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INSCRIBING A REGULAR OCTAHEDRON INTO POLYTOPES

ARSENIY AKOPYAN AND ROMAN KARASEV

Abstract. We prove that any simple polytope (and some non-simple polytopes) in R
3

admits an inscribed regular octahedron.

1. Introduction

The famous theorem of Schnirelmann asserts that for every closed simple piece-wise
smooth curve γ there exists a square Q such that all four vertices of Q are on γ.
In the thesis of Vladimir Makeev [1] the following theorem was proved (reproved and

generalized for higher prime power dimensions in [2, 4]):

Theorem 1.1. Let H ⊂ R
3 be an image of some smooth embedding of S2. Let C be some

Z3-symmetric octahedron. Then there exists an octahedron C ′ ⊂ R
3 similar to C with all

its vertices lying on H.

Remark 1.2. The word similar here means equivalent up to a similarity transform with
positive determinant. By inscribing a polytope into a surface H we will always mean
finding its similar copy such that all its vertices lie on H .

It is known (see the books [5, 7] for example) that squares in the plane can be also
inscribed into any polygonal simple curve; the approximation by smooth curves and going
to the limit works well in this case. The key feature here is that if you look at the square
from some direction in the plane then you do not see one of its vertices.
The situation is different even for regular octahedra in R

3: One can see all the vertices
from some directions. Thus we have to be careful when going to the limit and this is
the main content of this paper. Note that in the plane there exist direct proofs [6] of the
Schnirelmann theorem for polygonal curves, while in this paper we cannot avoid using
the smooth case and going to the limit.
The main result of this paper is:

Theorem 1.3. Suppose P is a simple polytope in R
3. Then there exists a regular octa-

hedron inscribed into ∂P .

Remark 1.4. A weaker result for nonsimple polytopes is Theorem 4.4 in Section 4.

Remark 1.5. We only prove this theorem for inscribing a regular octahedron. The case of
any Z3-symmetric octahedron (as in [2, 3]) therefore remains open.
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2. Approximation of ∂P by smooth surfaces

We are going to use the following way to approximate a polytope by smooth bodies:

Definition 2.1. Let Pε be the union of all ε-balls that are contained in P

Pε =
⋃

Bε(x)⊆P

Bε.

The body Pε has a smooth boundary and admits an inscribed regular octahedron.
Moreover in [2, 3] it is proved that there is a nontrivial Z3-equivariant 1-homology class (in
modulo 3 homology) of such octahedra in the configuration space of all octahedra, which
is naturally isomorphic to the space of similarity transforms with positive determinant
S3 = R

+ × R
3 × SO(3). The proof in [2, 3] actually was in terms of some relative

cohomology, which is actually the same as the codimension 1 compact support cohomology
of S3/Z3, the latter being Poincaré dual to the 1-dimensional homology of S3/Z3.
The group Z3 ⊂ SO(3) here permutes the coordinates and corresponds to cyclic per-

mutations of the three axes of the octahedron.
Now let ε tend to zero. If the diameters of the inscribed octahedra of Pε do not tend

to zero, then we obtain an inscribed octahedron for P by the standard compactness
considerations. Assume the contrary: the maximum diameter of inscribed octahedra
for Pε is at most δ(ε) and lim

ε→+0
δ(ε) = 0. Denote the set of inscribed octahedra for Pε by

Iε ∈ S3.
Since δ(ε) tends to zero the octahedra from Iε tend (say, in Hausdorff metric) to points

at the boundary of P . First observation is that they obviously cannot tend to a relative
interior point of a facet. Moreover, the detailed analysis near an edge shows that for small
enough ε the octahedra in Iε cannot tend to an interior point of an edge. Indeed, if we
project ∂P along an edge then we obtain a plane angle A, the smoothening ∂Pε being
projected to a smoothened plane angle Aε. Let C be an octahedron inscribed into Pε;
it projects to a quadrilateral or hexagon C ′ inscribed into Aε. Now it remains to note
that C ′ is centrally symmetric and we cannot see one of its vertices from any direction
(of course, the invisible vertex depends on the direction), while we can see the entire Aε

from some directions. This is a contradiction and we conclude:

Lemma 2.2. If there is no inscribed octahedron in P then all octahedra in Iε tend to
vertices of P in Hausdorff metric. For small enough ε the family Iε becomes a disjoint
union of the sets Iε(v), corresponding to different vertices v ∈ P .

In particular the following is true:

Lemma 2.3. There exists a vertex v, such that for arbitrarily small ε the octahedra Iε(v)
(inscribed into Pε near v) carry a nontrivial Z3-equivariant 1-homology.

This is because the sum of the homology classes of inscribed octahedra corresponding
to vertices is nonzero. Thus we have to study the situation near the vertices of P . More
precisely, we have to consider solid angles A(v) of corresponding vertices of P and their
smoothenings Aε(v) (not depending on ε > 0 essentially because of a possible homothety).
We want to describe the Z3-equivariant 1-homology of the set of octahedra inscribed

into every Aε(v). The configuration space S3 of all octahedra is homotopy equivalent to
SO(3) and it has trivial homology modulo 3 in dimensions 1 and 2; the Z3-equivariant
1-homology modulo 3 (the homology of S3/Z3) is therefore equal to H1(Z3;F3) = F3.
We choose the generator of H1(S3/Z3;F3) to be equal to the 1-homology of octahedra
inscribed into a generic smooth convex body.
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The homology class of inscribed octahedra in Aε(v) is well defined in the case when
there are no arbitrarily large octahedra inscribed in Aε; in this case it corresponds to the
well defined compact support cohomology class, which is the relative Euler class of certain
vector bundle and its section, see [2]. Using an appropriate homothety we conclude that
fixed ε and arbitrarily large octahedron is the same as arbitrarily small ε and a fixed size
octahedron. By compactness considerations we conclude the following:

Lemma 2.4. If Aε(v) has no well defined homology class of inscribed octahedra then there
exists an octahedron inscribed into the original angle A(v).

Definition 2.5. Call a solid angle A special if it admits an inscribed octahedron.

Denote the configuration space of all congruence classes (SO(3)-orbits) of solid angles
(with n ≥ 3 facets) byAn, and denote the subset of special anglesAn

S
. From the continuity

of the homology and cohomology we have a locally constant function

ϕ : An \ An

S
→ F3,

which assigns to a solid angle A the 1-homology of octahedra (divided by the generator
of H1(S3/Z3;F3)) inscribed into the smoothened solid angle Aε.
Returning to the original problem we have the following options:
a) P has a special angle. In this case it already has an inscribed octahedron.
b) If (the sum is over all vertices in P )

(2.1)
∑

v∈P

ϕ(A(v)) 6= 1

then P admits an inscribed octahedron. This follows from summing up the homology
classes.
Note that for non-angular solid angles A (the definition of non-angular is given in [2])

there are no inscribed octahedra and the value ϕ(A) is zero. In particular, every solid
angle close enough to a halfspace has ϕ(A) = 0.

3. Proof of Theorem 1.3

If the polytope P is simple then we deal with A3
S
⊂ A3. Taking into account the

observations in the previous section, we see that to prove Theorem 1.3 it is enough to
prove the following lemma (because in this case the left hand part of (2.1) vanishes):

Lemma 3.1. The set A3 \ A3
S
is arcwise connected.

The proof of Lemma 3.1 will follow from the description of all solid angles that admit
an inscribed octahedron:

Lemma 3.2. A solid angle A is circumscribed around an octahedron if and only if it is
possible to place its correspondent spherical triangle v1v2v3 in the interior of the regu-
lar spherical triangle t1t2t3 with |t1t2| = π/3 in a following way: the vertices v1 and t1
coincide, the vertex v2 lies on the segment t1t2, and v3 lies inside the triangle t1v2t3.

t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1t1 t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2t2

t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3t3

v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1v1

v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2v2

v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3v3

Fig. 1.
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Proof. Let us see how an octahedron C could be inscribed into A. There are two alter-
natives:
Case 1: Some three vertices of C are on one facet of A, two are on the other facet, and

one is on the third facet.
Case 2: Every facet of A contains two vertices of C.
There are other degenerate cases, but they all are limit cases of these two cases.
Denote the vertices of the octahedron by a, b, c, a′, b′, and c′ (see Figure 2).
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Fig. 2.

Consider the first case. Suppose one of the facets of the angle A contains the facet a′b′c′,
the second facet contains the edge ab, and the third facet contains the vertex c.
Denote the vertex of the angle A by v. It is easy to see that the common edge of the

first and the second facets of A is parallel to the edge ab of C, because both facets are
parallel to ab. Without loss of generality we may assume that the point b is closer to v
than a. Let v1 be the vertex of the spherical triangle that corresponds to the common
edge of the first and the second facet of A, v2 correspond to the third and the second
facet, and v3 is the remaining vertex (see Figure 3).
Let t1, t2, and t3 be the vertices of the regular spherical triangle that corresponds to

the vectors
−→
ba,

−→
c′b′, and

−→
a′c.
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Fig. 3.

Denote by v′ the point where the edge v3 and the plane abc intersect (Figure 3). Obvi-
ously, v′c is parallel to the edge v2. Since v

′c does not intersect the interior of the triangle

abc it follows that the vector
−→
v′c lies “between” the vectors

−→
ba and

−→
bc. Therefore on the

sphere the vertex v2 lies on the segment [t1, t2].
Consider the plane α of the third facet that contains the point c of the octahedron.

It contains the line cv′ and does not intersect the octahedron. This means that α lies
“between” the planes v′ca′ and v′ca (that coincide with the plane abc). The line v2t3 (on
the sphere) corresponds to the plane v′ca′ and the line t1v2 corresponds to the plane v′ca.
Therefore the third facet corresponds to a line “between” v2t1 and v2t3.
It is clear that the second facet corresponds to the line passing through t1 that lies

“between” [t1, t2) and [t1, t3). Therefore the point v3 lies inside the triangle t1v2t3.
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To prove the lemma in the other direction we note that for any triangle from the
statement of the lemma it is possible to construct an inscribed octahedron by the way
depicted in Figure 3.
Consider the second case. Without loss of generality we may assume that the first

facet of A contains the edge ab of the octahedron, the second facet contains the edge ca′,
and the third facet contains the edge b′c′. This means that extensions of the sides of the
spherical triangle △v1v2v3 pass through the vertices of △t1t2t3 (see Figure 4).
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Fig. 5.

Let us show that △v1v2v3 can be placed in △t1t2t3 in the proper way. Since the area
of △v1v2v3 is less than the area of △t1t2t3 it follows that one of the angles of △v1v2v3
is less than ∠t2t1t3 (note that △t1t2t3 is regular). Without loss of generality we may
assume that this angle is ∠v2 and the triangle v1v2v3 is placed in t1t2t3 in the way shown
in Figure 4 (the points t1 and v3 are on the same side of the line v1v2).
Choose a point t′1 so that |t′1v2| = |t1t2| and ∠t′1v2t3 = ∠t1t2t3; and choose a point t′3 on

the ray [v2, t3) so that |t′3v2| = |t1t2| (Figure 5). Note that ∠t3v2t1 > ∠t3t2t1. Therefore
the segment [t′1, v2] intersects the segment [t1, v3], thus giving the inclusion △v1v2v3 ⊂
△t′1v1v2. We obtain that △v1v2v3 is positioned in the proper way inside △v2t

′
1t

′
3, which

is congruent to △t1t2t3. �

Lemma 3.3. In Lemma 3.2 we may assume that |v1v2| ≥ |v1v3| ≥ |v2v3|.

Proof of Lemma 3.3. If |v1v3| > |v1v2| then reflect △v1v2v3 with respect to the bisector of
∠v2v1v3 and the triangle v1v

′
2v

′
3, which lies in △t1t2t3 in a proper way, because v′2 ∈ [v1, v3]

and △v1v2t3 ⊂ v1v
′
3t3.

If |v2v3| > |v1v3| then reflect △v1v2v3 with respect to the perpendicular bisector of the
segment [v1, v2]. Denote by v′3 the image of v3. We have

∠v′3v2v1 = ∠v3v1v2 < ∠t3v1v2 < ∠t3v2v1.

Since |v2v3| > |v1v3| we have

∠v′3v1v2 = ∠v3v2v1 < ∠v3v1v2 < ∠t3v1v2.

Therefore the “rays” [v1, v
′
3) and [v2, v

′
3) are directed into the interior of △t1v2t3 and the

point v′3 lies inside this triangle.
Using this two kinds of operations we can rearrange the side lengths of the △v1v2v3 in

the required order. �

Corollary 3.4. If all facet angles of a solid angle A ∈ A3 are less than π/6 then A ∈ A3
S
.

If one facet angle of a solid angle A ∈ A3 is greater than π/3 then A ∈ A3 \ A3
S

Now we make the final step:

Proof of Lemma 3.1. Consider the triangle T corresponding to a solid angle A ∈ A3 \A3
S
.

Let T = △v1v2v3 and |v1v2| ≥ |v1v3| ≥ |v2v3|. Let T0 be the regular triangle t1t2t3 with
sides length π/3.
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We are going to show how to increase the sides of the triangle T and obtain a triangle
with a side greater than π/3 (the set of triangles of this kind is obviously arcwise connected
and by Corollary 3.4 belongs to the set A3 \ A3

S
).

Suppose all sides are less than π/3. Let us try to place the triangle T into the right
triangle T0 in the way prescribed by Lemma 3.3. The only way that makes the position
not proper is that v3 is outside △v1v2t3, which is possible only if the segment v1v3 goes
outside the segment v2t3. From Corollary 3.4 it follows that |v1v2| ≥ π/6 and therefore
∠v1v2t3 is acute. Now we increase the length of the side v1v3 up to |v1v2| preserving the
angle ∠v2v1v3. The position of △v1v2v3 remains not proper (as required by Lemma 3.3).
Now we start to increase the length of the sides v1v2 and v1v3 in such a way that they

remain equal during the process. The angle ∠v1v2v3 will increase while the angle ∠v1v2t3
will decrease during this process. Hence the point v3 will remain outside △v1v2t3. Finally
we obtain an isosceles triangle with two sides grater than π/3.
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Fig. 6

�

4. The case of non-simple polytopes

In this case we have a weaker analogue of Lemma 3.2. We again associate a solid
angle A with its spheric convex polygon and denote T0 the regular spherical triangle with
side length π/3.

Lemma 4.1. If A ∈ A \ AS then some congruence takes the spherical polygon of A
inside T0.

Proof. Consider a regular tetrahedron Θ formed by some four facets of C. Look at Θ
from the vertex of A (it cannot be inside Θ), there are two alternatives:
Case I: We see some vertex of Θ. Denote by B the solid angle of this vertex, its spherical

triangle is congruent to T0. Let us make a small perturbation of A keeping C inscribed
into X and making the intersection ∂A ∩ ∂B transversal.
Let ∂B consists of three flat angles B1, B2, and B3. Every intersection Xi = A ∩ Bi is

a convex set containing the vertex s of Bi and having three vertices x1, x2, and x3 of the
octahedron C on its boundary. Consider the facet B1, in this case x1, x2 and x3 is the
triple of verticies a, b′ and c (Figure 7)
Note that a and c are on the sides of B1 and the segments [a, b′] and [b′, c] are parallel

to the sides of B1, so sab′c is a parallelogram. There exists a support line ℓ1 to X1 passing
through b′ in the plane of B1. The points a, c, and s are on the one side of ℓ1 and the line ℓ1
separates X1 from infinity, except for the case when ℓ1 is parallel to a side of B1. But the
latter situation is degenerate and can be excluded by a small perturbation. Analogues
statement holds for facets B2 and B3.
Thus ∂A ∩ ∂B is bounded and after the translation that identifies the vertices of A

and B the whole solid angle A will get inside B. This is true after an arbitrarily small
perturbation of A, so its is was true for the original A by the continuity.
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Fig. 7.

Case II: We see all vertices of Θ. But in this case we do not see the vertex of C that
corresponds to the farthest in the pair of edges of Θ that intersect as we see from the
vertex of A. �

It makes sense to make a definition:

Definition 4.2. Denote A0 ⊂ A the set of solid angles that cannot be put into T0 by
a congruence.

Remark 4.3. A careful analysis of Lemmas 3.2 and 3.3 shows that A3 ∩ A0 6= A3 \ A3
S
.

It is sufficient to take T = T0 and shrink one of its sides to the midpoint of that side
slightly.

Theorem 4.4. Suppose P is a polytope in R
3 such that all its solid angles are in A0.

Then there exists a regular octahedron inscribed into ∂P .

Proof. It remains to show that any A ∈ A0 can be deformed to a halfspace inside A0. We
can make a strong monotonic (monotonic with respect to inclusion) deformation of A to
a halfspace, and obviously A will remain in A0 under such deformation. �
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