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ABSTRACT. This paper presents basis parts of a new method to synthesize a return trajectory 
for a reactive process from a default mode to one of the nominal modes. The process is 
modeled with a hybrid automata. The purpose consists of doing a backward reachability 
analysis from the final state to the initial state, in the state-space. This method is applied to a 
batch system. 
 
RESUME. Cet article présente une partie des bases théoriques d'une nouvelle méthode qui 
permet de synthétiser une trajectoire de retour du système réactif à un des modes nominaux 
depuis un mode défaillant. Le système est modélisé par un automate hybride. L’étude consiste 
à faire une recherche d’atteignabilité par inférence arrière dans l’espace d’état. Cette 
méthode est illustrée sur un système batch. 
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1. Introduction 
 
Reactive processes with equally continuous, discrete or hybrid features, may 

operate in different modes. They are in a nominal mode if all the process parts 
behave in a normal way. They are in a default mode if at least one of the different 
parts of the system does not behave in a normal way any more. For instance this is 
the case if a machine in a manufacturing process breaks down or if the level in a 
batch process tank oversteps the maximum or minimum allowed level. In this case, 
the security or the productivity decreases but the global process is not necessarily 
stopped. It is then a priority to find how to drive the system from its current default 
mode to one of its nominal mode as soon as possible. 

This paper presents parts, dealing with region analytical description, of a new 
method which synthesizes such a trajectory for hybrid dynamical systems. The 
studied systems class is modeled by a hybrid automata with linear vector fields. The 
analysis is led in the state-space and is based on regions computations. The automata 
is composed of different phases. The initial phase models the system default mode 
and the final phase models the nominal mode the system must be driven to. The 
problem can be divided into two steps: a reachability analysis and a controller 
design. 

The method presented in this paper extends Tittus’s work [TIT 93], [TIT 98] on 
integrators hybrid systems to first order switching hybrid systems with linear vector 
fields. This evolution is important because we now can deal with a larger class of 
systems as, for example, the concentration dynamics in a batch system reactor. 

 
Firstly, a brief example with a system in a default mode which must be driven 

back to its nominal mode is presented in order to clearly fix the position of the 
problem. 

Then, the useful theory basis which is necessary to solve the problem will be 
developed. In section 5.2., we will explain how the sets we use can be formally 
described by a inequations system. The corresponding algorithm will be then briefly 
described. Other points of the method are presented in [MAN 99a] as the extension 
criteria which are necessary to solve the reachability problem. 

In the last section, we will illustrate the algorithm on the example presented in 
section 2 and show the results. 

 
 

2. Illustration of the problem 
 

The method explained in this paper will be illustrated on the two tanks batch 
process presented figure 1. The global constraints define the minimal and maximal 
levels (0m and 4m) during every operating phase for the two tanks. The nominal 
mode limits are such that the liquid height in each tank stays between a low level 
(2m) and a high level (2.1m). If this constraint is violated, the system will enter a 
default mode. In the example, we may assume that a breakdown on the valve V1 has 
lead the system in a default mode. The level in each tank is then less than 0.1m, i.e. 
they are almost empty. The question we must solve is to decide whether or not the 



nominal mode is reachable from this current default mode and what is a possible 
control sequence which achieves it, in case it is feasible. 
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Figure 1. The batch process 
 
 

3. The hybrid modeling 
 
The hybrid process is modeled by a hybrid automata [TIT 98], [ASA 95]. As 

well as Branicky unified model [BRA 94], autonomous and controlled jumps 
(continuous variable discontinuity) and autonomous and controlled switching 
(vector field discontinuity) may be represented. 

 
Definition 1: 

A hybrid automata HA is defined by a tuple HA=(VD, Q, Σc, µ1, µ2, µ3, Qm): 
− VD is the real valued state variables set: VD = {xi, i ∈ {1, ..., n}}. x is the 
continuous state vector of the system: x=[x1 … xn]T n

DV∈ . The continuous state x is 
continuously observable. 
− Q is the possible phases set (or locations or discrete states) of the hybrid process: 
Q = {lj, j ∈ {1, ..., m}}. The system global state is given by the couple (x,l)∈ n

DV ×Q. 
− Σ is the events set. Σ = {δi,j, i∈{1, …, m}, j∈{1, …, m}/i ≠ j}. 
− µ1 is the set of m vector fields associated with each phase lj. It models the 
dynamics of the state vector x: µ1 = {µ1(lj), j ∈ {1, ..., m}}, that is: 

∀ ∈ = =l Q l x dx
dt

f xj j, ( )( ) ( ) 1µ  with f Lipschitz continuous. 

µ2 is the set of constraints for each phase: { }{ }m,...,1i/)l( i22 ∈µ=µ  . µ2(lj) is the 
constraint for phase lj. It is a set of l boundaries described by the linear inequalities: 
C x ≤ d with dim(C)=lxn and dim(d)=lx1. It is not necessarily a state-space partition. 
A constraint µ2(lj) can not be violated, which means that the phase lj is left as soon 
as a constraint µ2(lj) is going to be violated. A discrete transition can be either 
autonomous or controlled. If the constraint µ2(lj) is going to be violated, a 



uncontrolled event occurs and the transition is autonomous, else a controlled event 
occurs and the transition is controlled. 
− µ3 is a set of functions associated to each phase transition: 

{ } { }{ }kj,m,...,1k,m,...,1j/)l,,l( kjkj33 ≠∈∈δµ=µ . It defines real valued variables 

jumps when a transition occurs. QQ)l,l( kj ×∈∀ : 

− if the phase transition exists, then δjk is defined and 
))t(x)(l,,l()t(x/:)l,,l( kjkj3kjkj3

−+ δµ=→δµ  

− if the phase transition does not exist, then δjk is not defined and 
)l,,l( kjkj3 δµ is not defined. 

If µ3(lj, δjk, lk)(x(t-)) ≠ x(t-), a state jump (or state discontinuity) occurs.  
− Qm is a set of marked phases, that is initial or final. Υ 
 
In order to simplify the hybrid automata graphical representation: 
− µ1(lj) is not represented inside a phase if the vector field µ1(lj)(x)=dx/dt=0, that is 
if the state-variables are constant; 
− µ2(lj) is not represented inside a phase if it is equal to the global constraint GC, 
− marked phases are represented by double circles. 
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Figure 2. Batch process model 

 
All the possible behaviors of the batch process presented figure 1 are modeled 

figure 2. The state variables x1 and x2 are the liquid heights in the two tanks. 
There are two types of valves. V1, V2 and V4 have a constant flow which is 

equal to d1, d2 and d4. Valves V3 and V5 have a flow which is considered 
proportional with the level in the upstream tank (a3.x1 and a5.x2). 

The operating constraints force either the valves V1, V3, V4 and V5 to be 
simultaneously open, which defines the phase 1, or the valves V2, V3, V4 and V5 to 
be simultaneously open, which defines the phase 2. 



The maximum height in the tanks is 4m. The global constraint GC is then 
defined as: 4x0 ≤≤ . Every event of Σ is controllable. 

 
 

4. Controllability for hybrid dynamic systems (HDS): theoretical basis 
 

If it is possible to drive the process from the initial state to the final state the 
system is controllable [TIT 93], [TIT 98]. Let remember the fundamental definitions 
for the hybrid systems controllability. They will be useful to fix the reachability 
algorithm. 

 
Definition 2: 

A hybrid system (of any dimension) is controllable if and only if there exists at 
least one sequence of discrete control inputs (i.e. of controlled events) that gives an 
acceptable trajectory along some path in the hybrid automata from any initial state to 
any final state in a finite time and which respects all the state constraints. Υ 

 
One or more state of the hybrid automata may not belong to the path, as well as 

one or more states may appear several times in the path. In this method, the 
reachability analysis is realized backwards, from the final state to the initial state. 

The problem is to prove that a transition to any phase li+1 of the path does not 
lead to constraint violation, that means that µ2(li+1) is respected. The set of 
acceptable values for the continuous variables which respect µ2(li) and are included 
in µ2(li+1) after the jump defined by the function )l,,l( 1i1i,ii3 ++δµ  must be 
calculated. This set will be named jump-set from phase li to phase li+1 and will be 
noted λli→li+1. Moreover, this jump-set from phase li to phase li+1 may be reached by 
the process continuous state with the continuous dynamic evolution µ1(li). Then, the 
jump-set can be extended to define the extended-jump-set from phase li to phase li+1. 
It is noted λextli→li+1. 

These concepts are defined in definition 3 and 4 and illustrated figure 3. 
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Figure 3. Jump-set λli→li+1  and extended jump-set λextli→li+1 

 
 



Definition 3: 
if li and li+1 are two consecutive phases of the hybrid automata, the jump-set from 

phase li to phase li+1 (λli→li+1) is the intersection of the phase constraints µ2(li) with 
the inverse image region of the desired reachable set X by the inverse function 
(µ3(li,δ(i,i+1), li+1))-1(X): 
 ∀x∈λli→li+1, µ3(li,δ(i,i+1), li+1)(x) ∈ X 

 ∀x∉λli→li+1, µ3(li,δ(i,i+1), li+1)(x) ∉ X 

 i.e. )X)(l,,l()l()ll( 1i1i,ii
1

3i21ii ++
−

+ δµ∩µ=→λ  Υ 
 
More detail will be given about X after the definition of the extended jump-set. 
 

Definition 4: 
if li and li+1 are two consecutive phases of the hybrid automata, the extended-

jump-set from phase li to phase li+1  (λextli→li+1), is the region inside the phase 
constraint µ2(li) such that λli→li+1 is reachable by respecting the dynamic µ1(li), that 
is: 
 { })ll())t(x)(l(,t/)l(x)ll( 1iii1i21iiext +

+
+ →λ∈µ∈∃µ∈=→λ  Υ 

 
We notice that λli→li+1 ∈ λextli→li+1. 
 
Explanations about what is X can now be given. 
Let consider the path π=(l1, ... ,li, li+1, li+2, ... , lf –1 , lf). The process initial phase is 

l1 and a possible process final phase is lf. The phase index i gives the occurrence 
order of the different phases in the path (and not the phases number of the model). 
The same phase can occur several times in the path. Now, let define what is the set 
X: 
− if li = lf-1 then li+1 is the final state lf of π and X is its constraint set: X = )l( f2µ  
− if li ≠ lf-1 then li+1 is not the final state lf of π and X is the extended jump-set of the 

two next phases of the path: X= )ll( 2i1iext ++ →λ . 
 
Then comes corollary 1: 

 
Corollary 1: 

Given the discrete path π of the hybrid automata leading from the initial phase to 
a final phase, given i∈{1,…,m}, j∈{1,…,m}/ π∈il , π∈jl  are two consecutive 

discrete phases of π: 
− { }m,...,1i ∈∃ , if λli→li+1 = ∅, then the constraint 2µ  is not respected along the path 

and it is not possible to reach the final phase from the initial phase. 
− { }m,...,1i ∈∀ , if λli→li+1 ≠ ∅, then the final phase is reachable from the initial phase 

along the path π in a finite time. Υ 
 
 
 

 



5. Controllability of HDS: application to systems with linear vector fields 
 
5.1. Assumptions and state-space trajectories 
 

The problem is solved using an analytical approach in the state-space. In the 
following, except if something else is stated, the system is limited as follow: 

 
Assumptions: 
− There are only two continuous state variables: x1 and x2 
− The system has linear vector fields. Moreover the differential equations described 

by µ1 are decoupled, accept converging solutions (which are traditional industrial 
cases) and are globally Lipschitz vector fields: 

 

µ1
1 1 1
2 2 2

( ): & .
& .l a x b

a x bi  x
x

1
2

= − +
= − +

⎧
⎨
⎩

with aj ≥ 0 

 
− All the real state-variables in all phases must respect a minimum and a maximum 

value: { }
maxmin jjj xxx,n,...,1j ≤≤∈∀ . Thus the constraint for any phase )l( i2µ  is a 

rectangle defined by horizontal and vertical lines. 
 

First assumption leads to a 2 dimensional state-space problem but the two next 
theorems are easily extendable to any higher dimension. However it will not be 
possible to formally characterize these higher dimension systems [ASA 95] that is 
there are no formal equations which can exactly describe the shape of the regions we 
will have to deal with. 

Third assumption is not a hard limitation because in practical, the constraints for 
a real variable are often given with a minimum and a maximum value. 

 
In a 2 dimensional state-space, the value of aj, { }2,1j∈∀ , leads to different cases. 
 

Theorem 1: 
Given the differential equations described in µ1: 

− if a1 = a2 = 0, the solutions of the equations are linear and x2=f(x1) are straight 
lines (see figure 4a). 
− if a1 or a2 is null but not both (a1=0 or a2=0 exclusively), the set of curves x2=f(x1) 
is composed of exponential curves which converge to a vertical or a horizontal 

asymptotic line ∆  (see figure 4b). The line equation is: ∆:x b
ai

i

i
=  

− if a1>0 and a2>0, the set of curves x2=f(x1) is composed of exponential curves 
which converge to an equilibrium point xe (see figure 4c and 4d), where: 

{ }x  for i 1,  2ei = ∈
a
b

i

i
 

In all cases, the curves x2=f(x1) are monotonous. 

 
Υ 



Demonstration 1: 
 

Let define the differential equation & .x a x b= − + , with a ≥ 0. 
If a = 0, the solution to a such equation is x t b t C( ) .= + . This is the equation of 

a line which is monotonous. 

If a ≠ 0, the solution is x t b
a

C e a t( ) . .= + − . The derivative t.ae.C.ax −−=& . 

0e t.a >−  and -a.C=cst so the sign of x&  is always the same when t flows. Thus, 

x t b
a

C e a t( ) . .= + − is a monotonous curve and if x1(t) and x2(t) are monotonous, then 

x2=f(x1) is also monotonous. 
Therefore, 0a ≥∀ , the solution to & .x a x b= − +  is a monotonous curve. 
 

− In case 1, a1 = a2 = 0 so x t b t C1 1 1( ) .= +  and x t b t C2 2 2( ) .= + . Thus, 

x b
b

x b C
b

C2
2

1
1

2 1

1
2= + +  which is the equation of a straight line. 

 
− In case 2, the differential equation solution is x t b t C( ) .= + in a dimension and 

x t b
a

C e a t( ) . .= + − in the other dimension. The equation of the curves in the state-

space are x b
a

C e ei
i

i
i

a C
b

a
b

xi j

j

i

j
j

= +
−

. . with i=1 and j=2 or i=2 and j=1. This is the 

equation of exponential curves which converge to a horizontal or a vertical 

asymptotic line ∆:x b
ai

i

i
=  when time flows. 

 

− In case 3, the differential equation solution is t.a
0 e).

a
bx(

a
b)t(x −−+=  in both 

dimensions. x0 is the value of x when t=0. 
The equation of the curves in the state-space are: 
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xi0 is the initial value of xi. 

This is the equation of exponential curves which converge to the point 

⎟
⎠
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⎝
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2
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1
121 a

b,a
b)x,x( when t tends to infinity. 



It is reminded that 
1

1
a

b  is the value where x1 converges, x10 is the initial value of 

x1 and the studied curve is monotonous. Therefore, either 
1

1
110 a

bxx <<  or 

1

1
110 a

bxx >> , and 0

a
b

x

a
b

x

1

1
01

1

1
1

>
−

−
. Then, 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−

−

1

1
01

1

1
1

a
bx

a
bx

ln  is always defined. ′ 

 
The first case where ai=0 for i=1 and 2 has been studied by Tittus [TIT 93] [TIT 

98]. The method described in the following solves cases 2 and 3. In case 3, the 
relative position of  the equilibrium point xe and the jump-set λli→li+1 leads to two 
different ways of calculation for the extended jump-set λextli→li+1. 
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Figure 4. Different cases for λ and λext 
 

We notice that figure 4 gives a representation of the state-space when there are 
only two real valued variables ( nx ∈ , n=2) but theorem 2 is true for any value of 
n∈∠. 
 
Theorem 2: 



Given a vector field µ1(li) of dimension 32 where the equilibrium point xe is 
defined, if the equilibrium point xe is strictly included in the jump-set λli→li+1 then 
the extended jump-set λextli→li+1 is bounded by the phase constraint µ2(li): 

λextli→li+1 = µ2(li) 
In that case, the equilibrium point can be reached (see figure 4c). Υ 
 

Demonstration 2: 
In theorem 2, we are in the case where curves converge to an equilibrium point 

xe. So, it is possible to reach the jump-set from anywhere in the state-space with the 
dynamic µ1: 

if )ll(x 1iie +→λ∈ , +∈∃∈∀ t,x 2 / )ll())t(x)(l( 1iii1 +→λ∈µ  [1] 
By theorem 1, the curves defined by µ1(li) are monotonous. Thus, 1x& and 2x&  are 

either always positive or always negative. 
By assumption, the contour of µ2 is formed of a set of line segments which are 

horizontal or vertical. So, { }2,1i ∈∀ , xi=cst and 0xi =& . 
So, the set of curves defined by µ1(li) will cross at most one time the lines 

segment defining the contour of µ2(li). 
If the equilibrium point xe is inside µ2(li), once a curve defined by µ1(li) get 

inside µ2(li), it will never go out again: 
if )l(x i2e µ∈ , +∈∀µ∈∀ t),l(x i2 , )l())t(x)(l( i2i1 µ∈µ  [2] 

As a consequence of [1] and [2], we get: 
if )l()ll(x i21iie µ⊆→λ∈ + , +∈∃µ∈∀ t),l(x i2 / )ll())t(x)(l( 1iii1 +→λ∈µ  

 ′ 
 

The constraints µ2(li), the jump-set λli→li+1 and the extended jump-set λextli→li+1 
are are the different state-space regions (or sets) we can get. Before we go further, it 
is necessary to define how these regions can formally be described. 
 
 
5.2. Analytical expression for a two dimensions region and for its contour 

 
The aim of this section is to define the existence conditions of an analytical 

expression which describes the regions we will get. 
 

Definition 5: 
The contour of the region R is S(R). It is defined by a set of p boundaries sk(R): 
 

S(R)={sk(R), k ∈{1, …, p}} 
 

sk(R) is a curve segment (or boundary) defined by a curve and two extreme 
points. Each extreme point epj(R) belongs to two different boundaries of the 
contour.of the region. The set of extreme points Pext(R) of a given region R, is 
defined as follow: 



 
Pext(R)={epj(R), j∈{1, …, p}} 

 
A curve segment sk(R) is analytically defined by: 

− a timed parametered equations system: 
 

s R x f t
x f tk ( ): ( )

( )
1 1
2 2

=
=

⎧
⎨
⎩

 

 
− two extreme points (epa and epb) coordinates: 
 

 x ep x ep
x ep x ep

a a
b b

1 2
1 2
( ) ( )
( ) ( )

  
  

⎡
⎣⎢

⎤
⎦⎥

 Υ 

 
Definition 6: 

The half-space Rsk(R) associated to the boundary sk(R) is the half-space which is 
over or below the boundary sk. It is analytically defined by: 

 

Rs R
x f t

x ep x x ep
x f t

k a b( ):
( )

( ) ( )
( )

1 1
1 1 1

2 2

=
≤ ≤
≥ ≤

⎧
⎨
⎪

⎩⎪
 

 
x f t2 2≥ ≤ ( )  means that the equation x2=f2(t), which is one of the equations defining 
sk(R), is transformed into an inequation x f t2 2≤ ( )  or x f t2 2≥ ( ) . Υ 

 
Now, we can easily imagine that taking the intersection of the half-spaces Rsk(R) 

associated to the set of boundaries sk(R) will define the region R. So an analytical 
description for these regions seems to be possible. Nevertheless, these regions must 
verify the property of monotonous regions to be modeled by definition 6 equations / 
inequations systems. 

 
Definition 7: 

Let σ be a point situated on the contour of a region S(R). 
Let δ be a line which equation is: xi=kΥ3 where i={1, 2}, k may be equal to 0 

but it is not compulsory. 
Let define the orthogonal projection from S(R) to δ which gives an image η ∈δ 

to any point σ of S(R): 

S R
proj

( ) → δ  
 ησ a  
 
Let proj-1 be the inverse projection of proj. 

δ∈σ∀ , if proj-1(η) has either an infinite number of images or at most only two 
images belonging to S(R) then the region R is monotonous. Υ 



 
Figure 5 illustrates this property with δ line chosen as a horizontal line. Thus i=2 

and its equation is x2=k. For specific points δ∈η , the number of image that 
proj-1(η) accepts is counted. 
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Figure 5. Monotonous set – non monotonous set 

 
We notice that a monotonous region has not necessarily a contour composed 

with a set of monotonous boundaries and a set of monotonous boundaries does not 
always define a monotonous region. 

We also notice that a monotonous region can be non convex. 
It is time now to realize the link between the boundaries analytical description 

and the monotonous regions. 
 

Theorem 3: 
If R is a monotonous region and if its contour is composed of a set of boundaries 

S(R), then an analytical description for R always exists, being the intersection of the 
half-spaces Rsk(R): 

R Rs R
k

p
k=

=
I

1
( )  

 
and analytically, R is described by: 

 R
x f t
x ep x x ep
x f ti

p i i
ai i bi

i i
=

=
≤ ≤

≥ ≤

⎧
⎨
⎪

⎩⎪=
U

1

1 1
1 1 1
2 2

( )
( ) ( )

( )
 Υ 

 
 
Demonstration 3: 

Let R be a monotonous region and sk(R) ∈S(R) be a boundary for R, it always 
exists an equation system which describes sk(R). Moreover, it always exists an 
analytical description of the associated half-space Rsk(R). 

Let x ∈R be any point of the monotonous region, x will always belong to two 
half-spaces associated to S(R) and only two. 

So, if we generalize to the set of points x defining the region R, R can have an 
analytical description which is the union of all the systems describing the half-
spaces set: 



 R
x f t
x ep x x ep
x f ti

p i i
ai i bi

i i
=

=
≤ ≤

≥ ≤

⎧
⎨
⎪

⎩⎪=
U

1

1 1
1 1 1
2 2

( )
( ) ( )

( )
 ′ 

 
Here is an example which gives the analytical description of a monotonous 

region (figure 6). 
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Figure 6. Monotonous set analytical description 
 
This analytical method used to describe the regions fits with only 2 dimensional 

state-spaces. Consequently, the studied systems can have only two state variables. 
A n-dimensional monotonous region will have a contour defined by a n-

dimensional "hypersurface segments" set. For instance, if we have a 2-dimensional 
monotonous region, its contour is a 2-dimensional curve segment set, if we have a 3-
dimensional monotonous region, its contour is a 3-dimensional hypercurve segment 
set which would be a kind of curved plane. 

But a n-parameter equations system: xi=fi(t) where i={1, …, n} describes a 
single curve in a n-dimensional space. So, it is possible to use this kind of equation 
systems to describe the "hypersurface segments" only when they are curve 
segments, i.e. when the space dimension is n=2. 

 
 

5.3. About trajectory synthesis with two dimensional monotonous regions 
 
Now we have proven it always exists an analytical description for monotonous 

regions with contour made of a segment curves set, we want to be sure we will 
always have to deal with such kinds of regions. 

 
The model we have presented uses three different state-space regions: 

− the set of m state constraints µ2(li) 
− the jump-set λli→li+1 
− the extended-jump-set λextli→li+1 

 
Firstly, the state constraint of any phase µ2(li) is rectangular with vertical and 

horizontal lines by assumption. So it is always monotonous. For the two other sets 
(λ and λext), we must define conditions which are required to be sure they remain 
monotonous when time flows and when discrete transitions occur. 



Theorem 4: 
The intersection of two monotonous regions is a monotonous region. Υ 
 

Demonstration 4: 
Let define two monotonous regions Ra and Rb and their contour S(Ra) and S(Rb). 

It is reminded that a region is monotonous if the orthogonal projection from a 
horizontal or vertical line to its contour has either an infinite number of images or at 
most two. 

In the current demonstration, the projection line δ is chosen to be horizontal and 
never cuts the two regions Ra and Rb: 

{ }{ })R(S,b,ai/ i∉η∈∀δ∈η=δ  
Let define the two orthogonal projections proja and projb such that { }b,ai ∈∀ : 

ησ
δ⎯⎯ →⎯

ai

proj
i

i)R(S  

 
By definition 7, if a region is monotonous then, 

{ }b,ai ∈∀ , )R(S ii ∈σ∀ , ∅≠ηδ∈η∀ − )(proj/ 1
i , )(proj 1

i η−  can be: 
− one point σi1 
− or two points σi1 and σi2 
− or an infinite number of points )R(S ii ∈σ  

If )(proj 1
i η−  is unique then we define a new point σi2 = σi1. 

If )(proj 1
i η−  can be two points, σi1 is defined as the furthest point of η and σi2 

as the closest. 
If )(proj 1

i η−  is an infinite number of points then we define: 

− { })(proj/)R(S 1
iiiiinfi η=σ∈σ=σ −  

− σi1 such that ( )),(dmax i1i
infii

ση=σ
σ∈σ

: σi1 is the furthest point of η 

− σi2 such that ( )),(dmin i2i
infii

ση=σ
σ∈σ

: σi2 is the closest point of η 

We notice that d(x,y) means the distance between the two points x and y. 
 
So we can always associate two points (σi1 and σi2) to every 

∅≠ηδ∈η − )(proj/ 1
i  for any region Ri. 

Now, ∅≠ηδ∈η∀ − )(proj/ 1
a  and ∅≠η− )(proj 1

b , we must determine which 
two points of σa1, σa2, σb1 and σb2 must be kept in order to sketch the contour of the 
Ra and Rb intersection. These two points are called σ1 and σ2. 

∅≠ηδ∈η∀ − )(proj/ 1
a  and ∅≠η− )(proj 1

b , we define: 
− σ1 such that 

{ }
( )),(dmin),(d 1k

b,ak
1 σδ=σδ

=
 



− σ2 such that 
{ }

( )),(dmax),(d 2k
b,ak

2 σδ=σδ
=

 

− σinf such that { }b,ai ∈∀ , if σi inf is defined for η, 
{ }),(d),(d),(d/ 1i2infiiinf σδ≤σδ≤σδσ∈σ=σ  

 
If we consider all the possible points ∅≠ηδ∈η − )(proj/ 1

a  and 

∅≠η− )(proj 1
b , a set of points σ1, σ2 and σinf is defined. This set will define the 

contour S(R) of the region R / ba RRR ∩= . 

Finally, let define δ⎯⎯ →⎯proj)R(S  and the inverse projection proj-1, δ∈η∀ , 

)(proj 1
i η− will be: 

− not defined 
− or one point: σ1=σ2 
− or two points: σ1 ≠ σ2 
− or an infinite number of points ∈σinf 

Thus S(R) has either an infinite number of images or at most two images. This is 
the definition of a monotonous region. ′ 

 
 

{
}

 
 

Figure 7. Intersection of two monotonous regions 
 

Theorem 5: 
For a given couple of location li and li+1, if µ2(li) and λextli+1→X are monotonous 

regions and if )l,,l( 1i1i,ii3 ++δµ  conserves the monotonous property, then λli→li+1 is 
monotonous. Υ 

 
Demonstration 5: 

If λextli+1→X is monotonous and if )l,,l( 1i1i,ii3 ++δµ  conserves the monotonous 
property then the set ν such that if x ∈ν then )l,,l( 1i1i,ii3 ++δµ (x) ∈λextli+1→X is a 
monotonous region. 

Definition 3 says that λli→li+1=ν ∩ µ2(li). By assumption, µ2(li) is monotonous and 
by theorem 4, λli→li+1 is monotonous too. ′ 
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The monotonous property conservation for function µ3 is not well defined but we 
can note that any action on a state–variable must have an equivalent effect on all the 
others. 

For instance, let consider a two dimensional state-space, i.e. [ ] 2T
21 xx,x ∈= . 

The function µ3 such that x1(t+)=x1(t-)+k1 and x2(t+)=x2(t-)+k2 is an example of what 
is an equivalent effect for both variables. 

Moreover, we are sure that if there are no continuous discontinuity when a 
transition occurs, that is if µ3(li→ll+1)=Id, then µ3 conserves the monotonous property. 
This is the case in the example presented in section 2 and solved in section 6. 

 
Definition 8: 

If λextli→li+1 ≠ µ2(li), the extended jump-set contour (λextli→li+1 contour) is 
composed of three kinds of boundaries (or curve segments): 
− some λli→li+1 boundaries 
− some µ2(li) boundaries 
− curve segments which are solutions of the differential equations described by µ

1(li). These curves are called extension curves. they can cross a λ-boundary or be a 
tangente to λ Υ 
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Figure 8. Extension curves and λext-contour 

 
Now we have seen how the contour of the extended jump-set S(λext) is composed, 
we can easily understand that for a given couple of location li and li+1, if λli→li+1 is 
monotonous and if the state-variables are not coupled (i.e. the solution to 

bA.xx +=&  is a monotonous curve), then λextli→li+1 is monotonous.  Υ 
 

Corollary 2: 
If the set of m state constraints µ2 of any phase li is always monotonous, if 

)l,,l( 1i1i,ii3 ++δµ  conserves the monotonous property and if the evolution function 
µ1(li) is such that the state-variables are not coupled, then all the regions we will get 
when computing the reachability set will be monotonous. So, a formal description of 
all encountered sets will always be possible.  Υ 

 



Corollary 2 defines the conditions we need to be able to formally compute the 
reachable set using an algorithm. 

 
 

6. Algorithm and application to the batch system 
 
6.1. λext computation algorithm for two dimensional state-space problems 

 
The hardest step to decide whether a system is controllable or not is the 

computation of the extended jump-set λext for a given location li. The algorithm is 
given below: 

 
 

− initialization of: 
− the evolution function µ1 modeled by differential equations 
− the jump-set λ and the constraint set µ2 by their analytical description 

− if the equilibrium point is defined and is strictly included in the jump-set λ 
then: 

λext = µ2 
else: 

− calculation of all extreme-points 
− calculation of all the curves having µ1(li) dynamic trajectory and crossing 

a λ extreme-point 
− calculation of λ tangential trajectory curves if they exist 
− calculation of the extension curves by selecting the curves defining the 

largest region 
− appropriate λ and µ2(li) boundaries are added to the extension curves to 

form )ll( 1iiext +→λ contour 
− equalities are transformed into inequalities to analytically define 

)ll( 1iiext +→λ  
 
More details are given about this algorithm in [MAN99a]. We remind that in the 

current paper, the goal is to present the analytical definition of regions which are 
necessary to the calculation of the extended jump-set for a given phase. 

 
6.2. Application to the batch system 

 
Let us apply this control synthesis methodology to the batch system example 

described in section 2 (see figure 1) and modeled in section 3 (see figure 2). 
A discrete controllable path π must be calculated. It must start from the initial 

state l0 and stop at the final state l3. The path computation is realized backward. The 
jump-sets, extended jump-sets and phase constraints are represented in the state-
space x2=f(x1). A new state-space representation is given for each phase the system 
goes through. 

 



A controllable discrete path π is synthesized: 
 

π=(l0, l1, l2, l1, l3) 
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Figure 9. Controllability analysis realized in the state-space 
 
 
7. Concluding remarks 

 
We have presented parts, dealing with region analytical description, of a new 

method which goal is to synthesize a return trajectory from a default mode to one of 
the nominal modes for hybrid dynamical systems with linear vector fields in a two 
dimensional state-space. It is an extension of Tittus's works on integrator hybrid 
systems. A great care has been taken in proving the computability of the state-space 
regions involved into the reachability analysis. 

Firstly, we have presented a brief example with a batch system in a default mode 
to be driven back to its nominal mode. 

Once the position of the problem was clearly fixed, some theoretical reminds 
from Tittus’s researches, necessary to solve the problem, were presented. 

Afterward, we have explained it is always possible to formally describe a 
monotonous region and we have defined the necessary conditions to always have 
such kind of regions when computing a safe hybrid trajectory. 

In the last section, the algorithm which computes the extended jump-set for a 
given location was given and a solution for the batch system example was presented. 

 
 
At that point of research, the assumptions made for the continuous state variables 

xi are rather strong and limit the possible applications field. One next step is to relax 
them. Particularly systems with coupled variables are now under investigation and 
first results are positive [CHA 99]. 

 



Once the jump-sets and extended jump-sets are computed for a given path, it is 
necessary to choose a control strategy (e.g. switch as soon as possible, switch as late 
as possible, …) in order to determine the switching instants. 

An another field under investigation is to develop a methodology which can 
achieve an optimal control strategy. If the criteria to be optimized is time 
independent, then the control sequence design seems to be computable using pure 
discrete optimization tools. In the other case, continuous and discrete optimization 
tools must be combined. 
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