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ON THE KOSZUL PROPERTY OF TORIC FACE RINGS
DANG HOP NGUYEN

ABSTRACT. Toric face rings is a generalization of the concepts of affi@migroup rings
and Stanley-Reisner rings. We characterize toric facesriraying the Koszul, strongly
Koszul or initially Koszul property. Firstly, we computeetgraded Betti numbers of
the underlying field as a module over the toric face ring. We wakether given two
conditions, that the defining ideal of the toric face ring ttesmonomial part generated
in degree 2, and that for each cone of the supporting fan,dfregponding monoid ring
is Koszul, we can conclude the ring itself is Koszul. Then wwe @ full characterization
of strongly Koszul toric face rings. We also prove that aili Koszul homogeneous toric
face rings are in fact affine semigroup rings.

1. INTRODUCTION

Let k be a fixed field R a homogeneous affinealgebra. We say tha& is a Koszul
k-algebra if as arR-module,k has linear resolution. In this note, we consider various
properties of toric face rings which imply the Koszul prager

Let X be arational pointed fanin RY (d > 1 a natural number), i.& is a collection
of rational pointed cones Y which is closed under taking faces of cones, and the
intersection of any two cones of which is a common face ofelte® cones. Anonoidal
complex# supported ork is a collection of affine monoidslc indexed by elementS
of Z, such thatMc generate€ and the following compatibility condition is fullfilled: if
D CC e Z, thenMp = Mc N D. Starting with the work of Stanley, among other authors,
Bruns, Ichim, Koch and Romer in [IR] and [BKR] consideredddace rings of # over
k, denoted byk[.#], which are a generalization of affine semigroup rings andl&ya
Reisner rings. In some sense, toric face rings are detednbiyéhe “local” data encoded
by various monoid#/1c whereC €  and the “global” data encoded by the fan(For
instances see Proposition 2.3 below). For an algebraitmerd of affine semigroup
rings and Stanley-Reisner rings, see the book of Bruns amdogeBH] or Bruns and
Gubeladze[[BG], for a more combinatorial treatment of StgReisner rings see the
book of Stanleyi[Sia].

Among other results, the above authors get the generalizafi Hochster’s formula
for Betti numbers of Stanley-Reisner rings and a generalréma computing the initial
ideal of the defining ideal of a toric face ring using triaregidn - extending a theorem of
Sturmfels[[Stu], formulas for local cohomology of toric éagngs, and other things.

Assume thaRis a Koszulk-algebra. Considering the first sygyzy, it is easy to see that
R is necessarily defined by quadratic relations over somenpofyal ring. For Stanley-
Reisner rings, Froberg [Fr] proved that this is also sudfitifor R to be Koszul by using
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Taylor’s resolution. Later, the notion of Koszul filtrati®mvas defined by Conca, Trung
and Valla[CTV].

Definition 1.1 (Conca, Trung, Valla)A family .# of ideals ofR is said to be &oszul
filtration of Rif:

() every ideal of% is generated by linear forms;
(ii) the ideal 0 and the graded maximal ideal belongAo
(i) for every | € .# different from O, there exist3 € .7 strictly contained il and a
linear formx € | such thatl + (x) =1 andJ:1 € .#.

Note that a Koszul filtration, if it exists, does not contaie unit ideal. Conca, Trung
and Valla proved that a ring which has a Koszul filtration mostKoszul. This gives
another proof to the above result of Froberg, because sddse, the family of those
ideals, each of which is generated by some variables, fornoszW filtration. After
that, several related notions of Koszulness were introdluekerzog, Hibi and Restuccia
[HHR] defined strongly Koszul algebras. A homogenekiadgebra isstrongly Koszulf
its irrelevant ideal admits a system of generators of defjreamelyay, . .., a,, such that
for all increasing sequence<li; < ... <ij < n, the ideal(a;,, .. ~,ai,-,1) .1 is generated
by a subset ofay,...,an}. (This is a different but equivalent version of the strongly
Koszul property of Herzog, Hibi and Restuccia.)

Herzog, Hibi and Restuccia also proved that strongly Koafygbras are Koszul. On
the other hand, Blum_ [BI] and Conca, Rossi, Valla [CRV] imueed initially Koszul al-
gebrasRis initially Koszul(abbreviated i-Koszul) with respect to a sequeage. ., a, €
Ry, if the family of ideals# = {(ay,...,&):i=0,...,n} is a Koszul filtration ofR. Al-
gebras which are i-Koszul must also be Koszul, and in fagt #wen have the stronger
property of having a quadratic Grobner basis with respeet hatural order, see [CRV,
Theorem 2.4],[IBI, Theorem 2.1].

Restricted to the class of toric face rings, it is naturalgk: avhat conditions must be
satisfied by a monoidal complex so that its associated tade fing is a homogeneous
Koszul, strongly Koszul or i-Koszul algebra? To illustratdurns out that in the case of
Stanley-Reisner rings, the answers are quite simple. bra#gmt of the field, the Stanley-
Reisner ring is Koszul if and only if the simplical complexadlag complex, i.e. all the
minimal non-faces have two vertices (this result is due tibErg [F]). Moreover, in this
case, the ring is strongly Koszul, sée [HHR, Corollary 2&]Stanley-Reisner ring is i-
Koszul in the natural sense only if the simplicial complea fall simplex, as follows from
[Bl] Proposition 2.3]. But in the situation of monoidal colayxes.# which give rise to
Stanley-Reisner rings, for all con€sof the supporting faix, the corresponding monoid
Mc is someN!, which makes everything easier to handle. It would be maerésting
to see what happens in the general case, where no such dpgmhesis is made. For
results and problems about Koszul property of algebrascasged with polytopes, see for
example[[BGT] and [BG, Chapter 7].

This note is organized as follows. In Section 2, we recalltibsic theory of toric
face rings. We propose a natural condition on the generafdre underlying monoidal
complexes under which the corresponding toric face ringsstandard graded. We say
that the toric face ring is homogeneous if this conditionatistied. In Section 3, we
recall the natural grading associated with a monoidal cemahd a system of generators.
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We apply a method of Peeva, Reiner and Sturmfels [PRS], anzbgeReiner, Welker
[HRW] to compute the graded Betti numbers of the residue figlel the toric face ring.
In Section 4, we prove that if a homogeneous toric face ringpszul, then for each cone
of the supporting fan, the corresponding affine semigrong i$ also Koszul. We give
a counterexample showing that the converse is not true, when the defining ideal is
generated in degree 2. We propose the question whethernkierse would be true if the
“monomial part” of the defining ideal is generated in degredBis is one of the main
problems which motivate the content of this note. In Sectipwe characterize strong
Koszulness of toric face rings. To achieve this goal, we pi®a formula computing
the colon ideals appearing in the definition of strong Kosess via the various “local”
colon ideals. Finally, in Section 6, we prove that homogesaeKoszul toric face rings
are indeed affine semigroup rings. In particular, homogeséaric face rings which are
universally initially Koszul in the sense of Blum [BI] musgpolynomial rings.

We are grateful to Tim Romer for generously suggesting lerab and many insightful
ideas on the subject of this note. We want to express ourrgriank to Aldo Conca for
his inspiring discussions and comments.

2. NOTATIONS AND BACKGROUND ON TORIC FACE RINGS

Let k be a field,d > 1 a natural numbei. be a rational pointed fan iRY. In other
words,2 is a collection of rational pointed cones such that:

() if Ce ZandD is a face ofC thenD € Z;
(ii) for everyC,C' € Z,CNC' is a face of botlC andC'.

2 is calledsimplicialif each of its cone€ is generated by linearly independent vectors
in R9. A maximal element (with respect to inclusion) bfis called afacetof . A one
dimensional face of a cone @afis called arextremal ray

A monoidal complex# supported orx is a collection of affine monoid¥lc, whereC
varies inZ such that:

(i) Mc € CNnZf andRoMc = C;
(ii) for everyC,D € Z withD CC, Mp = McND.

For instances, takinlylc = CNZ9 for eachC we get a monoidal complex supported on
the fanz.

The toric face ring ovek associated with the monoidal complex supported ork,
denoted byk[.# ] is defined as follows. As le-vector space we set

kK#]= P k.
acUcesMc

The product on basis elements is given as follows:

@b _ taP  if for someC € = botha andb belongs tdVc;
10 otherwise.

Sometimes we writa instead of the basis elemegitof k[.#]. In that case, instead of
t2-t°, we writea- b, hence irk[.#], without too much confuse arised:
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a b a+b iffor someC € % botha andb belongs taVic;
~]o otherwise.

It is known thatR = k[.#] is an affine reduced commutatikealgebra with unit, which
corresponds tt. The Krull dimension ok[.#] equals to the maximal dimension of the
facets ofz, see for examplée [IR] of [BKR]. An important aspect is tha¥/| inherits the
79-grading from the embedding of the monoidal complex. Ev&fhygraded component
of k[.# ] hask-dimension less than or equal to 1.

The two basic examples of toric face rings are Stanley-Reigngs and affine semi-
group rings.

Example 2.1. Let A be a simplicial complex on the vertex §ef = {1,...,n}. Denote
by ey, ...,e, the standard basis vectors &f. For each facd of A, consider the cone
Cr generated by the vectoesi € F. It is clear that the collectior = {Cg,F € A} isa
rational pointed fan ifR". For eachF € A, chooseéMc. =Cr NZ", then we get a monoidal
complex supported oB, the toric face ring of which is exactly the Stanley-Reisrieg
k|A]. By definition, this is the quotient df{Xy, ..., X,] by the square-free monomial ideal
I generated by monomiafg;cc Xj whereG C [n],G ¢ A.

Example 2.2. Let M be an finitely generated submonoid? (d > 1). ChoosingE to
have only one facef = R>oM, andMc = M, the resulting toric face ring is isomorphic
to the affine semigroup ringM].

For eachC € Z, let Rc = k|Mc], which is naturally a subring dR. We have natural
surjectiondR — Rc defined by:

a H .
@ t* ifa belgngs taVic;
0 otherwise.

The homomorphismR: — R follows by R — R¢ is the identity orRc, in other wordsRc
is analgebra retractof R for everyC € .

Following [BKR], we say that the finite sé€ty, ...,an} is a system of generators of
if 8 € UcesMc for everyi € [n], and the subsdiay, . ..,a,} N Mc is a system of generator
of Mc for everyC € X. This system of generators gives a surjectpar8=K[Xy, ..., Xy —
R. Letl = Ker¢. For each con€ of Z, denotesc = K[X; : & € Mc|, we also have a map
¢c : S — k[Mc], whose kernel is denoted ly.

Denote byA , the following simplicial complex on the sé@t]: a subsef C [n] is a
face ofA , if and only if there exists some col®e > such that{a;, j € F} C Mc. The
following proposition (which is[[BKR, Proposition 2.3]) etvs the dependence bfon
A , and the “local” data about defining ideals.

Proposition 2.3. Denote by &, .. .,C; all the facets ok. Then
r
l=As+ ) Slc,
2,

where A, is generated by square-free monomigls-¢ Xj, for which G¢ A .
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Loosely speaking, consists of the “monomial par , and the “binomial part” con-
sisting of various “local” binomial ideals.

Our additional assumption in dealing with various Koszekeotions is thak[./]
possesses a standateyrading.

Definition 2.4. The finite se{ay, ..., an} is called astandard system of generatab.#

if for every facetC of %, the ringk[Mc] is a homogeneousalgebra which is generated in
degree 1 by{ay,...,an} N Mc. We callk[.#] ahomogeneous toric face ririf).# has a
standard system of generators.

Given a standard system of generatorsf theZ-gradings on the ringg[Mc| where
C € Z induce aZ-grading onk[.#]. Note that we do not requiréay,...,a,} N Mc to
minimally generates the graded maximal ideakflc]. The reason is in dealing with
strongly Koszul and initially Koszul properties, the mirahty will follow automatically.
We also do not require thB-grading to be compatible with the existitf§-grading, as
we can use the two gradings separately.

3. BETTI NUMBERS OF TORIC FACE RINGS

A homogeneousg-algebraR is Koszul if and only ifﬁi'?j(k) =0 for all i # j, where

Bif*j(k) = dim, Tor(k, k) are the Betti numbers dfas a graded®-module. Laudal and
Sletsjgel[LS] computed Betti numbers of affine semigrougsjrand the result was later
reproved and generalized in [PRS] and [HRW]. In this se¢timing the method em-
ployed in [PRS] and [HRW], we derive a formula for the gradesttBhumbers of the
ground fieldk as a module over the toric face ring. We will use the naturadiong asso-
ciated with a monoidal complex as definedlin [BKR].

In details, leZ be a rational pointed fan iRY and.# be a monoidal complex supported
onX with {ag,...,a,} being a system of generators. Use again the notation of Bitapo
2.3. Denote byB , the ideal ofS generated by all the binomials in Consider the
following monoidH associated to# and the system of generators. letdenote the
relation inN" such that ~ b if and only if X2 — XP € B_ 4. This relation is compatible
with vector sum in the sense that- b impliesa+c~ b+cforall a,b,c € N". LetH be
the set of equivalent classesMt/ ~ with the addition inherited from that of".

We say that a monoid igositiveif for elementsA, i of this monoid with + u =0, we
must havel = u = 0. We say that a monoicancellative with respect t0 if an equation
A +u = A inthe monoid implies thatt = 0. It is not hard to see thét is a commutative
positive monoid. Moreover, we have the following result @rhis Lemma 4.4 in|BKR].

Lemma 3.1. Denote the class of @ N" in H bya. We have:
() fa+c=b+cforabceN"then)X@—-XPel.
(i) His cancellative with respectt@
(i) fX2—XPeland X3, XP¢|thena=binH.

Itis easy to see th&=K[X,...,Xn] andR= k[.#| areH-graded. Note also th&'B_,
is exactly the monoid algebikdH| of H. In the case of Example 2.2, the monoidal com-
plex.# is a positive affine semigroud, we can chooséay,...,a,} to be the minimal
set of generators dfl. HereH =M andB 4 is the toric ideal defining[M]. In other
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words, theH-grading is the semigroup grading induced\yIn the case of Example 2.1,
we haveB , = 0 andH = N", theH-grading is simply the fine grading.

Denote byJ the ideall /B , of k|H]. Denote byeg,g = 1,...,n the standard basis
vectors inR". ThenJ is asemigroup ideabf k[H] in the sense that it is generated by
elementsy o € in H, whereG C [n] such that there is no face &fcontaining all the
ag,g € G. We know from Proposition 213 th&f.#| = k[H]/J.

For element? ,u € H, we say tha < pif A £ pandu —A € H. Then< makesH
into a partially ordered set. For eaghe H, denote by, the set of all chains of elements
o1 <...<a€HsuchthatG=ag < a; anda; < A = dj1.

We denote by\, ; the subset ofy, consisting of chains €= ap < o1 < ... < aj <
A = @iy in Ay such that for some & j < i, the elemenX?i+1-%  as element of the
group ringk[H], belongs tal. Note that for eacid € H, the set),,A, ; are simplicial
complexes. We denote b'}'j (Ay, D) 3:K) the j-th reduced, relative simplicial homology
with coefficient ink of the pair(A,,4, ;).

For each > 0,A € H, let BiR/\(k) denotes the bi-graded Betti number giforR(k, k),
of kas anH -graded?—modulei

Note that if in addition,{ay,...,a,} is a standard system of generators.4f then
there’s a function.| : H — Z mappingA =a < H to |A| which is the sum of coordinates
of a.

Proposition 3.2. With the above notations,
.35 (k) = dimHi—2(Ax, 85 3K),

foreveryA e Handi> 0.
In particular, if {a1,...,a,} is a standard system of generators faf then the follow-
ings are equivalent:
(i) K[.#]is a Koszul algebra;
(i) Hi—2(8y,0) 5k) =0foralli >0andA € H such thafA| > i.

Proof. Apply the same argument using the bar resolution as in thef pforheorem 2.1
in [HRW]. O

4. KOSZUL TORIC FACE RINGS

Let = be a rational pointed fan iR and.# be a monoidal complex supported Bn
Let {as,...,a,} be a standard system of generators#t We use again the notations
of Propositioi 2.8. Of courskf.#] is a standard gradddalgebra. We want to have a
characterization o and.# whenR = k[.#] a Koszul algebra. Naturally, we would try
to relate the Koszul property & with the Koszul property of the ring3: with C in %.

Recall that given an inclusion of graded rifgs_ S Ris called an algebra retract 6f
if there’s a homogeneous morphigmS— R (the retraction map) such thatestricts to
the identity onR.

Proposition 4.1. If k[.#] is Koszul then for any € Z, the ring KMc] is also Koszul.

Proof. This follows from a general fact: IR C Sis an algebra retract of homogeneous
k-algebras with the retraction map S— R thenSis Koszul if and only ifR is Koszul
andR has linear resolution as &module vias. Seel[OHH, Proposition 1.4]. OJ
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Remark 4.2. It is easy to see that Ris Koszul then = Ker¢ is generated by quadrics.
However in general, even when the rikidVc| is a Koszul algebra for each fadgéte
and the defining idedl is generated by quadratic polynomial$,#] is not necessarily
Koszul, as the next example shows.

Example 4.3. Takek = Q. Consider the points ifR® with the following coordinates
A1 = (2,0,0),A2 = (0,2,0),A3 = (0,0,2),A4 = (1,1,0),As = (0,1,1). The semigroup
ring generated by those 5 pointskiy, ..., Xs] /11 wherely = (X1Xp — X2, XoX3 — X2).
Let O = (0,0,0) be the origin ofR3.

Take the pointdg = (—1,—1,—1). Consider the rational pointed fan i&* with the
following facets, which are all simplicial cone®@A;A2A3, OA1AzAs, OAAs.

Ay
~ Ay

As

The toric face ring of this monoidal complex = k[Xg, ..., Xg]/I with the defining
ideall = I3+ (X4X6, XsXe). For exampleX; XoXs € | becauseé XoXe = Xo- (Xa X2 — X2) +
X4 - X4Xg. So the defining ideal is generated by quadratic polynomials.

The affine semigroup rings supported on the maximal coneshveinek[Xy, ..., Xs]/l1,
K[X1, X3, Xs] andk[Xo, Xg], are Koszul. In fact, in the reverse lexicographic ordetwit
X1 < X2 < ... < Xs, the polynomialg{X; X, — X2, XoX3 — X2} form a quadratic Grobner
basis forl;. Sok[Xy,...,Xs|/I1 is Koszul.

However, we can check by Macaulay 2 that the upper-left gaheoBetti table of the
maximal graded ideah of R considered aR-module is as follow:

012 3 4 5 6 7
total: 1 6 19 46 101 217 468 1016
0: 1 6 19 45 92 173 309 534
. . . 1 9 44 158 470
2 . . .. . 1 12

HenceRis not a Koszul algebra, becauséhas a non-linear second syzygy.

We are interested in the following question.
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Question 4.4.Let> be a rational pointed fan ifR%, .# is a monoidal complex supported
onZ. Let{a,...,an} be a standard system of generators 4f. Assume that the ideal
A, in Propositior 2.8 is generated by quadrics, and for evecef& ofZ, the ring KMc]

is a Koszul algebra. Is it true thaf k7] is a Koszul algebra?

We will provide in the following some evidences to expect #irraative answer to
this question, see the subsequent Corollary 4.8, ThebrdnRemark 5.5 and Theorem
[6.4. Note also that in the situation of Examplel 2.1, this tjaoess answered in positive
by Froberg’s theorem, which can be obtained from the inapiloms (ii) = (iii) = (i) of
Corollary[5.7. In the case of Example 2.2 whérés a cone, the question & priori
answered in positive.

Remark 4.5. On the other hand, it is not true that the idég} is generated by quadratic
monomials giverR being Koszul, as in the following example.

Example 4.6. Takek = Q and consider the points iR3 with the following coordinates
0=(0,0,0),A1=(2,0,0),A2 =(0,2,0),A3=(0,0,2),As = (1,1,0).

Consider the rational pointed fanit? with the following facetDA1 Ay, OA1 Az, OAAs.
Denote by.# the monoidal complex supported on this fan with the genesadb the
monoids corresponding to the above facets{#e Ay, As}, {A1,As}, {A2, As}. The toric
face ring of ., which isk[.Z] = k[X1, X2, X3, Xa] / (X1 X2 — X},X3X4), is Koszul. Indeed,
in the lexicographic order induced By > Xo > X3 > Xy, the set{ X1 X, — X},X3X4} isa
guadratic Grobner basis for the defining ideal of this ring.

However, the ideah , = (X3Xs, X1X2X3) is not generated by quadrics.

Aq
~ Ay

Proposition 4.7. Let < be a monomial on S K[Xy, ..., Xy and <; be the induced mono-
mial order on g, = k[Xj|aj € Mc], where G,...,C; are the facets of. Then:

(i) If1 has a quadratic Gobner basis with respect to a monomial ordeon S then
Ic, has a quadratic Gbbner basis with respect to the monomial ordgron &,
foreveryi=1,...,r.

(ii) If A 4 is generated by quadrics and for some monomial ordern S, the ideal
Ic, has a quadratic Gbbner basis with respect to the monomial ordgron &
forevery i=1,...,r, then | has a quadratic Gibner basis with respect ta.
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Proof. The two statements follow from the formula:

;
in<(l):A///+ S-in<i(|ci).
2
The proof of this is similar to the proof of [BKR, PropositiGr2]. 0J

Corollary 4.8. Under the hypothesis of Propositibn 4.7, assume in addttian.# ad-
mits{ay,...,ay} as a standard system of generators. Assume also thats"generated
by quadrics and for every= 1,...,r, the ideal t, has a quadratic Gobner basis with
respect to the ordex; on &,. Then K] is a Koszul algebra.

Note that ExamplE 416 shows that the converse of Propo#fibiis not true, because
in this case the ring[.#] has a quadratic Grobner basis with respect to the lex onder b
A 4 is not generated by quadrics.

5. STRONGLY KOSZUL TORIC FACE RINGS
Let us recall the notion of strongly Koszul algebras.

Definition 5.1 (Herzog, Hibi, Restuccia)Let R be a homogeneous algebra over a fleld
m is its graded maximal ideal. Suppose that the elemants. , a, belong tom, generate
m, and are homogeneous of degree 1. TRar calledstrongly Koszul with respect to
the sequencesa..., a, if for every 1<i; < ... <ij <n, the ideal(a;l,...,aijfl) L& s
generated by a subset {dy,...,an}.

Note that ifRis strongly Koszul with respect to the sequeage . . ,a, then{ay, ... ,an}
is a minimal set of generators far. Moreover, for every sequence<li; < ... <ij<n
and alll =1,..., |, the ideal(a;,,...,a,_,) : &, is generated by a subset {dy,...,an}.
Hence this is an equivalent rephrasing of the strongly Kiosation in [HHR].

The definition of the strongly Koszul property appears to épethdent on the order of
the sequence of generators. At least for affine semigrowgs ritmis is not the case. We
say that an affine semigroiyd is homogeneous M is a disjoint union

M = Uj>oM;
with Mg = {0},Mj+ M, C Mj4, for all j,I, andM is generated by;. The elements
of M;j are called elements of degr¢e The following theorem is due to Herzog, Hibi,
Restuccia [HHR, Proposition 1.4].

Theorem 5.2. Let M be a homogeneous semigroup, and lgt .a,a, be generators of
degree 1 of M. Then the following are equivalent:

(i) k|M] is strongly Koszul with respecttqa..,an;
(ii) the divisor poset of M is locally upper semimodular (alsdexdwonderful);
(i) the ideals(a) N (a;) are generated in degree 2 for al4 j.

Next we consider Stanley-Reisner rings as defined in Exagfildt is not hard to see
that if 1o is generated by quadrics thkjd| is strongly Koszul with respect to the sequence
X1,X2, ..., Xn. We will see from Corollary 517 that the converse is also true.
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In the case of toric face rings, the following lemma desaithe relation between the
colon ideals appearing in the definition of strong Koszune#h the various “local”
colon ideals.

Lemma 5.3. Assume thafay,...,a,} is a standard system of generators gf and1 <
i<n.Letd=(a,...,a-1) r&. LetG,...,C; be the facets df. For each Cc Z, denote
by J¢ the following ideal of B :

e (aj]j <i,ajeMc) r.a& ifaj € Mc;
o if a; ¢ Mc.

Then:

(i) ForeachCe Z, we haveay,...,a) NRc = (aj]j <i,aj € Mc).
(i) For each Ce % such that ac Mc, we havel NRc = Jc.
(i) =0 Rra&)+ Z[:lR-jcl.

Proof. This is a standard utilization of tH&®-grading. For (i), take/ € (ay,...,a)NRc
to be homogeneous with respect to #fegrading. Ifa; dividesy then becausg € Mc,
we havea; € Mc. Thus (i) is proved.

For (ii), we see directly theic C INRc.

Takez € 3N R which is Z9-graded. Sinceg € (ay,...,a_1), in view of the Z9-
grading, we haveg = wa; for somej < i. But wa; € Mc, so bothw anda;j belong to
Mc, hence using the projection froRito R, we getz € Jc. Thus (ii) is proved.

For (iii), firstly the ideal on the right side of (iii) is contaed inJ. We prove the other
inclusion. Take an elememte J which is Zd-graded. Ifz € 0 : &, there’s nothing to
do. Otherwise, there is a facgt such that bottz,a € Mc,. Hencez € N Rg = J¢ by

O

(ii).
The next theorem characterizes strongly Koszul toric faggst

Theorem 5.4.Let3 be a rational pointed fan ifRY, ./ is a monoidal complex supported
onZX. Let{a,...,an} be a standard system of generators#f. Then the followings are
equivalent:

(i) K[.#] is strongly Koszul with respect to the sequefag ... ,an},
(i) (a) for eachi=1,...,n, we haved i 4| & = (&,,-..,&,), for some elements
&y, ;0N {a1,...,an};
(b) for each facet C ok, the ring KMc]| is strongly Koszul with respect to the
sequencéday,...,an} NMc.

Proof. With Lemmd5.3B.(iii), we see that part (ii) of the theorem lrap part (i).
Assuming that we have (i). Then part (a) of (ii) is clear.
Consider a face€ of X, and a subsequence @&;,...,an} N Mc. Without loss of
generality we can assume this subsequence @ be.,a. We have(ay,...,a-1) K]
Using Lemma5.3.(i), the idedby, ..., a 1) iyme) & = (& |&, € Mc). This concludes
the proof of part (b). 0J
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Remark 5.5. Part (a) of (ii) in the above theorem is true if we require ttieal A , in
Propositior 2.3, the “monomial part” df to be generated by quadrics. However, the
converse is not true as the next example demonstrates.

Example 5.6.In RS take six points with the following coordinates:

A1 =(2,0,0),A2=(0,2,0),A3=(0,0,2),As=(0,1,1),As = (1,0,1),As = (1,1,0).

Consider the rational pointed fan &° with three maximal cone€;,Cy,Cs, where
C; is generated by the points;, Ay, As, the coneC; is generated byz, A1, As and the
coneCs is generated b, Az, Ay with the semigroup relation Ay — A2 = ApAg — A7 =
AsA — AZ=0.

TakeM; to be generated &, Ao, Ag and similarly we have two other maximal semi-
groupsM, andM3 of a monoidal complex.

O

Denote the residue class Xfin the quotient rings ok[Xy, ..., Xs| simply byx;. Then
k[.#] is homogeneous strongly Koszul with respect to the sequenae, X3, X, Xs, Xg
because of Theorem 5.4. Indeed, part (b) of (i) is true, beedor examplek[M;] is
strongly Koszul with respect to the sequenges, Xg.

Part (a) if (ii) is true because of the following two idergsi

(i) O X1 = (Xa)
(i) Ok Xa = (X1,X5,%6)
and four other similar identities.

Note however that the monomixhX,X3 belongs to the defining ideal &f.#] but
X1 X2, XoX3 andX3X; do not. This example shows that the “monomial part” of therdegj
ideal of a strongly Koszul toric face ring need not to be gatest by quadrics.

Corollary 5.7. LetA be a simplicial complex ofn|. The following are equivalent:
(i) K[A] is Koszul;
(ii) Ia is generated by quadrics, or equivalently every minimal-faare ofA has two
elements;
(iii) Kk[A] is strongly Koszul.

Proof. The implication (i)=- (ii) is due to Froberg [Fr] and (iii}= (i) follows from [HHR,
Theorem 1.2]. We only need to prove that (ii) implies (iii).

In the case of Stanley-Reisner rings, all the rikf}dc] are polynomial rings, so they
satisfy condition (ii)(b) of Theorem 5.4. We check conditi@i)(a), we can assume that
i=1.
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Note that Oy X1 is generated by classes of monomialsSet K[X1,...,Xn]. Assume
thatg is a monomial ofSsuch thatX;q € Ip andq ¢ I5. Becausé, is quadrics, there is a
variableX; dividing g such thafX;Xj € Ia. This concludes the proof of the corollary(]

6. INITIALLY KOSZUL TORIC FACE RINGS

In the followings, we consider initially and universallitially Koszul algebras in the
sense of Blum[Bl, Definition 1.3] and Conca, Rossi, Valla YGRefinition 2.2].

Definition 6.1. Let R be a homogeneousalgebra, andy,...,a, € Ry. The ringR is
calledinitially Koszul(or i-Koszu) with respect to the sequenceg a ., a, if the set

ZF ={(ag,...,a):1=0,...,n}

is a Koszul filtration forR in the sense of Definition 1.1.
We say thaR is universally initially Koszu(or u-i-Koszu) if Ris i-Koszul with respect
to anyk-basis ofR;.

In this section, whenever we have a homogeneous quotignRra k[Xy, ..., X,]/I, it
is convenient to use the convention that i-Koszulness mieldoszulness with respect to
the sequenck;y, ..., X,. Blum [BI, Theorem 2.1] proved the following.

Theorem 6.2. Let > be the reverse lexicographic order induced Qy>X... > Xy > Xj.
The following statements are equivalent:
(i) R=Kk[Xg,...,Xq]/Il is i-Koszul;
(i) R =K[Xq,...,Xn]/in= (1) is i-Koszul;
(iii) | has a quadratic Gbbner basis with respect to and if XX; € in- (1) for some
i <jthen XX €in-(l)foralli <I < j.

In particular, i-Koszulness implies Koszulness, becahsepbssession of a quadratic
Grobner already does. The last property in the last thetwedps to characterize i-Koszul
guotients of polynomial rings by monomial ideals.

Corollary 6.3. Let R=K[Xy,...,Xn]/l where | is a monomial ideal. The following state-
ments are equivalent:

() Risi-Koszul,
(i) 1is generated by quadrics and ifX; € | for some i< j then XX < | for all
<l <j.

This result of Blum[[BI, Proposition 2.3] follows easily frothe above theorem. From
the last corollary, we see that a Stanley-Reisner kifg of Example 2.1l is i-Koszul if
and only ifly = 0, in other wordg\ is the full simplex.

We now prove that homogeneous i-Koszul toric face rings rbasisomorphic to i-
Koszul affine semigroup rings.

Theorem 6.4. Let 3 be a rational pointed fan irR% and.# be a monoidal complex
supported ork. Assuming thafay,...,an} is a standard system of generators #f. If
k[.#| is i-Koszul with respect to the sequenge.a. , a,, thenX is a cone, and hence.l¢# |

is an affine semigroup ring.

In the proof of the theorem, we need the following lemma.



ON THE KOSZUL PROPERTY OF TORIC FACE RINGS 13

Lemma 6.5. Under the assumptions of Theorem| 6.4, ij@anerates an extremal ray &f
then(ay,...,&-1) : & = (a1, ai_1)-

Proof. Note that from the i-Koszulness assumpti@i,...,a-1) : a = (ag,...,a;). If
j>i,theng € (ag,...,8-1) : &. Thusa,-2 = bag for somel <i,b € UcesMe. Asa # &,
consider the projection to the extremal ray spanne@byve havea,-2 =0. Thisis a
contradiction. O

Proof. (of Theoreni6.4)

We only need to prove that all the extremal ray& dfelong to some face &. Assume
that this is not the case. &_,..., &, generate the extremal raysbfwith 1 <i; < ... <
it <nthenaj,a,---a, = 0 because there’s no face dtontaining all of them.

Of coursea;, ---a;, € (a1,...,a,-1) : &,. From Lemma6J5, we have that,---a;, €
(ag,...,a,—-1). Thisinturnimpliesa;,--- &, € (ay,...,8,-1) : &,. SO again from Lemma
6.5, we geta;,---a, € (ai,...,a,-1). lterate this argument, in the end we hayec
(aq,...,&, ,—1). Thisis a contradiction and hence we are done. O

The following result is a consequence of Theotem 6.4.

Corollary 6.6. If k[.#] is a homogeneous u-i-Koszul toric face ring thémw& is a poly-
nomial ring.

Proof. From Theorerh 6]4[.#] is an affine semigroup ring. The Corollary follows from
[BI] Proposition 5.5], which says that affine semigroup singhich are u-i-Koszul must
be polynomial rings. O
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