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ON THE KOSZUL PROPERTY OF TORIC FACE RINGS

DANG HOP NGUYEN

ABSTRACT. Toric face rings is a generalization of the concepts of affine semigroup rings
and Stanley-Reisner rings. We characterize toric face rings having the Koszul, strongly
Koszul or initially Koszul property. Firstly, we compute the graded Betti numbers of
the underlying field as a module over the toric face ring. We ask whether given two
conditions, that the defining ideal of the toric face ring hasthe monomial part generated
in degree 2, and that for each cone of the supporting fan, the corresponding monoid ring
is Koszul, we can conclude the ring itself is Koszul. Then we give a full characterization
of strongly Koszul toric face rings. We also prove that initially Koszul homogeneous toric
face rings are in fact affine semigroup rings.

1. INTRODUCTION

Let k be a fixed field,R a homogeneous affinek-algebra. We say thatR is a Koszul
k-algebra if as anR-module,k has linear resolution. In this note, we consider various
properties of toric face rings which imply the Koszul property.

Let Σ be arational pointed fanin Rd (d ≥ 1 a natural number), i.e.Σ is a collection
of rational pointed cones inRd which is closed under taking faces of cones, and the
intersection of any two cones of which is a common face of these two cones. Amonoidal
complexM supported onΣ is a collection of affine monoidsMC indexed by elementsC
of Σ, such thatMC generatesC and the following compatibility condition is fullfilled: if
D ⊆C ∈ Σ, thenMD = MC∩D. Starting with the work of Stanley, among other authors,
Bruns, Ichim, Koch and Römer in [IR] and [BKR] considered toric face rings ofM over
k, denoted byk[M ], which are a generalization of affine semigroup rings and Stanley-
Reisner rings. In some sense, toric face rings are determined by the “local” data encoded
by various monoidsMC whereC ∈ Σ and the “global” data encoded by the fanΣ. (For
instances see Proposition 2.3 below). For an algebraic treatment of affine semigroup
rings and Stanley-Reisner rings, see the book of Bruns and Herzog [BH] or Bruns and
Gubeladze [BG], for a more combinatorial treatment of Stanley-Reisner rings see the
book of Stanley [Sta].

Among other results, the above authors get the generalization of Hochster’s formula
for Betti numbers of Stanley-Reisner rings and a general theorem computing the initial
ideal of the defining ideal of a toric face ring using triangulation - extending a theorem of
Sturmfels [Stu], formulas for local cohomology of toric face rings, and other things.

Assume thatR is a Koszulk-algebra. Considering the first sygyzy, it is easy to see that
R is necessarily defined by quadratic relations over some polynomial ring. For Stanley-
Reisner rings, Fröberg [Fr] proved that this is also sufficient forR to be Koszul by using
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Taylor’s resolution. Later, the notion of Koszul filtrations was defined by Conca, Trung
and Valla [CTV].

Definition 1.1 (Conca, Trung, Valla). A family F of ideals ofR is said to be aKoszul
filtration of R if:

(i) every ideal ofF is generated by linear forms;
(ii) the ideal 0 and the graded maximal ideal belong toF ;
(iii) for every I ∈ F different from 0, there existsJ ∈ F strictly contained inI and a

linear formx∈ I such thatJ+(x) = I andJ : I ∈ F .

Note that a Koszul filtration, if it exists, does not contain the unit ideal. Conca, Trung
and Valla proved that a ring which has a Koszul filtration mustbe Koszul. This gives
another proof to the above result of Fröberg, because in this case, the family of those
ideals, each of which is generated by some variables, form a Koszul filtration. After
that, several related notions of Koszulness were introduced. Herzog, Hibi and Restuccia
[HHR] defined strongly Koszul algebras. A homogeneousk-algebra isstrongly Koszulif
its irrelevant ideal admits a system of generators of degree1, namelya1, . . . ,an, such that
for all increasing sequence 1≤ i1 < .. . < i j ≤ n, the ideal(ai1, . . . ,ai j−1) : ai j is generated
by a subset of{a1, . . . ,an}. (This is a different but equivalent version of the strongly
Koszul property of Herzog, Hibi and Restuccia.)

Herzog, Hibi and Restuccia also proved that strongly Koszulalgebras are Koszul. On
the other hand, Blum [Bl] and Conca, Rossi, Valla [CRV] introduced initially Koszul al-
gebras.R is initially Koszul(abbreviated i-Koszul) with respect to a sequencea1, . . . ,an ∈
R1, if the family of idealsF = {(a1, . . . ,ai) : i = 0, . . . ,n} is a Koszul filtration ofR. Al-
gebras which are i-Koszul must also be Koszul, and in fact they even have the stronger
property of having a quadratic Gröbner basis with respect to a natural order, see [CRV,
Theorem 2.4], [Bl, Theorem 2.1].

Restricted to the class of toric face rings, it is natural to ask: what conditions must be
satisfied by a monoidal complex so that its associated toric face ring is a homogeneous
Koszul, strongly Koszul or i-Koszul algebra? To illustrate, it turns out that in the case of
Stanley-Reisner rings, the answers are quite simple. Independent of the field, the Stanley-
Reisner ring is Koszul if and only if the simplical complex isa flag complex, i.e. all the
minimal non-faces have two vertices (this result is due to Fröberg [Fr]). Moreover, in this
case, the ring is strongly Koszul, see [HHR, Corollary 2.2].A Stanley-Reisner ring is i-
Koszul in the natural sense only if the simplicial complex isa full simplex, as follows from
[Bl, Proposition 2.3]. But in the situation of monoidal complexesM which give rise to
Stanley-Reisner rings, for all conesC of the supporting fanΣ, the corresponding monoid
MC is someNt , which makes everything easier to handle. It would be more interesting
to see what happens in the general case, where no such specialhypothesis is made. For
results and problems about Koszul property of algebras associated with polytopes, see for
example [BGT] and [BG, Chapter 7].

This note is organized as follows. In Section 2, we recall thebasic theory of toric
face rings. We propose a natural condition on the generatorsof the underlying monoidal
complexes under which the corresponding toric face rings are standard graded. We say
that the toric face ring is homogeneous if this condition is satisfied. In Section 3, we
recall the natural grading associated with a monoidal complex and a system of generators.
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We apply a method of Peeva, Reiner and Sturmfels [PRS], and Herzog, Reiner, Welker
[HRW] to compute the graded Betti numbers of the residue fieldover the toric face ring.
In Section 4, we prove that if a homogeneous toric face ring isKoszul, then for each cone
of the supporting fan, the corresponding affine semigroup ring is also Koszul. We give
a counterexample showing that the converse is not true, evenwhen the defining ideal is
generated in degree 2. We propose the question whether the converse would be true if the
“monomial part” of the defining ideal is generated in degree 2. This is one of the main
problems which motivate the content of this note. In Section5, we characterize strong
Koszulness of toric face rings. To achieve this goal, we provide a formula computing
the colon ideals appearing in the definition of strong Koszulness via the various “local”
colon ideals. Finally, in Section 6, we prove that homogeneous i-Koszul toric face rings
are indeed affine semigroup rings. In particular, homogeneous toric face rings which are
universally initially Koszul in the sense of Blum [Bl] must be polynomial rings.

We are grateful to Tim Römer for generously suggesting problems and many insightful
ideas on the subject of this note. We want to express our sincere thank to Aldo Conca for
his inspiring discussions and comments.

2. NOTATIONS AND BACKGROUND ON TORIC FACE RINGS

Let k be a field,d ≥ 1 a natural number,Σ be a rational pointed fan inRd. In other
words,Σ is a collection of rational pointed cones such that:

(i) if C∈ Σ andD is a face ofC thenD ∈ Σ;
(ii) for everyC,C′ ∈ Σ, C∩C′ is a face of bothC andC′.

Σ is calledsimplicial if each of its conesC is generated by linearly independent vectors
in Rd. A maximal element (with respect to inclusion) ofΣ is called afacetof Σ. A one
dimensional face of a cone ofΣ is called anextremal ray.

A monoidal complexM supported onΣ is a collection of affine monoidsMC, whereC
varies inΣ such that:

(i) MC ⊆C∩Zd andR≥0MC =C;
(ii) for everyC,D ∈ Σ with D ⊆C, MD = MC∩D.

For instances, takingMC =C∩Zd for eachC we get a monoidal complex supported on
the fanΣ.

The toric face ring overk associated with the monoidal complexM supported onΣ,
denoted byk[M ] is defined as follows. As ak-vector space we set

k[M ] =
⊕

a∈∪C∈ΣMC

kta.

The product on basis elements is given as follows:

ta · tb =

{

ta+b if for someC∈ Σ botha andb belongs toMC;

0 otherwise.

Sometimes we writea instead of the basis elementta of k[M ]. In that case, instead of
ta · tb, we writea ·b, hence ink[M ], without too much confuse arised:
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a ·b=

{

a+b if for someC∈ Σ botha andb belongs toMC;

0 otherwise.

It is known thatR= k[M ] is an affine reduced commutativek-algebra with unit, which
corresponds tot0. The Krull dimension ofk[M ] equals to the maximal dimension of the
facets ofΣ, see for example [IR] or [BKR]. An important aspect is thatk[M ] inherits the
Zd-grading from the embedding of the monoidal complex. EveryZd-graded component
of k[M ] hask-dimension less than or equal to 1.

The two basic examples of toric face rings are Stanley-Reisner rings and affine semi-
group rings.

Example 2.1. Let ∆ be a simplicial complex on the vertex set[n] = {1, . . . ,n}. Denote
by e1, . . . ,en the standard basis vectors ofRn. For each faceF of ∆, consider the cone
CF generated by the vectorsei , i ∈ F. It is clear that the collectionΣ = {CF ,F ∈ ∆} is a
rational pointed fan inRn. For eachF ∈ ∆, chooseMCF =CF ∩Zn, then we get a monoidal
complex supported onΣ, the toric face ring of which is exactly the Stanley-Reisnerring
k[∆]. By definition, this is the quotient ofk[X1, . . . ,Xn] by the square-free monomial ideal
I∆ generated by monomials∏ j∈GXj whereG⊆ [n],G /∈ ∆.

Example 2.2. Let M be an finitely generated submonoid ofNd (d ≥ 1). ChoosingΣ to
have only one facetC = R≥0M, andMC = M, the resulting toric face ring is isomorphic
to the affine semigroup ringk[M].

For eachC ∈ Σ, let RC = k[MC], which is naturally a subring ofR. We have natural
surjectionsR→ RC defined by:

ta 7−→

{

ta if a belongs toMC;

0 otherwise.

The homomorphismRC → R follows by R→ RC is the identity onRC, in other wordsRC
is analgebra retractof R for everyC∈ Σ.

Following [BKR], we say that the finite set{a1, . . . ,an} is a system of generators ofM

if ai ∈ ∪C∈ΣMC for everyi ∈ [n], and the subset{a1, . . . ,an}∩MC is a system of generator
of MC for everyC∈Σ. This system of generators gives a surjectionϕ : S= k[X1, . . . ,Xn]→
R. Let I = Kerϕ. For each coneC of Σ, denoteSC = k[Xi : ai ∈ MC], we also have a map
ϕC : SC → k[MC], whose kernel is denoted byIC.

Denote by∆M the following simplicial complex on the set[n]: a subsetF ⊆ [n] is a
face of∆M if and only if there exists some coneC ∈ Σ such that{a j , j ∈ F} ⊆ MC. The
following proposition (which is [BKR, Proposition 2.3]) shows the dependence ofI on
∆M and the “local” data about defining ideals.

Proposition 2.3. Denote by C1, . . . ,Cr all the facets ofΣ. Then

I = AM +
r

∑
i=1

S· ICi ,

where AM is generated by square-free monomials∏ j∈GXj , for which G/∈ ∆M .
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Loosely speaking,I consists of the “monomial part”AM and the “binomial part” con-
sisting of various “local” binomial ideals.

Our additional assumption in dealing with various Koszulness notions is thatk[M ]
possesses a standardZ-grading.

Definition 2.4. The finite set{a1, . . . ,an} is called astandard system of generatorsof M

if for every facetC of Σ, the ringk[MC] is a homogeneousk-algebra which is generated in
degree 1 by{a1, . . . ,an}∩MC. We callk[M ] a homogeneous toric face ringif M has a
standard system of generators.

Given a standard system of generators ofM , theZ-gradings on the ringsk[MC] where
C ∈ Σ induce aZ-grading onk[M ]. Note that we do not require{a1, . . . ,an} ∩MC to
minimally generates the graded maximal ideal ofk[MC]. The reason is in dealing with
strongly Koszul and initially Koszul properties, the minimality will follow automatically.
We also do not require theZ-grading to be compatible with the existingZd-grading, as
we can use the two gradings separately.

3. BETTI NUMBERS OF TORIC FACE RINGS

A homogeneousk-algebraR is Koszul if and only ifβ R
i, j(k) = 0 for all i 6= j, where

β R
i, j(k) = dimk TorRi (k,k) j are the Betti numbers ofk as a gradedR-module. Laudal and

Sletsjøe [LS] computed Betti numbers of affine semigroup rings, and the result was later
reproved and generalized in [PRS] and [HRW]. In this section, using the method em-
ployed in [PRS] and [HRW], we derive a formula for the graded Betti numbers of the
ground fieldk as a module over the toric face ring. We will use the natural grading asso-
ciated with a monoidal complex as defined in [BKR].

In details, letΣ be a rational pointed fan inRd andM be a monoidal complex supported
onΣ with {a1, . . . ,an} being a system of generators. Use again the notation of Proposition
2.3. Denote byBM the ideal ofS generated by all the binomials inI . Consider the
following monoidH associated toM and the system of generators. Let∼ denote the
relation inNn such thata ∼ b if and only if Xa−Xb ∈ BM . This relation is compatible
with vector sum in the sense thata∼ b impliesa+c∼ b+c for all a,b,c∈Nn. Let H be
the set of equivalent classes ofNn/∼ with the addition inherited from that ofNn.

We say that a monoid ispositiveif for elementsλ ,µ of this monoid withλ +µ = 0, we
must haveλ = µ = 0. We say that a monoidcancellative with respect to0 if an equation
λ +µ = λ in the monoid implies thatµ = 0. It is not hard to see thatH is a commutative
positive monoid. Moreover, we have the following result which is Lemma 4.4 in [BKR].

Lemma 3.1. Denote the class of a∈ Nn in H bya. We have:

(i) If a+c= b+c for a,b,c∈ Nn then Xa−Xb ∈ I .
(ii) H is cancellative with respect to0.
(iii) If Xa−Xb ∈ I and Xa,Xb /∈ I thena= b in H.

It is easy to see thatS= k[X1, . . . ,Xn] andR= k[M ] areH-graded. Note also thatS/BM

is exactly the monoid algebrak[H] of H. In the case of Example 2.2, the monoidal com-
plex M is a positive affine semigroupM, we can choose{a1, . . . ,an} to be the minimal
set of generators ofM. HereH = M andBM is the toric ideal definingk[M]. In other
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words, theH-grading is the semigroup grading induced byM. In the case of Example 2.1,
we haveBM = 0 andH = Nn, theH-grading is simply the fine grading.

Denote byJ the idealI/BM of k[H]. Denote byeg,g = 1, . . . ,n the standard basis
vectors inRn. ThenJ is a semigroup idealof k[H] in the sense that it is generated by
elements∑g∈Geg in H, whereG ⊆ [n] such that there is no face ofΣ containing all the
ag,g∈ G. We know from Proposition 2.3 thatk[M ] = k[H]/J.

For elementsλ ,µ ∈ H, we say thatλ < µ if λ 6= µ andµ −λ ∈ H. Then< makesH
into a partially ordered set. For eachλ ∈ H, denote by∆λ the set of all chains of elements
α1 < .. . < αi ∈ H such that 0= α0 < α1 andαi < λ = αi+1.

We denote by∆λ ,J the subset of∆λ consisting of chains 0= α0 < α1 < .. . < αi <
λ = αi+1 in ∆λ such that for some 0≤ j ≤ i, the elementXα j+1−α j , as element of the
group ringk[H], belongs toJ. Note that for eachλ ∈ H, the sets∆λ ,∆λ ,J are simplicial
complexes. We denote bỹH j(∆λ ,∆λ ,J;k) the j-th reduced, relative simplicial homology
with coefficient ink of the pair(∆λ ,∆λ ,J).

For eachi ≥ 0,λ ∈ H, let β R
i,λ (k) denotes the bi-graded Betti number dimk TorRi (k,k)λ

of k as anH-gradedR-module.
Note that if in addition,{a1, . . . ,an} is a standard system of generators ofM then

there’s a function|.| : H → Z mappingλ = a∈ H to |λ | which is the sum of coordinates
of a.

Proposition 3.2. With the above notations,

β R
i,λ (k) = dimk H̃i−2(∆λ ,∆λ ,J;k),

for everyλ ∈ H and i> 0.
In particular, if {a1, . . . ,an} is a standard system of generators forM then the follow-

ings are equivalent:

(i) k[M ] is a Koszul algebra;
(ii) H̃i−2(∆λ ,∆λ ,J;k) = 0 for all i > 0 andλ ∈ H such that|λ |> i.

Proof. Apply the same argument using the bar resolution as in the proof of Theorem 2.1
in [HRW]. �

4. KOSZUL TORIC FACE RINGS

Let Σ be a rational pointed fan inRd andM be a monoidal complex supported onΣ.
Let {a1, . . . ,an} be a standard system of generators ofM . We use again the notations
of Proposition 2.3. Of coursek[M ] is a standard gradedk-algebra. We want to have a
characterization ofΣ andM whenR= k[M ] a Koszul algebra. Naturally, we would try
to relate the Koszul property ofR with the Koszul property of the ringsRC with C in Σ.

Recall that given an inclusion of graded ringsR⊂ S, R is called an algebra retract ofS
if there’s a homogeneous morphismε : S→ R (the retraction map) such thatε restricts to
the identity onR.

Proposition 4.1. If k[M ] is Koszul then for any C∈ Σ, the ring k[MC] is also Koszul.

Proof. This follows from a general fact: IfR⊂ S is an algebra retract of homogeneous
k-algebras with the retraction mapε : S→ R thenS is Koszul if and only ifR is Koszul
andR has linear resolution as anS-module viaε. See [OHH, Proposition 1.4]. �



ON THE KOSZUL PROPERTY OF TORIC FACE RINGS 7

Remark 4.2. It is easy to see that ifR is Koszul thenI = Kerϕ is generated by quadrics.
However in general, even when the ringk[MC] is a Koszul algebra for each facetC ∈ Σ
and the defining idealI is generated by quadratic polynomials,k[M ] is not necessarily
Koszul, as the next example shows.

Example 4.3. Take k = Q. Consider the points inR3 with the following coordinates
A1 = (2,0,0),A2 = (0,2,0),A3 = (0,0,2),A4 = (1,1,0),A5 = (0,1,1). The semigroup
ring generated by those 5 points isk[X1, . . . ,X5]/I1 whereI1 = (X1X2−X2

4 ,X2X3−X2
5).

Let O= (0,0,0) be the origin ofR3.
Take the pointA6 = (−1,−1,−1). Consider the rational pointed fan inR3 with the

following facets, which are all simplicial cones:OA1A2A3, OA1A3A6,OA2A6.
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The toric face ring of this monoidal complex isR= k[X1, . . . ,X6]/I with the defining
idealI = I1+(X4X6,X5X6). For exampleX1X2X6∈ I becauseX1X2X6=X6 ·(X1X2−X2

4)+
X4 ·X4X6. So the defining ideal is generated by quadratic polynomials.

The affine semigroup rings supported on the maximal cones, which arek[X1, . . . ,X5]/I1,
k[X1,X3,X6] andk[X2,X6], are Koszul. In fact, in the reverse lexicographic order with
X1 < X2 < .. . < X5, the polynomials{X1X2−X2

4 ,X2X3−X2
5} form a quadratic Gröbner

basis forI1. Sok[X1, . . . ,X5]/I1 is Koszul.
However, we can check by Macaulay 2 that the upper-left part of the Betti table of the

maximal graded idealm of R considered asR-module is as follow:

0 1 2 3 4 5 6 7
total: 1 6 19 46 101 217 468 1016

0: 1 6 19 45 92 173 309 534
1: . . . 1 9 44 158 470
2: . . . . . . 1 12

HenceR is not a Koszul algebra, becausem has a non-linear second syzygy.

We are interested in the following question.
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Question 4.4.LetΣ be a rational pointed fan inRd, M is a monoidal complex supported
on Σ. Let {a1, . . . ,an} be a standard system of generators ofM . Assume that the ideal
AM in Proposition 2.3 is generated by quadrics, and for every facet C ofΣ, the ring k[MC]
is a Koszul algebra. Is it true that k[M ] is a Koszul algebra?

We will provide in the following some evidences to expect an affirmative answer to
this question, see the subsequent Corollary 4.8, Theorem 5.4, Remark 5.5 and Theorem
6.4. Note also that in the situation of Example 2.1, this question is answered in positive
by Fröberg’s theorem, which can be obtained from the implications (ii)⇒ (iii) ⇒ (i) of
Corollary 5.7. In the case of Example 2.2 whereΣ is a cone, the question isa priori
answered in positive.

Remark 4.5. On the other hand, it is not true that the idealAM is generated by quadratic
monomials givenR being Koszul, as in the following example.

Example 4.6. Takek = Q and consider the points inR3 with the following coordinates
O= (0,0,0),A1 = (2,0,0),A2 = (0,2,0),A3 = (0,0,2),A4 = (1,1,0).

Consider the rational pointed fan inR3 with the following facetsOA1A2,OA1A3,OA2A3.
Denote byM the monoidal complex supported on this fan with the generators of the
monoids corresponding to the above facets are{A1,A2,A4},{A1,A3},{A2,A3}. The toric
face ring ofM , which isk[M ] = k[X1,X2,X3,X4]/(X1X2−X2

4 ,X3X4), is Koszul. Indeed,
in the lexicographic order induced byX1 > X2 > X3 > X4, the set{X1X2−X2

4 ,X3X4} is a
quadratic Gröbner basis for the defining ideal of this ring.

However, the idealAM = (X3X4,X1X2X3) is not generated by quadrics.
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Proposition 4.7. Let< be a monomial on S= k[X1, . . . ,Xn] and<i be the induced mono-
mial order on SCi = k[Xj |a j ∈ MCi ], where C1, . . . ,Cr are the facets ofΣ. Then:

(i) If I has a quadratic Gr̈obner basis with respect to a monomial order< on S then
ICi has a quadratic Gr̈obner basis with respect to the monomial order<i on SCi

for every i= 1, . . . , r.
(ii) If AM is generated by quadrics and for some monomial order< on S, the ideal

ICi has a quadratic Gr̈obner basis with respect to the monomial order<i on SCi

for every i= 1, . . . , r, then I has a quadratic Gr̈obner basis with respect to<.
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Proof. The two statements follow from the formula:

in<(I) = AM +
r

∑
i=1

S· in<i(ICi).

The proof of this is similar to the proof of [BKR, Proposition3.2]. �

Corollary 4.8. Under the hypothesis of Proposition 4.7, assume in additionthatM ad-
mits{a1, . . . ,an} as a standard system of generators. Assume also that AM is generated
by quadrics and for every i= 1, . . . , r, the ideal ICi has a quadratic Gr̈obner basis with
respect to the order<i on SCi . Then k[M ] is a Koszul algebra.

Note that Example 4.6 shows that the converse of Proposition4.7 is not true, because
in this case the ringk[M ] has a quadratic Gröbner basis with respect to the lex order but
AM is not generated by quadrics.

5. STRONGLY KOSZUL TORIC FACE RINGS

Let us recall the notion of strongly Koszul algebras.

Definition 5.1 (Herzog, Hibi, Restuccia). Let Rbe a homogeneous algebra over a fieldk,
m is its graded maximal ideal. Suppose that the elementsa1, . . . ,an belong tom, generate
m, and are homogeneous of degree 1. ThenR is calledstrongly Koszul with respect to
the sequence a1, . . . ,an if for every 1≤ i1 < .. . < i j ≤ n, the ideal(ai1, . . . ,ai j−1) : ai j is
generated by a subset of{a1, . . . ,an}.

Note that ifR is strongly Koszul with respect to the sequencea1, . . . ,an then{a1, . . . ,an}
is a minimal set of generators form. Moreover, for every sequence 1≤ i1 < .. . < i j ≤ n
and all l = 1, . . . , j, the ideal(ai1, . . . ,ai l−1) : ai l is generated by a subset of{a1, . . . ,an}.
Hence this is an equivalent rephrasing of the strongly Koszul notion in [HHR].

The definition of the strongly Koszul property appears to be dependent on the order of
the sequence of generators. At least for affine semigroup rings, this is not the case. We
say that an affine semigroupM is homogeneousif M is a disjoint union

M = ∪ j≥0M j

with M0 = {0},M j +Ml ⊆ M j+l for all j, l , andM is generated byM1. The elements
of M j are called elements of degreej. The following theorem is due to Herzog, Hibi,
Restuccia [HHR, Proposition 1.4].

Theorem 5.2. Let M be a homogeneous semigroup, and let a1, . . . ,an be generators of
degree 1 of M. Then the following are equivalent:

(i) k[M] is strongly Koszul with respect to a1, . . . ,an;
(ii) the divisor poset of M is locally upper semimodular (also called wonderful);
(iii) the ideals(ai)∩ (a j) are generated in degree 2 for all i6= j.

Next we consider Stanley-Reisner rings as defined in Example2.1. It is not hard to see
that if I∆ is generated by quadrics thenk[∆] is strongly Koszul with respect to the sequence
X1,X2, . . . ,Xn. We will see from Corollary 5.7 that the converse is also true.
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In the case of toric face rings, the following lemma describes the relation between the
colon ideals appearing in the definition of strong Koszulness with the various “local”
colon ideals.

Lemma 5.3. Assume that{a1, . . . ,an} is a standard system of generators ofM and1≤
i ≤ n. LetI= (a1, . . . ,ai−1) :R ai. Let C1, . . . ,Cr be the facets ofΣ. For each C∈ Σ, denote
byIC the following ideal of RC :

IC =

{

(a j | j < i,a j ∈ MC) :RC ai if ai ∈ MC;

0 if ai /∈ MC.

Then:

(i) For each C∈ Σ, we have(a1, . . . ,ai)∩RC = (a j | j ≤ i,a j ∈ MC).
(ii) For each C∈ Σ such that ai ∈ MC, we haveI∩RC = IC.
(iii) I= (0 :R ai)+∑r

l=1R·ICl .

Proof. This is a standard utilization of theZd-grading. For (i), takey∈ (a1, . . . ,ai)∩RC

to be homogeneous with respect to theZd-grading. Ifa j dividesy then becausey∈ MC,
we havea j ∈ MC. Thus (i) is proved.

For (ii), we see directly thatIC ⊆ I∩RC.
Take z∈ I∩RC which is Zd-graded. Sincezai ∈ (a1, . . . ,ai−1), in view of theZd-

grading, we havezai = waj for some j < i. But waj ∈ MC, so bothw anda j belong to
MC, hence using the projection fromR to RC, we getz∈ IC. Thus (ii) is proved.

For (iii), firstly the ideal on the right side of (iii) is contained inI. We prove the other
inclusion. Take an elementz∈ I which isZd-graded. Ifz∈ 0 : ai , there’s nothing to
do. Otherwise, there is a facetCl such that bothz,ai ∈ MCl . Hencez∈ I∩RCl = ICl by
(ii). �

The next theorem characterizes strongly Koszul toric face rings.

Theorem 5.4.LetΣ be a rational pointed fan inRd, M is a monoidal complex supported
on Σ. Let{a1, . . . ,an} be a standard system of generators ofM . Then the followings are
equivalent:

(i) k[M ] is strongly Koszul with respect to the sequence{a1, . . . ,an},
(ii) (a) for each i= 1, . . . ,n, we have0 :k[M ] ai = (ai1, . . . ,ai j), for some elements

ai1, . . . ,ai j in {a1, . . . ,an};
(b) for each facet C ofΣ, the ring k[MC] is strongly Koszul with respect to the

sequence{a1, . . . ,an}∩MC.

Proof. With Lemma 5.3.(iii), we see that part (ii) of the theorem implies part (i).
Assuming that we have (i). Then part (a) of (ii) is clear.
Consider a facetC of Σ, and a subsequence of{a1, . . . ,an} ∩ MC. Without loss of

generality we can assume this subsequence to bea1, . . . ,ai. We have(a1, . . . ,ai−1) :k[M ]

ai = (ai1, . . . ,aik) by (i).
Using Lemma 5.3.(i), the ideal(a1, . . . ,ai−1) :k[MC] ai = (ai l |ai l ∈ MC). This concludes

the proof of part (b). �
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Remark 5.5. Part (a) of (ii) in the above theorem is true if we require the idealAM in
Proposition 2.3, the “monomial part” ofI , to be generated by quadrics. However, the
converse is not true as the next example demonstrates.

Example 5.6. In R3 take six points with the following coordinates:
A1 = (2,0,0),A2 = (0,2,0),A3 = (0,0,2),A4 = (0,1,1),A5 = (1,0,1),A6 = (1,1,0).
Consider the rational pointed fan inR3 with three maximal conesC1,C2,C3, where

C1 is generated by the pointsA1,A2,A6, the coneC2 is generated byA3,A1,A5 and the
coneC3 is generated byA2,A3,A4 with the semigroup relationsA1A2−A2

6 = A2A3−A2
4 =

A3A1−A2
5 = 0.

TakeM1 to be generated byA1,A2,A6 and similarly we have two other maximal semi-
groupsM2 andM3 of a monoidal complex.
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Denote the residue class ofXi in the quotient rings ofk[X1, . . . ,X6] simply byxi . Then
k[M ] is homogeneous strongly Koszul with respect to the sequencex1,x2,x3,x4,x5,x6
because of Theorem 5.4. Indeed, part (b) of (ii) is true, because for example,k[M1] is
strongly Koszul with respect to the sequencex1,x2,x6.

Part (a) if (ii) is true because of the following two identities:
(i) 0 :k[M ] x1 = (x4)

(ii) 0 :k[M ] x4 = (x1,x5,x6)

and four other similar identities.
Note however that the monomialX1X2X3 belongs to the defining ideal ofk[M ] but

X1X2,X2X3 andX3X1 do not. This example shows that the “monomial part” of the defining
ideal of a strongly Koszul toric face ring need not to be generated by quadrics.

Corollary 5.7. Let ∆ be a simplicial complex on[n]. The following are equivalent:

(i) k[∆] is Koszul;
(ii) I∆ is generated by quadrics, or equivalently every minimal non-face of∆ has two

elements;
(iii) k[∆] is strongly Koszul.

Proof. The implication (i)⇒ (ii) is due to Fröberg [Fr] and (iii)⇒ (i) follows from [HHR,
Theorem 1.2]. We only need to prove that (ii) implies (iii).

In the case of Stanley-Reisner rings, all the ringsk[MC] are polynomial rings, so they
satisfy condition (ii)(b) of Theorem 5.4. We check condition (ii)(a), we can assume that
i = 1.
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Note that 0 :k[∆] X1 is generated by classes of monomials ofS= k[X1, . . . ,Xn]. Assume
thatq is a monomial ofSsuch thatX1q∈ I∆ andq /∈ I∆. BecauseI∆ is quadrics, there is a
variableXj dividing q such thatX1Xj ∈ I∆. This concludes the proof of the corollary.�

6. INITIALLY KOSZUL TORIC FACE RINGS

In the followings, we consider initially and universally initially Koszul algebras in the
sense of Blum [Bl, Definition 1.3] and Conca, Rossi, Valla [CRV, Definition 2.2].

Definition 6.1. Let R be a homogeneousk-algebra, anda1, . . . ,an ∈ R1. The ringR is
calledinitially Koszul(or i-Koszul) with respect to the sequence a1, . . . ,an if the set

F = {(a1, . . . ,ai) : i = 0, . . . ,n}

is a Koszul filtration forR in the sense of Definition 1.1.
We say thatR is universally initially Koszul(or u-i-Koszul) if R is i-Koszul with respect

to anyk-basis ofR1.

In this section, whenever we have a homogeneous quotient ring R= k[X1, . . . ,Xn]/I , it
is convenient to use the convention that i-Koszulness meansi-Koszulness with respect to
the sequenceX1, . . . ,Xn. Blum [Bl, Theorem 2.1] proved the following.

Theorem 6.2. Let> be the reverse lexicographic order induced by Xn > .. . > X2 > X1.
The following statements are equivalent:

(i) R= k[X1, . . . ,Xn]/I is i-Koszul;
(ii) R′ = k[X1, . . . ,Xn]/ in>(I) is i-Koszul;
(iii) I has a quadratic Gr̈obner basis with respect to> and if XiXj ∈ in>(I) for some

i < j then XiXl ∈ in>(I) for all i ≤ l < j.

In particular, i-Koszulness implies Koszulness, because the possession of a quadratic
Gröbner already does. The last property in the last theoremhelps to characterize i-Koszul
quotients of polynomial rings by monomial ideals.

Corollary 6.3. Let R= k[X1, . . . ,Xn]/I where I is a monomial ideal. The following state-
ments are equivalent:

(i) R is i-Koszul;
(ii) I is generated by quadrics and if XiXj ∈ I for some i< j then XiXl ∈ I for all

i ≤ l < j.

This result of Blum [Bl, Proposition 2.3] follows easily from the above theorem. From
the last corollary, we see that a Stanley-Reisner ringk[∆] of Example 2.1 is i-Koszul if
and only ifI∆ = 0, in other words∆ is the full simplex.

We now prove that homogeneous i-Koszul toric face rings mustbe isomorphic to i-
Koszul affine semigroup rings.

Theorem 6.4. Let Σ be a rational pointed fan inRd and M be a monoidal complex
supported onΣ. Assuming that{a1, . . . ,an} is a standard system of generators ofM . If
k[M ] is i-Koszul with respect to the sequence a1, . . . ,an, thenΣ is a cone, and hence k[M ]
is an affine semigroup ring.

In the proof of the theorem, we need the following lemma.
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Lemma 6.5. Under the assumptions of Theorem 6.4, if ai generates an extremal ray ofΣ
then(a1, . . . ,ai−1) : ai = (a1, . . . ,ai−1).

Proof. Note that from the i-Koszulness assumption(a1, . . . ,ai−1) : ai = (a1, . . . ,a j). If
j ≥ i, thenai ∈ (a1, . . . ,ai−1) : ai . Thusa2

i = bal for somel < i,b∈ ∪C∈ΣMC. As al 6= ai ,
consider the projection to the extremal ray spanned byai , we havea2

i = 0. This is a
contradiction. �

Proof. (of Theorem 6.4)
We only need to prove that all the extremal rays ofΣ belong to some face ofΣ. Assume

that this is not the case. Ifai1, . . . ,ait generate the extremal rays ofΣ with 1≤ i1 < .. . <
it ≤ n thenai1ai2 · · ·ait = 0 because there’s no face ofΣ containing all of them.

Of courseai2 · · ·ait ∈ (a1, . . . ,ai1−1) : ai1. From Lemma 6.5, we have thatai2 · · ·ait ∈
(a1, . . . ,ai1−1). This in turn impliesai3 · · ·ait ∈ (a1, . . . ,ai2−1) : ai2. So again from Lemma
6.5, we getai3 · · ·ait ∈ (a1, . . . ,ai2−1). Iterate this argument, in the end we haveait ∈
(a1, . . . ,ait−1−1). This is a contradiction and hence we are done. �

The following result is a consequence of Theorem 6.4.

Corollary 6.6. If k[M ] is a homogeneous u-i-Koszul toric face ring then k[M ] is a poly-
nomial ring.

Proof. From Theorem 6.4,k[M ] is an affine semigroup ring. The Corollary follows from
[Bl, Proposition 5.5], which says that affine semigroup rings which are u-i-Koszul must
be polynomial rings. �
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[BG] W. Bruns and J. Gubeladze,Polytopes, rings and K-theory. Springer Monographs in Mathematics,

Springer (2009).
[BGT] W. Bruns, J. Gubeladze and N. V. Trung,Normal polytopes, triangulations, and Koszul algebras.

J. Reine Angew. Math.485(1997), 123–160.
[BH] W. Bruns and J. Herzog,Cohen-Macaulay rings. Rev. ed.Cambridge Studies in Advanced Mathe-

matics39, Cambridge University Press (1998).
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