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GRAPHS ASSOCIATED WITH THE MAP X 7→ X +X−1

IN FINITE FIELDS OF CHARACTERISTIC TWO

S. UGOLINI

Abstract. In this paper we study the structure of the graphs associated with
the iterations of the map x 7→ x + x−1 over finite fields of characteristic two.
Formulas are given for the length of the cycles and the depth of the trees relying
upon the structure of the group of the rational points of Koblitz curves and the
congruences of Kloosterman sums modulo powers of 2.

1. Introduction

The map which sends x to x + x−1 in a finite field (with a point ∞ added
to it) plays a role in various investigations. The so-called Q-transform depends
on it, as it takes a polynomial f of degree n to the self-reciprocal polynomial
fQ(x) = xnf(x + x−1) of degree 2n (see [Jun93]). Also, the possible correlation
between the multiplicative orders of x and x+ x−1 was studied in [Shp01].
Iteration of maps on finite fields are also important. For example, Pollard’s

integer factoring algorithm is based on the iteration of a quadratic map x 7→ x2+c
(mod N), where c 6= 0,−2 is a randomly-chosen constant and N is the integer to
be factored. See [TV04] for one of several studies on iterations of maps of this
form in a finite field.
Our work focuses on iterations of the map x 7→ x + x−1 on the projective line

P1(F2n) = F2n ∪ {∞}, where F2n is a finite field of characteristic 2. A directed
graph on P1(F2n) is associated with the map in an obvious way. Each connected
component consists of a cycle and directed binary trees entering the cycle at various
points.
Experimental evidence has shown that such graphs present remarkable symme-

tries. In fact, it turns out that the map is closely related to the duplication map
on a certain elliptic curve on E, the Koblitz curve y2+xy = x3+1 over F2. Using
this fact we give a precise description of the structure of such graphs, including
the length of the cycles and the depth of the trees.

2. Preliminaries

For a fixed positive integer n let F2n be the field with 2n elements and P1(F2n) =
F2n ∪ {∞} the projective line over F2n. We define a map ϑ over P1(F2n) in such
a way:

ϑ(α) =

{
∞ if α = 0 or ∞
α + α−1 otherwise.
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2 S. UGOLINI

We can associate a graph with the map ϑ over the field F2n in a natural way. The
vertices of the graph are labelled by the elements of P1(F2n). If α ∈ P1(F2n) and
β = ϑ(α), then we connect with a directed edge the vertex α with the vertex β.
If γ ∈ P1(F2n) and ϑk(γ) = γ, for some positive integer k, then γ belongs to a
cycle of length k or a divisor of k. An element γ belonging to a cycle can be the
root of a reverse-directed tree, provided that γ = ϑ(α), for some α which is not
contained in any cycle.

Example 2.1. Consider the graph associated with the map ϑ in the field F25 ,
constructed as the splitting field over F2 of the polynomial x5+x2+1 ∈ F2[x]. If α
is a root of such a polynomial in F25 , then P1(F25) = {0}∪{αi : 1 ≤ i ≤ 31}∪{∞}.
We will label the nodes denoting the elements αi by the exponent i and the zero
element by ‘0’.
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In the following we will denote the absolute trace of an element α ∈ F2n by
Trn(α), namely

Trn(α) =

n−1∑

i=0

α2i .

Since Trn(α) ∈ F2, the set of points belonging to the projective line P1(F2n) can
be partitioned in the subsets

An = {α ∈ F∗

2n : Trn(α) = Trn(α
−1)} ∪ {0,∞}

Bn = {α ∈ F∗

2n : Trn(α) 6= Trn(α
−1)}.

The following holds.

Lemma 2.2. If α is an element of F∗

2n, then

Trn
(
(α + α−1)−1

)
= 0.

Proof. We compute explicitly the trace of β = (α + α−1)−1:

Trn(β) =
n−1∑

i=0

(
α

α2 + 1

)2i

=
n∑

i=1

(
1

α2i−1 + 1
+

1

α2i + 1

)
= 0.
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Remark 2.3. As a consequence of previous Lemma, if one considers the restrictions
ϑAn

and ϑBn
of ϑ at An (respectively Bn), then Im(ϑAn

) ⊆ An and Im(ϑBn
) ⊆ Bn.

This amounts to saying that the graph associated with the map ϑ in the field F2n

is the union of the graphs associated with the maps ϑAn
over An and ϑBn

on Bn.

The map ϑ is strictly related to the duplication map defined over Koblitz curves.
We remind that a Koblitz curve is an elliptic curve defined over F2 by an equation
of the form

y2 + xy = x3 + ax2 + 1,

where a ∈ F2. In particular, for a = 0 we get the curve Kob0 defined by

y2 + xy = x3 + 1.

If P = (x1, y1) ∈ Kob0(F2n), namely P is a rational point of Kob0 over the field
F2n , then 2P = (x2, y2), where

x2 = x21 +
1

x21
= ϑ(x1)

2

Moreover, if P = (x, y) ∈ Kob0(F2n), then −P = (x, x+ y).
The following result holds (see [LW90]).

Lemma 2.4. Let β ∈ F2n. Then, Trn(β) = 0 if and only if there exists α ∈ F2n

such that β = α+ α2.

We make immediately use of the Lemma above, proving the following.

Lemma 2.5. Let x ∈ F2n. Then, there exists y ∈ F2n such that (x, y) ∈ Kob0(F2n)
if and only if x = 0 or Trn(x) = Trn(x

−1).

Proof. Let y ∈ F2n such that (x, y) ∈ Kob0(F2n). If x 6= 0, then

y2

x2
+
y

x
= x+ x−2.

Since Trn

(
y2

x2

)
= Trn

(y
x

)
and Trn(x

−1) = Trn(x
−2), then Trn(x+ x−1) = 0.

Conversely, if x = 0, then (x, y) = (0, 1) ∈ Kob0(F2n). If x 6= 0 and Trn(x) =
Trn(x

−1), then the equation

z2 + z = x+ x−2

has two solutions z1, z2. Let yi = zi · x, for i = 1 or 2. Since

yi
2

x2
+
yi
x

= x+ x−2,

we get that yi
2 + xyi = x3 + 1 and we are done. �

If a is an element of F2n , then we can define the Kloosterman sum

S(n)(a) =
∑

x∈F∗

2n

(−1)Trn(x
−1+ax).
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The values of the Kloosterman sums for a = 1 are strictly related to the number
of rational points of Kob0 over F2n (see [LW90] for more details). We have that

|Kob0(F2n)| = 2n + 1 + S(n)(1).

In [Car69] some relations for S(n)(1) are given. It is proved that

(2.1) S(n)(1) ≡
{

−1 (mod 8) for n even, n 6= 2
3 (mod 8) for n odd.

Moreover

(2.2) S(n)(1) = −2 · 2n/2 cos(nϕ),
where

cos(ϕ) =
1

−2
√
2
; sin(ϕ) =

√
7

2
√
2
.

As a consequence of (2.2) the following relation between S(2n)(1) and S(n)(1)
holds:

(2.3) S(2n)(1) = −S(n)(1)2 + 2n+1.

Using (2.3) it is possible to generalize (2.1).

Lemma 2.6. Let n = 2lm be a positive integer greater than 1 such that n 6∈ {2, 4},
for some non-negative integer l and odd integer m. Then

S(n)(1) ≡
{

−1 (mod 2l+2)
−1 + 2l+2 (mod 2l+3).

Proof. Let m ≥ 3. We prove the thesis by induction on l ≥ 0.
Let l = 0. In this case n is odd and the thesis follows from (2.1).
Suppose that the thesis holds for some non-negative integer l − 1. Let n =

2lm = 2(2l−1m). For the sake of clarity denote k = 2l−1m. Then,

S(n)(1) = −S(k)(1)2 + 2k+1 ≡ −1 (mod 2l+2),

being k + 1 = 2l−1m + 1 ≥ 2l−13 + 1 ≥ l + 3. As regards the second congruence,
since S(k)(1) ≡ −1+2l+1 (mod 2l+2), then S(k)(1)2 ≡ 1−2l+2 (mod 2l+3). Hence,

S(n)(1) ≡ −1 + 2l+2 + 2k+1 ≡ −1 + 2l+2 (mod 2l+3).

Now we deal with the case n = 2l, where l ≥ 3.
When n = 8, namely l = 3, the Kloosterman sum S(8)(1) = 31. Hence we are

done. Suppose that the thesis holds for some integer l − 1 greater than or equal
to 3. Let n = 2k, where k = 2l−1. Then,

S(2k)(1) = −S(k)(1)2 + 2k+1 ≡ −1 (mod 2l+2),

since k + 1 = 2l−1 + 1 ≥ l + 3 for l ≥ 4.
The second congruence holds too, since

S(2k)(1) = −S(k)(1)2 + 2k+1 ≡ −1 + 2l+2 (mod 2l+3).

�
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3. The structure of the group of the rational points of an

elliptic curve over a finite field

In this Section we will briefly recall some results concerning the number of
rational points and the structure of the group of rational points of an elliptic
curve defined over a finite field of arbitrary characteristic. More details can be
found for example in [Rüc87] or [Wit01].
If E is an elliptic curve defined over a finite field Fq of characteristic p, then

the structure of the group E(Fqk) of the rational points of E over Fqk is strictly
related to the ring EndFq

(E) of the endomorphisms of E over Fq. Among all the
endomorphisms, the Frobenius endomorphism πq plays a special role, as we will
see later. It maps a point P = (xP , yP ) of E to (xqP , y

q
P ). Note in passing that the

ring Z of integers can be viewed as a subring of EndFq
(E).

The following Theorem holds.

Theorem 3.1. Let E be an elliptic curve defined over a finite field Fq and h the
number of rational points of E over Fq. Then,

h = 1 + q − β,

where β is an integer with |β| ≤ 2
√
q. Moreover, if (β, p) = 1, then Q(πq)

is an imaginary quadratic field over Q and all the orders in Q(πq) are possible
endomorphism rings of E over Fq.

We remind that an order D in a number field K is a subring of K such that K
is its quotient field, D ∩Q = Z and the additive group of D is finitely generated.
The structure of the group E(Fqk) of rational points over Fqk of an elliptic curve

defined over a finite field Fq such that πq 6∈ Z is as follows.

Theorem 3.2. Let E be an elliptic curve defined over Fq, R = EndFq
(E) and

Fqk the field with qk elements. If πq 6∈ Z, then there is an isomorphism

E(Fqk) ∼= R/(πk
q − 1)R

of R-modules.

Theorem 3.3. In the same hypotheses of Theorem 3.2, if m = |E(Fq)| and d =

(q + 1−m)2 − 4q, then d < 0 and EndFq
(E) is an order in Q(

√
d).

The proof of Theorem 3.3, which can be found in [Wit01], yields a representation

of the q-Frobenius endomorphism as an element of Q(
√
d), namely

(3.1) πq =
q + 1−m+

√
d

2
.

Consider now the Koblitz curve Kob0. The number of rational points of Kob0
over F2 is 4. Hence the representation of the Frobenius endomorphism π2 as an
element of Q(

√
−7) is

π2 =
−1 + i

√
7

2
.
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We remind that the ring of integers ofQ(
√
−7), which is also its unique maximal

order, is Z[ω], where

ω =
1 + i

√
7

2
.

In particular we can write π2 = −1 + ω. Since End(Kob0) is an order in Q(
√
−7)

and contains {1, π2}, then ω ∈ End(Kob0). Therefore R = End(Kob0) = Z[ω] and
the group of rational points of Kob0 over F2n is isomorphic to R/(πn

2 − 1)R. The
ring R is euclidean with respect to the norm N(a + bω) = (a + bω)(a+ bω). In
particular N(π2) = 2, namely

(3.2) π2π2 = 2 ∈ R,

where 2 is the duplication map, seen as an endomorphism of Kob0.
If P = (x1, y1) ∈ Kob0(F2n) and 2P = (x2, y2), then x2 = x21+(x−1

1 )2. Therefore,
if π2(P ) = (x′, y′), then x′ = x1 + x−1

1 .
We have obtained that the conjugated of the Frobenius endomorphism takes

the x-coordinate of a point P ∈ Kob0 to ϑ(x). Relying upon this consideration we
can study the structure of the graph associated with the map ϑ over a finite field
of characteristic two.

4. The structure of the graphs

In this Section we will describe the structure of the graphs associated with the
map ϑ. We define the orbit of an element x ∈ P1(F2n), under the action of the
map ϑ, as the set

O(x) =
{
ϑk(x) : k ≥ 0

}
.

The point x is said to be periodic if ϑk(x) = x, for some positive integer k. The
smallest such k is called the period of x.
The following holds.

Lemma 4.1. Let x ∈ F22n and P = (x, y) ∈ Kob0(F22n). Denote by O the point
at infinity of Kob0. Then,

(πn
2 + 1)P = O ⇐⇒





x = 0
or
x ∈ F2n and Trn(x+ x−1) = 1.

Proof. Suppose that (πn
2 +1)P = O. Then, πn

2 (P ) = −P = (x, x+y) and x2
n

= x.
Hence, x ∈ F2n . If x 6= 0 and Trn(x + x−1) = 0, then y ∈ F2n , as a consequence
of Lemma 2.5. But this implies that (x, y) ∈ F2

2n . Therefore πn
2 (P ) = P and

(x, y) = P = −P = (x, x+ y). Hence x = 0 and y = 1, in contradiction with the
assumption that x 6= 0.
Conversely, suppose that x ∈ F∗

2n and Trn(x + x−1) = 1. This implies that
πn
2 (P ) = (x, y2

n

). If y2
n

= y, then P ∈ Kob0(F2n). But this is in contradiction
with Lemma 2.5. Hence, (πn

2 + 1)P = O. �

Our final goal is to describe the structure of the graph associated with the map
ϑ over P1(F2n). As remarked in Section 2, this can be done describing separately
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the structure of the graphs associated with the maps ϑAn
and ϑBn

on the sets An

and Bn respectively (see Section 2 for the details).

• Graph An. We remind that, for each x ∈ An\{0,∞}, there exist two
distinct points in Kob0(F2n) having the same x-coordinate. Moreover
Kob0(F2n) is isomorphic to R/(πn

2 − 1)R, being R the ring of integers
of Q(

√
−7).

• Graph Bn. Let x ∈ Bn. In this case there are exactly two distinct points
in Kob0(F22n) with such an x-coordinate. By Lemma 4.1, (πn

2 + 1)P = O.
Viceversa, if P = (x, y) ∈ Kob0(F22n) and (πn

2 + 1)P = O, then x ∈ F2n

and Trn(x+ x−1) = 1 or P = (0, 1). Hence, there is an isomorphism

ψ̃ : Kob0(F22n)Bn
→ R/(πn

2 + 1)R,

where

Kob0(F22n)Bn
= {(x, y) ∈ Kob0(F22n) : x ∈ Bn or x = 0} ∪ O.

Before dealing with graphs An and Bn we recall just some facts about the ring
Z[ω], which is the ring of integers of the quadratic number field Q(

√
−7). Since

the ring Z[ω] is euclidean, it is also a unique factorization domain. Moreover, the
only positive rational prime which ramifies in R is 7, while all other (positive)
rational primes either split in R or are inert.
We can factor the element πn

2 − 1 (resp. πn
2 + 1) in primes of R. Notice that π2

divides neither πn
2 − 1 nor πn

2 + 1.
Suppose that πn

2 − 1 (resp. πn
2 + 1) factors as

πe0
2 ·
(

v∏

i=1

peii

)
·
(

w∏

i=v+1

reii

)
· (
√
−7)f ,

where

(1) all ei and f are non-negative integers;
(2) for 1 ≤ i ≤ v the elements pi ∈ Z are distinct primes of R and N(peii ) =

p2eii ;
(3) for v+1 ≤ i ≤ w the elements ri ∈ R\Z are distinct primes of R, different

from π2, π2 and
√
−7, and N(reii ) = peii , for some rational integer pi such

that riri = pi.

The ring R/(πn
2 − 1)R (resp. R/(πn

2 + 1)R) is isomorphic to

(4.1) R/πe0
2 R×

(
v∏

i=1

R/peii R

)
×
(

w∏

i=v+1

R/reii R

)
×R/(

√
−7)fR.

For any 1 ≤ i ≤ v the additive group of R/peii R is isomorphic to the direct sum
of two cyclic groups of order peii . This implies that, for each integer 0 ≤ hi ≤ ei,

there are Nhi
points in R/peii R of order phi

i , where

Nhi
=

{
1 if hi = 0
pi

2hi − pi
2(hi−1) otherwise.
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For any v+1 ≤ i ≤ w the additive group of R/reii R is cyclic of order peii . Hence,

there are ϕ(phi

i ) points in R/reii R of order phi

i , for each integer 0 ≤ hi ≤ ei.
Finally, the additive group of R/(

√
−7)fR is isomorphic to the direct sum of

two cyclic groups of order 7f/2, if f is even, or to the direct sum of two cyclic
groups of order respectively 7(f−1)/2 and 7(f+1)/2, if f is odd. In the case that f is
even, for each integer 0 ≤ hf ≤ f/2 there are Nhf

points in R/(
√
−7)fR of order

7hf , where

Nhf
=

{
1 if hf = 0
72hf − 72(hf−1) otherwise.

If, on the contrary, f is odd, then

Nhf
=





1 if hf = 0
72hf − 72(hf−1) if 1 ≤ hf ≤ (f − 1)/2
72hf−1 − 72(hf−1) if hf = (f + 1)/2

An element x ∈ An\{0,∞} (resp. Bn), which is periodic under the action of the
map ϑ, is the x-coordinate of a rational point of Kob0(F2n) (resp. Kob0(F22n)Bn

),
which corresponds to a point of the form P = (0, P1, . . . , Pw, Pf) ∈ R/(πn

2 − 1)R

(resp. R/(πn
2 + 1)R). Each Pi, for 1 ≤ i ≤ w, has order phi

i , for some integer
0 ≤ hi ≤ ei. Moreover, Pf has order hf , for some integer such that 0 ≤ hf ≤ f/2
if f is even or 0 ≤ hf ≤ (f + 1)/2 if f is odd. For any Pi let li be the smallest
among the positive integers k such that [π2]

kPi = Pi or −Pi. In a similar way, we
define lf to be the smallest among the positive integers k such that [π2]

kPf = Pf

or −Pf .

• If 1 ≤ i ≤ v, then li is the smallest among the positive integers k such that
phi

i divides πk
2 + 1 or πk

2 − 1 in R.
• If v+1 ≤ i ≤ w, then li is the smallest among the positive integers k such
that rhi

i divides πk
2 + 1 or πk

2 − 1 in R.
• The integer lf is the smallest among the positive integers k such that√

−7
hf divides πk

2 + 1 or πk
2 − 1 in R.

Let
l = lcm(l1, . . . , lw, lf).

We introduce parameters εi, for 1 ≤ i ≤ w, and εf such defined:

εi =

{
1 if [π2]

liPi = Pi

0 if [π2]
liPi = −Pi.

εf =

{
1 if [π2]

lfPf = Pf

0 if [π2]
lfPf = −Pf .

Let

ε =

{
0 if any εi = 1 and εf = 1 or any εi = 0 and εf = 0
1 otherwise.

Then, the period of x with respect to ϑ is 2ε · l.
We note that the number of points P = (0, P1, . . . , Pw, Pf) in R/(π

n
2 −1)R (resp.

R/(πn
2 + 1)R), where each Pi has order p

hi

i and Pf has order 7hf , is

m =

(
v∏

i=1

Nhi

)
·
(

w∏

i=v+1

ϕ(phi

i )

)
·Nhf
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Let P = ψ(x, y) (resp. ψ̃(x, y)) be one of such points. The period l of x can
be calculated as above. In particular, we note that also −P = ψ(x, x + y) (resp.

ψ̃(x, x + y)) has the same additive order in R/(πn
2 − 1)R (resp. R/(πn

2 + 1)R).

This amounts to saying that the m points give rise to
⌈m
2l

⌉
cycles of length l.

Now we define the sets Zei = {0, 1, . . . , ei}, for any 1 ≤ i ≤ w, and Zf =
{0, 1, . . . , f/2} if f is even or Zf = {0, 1, . . . , (f + 1)/2} if f is odd. Let

H =
w∏

i=1

Zei × Zf .

For any h ∈ H denote by Ch the set of all cycles formed by the elements
x ∈ An (resp. Bn) such that (x, y) ∈ Kob0(F2n) (resp. Kob0(F22n)Bn

) for some
y ∈ F2n (resp. F22n) and ψ(x, y) = P = (0, P1, . . . , Pw, Pf) ∈ R/(πn

2 − 1)R (resp.

ψ̃(x, y) = P ∈ R/(πn
2 + 1)R), where

• each Pi, for 1 ≤ i ≤ v, has additive order phi

i in R/peii R;
• each Pi, for v + 1 ≤ i ≤ w, has additive order phi

i in R/reii R;
• Pf has additive order 7hf in R/(

√
−7)fR.

Let lh be the length of the cycles formed by these points. Finally, denote by CAn

the set of all cycles in graph An and by CBn
the set of all cycles in graph Bn.

The following holds.

Lemma 4.2. With the above notation, CAn
(resp. CBn

) is equal to
⋃

h∈H

Ch, being

|Ch| =
1

2lh

(
v∏

i=1

Nhi

)
·
(

w∏

i=v+1

ϕ(phi

i )

)
·Nhf

for any non-zero h ∈ H.

In the following we will denote by VAn
(respectively VBn

) the set of the elements
of F2n belonging to some cycle of CAn

(respectively CBn
). Before characterizing

the trees rooted in vertices of VAn
(respectively VBn

), we observe that R/πe0
2 R

consists of the elements

e0−1∑

i=0

ji · [π2]
i, where each ji is 0 or 1 (see [Gil81] for more

details).

4.1. Trees rooted in vertices of VAn
. The following Lemma characterizes the

reversed trees having root in VAn
.

Lemma 4.3. Any element x ∈ VAn
is the root of a reversed binary tree of depth

e0 with the following properties.

• If x 6= ∞, then there are ⌈2k−1⌉ vertices at the level k of the tree. Moreover,
the root has one child, while all other vertices have two children.

• If x = ∞, then there are ⌈2k−2⌉ vertices at the level k of the tree. Moreover,
the root and the vertex at the level 1 have one child, while all other vertices
have two children.
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• If l is the greatest power of 2 which divides n, then e0 = l + 2.

Proof. For a fixed element x ∈ VAn
, let (0, P1, . . . , Pw, Pf) ∈ R/(πn

2 − 1)R be one
of the (at most two) points with such an x-coordinate. An element x̃ ∈ F2n

belongs to the non-zero level k of the reversed binary tree rooted in x if and only
if ϑk(x̃) = x, ϑi(x̃) 6= x and none of the ϑi(x̃) is periodic for any i < k. Since
x̃ ∈ An (see Lemma 2.2 and the subsequent Remark), there exists ỹ ∈ F2n such
that (x̃, ỹ) ∈ Kob0(F2n) and ψ(x̃, ỹ) = Q = (Q0, Q1, . . . , Qw, Qf), where Q0 6= 0.
Moreover, since [π2]

e0Q0 = 0 in R/πe0
2 R, we have that k ≤ e0.

For a fixed positive integer k ≤ e0 we aim to find all points (Q0, Q1, . . . , Qw, Qf)
in R/(πn

2 − 1)R such that

(1) [π2]
kQ0 = 0 and [π2]

k−1Q0 6= 0 ;
(2) [π2]

kQi = Pi for any 1 ≤ i ≤ w and [π2]
kQf = Pf , or [π2]

kQi = −Pi for
any 1 ≤ i ≤ w and [π2]

kQf = −Pf .

The first condition is satisfied if and only if

(4.2) Q0 = [π2]
e0−k +

e0−1∑

i=e0−k+1

ji[π2]
i,

where each ji ∈ {0, 1}. The second condition is satisfied if and only if

Qi = [π2]
−kPi, for any i, and Qf = [π2]

−kPf

or

Qi = −[π2]
−kPi, for any i, and Qf = −[π2]

−kPf .

Hence, fixed the values of ji for e0 − k + 1 ≤ i ≤ e0 − 1, there are at most two
possibilities for Q, namely

Q(1) = (Q0, [π2]
−kP1, . . . , [π2]

−kPw, [π2]
−kPf) or

Q(2) = (Q0,−[π2]
−kP1, . . . ,−[π2]

−kPw,−[π2]
−kPf).

Therefore, for a fixed positive integer k there are 2k points Q, whose x-coordinate
belongs to the level k of the tree, provided that not all Pi are zero (in which case
x = ∞). If Q = ψ(x̃, ỹ) is one of such points, then −Q = ψ(x̃, x̃+ ỹ) has the same
x-coordinate. Hence, for any x ∈ CAn

different from ∞ there are 2k−1 vertices at
the level k of the reversed binary tree rooted in x.
If all Pi are zero (and x = ∞), then the points Q(1) and Q(2) coincide. Therefore,

for any k > 0 there are 2k−1 points, whose x-coordinate belongs to the level k of
the tree. Moreover, if Q is one of such points, also −Q has the same x-coordinate
and is different from Q, unless Q is the only point belonging to the first level of
the tree. This amounts to say that there are ⌈2k−2⌉ vertices at the level k of the
tree.
Consider now an element x̃ belonging to the level k < e0 of the tree rooted in

some x ∈ VAn
. Such an x̃ is the x-coordinate of a point Q = (Q0, Q1, . . . , Qw, Qf)

in R/(πn
2 − 1)R, for some Q0 as in (4.2) or Q0 = 0. The equation z + z−1 = x̃

is satisfied for at most two z in F2n , which are the x-coordinate of two points in
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R/(πn
2 − 1)R,

Q̃(1) = (Q̃
(1)
0 , Q̃1, . . . , Q̃w, Q̃f) and Q̃

(2) = (Q̃
(2)
0 , Q̃1, . . . , Q̃w, Q̃f),

where

Q̃
(1)
0 = [π2]

e0−k−1 +
e0−2∑

i=e0−k

ji+1[π2]
i

Q̃
(2)
0 = [π2]

e0−k−1 +

e0−2∑

i=e0−k

ji+1[π2]
i + [π2]

e0−1

Q̃i = [π2]
−1Qi, if 1 ≤ i ≤ w

Q̃f = [π2]
−1Qf

and [π2]Q̃
(1) = [π2]Q̃

(2) = Q.

If k = 0, then just the point Q̃(1) belongs to the tree, proving that the root of
the tree has one and only one child.

If k ≥ 1 and at least one of the Pi is non-zero, then Q̃(1) 6= −Q̃(2), hence Q̃(1)

and Q̃(2) have different x-coordinates. This implies that each vertex at non-zero
level k of a tree rooted in x ∈ VAn

\{∞} has two children.
Suppose now that all the Pi are zero. In this case x = ∞. If k = 1, then

Q̃
(1)
0 = −Q̃(2)

0 and also Q̃(1) = −Q̃(2). Hence the only vertex at the level 1 has
exactly one child.

Finally, if k > 1 and all the Pi are zero, then Q̃(1) 6= −Q̃(2). Hence, each of the
vertices at the levels k > 1 of the tree rooted in ∞ has two children.
As regards the number e0, we note that N(πn

2 − 1) = |Kob0(F2n)|. We remind
that

|Kob0(F2n)| = 2n + 1 + S(n)(1)

and that R/(πn
2−1)R is isomorphic to a product of rings as in (4.1). Since π2π2 = 2

in R, then e0 is the greatest power of 2 which divides |Kob0(F2n)|. We want to
prove that, if n = 2lm, for some odd m, then e0 = l + 2. Firstly we consider the
cases n = 2 and n = 4.
If n = 2, and l = 1, then S(2)(1) = 3 and |Kob0(F22)| = 8 = 23. Hence

e0 = 3 = l + 2.
If n = 4, and l = 2, then S(4)(1) = −1 and |Kob0(F24)| = 16 = 24. Hence

e0 = 4 = l + 2.
Now consider a positive integer n 6∈ {2, 4} greater than 1. Then, as a conse-

quence of Lemma 2.6

|Kob0(F2n)| ≡
{

0 (mod 2l+2)
2l+2 (mod 2l+3).

�

4.2. Trees rooted in elements of VBn
. The following Lemma characterizes the

reversed trees having root in VBn
.

Lemma 4.4. Any element x ∈ VBn
is the root of a reversed binary tree of depth

1 and has one child.
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Proof. We remind that the elements of Bn are the x-coordinates of the points in
Kob0(F22n)Bn

\{(0, 1), O}. Moreover there is an isomorphism

ψ̃ : Kob0(F22n)Bn
→ R/(πn

2 + 1)R.

We want to prove that the greatest power of π2 which divides πn
2 + 1 is 1. Since

π2π2 = 2 in R, then the greatest power of π2 which divides πn
2 + 1 is the greatest

power of 2 which divides N(πn
2 + 1). We consider the fact that

N(π2n
2 − 1) = N(πn

2 − 1)N(πn
2 + 1).

We know that

N(πn
2 − 1) = 2n + 1 + S(n)(1)

N(π2n
2 − 1) = 22n + 1 + S(2n)(1).

Now it is an easy matter to check that

N(πn
2 + 1) = 2n + 1− S(n)(1).

Since S(n)(1) ≡ −1 (mod 4), for n ≥ 2, then

N(πn
2 + 1) ≡ 2 (mod 4)

and we are done. Note in passing that for n = 1 the field F2n = F2 and there are
no elements x ∈ F∗

2 such that Tr1(x) 6= Tr1(x
−1).

Hence, R/(πn
2 +1)R is isomorphic to a product of ring as in (4.1), where e0 = 1.

This implies that any x ∈ VBn
is the root of a tree of depth 1. Consider now a

point P = (0, P1, . . . , Pw) ∈ R/(πn
2 + 1)R. The only point Q such that [π2]Q = P

is Q = (1, [π2]
−1P1, . . . , [π2]

−1Pw). Hence, any x ∈ VBn
is the root of a tree of

depth 1 and has one child. �

5. Examples

5.1. Graph associated with ϑ in F25. At the beginning of this paper we con-
structed explicitly the graph over the field F25 .
The structure of the graph is as follows:

Graph A5

Length of the cycles Number of cycles Depth of the trees
1 1 2
5 1 2

Graph B5

Length of the cycles Number of cycles Depth of the trees
5 1 1

Let us analyse separately graphs A5 and B5.
Graph A5. The rational points of Kob0(F25) different from the point at infinity

are all of the form (x, y), for some x ∈ A5, and, for any non-zero x ∈ A5, there are
exactly two elements y1, y2 ∈ F25 such that (x, y1), (x, y2) are points of Kob0(F25).
Moreover, there is a 1 − 1 correspondence between Kob0(F25) and R/(π

5
2 − 1)R,

where R = Z[ω].
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The factorization of π5
2 − 1 in primes of R is

π5
2 − 1 = π2

2 · (1 + 2ω).

If we denote p1 = 1 + 2ω, then

R/(π5
2 − 1)R ∼= R/π2

2R× R/p1R.

Consider the points P = (0, r) ∈ R/π2
2R× R/p1R, where r ∈ R is not divisible

by 1 + 2ω. Such points have additive order 11 in R/p1R. The integer lr = 5 is
the smallest among the positive integers k such that [π2]

kP = P or −P , namely
the smallest among the positive integers k such that p1 | (πk

2 + 1) or (πk
2 − 1).

In particular, p1 | (π5
2 + 1). There are 10 points of this form, corresponding to 5

different values of x ∈ F25 . Hence such points give rise to just one cycle of length
5. Moreover, each of these nodes is the root of a reversed binary tree of depth 2,
since 2 is the greatest power of π2 which divides π5

2−1. Finally, consider the point
O = (0, 0). The corresponding node is labelled by ∞, belongs to a cycle of length
one, namely a loop, and is the root of a binary tree of depth 2.
Graph B5. The nodes belonging to the graph B5 are the x-coordinate of

points of Kob0(F210) such that x ∈ F25 and Tr5(x) 6= Tr5(x
−1). We remind the

isomorphism

Kob0(F210)B5
→ R/(π5

2 + 1)R.

We have that

R/(π5
2 + 1)R ∼= R/π2R× R/(3− 2ω)R.

Consider the points P = (0, r) where r 6= 0 in R/(3−2ω)R. Hence, 3−2ω does
not divide r. The integer lr = 5 is the smallest among the positive integers k such
that [π2]

kP = P or −P . Since there are 10 points P of this form, corresponding
to 5 different x in F25 , then there is just a cycle of length 5 in graph B5. Moreover
each of the nodes of the cycle is the root of a reversed binary tree of depth 1.

5.2. Graph associated with ϑ over F28. We can construct the field with 28 ele-
ments as the splitting field of the primitive polynomial x8+x4+x3+x2+1 over F2.
If α is a root of this polynomial in F28 , then P1(F28) = {0}∪{αi : 1 ≤ i ≤ 255}∪
{∞}.The graph is formed by the following three connected components.
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∞
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51 204 102 153

15 240 60 195 30 225 120 135

The structure of the graph is summarized in the following tables.

Graph A8

Length of the cycles Number of cycles Depth of the trees
1 1 5
4 1 5

Graph B8

Length of the cycles Number of cycles Depth of the trees
56 1 1

Graph A8. The points belonging to Kob0(F28) different from the point at infinity
are all of the form (x, y), for some x ∈ A8, and, for any non-zero x ∈ A8, there are
exactly two elements y1, y2 ∈ F28 such that (x, y1), (x, y2) are points of Kob0(F28).
Moreover, there is a bijection between Kob0(F28) and R/(π8

2 − 1)R, where R =
Z[ω].
After factorization in primes of R we get that

π8
2 − 1 = π5

2 · 3.
Hence,

R/(π8
2 − 1)R ∼= R/π5

2R× R/3R.

Consider the points P of the form (0, r), being r an element of R/3R different
from zero. The additive order of r in R/3R is 3. The integer lr = 4 is the
smallest among the positive integers k such that [π2]

kP = P or −P . In particular,
3 | (π4

2 + 1). Hence, the x-coordinate of each of these points belongs to a cycle
of length 4. Since there are 8 points of this form, corresponding to 4 different
elements x ∈ F28 , then these 8 points give rise to just one cycle of length 4.
Moreover, being 5 the greatest power of π2 which divides π8

2−1, each of the nodes
in the cycle is the root of a reversed binary tree of depth 5.
Finally, the x-coordinate of the point (0, 0) is ∞ and forms a loop. This node

is the root of a reversed binary tree of depth 5.
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Graph B8. The graph associated with the action of the map ϑ on the points
belonging to B8 can be studied relying upon the structure of the quotient ring
R/(π8

2 + 1)R which is isomorphic, after factorization in primes of π8
2 + 1, to

R/π2R ×R/(5− 8ω)R.

Let us define p = 5 − 8ω. The period of the x-coordinate of a point P = (0, r),
where r 6= 0 in R/pR, under the action of the map ϑ is lr, being lr the smallest
among the positive integers k such that [π2]

kP = P or −P . The smallest such
integer is 56. In particular p | (π56

2 + 1). Since there are 112 such points, then
there is just a cycle of length 56 whose nodes represent the x-coordinate of the
112 points. Moreover each of these nodes is the root of a reversed binary tree of
depth one.
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