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Abstract

We consider the bosonic Fock space over the Hilbert space of transversal vector

fields in three dimensions. This space carries a canonical representation of the group

of rotations. For a certain class of operators in Fock space we show that rotation

invariance implies the absence of terms which either create or annihilate only a

single particle. We outline an application of this result in an operator theoretic

renormalization analysis of Hamilton operators, which occur in non-relativistic qed.
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1 Introduction

In this paper we consider the bosonic Fock space over the Hilbert space of transversal
vector fields in three dimensions. This space is used in mathematical models of quantized
radiation and carries a canonical representation of the group of rotations. We consider a
class of operators in this Fock space which arise in a so called operator theoretic renormal-
ization analysis of non-relativistic quantum electrodynamics (qed) [1, 2]. For operators
in this class we prove that rotation invariance implies the absence of terms which either
create or annihilate only a single particle. This vanishing theorem implies that under a
non-degeneracy assumption marginal terms in operator theoretic renormalization are ab-
sent. In [6, 7] this property was used to obtain ground state properties in non-relativistic
qed, such as analyticity in a minimal coupling constant or differentiability in the fine
structure constant.

∗E-mail: david.hasler@math.lmu.de, on leave from Ludwig Maximilians University
†E-mail: iwh@virginia.edu.
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The vanishing theorem was first shown in [6], where the proof relied on a uniqueness
result from [2] (Theorem 3.3). The proof in the present paper is self-contained. Since
vanishing theorems have far reaching consequences in the context of operator theoretic
renormalization, we consider the short and new proof presented in this paper of value to
the scientific literature.

In Section 2 we introduce the Fock space and define a canonical representation of the
group of rotations in three dimensions. In Theorem 2.3 the vanishing theorem is stated,
the main result of this paper. In Subsection 3.1 we introduce the Hamiltonian of non-
relativistic qed and show that it is rotation invariant, with respect to the representation
defined in Section 2. In Subsection 3.2, the vanishing theorem is used to derive a corollary,
which outlines applications to operator theoretic renormalization.

2 Model and Statement of Main Result

We consider the special group of orthogonal matrices in three dimensions

G := {R ∈M3(R) | detR = 1, RT = R−1},

where M3(R) denotes the set of 3 × 3 matrices over the real numbers, with the usual
topology. As a subset of M3(R) the group G inherits a natural topology.

Definition 2.1. A representation of G (G–representation) is a strongly continuous map
U : G→ B(H) to the unitary operators on H, such that

U(R1R2) = U(R1)U(R2), ∀R1, R2 ∈ G.

We shall adopt the following standard conventions. Given a representation U of G
on H, a vector v ∈ H is called U–invariant if U(R)v = v for all R ∈ G. A subspace
V ⊂ H is called U–invariant if U(G)V ⊂ V . An operator T in H with domain D is
called U–invariant if U(R)D = D and U(R)TU(R)∗ = T for all R ∈ G. We will write
G–invariant instead of U invariant, if it is clear from the context what the representation
is. By rotation invariant we shall always mean G–invariant.

The Hilbert space of vector fields V = L2(R3;C3) carries a natural representation of
G, which will be denoted by UV . Explicitly on vector fields v ∈ V it acts as

[UV(R)v ] (·) = R
[

v(R−1 · )
]

, (2.1)

for all R ∈ G. We define the subspace

v := { v ∈ V | k · v(k) = 0 a.e. k ∈ R
3 },

of transversal vector fields in V. It is straightforward to verify, that v is invariant under
the representation UV . The main result will be based on the following lemma.

Lemma 2.1. If v ∈ v is G–invariant, then v = 0.
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We note that under the simplifying assumption that v ∈ v is defined everywhere and
(Uv(R)v)(k) = v(k) for all k ∈ R3, the assertion of the Lemma follows trivially from the
hairy ball theorem. To this end, observe that for such a v ∈ v

v(rRe) = Rv(re), (2.2)

for all R ∈ G, r ≥ 0, and e ∈ S2 := {e ∈ R
3| |e| = 1}. Eq. (2.2) implies that for every

r > 0, the function e 7→ v(re) is a continuous function of e ∈ S2 and its value has constant
norm. On the other hand v(re) is tangential to S2 and this contradicts the hairy ball
theorem unless it is the zero vector. The problem with this argument is that elements of
v are only defined up to sets of measure zero. To deal with this issue we decompose v

into the irreducible representations of G. The irreducible unitary representations of G are
denoted by Dj, j ∈ N0, and are uniquely determined up to unitary equivalence by their
dimension dimDj = 2j + 1. For the proof of Lemma 2.2 we use the following idea from
[6].

Proof of Lemma 2.2. By means of the canonical isomorphism

L2(R+; r
2dr)⊗ L2(S2;C

3) ∼= V (2.3)

we can identify
V0 := L2(R+; r

2dr)⊗ S,
where S := {f ∈ L2(S2;C

3) | f(e) = λe, λ ∈ C}, with a G–invariant subspace of V.
It follows from (2.1) that each element in V0 is G–invariant. On the other hand it is
an immediate consequence of the definition of S that V0 does not contain any nonzero
transversal vector fields. The Lemma will follow if we can show that every G–invariant
element of V lies in V0. To this end, let Hl denote the space of spherical harmonics
with angular momentum l. Using L2(S2;C

3) =
⊕∞

l=0Hl ⊗ C3, we find from (2.3) an
isomorphism of Hilbert spaces

V ∼= L2(R+; r
2dr)⊗

∞
⊕

l=0

{

Hl ⊗ C
3
}

. (2.4)

From (2.1) it follows that G acts on Hl ⊗ C
3 as Dl ⊗ D1. By the Clebsch–Gordon

decomposition we see that this representation contains the trivial representation only if
l = 1, in which case D1⊗D1

∼= D2⊕D1⊕D0. Since the trivial representation only occurs
once in L2(S2;C

3), it follows that V0 contains all elements in V which are G–invariant.

We choose two Borel-measurable endomorphisms

ε1, ε2 : S2 → S2

with the property that for a.e. e ∈ S2, ε1(e) × ε2(e) = e, where × denotes the vector
product. We extend these mappings to the set R3

× := R3\{0} by setting ελ(k) = ελ(k/|k|)
for λ = 1, 2 and k ∈ R3

×. The explicit choice of these so called polarization vectors
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establishes a canonical isomorphism, φ, from the Hilbert space h := L2(R3 × Z2), to the
Hilbert space of transversal vector fields, i.e.,

φ : h → v

h 7→
{

k 7→ ε1(k)h(k, 1) + ε2(k)h(k, 2)
}

. (2.5)

By means of this isomorphism we obtain the G–representation, Uh, on h as follows

Uh(R) = φ−1 Uv(R) φ, ∀R ∈ G. (2.6)

From Eq. (2.6) the following Corollary is an immediate consequence of Lemma 2.2.

Corollary 2.2. If h ∈ h is G–invariant, then h = 0.

Next we introduce the bosonic Fock space over the Hilbert space h. We define

F :=

∞
⊕

n=0

Fn

with F0 := C and Fn := Sn(h
⊗n) for n ∈ N, where Sn denotes the orthogonal projection

onto the subspace of totally symmetric tensors in h⊗n. The vector Ω := (1, 0, 0, ...) ∈ F
is called the Fock vacuum. The Fock space inherits a natural inner product from the
Hilbert space h. The creation operator, a∗(f), for f ∈ h is defined on vectors η ∈ Fn,
with n ∈ N0, by

a∗(f)η := (n + 1)1/2Sn+1(f ⊗ η) . (2.7)

We extend this definition by linearity to a densely defined linear operator on F . The
resulting operator is closable and its closure will be denoted by the same symbol. We
introduce the annihilation operator by

a(f) :=
{

a∗(f)
}∗
. (2.8)

For a bounded linear operator, A, on h, we denote by Γ(A) the unique bounded linear
operator on F satisfying Γ(A)Ω = Ω and

Γ(A)Sn(ϕ1 ⊗ · · · ⊗ ϕn) = Sn(Aϕ1 ⊗ · · · ⊗Aϕn),

for any ϕ1, ..., ϕn ∈ h and n ∈ N. The Fock space F carries a natural representation of G
given by

UF := Γ(Uh). (2.9)

Below we introduce operators on Fock space, which arise in operator theoretic renor-
malization. First we introduce the operator of the free field energy. We define the function
ω : R3 × Z2 → R, (k, λ) 7→ |k| and denote the corresponding multiplication operator on h

by the same symbol. The operator of the free field energy, Hf , is defined as the unique
selfadjoint operator on Fock space such that for all t ∈ R

e−iHf t = Γ(e−iωt). (2.10)
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We introduce the sets

B1 := {k ∈ R
3||k| ≤ 1}, X := B1 × Z2, I := [0, 1].

For m,n ∈ N0, we define the Banach space, Wm,n, with norm ‖ · ‖Wm,n
, defined in (2.15)

below, to consist of the measurable functions

wm,n : Xm ×Xn → C0(I;C),

satisfying the symmetry property (2.11) and the support property (2.14), below. The
symmetry property states that for all K̃1, ..., K̃m, K1, ..., Kn ∈ X , one has

wm,n((K̃1, ..., K̃m), (K1, ..., Kn)) = wm,n((K̃σ̃(1), ..., K̃σ̃(m)), (Kσ(1), ..., Kσ(n))), (2.11)

for any permutation σ and σ̃ of {1, ..., n} and {1, ..., m}, respectively. For simplicity of
notation we shall write

wm,n(r;K
(m,n)) = wm,n(K

(m,n))(r),

for r ∈ I and K(m,n) ∈ Xm ×Xn. Moreover, we introduce the following notations

K(m,n) := (K̃(m), K(n)) := ((k̃1, λ̃1, ..., k̃m, λ̃m), (k1, λ1, ..., kn, λn)) ∈ Xm ×Xn (2.12)

|K(m)| :=
m
∏

j=1

|kj|, dK(m) :=

m
∏

j=1

dk3j , Σ[K(n)] :=

n
∑

j=1

|kj| . (2.13)

The support property states that

wm,n(r;K
(m,n)) = 1Σ[K̃(m)]+r≤1wm,n(r;K

(m,n))1Σ[K(n)]+r≤1, (2.14)

for all r ∈ I and K(m,n) ∈ Xm+n. The norm is given by

‖wm,n‖Wm,n
:=

{
∫

Xm×Xn

supr∈I |wm,n(r;K
(m,n))|2dµ(2)

m,n(K
(m,n))

}1/2

, (2.15)

with measure

dµ(p)
m,n(K

(m,n)) :=
dK̃(m)

|K̃(m)|p
dK(m)

|K(n)|p .

The integration in (2.15) includes summation over λi and λ̃i. For 0 < ξ < 1, we define
the Banach space Wξ to consist of sequences w = (wm,n)(m,n)∈N2

0
with wm,n ∈ Wm,n such

that the norm
‖w‖ξ :=

∑

m+n≥0

ξ−(m+n)‖wm,n‖Wm,n
(2.16)

is finite. Let w ∈ Wξ. We define the operator

Hm,n[w] :=

∫

Xm×Xn

m
∏

i=1

a∗
λ̃i
(k̃i)wm,n(Hf ;K

(m,n))

n
∏

j=1

aλj
(kj)dµ

(1/2)
m,n (K(m,n)). (2.17)
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Definition (2.17) is understood in the sense of forms and the right hand side of (2.17) as
a weak integral. Moreover, the definition involves the operator valued distributions aλ(k)
and a∗λ(k) which are characterized by the relations

a∗(f) =
∑

λ=1,2

∫

f(k, λ)a∗λ(k)d
3k, a(f) =

∑

λ=1,2

∫

f(k, λ)aλ(k)d
3k,

for all f ∈ h. In the Appendix we give an explicit and rigorous definition of (2.17) which
does not involve any creation or annihilation operators.

Remark 1. In this paper we view H [w] as on operator on Fock space. To this end we
tacitly extend the kernels wm,n to functions on R×{R3×Z2}m+n by setting them equal to
zero on the complement of I×Xm+n. Alternatively, we could view H [w] to be an operator
on 1Hf≤1F . This would not change the analysis. By assumption (2.14) we can neglect
projection operators 1Hf≤1 in the definition (2.17), which appear in [2].

With respect to the operator norm in Fock space the following estimate is shown in
the Appendix,

‖Hm,n[w]‖ ≤ ‖wm,n‖Wm,n
. (2.18)

We define the operator

H [w] :=
∑

m+n≥0

Hm,n[w]. (2.19)

It follows from (2.18) and the definition of the norm (2.16) that the right hand side of
(2.19) converges absolutely with respect to the operator norm, and furthermore,

‖H [w]‖ ≤ ‖w‖ξ.

Now we state the main result of this letter.

Theorem 2.3. Let w ∈ Wξ. If H [w] is a G–invariant operator, then H0,1[w] = 0 and
H1,0[w] = 0.

Proof. For f1, f2, g ∈ h it follows from definition (2.17) (or respectively definitions (A.2)
and (A.3)), that

1√
2
〈g,H [w]S2(f1 ⊗ f2)〉 = (2.20)

1

2

∑

λ,λ̃

∫

g(k̃, λ̃)f1(k̃, λ̃)w0,1(|k̃|; k, λ)f2(k, λ)
d3k̃d3k
√

|k|
(2.21)

+
1

2

∑

λ̃,λ

∫

g(k̃, λ̃)f2(k̃, λ̃)w0,1(|k̃|; k, λ)f1(k, λ)
d3k̃d3k
√

|k|
(2.22)

+
∑

λ̃,λ1,λ2

∫

g(k̃, λ̃)w1,2(0; k̃, λ̃, k1, λ1, k2, λ2)f1(k1, λ1)f2(k2, λ2)
d3k̃...d3k2
√

|k̃||k1||k2|
.(2.23)
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Pick a function ϕ ∈ C∞
0 (B1;R) with

∫

ϕ2(k)d3k = 1, and for x ∈ B0
1 := {k ∈ R3||k| < 1}

define

fǫ,x(k, λ) := 2−1/4ǫ−3/2ϕ(ǫ−1(x− k)), ǫ > 0. (2.24)

Notice that fǫ,x converges weakly to zero in L2 as ǫ ↓ 0.
We insert the choice f1 = g = Uh(R)fǫ,x and f2 = Uh(R)h, with h ∈ h, into (2.20). We

claim that in the limit ǫ ↓ 0, the terms in lines (2.22) and (2.23) vanish. To this end note
that

G1(k̃, k) = f2(k̃, λ̃)w0,1(|k̃|, k, λ)/
√

|k| (2.25)

and

G2(k̃, k1) =

∫

w1,2(0, k̃, λ̃, k1, λ1, k2, λ2)f2(k2.λ2)
d3k2

√

|k̃||k1||k2|
(2.26)

are kernels of Hilbert-Schmidt operators so by the weak convergence of g = f1 to 0, the
terms in lines (2.22) and (2.23) vanish.

An elementary calculation using the definition of the polarization vectors, the group
of rotations, and (2.6) shows that

∑

λ=1,2

|(Uhfǫ,x)(k, λ)| =
∑

λ=1,2

∣

∣fǫ,x(R
−1k, λ)

∣

∣

2
, ∀k ∈ R

3.

Using this and the vanishing of (2.22) and (2.23) in the limit ǫ ↓ 0, we find

lim
ǫ↓0

〈Uh(R)fǫ,x, H [w]S2(Uh(R)fǫ,x ⊗ Uh(R)h)〉 (2.27)

= lim
ǫ↓0

1√
2

∑

λ,λ̃

∫

|fǫ,x(R−1k̃, λ̃)|2w0,1(|k̃|; k, λ)(Uh(R)h)(k, λ)
d3k̃d3k
√

|k|
. (2.28)

Moreover, using dominated convergence one finds

(2.28) =
1√
2

∑

λ,λ̃

∫

lim
ǫ↓0

I(ǫ, k, λ, λ̃, R, h)d3k, (2.29)

where we introduced the notation

I(ǫ, k, λ, λ̃, R, h) :=

∫

|fǫ,x(R−1k̃, λ̃)|2w0,1(|k̃|; k, λ)
|k|1/2 (Uh(R)h)(k, λ)d

3k̃

and justified dominated convergence by the estimate

|I(ǫ, k, λ, λ̃, R, h)| ≤ sup
r∈I

|w0,1(r; k, λ)||(Uh(R)h)(k, λ)|/
√

|k| (2.30)

and the fact that the r.h.s. of (2.30) is integrable w.r.t. k by the finiteness of (2.15).
Using that the square of (2.24) yields a delta sequence and that I ∋ r 7→ w(r; k, λ) is for
a.e. k a continuous function we find

lim
ǫ↓0

I(ǫ, k, λ, λ̃, R, h) = 2−1/2w0,1(|x|; k, λ)(Uh(R)h)(k, λ)/|k|1/2, (2.31)
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k a.e. (depending on R and h) (notice that we choose x to lie in the interior because
otherwise we would get a factor 1/2). Inserting this into (2.29) we find

(2.27) =
∑

λ

∫

w0,1(|x|; k, λ)(Uh(R)h)(k, λ)
d3k

|k|1/2 . (2.32)

By rotation invariance of H [w] it follows that (2.27) is independent of R. In view of (2.32)
this implies

∑

λ

∫

w0,1(|x|; k, λ)h(k, λ)
d3k

|k|1/2 =
∑

λ

∫

w0,1(|x|; k, λ)(Uh(R)h)(k, λ)
d3k

|k|1/2 , (2.33)

for all h ∈ h, R ∈ G, and x ∈ B0
1 . Since the the representation Uh(R) is unitary and h ∈ h

is arbitrary, Eq. (2.33) implies that

Uh(R)w
(|x|)
0,1 = w

(|x|)
0,1 , ∀R ∈ G, (2.34)

where we introduced the function w
(|x|)
0,1 : (k, λ) 7→ w0,1(|x|; k, λ) which by the finiteness of

(2.15) is an element of L2(R3 × Z2). Now (2.34) and Corollary 2.3 imply that w
(|x|)
0,1 = 0.

Since x ∈ B0
1 is arbitrary, we conclude that w0,1 = 0 (the vanishing at the endpoint |x| = 1

follows from continuity) and hence H0,1[w] = 0. Similarly one shows H1,0[w] = 0.

3 Application

3.1 Nonrelativistic qed

In this subsection we introduce in (3.1) below the Hamiltonian which describes, in the
framework of non-relativistic quantum electrodynamics, an atom consisting of N spin-
less electrons and a nucleus with infinite mass and point charge Z = N . In (3.3) we
define a natural G–representation on the Hilbert space of the N electrons, which yields
a representation on the Hilbert space of the total system (3.4). In Equation (3.8) of
Proposition 3.2 it will be shown that, with respect to this representation, the Hamiltonian
(3.1) is a G–invariant operator.

The Hilbert space of the N electrons is Hat :=
∧N L2(R3), and the Hilbert space of

the total system is H0 := Hat ⊗ F . The Hamiltonian is

H :=

N
∑

j=1

(pj ⊗ 1− eA(xj))
2 + e2VC ⊗ 1 + 1⊗Hf , (3.1)

where xj ∈ R3 is the position of the j-th electron, and e is the electron’s charge.

VC :=
∑

i<j

1

|xi − xj |
−

N
∑

j=1

Z

|xj|
,

8



with l = 1, 2, 3 and x ∈ R3

A(x) := A+(x) + A−(x), A+
l (x) := a∗(κl,x), A−

l (x) := a(κl,x),

and for (k, λ) ∈ R3 × Z2

κl,x(k, λ) := 1|k|≤Λ
1

√

2|k|
[ελ(k)]le

−ik·x. (3.2)

In (3.2) the number Λ > 0 serves as an ultraviolet cutoff. The Hamiltonian (3.1) can
realized as a selfadjoint operator as follows. One can show that (3.1) defines a semi-
bounded closed form on the natural domain of the operator (∆ ⊗ 1 + 1 ⊗ Hf)

1/2, with
∆ :=

∑n
j=1 p

2
j . By the second representation theorem this yields a unique self-adjoint

operator with domain equal to the natural domain of the operator ∆ ⊗ 1 + 1 ⊗ Hf (for
details see for example [4]).

We define a G–representation, Uat, on the Hilbert space Hat by setting

(Uat(R)ψ)(x1, ..., xN) := ψ(R−1x1, ..., R
−1xN), (3.3)

for all ψ ∈ Hat, R ∈ G, and (x1, ..., xN ) ∈ R3N . On H0 we define the tensor representation

U0 := Uat ⊗ UF . (3.4)

The next lemma will be used to show Proposition 3.2 below.

Lemma 3.1. For all x ∈ R3 and R ∈ G one has Uh(R)κl,x =
∑3

m=1R
−1
lmκm,Rx as an

identity in h.

Proof. Using the definitions (2.1), (2.5), (2.6), (3.2), and the identity
∑

λ[ελ(k)]i[ελ(k)]j =

δij − kikj
|k|2

, one finds

(Uhκl,x)(k, λ) = ελ(k) · R(φκl,x)(R−1k) = ελ(k) ·R
∑

λ′

ελ′(R−1k)κl,x(λ
′, R−1k)

=
∑

λ′

ελ(k) · Rελ′(R−1k)
[

ελ′(R−1k)
]

l
e−iR−1k·x = [R−1ελ(k)]le

−ik·Rx

=

3
∑

m=1

R−1
lmκm,Rx(k, λ).

(3.5)

Using Lemma 3.1 it is now straight forward to prove the following proposition, which
in physicists terminology states that the vector potential transforms as a so called “vector
field” and that the Hamiltonian transforms as a so called “scalar”.

9



Proposition 3.2. The following transformation properties hold. For all R ∈ G,

U0(R)A
±(xj)U0(R)

∗ = R−1A±(xj), on the natural domain of (1⊗Hf)
1/2, (3.6)

UF(R)HfUF (R)
∗ = Hf , (3.7)

U0(R)HgU0(R)
∗ = Hg. (3.8)

Proof. Let x = (x1, ..., xN ) and Rx = (Rx1, ..., RxN). For l = 1, 2, 3 let xj,l denote l-th
component of xj . Then

(Uat(R)[xj,lψ])(x) = [xj,lψ](R
−1x) = [R−1xj ]l(Uat(R)ψ)(x).

This yields the transformation property

Uat(R)xjUat(R)
∗ = R−1xj . (3.9)

Let ∂j,l denote the partial derivative with respect to xj,l. Then

(Uat(R)[∂j,lψ])(x) = [∂j,lψ])(R
−1x) =

3
∑

k=1

R−1
lk ∂j,k[Uat(R)ψ](x).

This yields the transformation property

Uat(R)pjUat(R)
∗ = R−1pj. (3.10)

By Lemma 3.1, and (3.9), we find

U0(R)A
±
l (xj)U0(R)

∗ = a∗(Uh(R)κl,R−1xj
) =

3
∑

m=1

R−1
lmA

±
m(xj).

This implies (3.6). Eq. (3.7) can be seen using the definition (2.10) and the fact that
ω only depends on |k|. Now (3.7), (3.6), (3.9), and (3.10) imply that Eq. (3.8) holds a
priori in the sense of forms, and hence as an operator in H0.

For the application of Theorem 2.3 in the context of operator theoretic renormaliza-
tion we will need Lemma 3.3, stated below. To this end, we first consider the atomic
Hamiltonian

Hat :=

N
∑

j=1

p2j + VC

acting on Hat. It is straight forward to see that Hat is G–invariant. It is well known
that the infimum of the spectrum, Eat := inf σ(Hat), is an eigenvalue. We will need the
following rather restrictive Hypothesis.

(H) Eat is a non-degenerate eigenvalue of Hat.

Now suppose Hypothesis (H) holds. We will denote by ϕat the normalized eigenstate
ofHat with eigenvalue Eat. By hypothesis it follows that ϕat is rotation invariant, since one
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dimensional representations of G are trivial. We introduce the projection Pat := |ϕat〉〈ϕat|
in Hat and set P := Pat ⊗ 1. For later use we define the map

Vat : F → RanP, η 7→ ϕat ⊗ η. (3.11)

It follows immediately from properties of the tensor product that Vat is unitary.

Lemma 3.3. Suppose (H) holds. Let T be a bounded G–invariant operator on H0. Then
V ∗
atPTPVat is a G–invariant operator on F .

Proof. For any η1, η2 ∈ F and R ∈ G,
〈

η1, V
∗
atPTPVatη2

〉

=
〈

ϕat ⊗ η1, T [ϕat ⊗ η2]
〉

=
〈

ϕat ⊗ η1,U0(R) T U0(R)
∗ [ϕat ⊗ η2]

〉

=
〈

ϕat ⊗ (UF (R)
∗η1), T [ϕat ⊗ (UF (R)

∗η2)]
〉

=
〈

UF (R)
∗η1, V

∗
atPTPVatUF (R)

∗η2
〉

=
〈

η1,UF(R)V
∗
atPTPVatUF (R)

∗η2
〉

where we used the rotation invariance of ϕat. Since η1, η2 are arbitrary, the Lemma
follows.

3.2 Smooth Feshbach

In this subsection we first introduce the so called Feshbach operator, and then state in
Corollary 3.4, below, the main application of Theorem 2.3. This Corollary can be used
in operator theoretic renormalization to show that marginal terms are absent [6].

Let χ and χ be commuting, nonzero bounded operators, acting on a separable Hilbert
space H and satisfying χ2 + χ2 = 1. A Feshbach pair (H, T ) for χ is a pair of closed
operators with the same domain,

H, T : D(H) = D(T ) ⊂ H → H

such that H, T,W := H − T , and the operators

Wχ := χWχ, Wχ := χWχ

Hχ := T +Wχ, Hχ := T +Wχ,

defined on D(T ) satisfy the following assumptions:

(a) χT ⊂ Tχ and χT ⊂ Tχ,

(b) Hχ, T : D(T ) ∩ Ranχ→ Ranχ are bijections with bounded inverse,

(c) χH−1
χ χWχ : D(T ) ⊂ H → H is a bounded operator.

Here we used the notation H−1
χ χ := (Hχ ↾ Ranχ)−1 χ. Given a Feshbach pair (H, T ) for

χ, the operator

Fχ(H, T ) := Hχ − χWχH−1
χ χWχ (3.12)

11



is called Feshbach operator. In [3] it is shown that the full spectral information of the
original operator H can be recovered by the restriction of the Feshbach operator to any
closed subspace V with the property that Ranχ ⊂ V ⊂ H and that χV ⊂ V .

In operator theoretic renormalization one typically chooses the following realization
for the operators χ and χ. Let η ∈ C([0, 1]; [0, 1]) be a function such that there exist two
numbers a and b with 0 < a < b < 1, η|[0,a] = 1, and η|[b,1] = 0. Setting η := (1− η2)1/2 it
follows that η2+η2 = 1. The operators χ := Pat⊗η(Hf) and χ := (1−Pat)⊗1+Pat⊗η(Hf)
satisfy

χ
2 + χ

2 = 1.

Corollary 3.4. The following statements hold.

(a) Fix z, g ∈ C. Suppose Hypothesis (H) holds and that (Hg − z,H0− z) is a Feshbach
pair for χ. Then the operator Fz,g := V ∗

atPFχ(Hg−z,H0−z)PVat is invariant under
rotations. If there exists a wz,g ∈ Wξ such that Fz,g = H [wz,g], then H0,1[wz,g] =
H0,1[wz,g] = 0.

(b) Suppose χ = η(Hf) and (H, T ) is a Feshbach pair for χ. Assume that H and T are
rotation invariant operators on F . Then Fχ(H, T ) is invariant under rotations. If
there exists a w ∈ Wξ such that Fχ(H, T ) = H [w], then H0,1[w] = H0,1[w] = 0.

Proof. (a). From Lemma 3.2 and the definition (3.12) it follows that Fχ(Hg − z,H0 − z)
is rotation invariant. Thus the rotation invariance of Fz,g now follows from Lemma 3.3.
Hence by Theorem 2.3, H0,1[wz,g] = H0,1[wz,g] = 0. (b). From Lemma 3.2 and the
definition (3.12) it follows that Fχ(H, T ) is rotation invariant. Hence by Theorem 2.3,
H0,1[w] = H0,1[w] = 0.

Remark 2. Part (a) of the corollary is used for a so called initial Feshbach operator
and Part (b) is used for each renormalization step. Corollary 3.4 is stated under the
assumptions that the Feshbach operator can be expressed in terms of integral kernels (2.19).
In [6] this assumption is verified for the initial step, see also [1]. For the renormalization
step this property is shown to hold under the natural assumptions needed for operator
theoretic renormalization, [2].

A Appendix

In this appendix we give a rigorous definition of (2.17), which does not involve creation
or annihilation operators, and we provide a proof of (2.18). We introduce the Hilbert
space L2

s({R3 × Z2}n) of complex valued square integrable functions which are totally
symmetric with respect to the interchange of arguments belonging to different factors of
the n-fold Cartesian product. We will identify this Hilbert space with a subspace of Fock
space, by means of the canonical isomorphism of Hilbert spaces

Fn
∼= L2

s(
{

R
3 × Z2

}n
).
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Let ϕp ∈ Fp and ψq ∈ Fq. If
p−m = q − n ≥ 0, (A.1)

we define

〈ϕp, Hm,n[w]ψq〉 :=

√

q!

l!

√

p!

l!

∫

Xm×Xl×Xn

dK̂(l) dK̃(m)

|K̃(m)|1/2
dK(n)

|K(n)|1/2 (A.2)

×ϕp(K̃(m), K̂(l))wm,n(Σ[K̂
(l)]; K̃(m), K(n))ψq(K

(n), K̂(l)),

where we used the following definitions, l := p −m = q − n. If (A.1) does not hold, we
define

〈ϕp, Hm,n[w]ψq〉 := 0. (A.3)

The goal of the remaining part of the Appendix is to show (2.18). It will then follow from
(2.18) and the Riesz representation theorem, that Hm,n[w] defines a bounded operator on
Fock space. In the case of (A.1) we estimate using Cauchy-Schwarz

|〈ϕp, Hm,n[w]ψq〉| ≤

Dl,p(ϕp)Dl,q(ψq)

{
∫

Xm×Xn

|K(n)|−2|K̃(m)|−2 sup
r∈I

|wm,n(r; K̃
(m), K(n))|2

}1/2

,(A.4)

where we defined

Dl,p(ϕp) :=

√

p!

l!

{
∫

Xm×Xl

dK̃(m)dK̂(l)|K̃(m)|
∣

∣

∣
ϕp(K̃

(m), K̂(l))Pred(K̃
(m), K̂(l))

∣

∣

∣

2
}1/2

,

and inserted Pred(K̃
(m), K̂(l)) := 1Σ[K̃(m)]+Σ[K̂(l)]≤1 justified by (2.14). Now using the sym-

metry property of the wavefunctions, one finds

Dl,p(ϕp) =

√

p!

l!

{

∫

X1×Xm−1×Xl

dK(1)dK̃(m−1)dK̂(l)|K(1)||K̃(m−1)|

×
∣

∣

∣
ϕp(K

(1), K̃(m−1), K̂(l))Pred(K
(1), K̃(m−1), K̂(l))

∣

∣

∣

2 }1/2

=

√

p!

(l + 1)!

{

∫

Xm−1×Xl+1

dK̃(m−1)dK̂(l+1)|K̃(m−1)|

×
∣

∣

∣
(Σ[K̂(l+1)])1/2ϕp(K̃

(m−1), K̂(l+1))Pred(K̃
(m−1), K̃(l+1))

∣

∣

∣

2 }1/2

≤
√

p!

(l + 1)!

{

∫

Xm−1×Xl+1

dK̃(m−1)dK̂(l+1)|K̃(m−1)|

×
∣

∣

∣
(Hf)

1/2ϕp(K̃
(m−1), K̂(l+1))Pred(K̃

(m−1), K̃(l+1))
∣

∣

∣

2 }1/2

.

Iterating above estimate we arrive at Dl,p(ϕp) ≤ ‖Hm/2
f 1Hf≤1ϕp‖. Inserting this into (A.4)

gives
|〈ϕp, Hm,n[w]ψq〉| ≤ ‖wm,n‖Wm,n

‖ϕp‖‖ψq‖.
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This together with (A.3) yields that for any two vectors ϕ = (ϕn)n∈N0 and ψ = (ψn)n∈N0

in F (i.e., ϕn, ψn ∈ Fn) the following inequality holds,

|〈ϕ,Hm,n[w]ψ〉| ≤ ‖wm,n‖Wm,n

∞
∑

l=0

‖ϕl+m‖‖ψl+n‖ ≤ ‖wm,n‖Wm,n
‖ϕ‖‖ψ‖,

and hence (2.18) follows.
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[2] V. Bach, T. Chen, J. Fröhlich, I.M. Sigal, Smooth Feshbach map and operator-
theoretic renormalization group methods, J. Funct. Anal. 203 (2003), 44–92.

[3] M. Griesemer, D. Hasler, On the smooth Feshbach-Schur Map, J. Funct. Anal. 254
(2008), 2329–2335.

[4] D. Hasler, I. Herbst, On the self-adjointness and domain of Pauli-Fierz type Hamil-
tonians. Rev. Math. Phys. 20 (2008), 787–800.

[5] D. Hasler, I. Herbst, Ground states in the spin boson model, Ann. Henri Poincaré
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