.)

5.1. Definition. Let N be a smooth (n+1)-dimensional manifold-with-boundary.
Let K be a closed subset of N . A point x ∈ K is called a regular point of K
provided

(1) x is an interior point of K, or
(2) x ∈ N \ ∂N and N has a neighborhood U of x such that K ∩ U is diffeo-

morphic to a closed half-space in Rn+1, or
(3) x ∈ ∂N and N has a neighborhood U of x for which there is a diffeomor-

phism that maps U onto {x ∈ Rn+1 : x1 ≥ 0} and that maps K ∩ U onto
{x ∈ Rn+1 : x1 ≥ 0, x2 ≥ 0}.

Points in K that are not regular points are called singular points of K.
The following theorem should be thought of as a theorem about a moving

hypersurface-with-boundary. At time t, the hypersurface is

M(t) := ∂K(t) = K(t) ∩N \K(t),

and its boundary is Γ(t) := ∂K(t) ∩ ∂N . In practice, the initial surface would
be prescribed by prescribing K(0), and the motion of the boundary would be pre-
scribed by prescribing Γ(t) or, equivalently, by prescribingK(t)∩N . The geometric
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flow would then determine the moving region K(t) or, equivalently, the moving hy-
persurface M(t).

5.2. Theorem. Let t ∈ [a, b] 7→ K(t) be a one-parameter family of compact subsets
of a smooth, (n + 1)-dimensional Riemannian manifold-with-boundary. Assume
that

(1) K(t) ⊂ K(T ) for T ≤ t.
(2) K(t) \ ∂N ⊂ interior(K(T )) for T < t.
(3) K(T ) = ∩t<TK(t) for T ∈ (a, b].
(4) interior(K(T )) = ∪t>T interior(K(t)) for T ∈ [a, b).
(5) For each t ∈ [a, b], the singular points of K(t) all lie in the interior of N .
(6) Q(K(t)) ≥ m for all t ∈ [a, b).

Then the pair (K(b)c,K(a)c) is m-connected.

The fact that we are assuming (2) rather than K(t) ⊂ interior(K(T )) for T < t
(as was assumed in Theorem 4.4) allows for the boundaries Γ(t) of the surfaces
M(t) to touch either other for distinct values of t. In particular, it allows for the
boundary Γ(t) to be fixed.

Theorem 5.2 can be proved exactly as Theorem 4.4 proved, except for two slight
complications, which we now discuss.

The first complication arises because at the end of the proof of Theorem 4.4, we
used the following:

Claim. Let a ≤ T < b and let 0 < C < ∞. Then there is an ǫ > 0 such that if
x ∈ K(T ) \K(b), if dist(x, ∂K(T )) < ǫ, and if y is a point in ∂K(T ) such that

dist(x, y) ≤ C dist(x, ∂K(T )),

then the shortest path joining x to y in N is disjoint from K(b).

Unfortunately, the hypotheses of Theorem 5.2 are not quite enough to imply the
claim. (The argument given at the end of the proof of Theorem 4.4 to establish
the claim does not work here because hypothesis (2) of Theorem 5.2 allows ∂K(T )
and K(b) to intersect along ∂N .) However, we can get around this difficulty as
follows. Neither the hypotheses nor the conclusion of Theorem 5.2 depend on the
Riemannian metric on N . Thus we may choose a metric that is convenient. In
particular, by choosing a suitable metric, we may assume that:

(18) The surface ∂K(b) is totally geodesic in some small tubular neighborhood of
∂N , and ∂K(b) and ∂N are orthorgonal at all points in their intersection.

Under this assumption, the claim is true:

Proof of claim (assuming (18)). Suppose xi ∈ K(T ) \K(b), yi ∈ ∂K(T ), and

(19)
dist(xi, yi)

C
≤ dist(xi, ∂K(T )) → 0.

It suffices to show that (for all sufficiently large i), the geodesic joining xi to yi does
not intersect K(b). By passing to a subsequence, we may assume that xi converges
to a limit point p. By (19), yi converges to the same point p.

Case 1: p /∈ K(b). Since xi and yi both converge to p, this means that (for large
i) the geodesic joining them does not intersect K(b).

Case 2: p ∈ K(b). But p = limi yi is also in ∂K(T ). Thus p ∈ ∂K(b) ∩ ∂N by
hypothesis (2) of Theorem 5.2. But now assumption (18) implies that the geodesic
joining xi to yi is, for large i, disjoint from K(b).
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This completes the proof of the claim. �

The second complication is that in a few steps in the proof of Theorem 4.4, it
is convenient for a certain map F : (Bk, ∂Bk) → (K(T )c,K(a)c) to have its image
the interior of N . (This was trivially the case in Theorem 4.4, since the K(t)’s
were assumed to lie in the interior of N .) The following lemma shows that we can
arrange for F (Bk) to be in the interior of N :

5.3. Lemma. Under the hypotheses of Theorem 5.2, if a < T < b and if

F : (Bk, ∂Bk) → (K(T )c,K(a)c)

then F is homotopic in (K(T )c,K(a)c) to a map whose image lies in the interior
of N .

Proof. Note that there is a smooth vectorfield on N supported in a small tubular
neighborhood of ∂N such that

v(x) · ν(x) > 0

for all x ∈ ∂N , where ν is the unit normal vectorfield to ∂N that points into N ,
and such that v is tangent to ∂K(T ) along ∂K(T ). (This is possible because K(T )
is assumed to have no singular points in ∂N .) Let Φ : N × [0,∞) → N be the flow
generated by v, and consider the homotopy

H : Bk × [0, δ] → N

H(x, s) = Φ(F (x), s)

Note that the image ofH is disjoint from K(T ). Also, if we choose δ > 0 sufficiently
small, thenH(∂Bk×[0, δ]) will be disjoint fromK(T ). (This is true because F (∂Bk)
is disjoint from K(T ).) Let G(·) = H(·, δ). Then G(Bk) lies in the interior of N ,
and F and G are homotopic in (K(T )c,K(a)c) by the homotopy H . �

In the case of mean curvature flow, we have:

5.4. Theorem. Let N be a smooth, compact, connected (n + 1)-dimensional Rie-
mannian manifold with boundary with n < 7. Let t ∈ [0,∞) 7→ V (t) be a smooth,
one-parameter family of compact, smooth, n-dimensional manifolds with boundary
in ∂N such that V (t′) ⊂ V (t) for t ≥ t′. Let K be a closed subset of N such that ∂K
is a smooth, compact, connected manifold-with-boundary such that K∩∂N = V (0),
and such that ∂K is smooth with mean curvature at each point a nonnegative mul-
tiple of the unit normal that points into K, and such that ∂K is nowhere tangent
to ∂N .

If ∂K is a minimal surface (i.e., has mean curvature 0 at all points), assume3

also that V (t) 6= V (0) for t 6= 0.
Let t ∈ [0,∞) 7→ M(t) be the solution obtained by elliptic regularization of mean

curvature flow such that M(0) = ∂K and such that ∂M(t) = ∂V (t) for all t.
Then each M(t) is the boundary in N of a region K(t) ⊂ K. The singularities

of the flow form a compact subset of the interior of N and all have convex type.
In particular, if the Gaussian densities of the singularities in the time interval

a ≤ t < b are all < dm, then t 7→ K(t) satisfies all the hypotheses of Theorem 5.2,
and therefore the pair (K(b)c,K(a)c) is m-connected.

3This assumption guarantees that the surface starts moving immediately.
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If n ≥ 7, the Theorem remains true provided the metric on N is flat and provided
M(t) is smooth for some t ≥ b.

The theorem should be true for all n without the somewhat peculiar assumptions
in the last sentence of the theorem. Those assumptions are needed only because
without them we do not know how to prove that the singularities of the flow have
convex type.

Proof. Except for the assertion that the pair (K(b)c,K(a)c) is m-connected, this
is proved in [Whi11]. The m-connectivity of (K(b)c,K(a)c) then follows by Theo-
rem 5.2. �

6. Appendix

Here we give a proof of the general position principle used in the proof of Theo-
rem 4.4.

6.1. Proposition. Let N be a smooth d-dimensional manifold without boundary
and let S be a subset of N with Hausdorff (d − k)-dimensional measure 0. Then
the collection C of smooth maps F : Bk → N such that F (Bk) ∩ S = ∅ is dense in
the set of all smooth maps from Bk to N .

Proof. First consider the case N = Rd. Let F : Bk → N be a smooth map. We
will prove the proposition in this case by showing

(20) If F ∈ C∞(Bk,Rd), then F (·) + v ∈ C for almost every v ∈ Rd.

The set Π−1(S) = Bk×S has k+(d−k)-dimensional (i.e., d-dimensional) measure 0.
(Here Π : Bk×Rd → Rd is the projection map.) Therefore its diffeomorphic image
φ(Π−1(S)) under the diffeomorphism

φ : (x, y) ∈ Bk ×Rn 7→ (x, y − F (x))

has d-dimensional measure 0. Hence the projected image Π(φ(Π−1(S))) of φ(Π−1(S))
in Rd has Lebesgue measure 0:

(21) Ld(Π(φ(Π−1(S))) = 0.

Now

(22) v ∈ Π(φ(Π−1(S))) ⇐⇒ (x, v) ∈ φ(Π−1(S)) for some x ∈ Bk,

and

(23)

(x, v) ∈ φ(Π−1(S)) ⇐⇒ φ−1(x, v) ∈ Π−1(S)

⇐⇒ (x, F (x) + v) ∈ Π−1S

⇐⇒ F (x) + v ∈ S

The desired conclusion (20) follows immediately from (21), (22), and (23). This
completes the proof in the case N = Rd.

For a general manifold N , we may assume that N is a smooth submanifold of
some Euclidean space Rd+j. Let U be an open subset of Rd+j that contains N and
for which the nearest point retraction π : U → N exists and is smooth.

Let F : Bk → N be a smooth map, and let δ = d(F (Bk), U c). Now the
set π−1(S) has (d − k) + j dimensional measure 0, or, equivalently (d + j) − k-
dimensional measure 0. Thus by (20), the map F (·) + v has image disjoint from
π−1(S) for almost every v ∈ Rd+j with |v| < δ. Therefore the map π(F (·) + v) has
image disjoint from S for almost every v ∈ Rd+j with |v| < δ. �
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