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Abstract. In this paper we founded a formal system of second order arith-
metic 〈P (N), +,×, 0, 1,∈〉 by extending the operations +,× on natural num-

bers to the operations on finite sets of natural numbers. We design a new

algorithm on the congruence classes to obtain a recursive formula of the set
sequence T ′

i which approaches the set of all numbers a making a2 + 1 primes.

Considering that the number of elements |T ′
i | of the set sequence T ′

i is strictly
increasing and the cardinal function |T ′

i | is continuous with respect to the or-

der topology of T ′
i , we proved that there are infinite many primes of the form

a2 + 1. Finally, we extend this result to attack the problem of prime infinity
in general polynomials.

1. Introduction

It is an simple and longstanding problem, whether a polynomial function of
natural number a assumes an infinitely many primes [1][2][3].

In 1837, G.L.Dirichlet had proved that if a and b are relatively prime positive
integers, then the arithmetic progression an + b contains infinitely many primes[4].
This is the only non-trivial solution known.

Like twin prime conjecture, it has never been proved that a simple quadratic
polynomial a2 + 1 will represent infinitely many primes. At the 1912 International
Congress of Mathematicians in Cambridge, Edmund Landau listed four basic prob-
lems about primes, this is fourth problem, and said they are ”unattackable at the
present state of science”.

In 1973, Chinese mathematician J.R.Chen had proved that for infinitely many
primes p the number p + 2 is either prime or a product of two primes[5].

In 1978, H.Iwaniec had proved similar result that there are infinitely many nat-
ural numbers a such that a2 + 1 is the product of at most two primes[6].

Both results are the nearest approach to the extremely difficult prime conjecture
until now. They were obtained via analytic number theory and modern sieve the-
ory. Both results are far from proving those conjectures, the well–known ”parity
problem” and the problem of estimating error items in modern sieve theory prevent
further progress[1].

In this paper we return to the discrete approach, and consider those conjectures
from a different angle or measure.

2. A formal system

First of all we give some operations on finite sets of natural numbers.

http://www.paper.edu.cn

Date: November 22, 2006. 
2000 Mathematics Subject Classification. Primary 11A41; Secondary 11B83. 
Keywords and phrases. primes in polynomials, sieve method, limit of set sequences, Godel 
completeness theorem, Ross-Littwood paradox. 
 

1 



2 FENGSUI LIU

Let
A = 〈a1, a2, . . . , ai, . . . , an〉,
B = 〈b1, b2, . . . , bj , . . . , bm〉

be the arbitrary finite sets of natural numbers, we define

A + B = 〈a1 + b1, a2 + b1, . . . , ai + bj . . . , an−1 + bm, an + bm〉,
AB = 〈a1b1, a2b1, . . . , aibj . . . , an−1bm, anbm〉.

Let A\B be the set subtraction.
Define the solution of the system of congruences

A ≡ 〈a1, a2, . . . , ai, . . . , an〉 mod a,

B ≡ 〈b1, b2, . . . , bj , . . . , bm〉 mod b

be
X ≡ D ≡ 〈d11, d21, . . . , dij , . . . , dn−1m, dnm〉 mod ab.

Where x ≡ dij mod ab is a solution of the system of congruences x ≡ ai mod a
and x ≡ bj mod b. By Chinese remainder theorem the solution X ≡ D mod ab is
computable and unique.

Now, we had founded a model of the second order arithmetic

〈P (N),+,×, 0, 1,∈〉,
where N is the set of natural numbers and P (N) is the power set of N [7].

Mathematicians assume that 〈N,+,×, 0, 1〉 is the standard model of Peano the-
ory PA, similarly, we assume that 〈P (N), N, +,×, 0, 1,∈〉 is the standard model
of the theory of second order arithmetic PA + ZF , which is the sum set of Peano
theory PA and set theory ZF .

When the set 〈a〉, 〈b〉 consists of the single element a,b, by the definition

〈a〉+ 〈b〉 = 〈a + b〉,
〈a〉〈b〉 = 〈ab〉,

we may identify the set 〈a〉 of single element with the number a, 〈a〉 = a. So that,
by lifting the type of single element we may reduce the second order model

〈P (N), N, +,×, 0, 1,∈〉,
to be a first order model

〈P (N),+,×, 〈0〉, 〈1〉,∈〉.
Thus the reasoning in the second order arithmetic P (N), N is formal. We may
isomorphic embed the first order model of natural numbers N in this first order
model P (N).

Below we use P (N) to denote the second order formal system

〈P (N), N, +,×, 0, 1,∈〉.
Now, the sets of natural numbers are individuals in the second order formal

system P (N). An individual determined not only includes all elements in him but
also includes all information of distributions of its elements.

Usually a predicate R(a) in N corresponds to an individual {a : R(a)} in P (N),
which is called an interpretation or model of the predicate R(a).

In the first order formal system N , there are many algorithms for computing a
natural number and proving its property. Example Euclid’s algorithm for comput-
ing the greatest common divisor gcd(a, b) and the sieve method of Eratosthenes for
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computing primes less than a given natural number x. In the second order formal
system P (N), we will design more algorithms to compute a set of natural numbers
and to prove its property.

In the first order system of real numbers 〈R,+,×, 0, 1〉 the limit lim xi of a
numerical sequence xi may determine a number and its property, similarly, in the
second order system P (N) we will design a set sequence T ′i , its limit lim T ′i may
determine a set of some primes, example the set of all primes of the form a2 + 1,
and its infinity or not.

The second order language 〈+,×,∈〉 has great expressive power. The theory of
second order arithmetic PA+ZF is powerful and extremely flexible, in this theory
we try more deeply to discuss the sets of natural numbers.

We do not discuss further this formal system in view from logic[8].

3. A recursive formula and some elementary conclusions

Let pi be i-th prime, p0 = 2.
For any prime pi > 2, we consider the divided relation pi | a2 + 1, namely, the

congruence
a2 + 1 ≡ 0 mod pi.

This is a quadric congruence, by Euler’s criterion we easy prove that −1 is a
quadratic residue of the prime pi if and only if pi ≡ 1 mod 4. If −1 is not a
quadratic residue of the prime pi, then the prime pi does not divide a2 + 1, we
overlook the prime pi.

list the primes qj of the form 4k + 1,

5, 13, 17, 29 . . . , qj , . . . .

Let
X ≡ Bj mod qj

be the solution of the congruence

a2 + 1 ≡ 0 mod qj .

Example:

B1 ≡ 〈2, 3〉 mod 5,
B2 ≡ 〈5, 8〉 mod 13,

B1 ≡ 〈4, 13〉 mod 17,

B1 ≡ 〈12, , 15〉 mod 29,

Let

mi+1 =
i∏
0

qj .

From the set of all even numbers x ≡ 0 mod 2 we delete the congruence classes
Bj mod qj successively, and obtain the congruence class Ti+1 mod mi+1 such
that

Ti+1 ≡ {a : ∀qj≤qi
(a2 + 1 6≡ 0 mod qj)}.

Then, the recursive formula of Ti+1, which is the set of least nonnegative represen-
tatives of residue classes mod mi+1 is as follows:
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T1 = 〈2〉,
Ti+1 = (Ti + 〈mi〉〈0, 1, 2, . . . , qi − 1〉) \Di.(3.1)

Where X ≡ Di mod mi+1 is the solution of the system of congruences

X ≡ Ti mod mi,

X ≡ Bi mod qi.

Obviously, when we delete the number a in the congruence classes Bj mod qj

successively, except qj = a2 + 1 itself may be the prime of the form a2 + 1, other
numbers of the form a2 + 1 are all composites having the prime divisor qj .

The number of elements of the set Ti+1 is

(3.2) |Ti+1| =
i∏
1

(qj − 2).

For example, the first a few terms of the sets Ti are

T1 = 〈2〉,
T2 = (〈2〉+ 〈0, 2, 4, 6, 8〉) \ 〈2, 8〉 = 〈4, 6, 10〉,
T3 = (〈4, 6, 10〉+ 〈0, 10, 20, . . . , 110, 120〉) \ 〈34, 44, 60, 70, 86, 96〉

= 〈4, 6, 10, 14, 16, 20, 24, 26, 30, 36, 40, 46, 50, 54, 56, 64, 66, . . . , 126, 130〉,
T4 = (〈4, 6, 10, . . . , 126, 130〉+ 〈0, 130, 260, . . . , 2080〉) \ 〈4, 30, 64, . . . , 2206〉

= 〈6, 10, 14, 16, 20, 24, 26, 36, 40, . . . , 2200, 2204, 2210〉.

It is easy to prove the formula (3.1),(3.2) by using the mathematical induction.
Now we list some elementary conclusion from the recursive formula Ti, their

proof is easy.
(1) Let si = minTi be the smallest number of the set Ti, then a2 +1 is a prime

if and only if
a = si

∧
a2 + 1 = qi.

This criterion recursively enumerates all numbers a making a2 + 1 primes.
(2) Using the recursive formula Ti, we easy compute the primes of the form

a2 +1, in fact, we had computed out the first few primes of the form a2 +1
for a = 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40.

(3) If a2 +1 ≥ qi is a prime, then the natural number a belongs the congruence
classes Ti mod mi.

(4) “Let P (N) be the largest prime factor of the natural num-
ber N . We have known for more than fifty years that
P (n2 + 1) tends infinity with n.”[1]

The recursive formula Ti provides a fine proof for this fact again.

4. The recursive formula T ′i and its main conclusion

The recursive formula Ti expresses a sieving progress, which is complete new
variation on the historical Eratosthenes sieve. Entire set of natural numbers is
sieved, without estimating error items, this is different from the traditional sieve
method.
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If delete all natural numbers a making a2 + 1 composites in congruence classes
B1, B2, . . . , Bi, . . . from entire set of even natural numbers successively, what result
will obtain? We consider limit of the sieving process to obtain the set of all numbers
a making a2 + 1 primes.

Now we quote the definition of the limit of set sequences of natural numbers[9].

lim supn=∞ Fn (limit superior of the set sequences F0, F1, . . . ),
lim infn=∞ Fn (limit inferior of the set sequences F0, F1, . . . ) de-

fined as follows:

lim sup
n=∞

Fn =
∞⋂

n=0

∞⋃
i=0

Fn+i,

lim inf
n=∞

Fn =
∞⋃

n=0

∞⋂
i=0

Fn+i.

It is easy to check that lim supFn is the set of those elements x
which belong to Fn for infinitely many n. Analogously, x belongs
to lim inf Fn if and only if it belongs to Fn for almost all n, that
is, if it belongs to all but a finite number of Fn.

It is easily seen that

lim inf
n=∞

Fn ⊂ lim sup
n=∞

Fn

If the inclusion sign can be replaced by the equality sign, that
is, if the superior and inferior limits are equal, then their common
value is denoted by

lim
n=∞

Fn,

and is called the limit of the sequence F0, F1, . . . . In this case we
also say that the sequence is convergent.

From above definition it is easy to prove some simple properties of the limit of
sequences of sets:

(1) If F0 ⊃ F1 ⊃ F2 ⊃ . . . , then
⋂

Fn = lim Fn.
(2) If F0 ⊂ F1 ⊂ F2 ⊂ . . . , then

⋃
Fn = lim Fn.

(3) lim sup(An

⋂
Bn) = lim supAn

⋂
lim supBn.

(4) lim sup(An

⋃
Bn) = lim supAn

⋃
lim supBn.

(5) lim inf An

⋃
lim inf Bn ⊂ lim inf(An

⋃
Bn).

(6) lim inf(An

⋂
Bn) ⊂ lim inf An

⋂
lim inf Bn.

In above textbook K.Kuratowski and A.Mostowski looked those properties as
exercises. We directly use them.

Call this limit be set theoretic limit.
Let us use the set theoretic limit of set sequence of natural numbers to determine

the set of all number a making a2 + 1 primes.
Now we use a predicate R(2, a) to denote a2 + 1 is a prime.
As the congruence classes

Xi ≡ Ti mod mi,

there is an inclusion relation

X1 ⊃ X2 ⊃ · · · ⊃ Xi.
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Thus the set sequences of natural numbers X1, X2, . . . , Xi, . . . have the limit lim Xi

by the property (2).
Since when we delete the congruence classes Bj , j < i to take out the number

a = si

∧
a2 + 1 = qi, next we will remove number a by qi | a2 + 1. Thus

limXi = ∅.

Obviously, Ti ⊂ Xi, by the property (4) obtain

(4.1) lim Ti = ∅.

With the lim Ti we would prove nothing.
We modify the set Bj to be

B′
j = {a : a2 + 1 ≡ 0 mod qj except R(2, a)}.

Namely, we delete the congruence class Bj mod qj but save the number a if
a2 + 1 is a prime, qj = a2 + 1.

Let Ai be the set of number a such that a2 +1 less than qi and a2 +1 is a prime

Ai = {a : a2 + 1 < qi

∧
R(2, a)}.

We modify the set Ti to be

(4.2) T ′i = Ai

⋃
Ti.

Except saving all numbers a making a2 + 1 primes, both set sequences T ′i and
Ti are same.

Now we use the limit of the set sequences T ′i to prove the main theorem in this
paper.

Theorem 4.1. There are infinitely many primes of the form a2 + 1.

Proof. First of all let us consider the number of elements of the set sequence T ′i .
Let |Ai| be the number of all numbers a making a2 + 1 primes and a2 + 1 < qi,

then the number of elements of the set sequence T ′i is

|T ′i | = |Ai|+ |Ti|,

|T ′i | ≥ |Ti|.
As i goes to infinity, from formula (3.2), may obtain that the number of elements

of set sequence T ′i is strictly increasing, thus the limit of the number of elements of
set sequence T ′i is infinite

(4.3) lim |T ′i | = ∞.

Where ∞ denotes the smallest infinite cardinal ℵ0 or the first infinite ordinal ω.
Call this limit be a numerical limit.
Next let us consider the set theoretic limit of the set sequence T ′i .
Obviously,

A1 ⊂ A2 ⊂ · · · ⊂ Ai ⊂ · · · ,

by the property (2) the set sequence A1, A2, . . . , Ai, . . . have the limit lim Ai, and
this limAi is the set of all numbers a making a2 + 1 primes

http://www.paper.edu.cn



THERE ARE INFINITELY MANY PRIMES OF THE FORM a2 + 1 7

(4.4) lim Ai = {a : R(2, a)}.

By the property (4), we have

T ′i = Ai

⋃
Ti.

lim inf T ′i ⊃ lim inf Ai = lim Ai.

lim sup T ′i = lim sup(Ai

⋃
Ti)

= lim supAi

⋃
lim sup Ti

= lim supAi

⋃
∅

= lim supAi

= lim Ai.

By the property (5) we have

lim inf T ′i ⊃ lim inf Ai = lim Ai.

Thus it is proved that the set sequence T ′i has a limit and this limit is the set of
all numbers a making a2 + 1 primes.

(4.5) lim T ′i = lim Ai = {a : R(2, a)}.

The set theoretic limit is defined by infinite operations of sets not involving
topology, so that we can not obtain that the set of all natural numbers a making
a2 + 1 primes is an infinite set directly from the numerical limit (4.3).

Further explore in the sieving progress, we find that the set sequence T ′i arbi-
trarily approaches the infinite set of all numbers a making a2 +1 primes, can endow
it with an order topology, and the cardinal function |T ′i | is continuous with respect
to this order topology.

Obtained set T ′i from formula (3.1), let a ∈ T ′i , if a < qi, then number a making
a2 + 1 prime, which belongs to all T ′r for r > i and will never be deleted.

Obtained set T ′i from formula (3.1), let a ∈ T ′i , and a ≥ qi, then a is a good
candidates making a2 + 1 primes, assuming both numbers of primes of form 4k + 1
and 4k + 3 are roughly equal in the interval [3, qi], then the a2 + 1 do not contain
first 2i primes as factor. In this case, if a making a2 +1 prime, then a belongs to all
T ′r for r > i, otherwise the a is an error item, there is a prime qs such that qs|a2 +1
, a does not belong to any T ′r for r > s. Our sieve method itself will delete all error
items and need not estimate the number of error items.

As i goes to infinity, we delete more and more numbers a making a2+1 composites
B′

i, exhibit more and more a making a2 + 1 primes or candidates making a2 + 1
primes in the set T ′i , the set sequence T ′i gets as close as we want to the lim T ′i .

If i was extremely large, example i = c = 1010100
, theoretically we can construct

a set T ′c by formula (3.1), which has approximated to the lim T ′i .
The set T ′c has

|T ′c| >
1010100∏

1

(qi − 2)
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elements a such that a2 + 1 do not contain first 2 × 1010100 − 1 primes as factor
except itself, namely if a2 + 1 has factors except itself, by the prime theorem, they
are large than

2.3× 10100 × 2× 1010100
.

In approximate sense, the set T ′c nearly may be regarded as a set of all numbers a
making a2+1 primes and the number of elements of this set nearly may be regarded
as infinity. Against our daily standard, the set T ′c is the infinite set of all numbers
a making a2 + 1 primes.

Ultimately, as the limit of the set sequence T ′i , we have deleted all congruence
classes B′

i, and have obtained infinitely many natural numbers a such that a2 + 1
not contain any prime as factor except itself, these infinitely many natural numbers
a constitute exactly the set of all numbers a such that a2 + 1 is a prime,.

We give a formal proof with an order topology.
We know that the T ′i is the set of numbers a < mi such that a2 + 1 do not

contain any prime p < qi as factor except itself by the formula (4.2). According
to this order relation we use recursive definition to list a well ordered set with the
order type ω

T ′1, T
′
2, . . . , T

′
i , . . . .

Let T be the set theoretic limit of set sequence T ′i

T = lim T ′i = lim Ai = {a : R(2, a)}.
By transfinite recursive definition, according to above order relation, we list a

well ordered set with the order type ω + 1

(4.6) T ′1, T
′
2, . . . , T

′
i , . . . ;T.

Take the order topology for this well ordered set, its open sets are the sets that
are the unions of open intervals (c, d) and rays (c, d] [10], may obtain again

(4.7) lim T ′i = T = {a,R(2, a)}.
Call this limit be an order topological limit.
Let f : X → Y be the function from topological space X to topological space Y

X : T ′1, T ′2, . . . , T ′i , . . . ; T,

Y : |T ′1|, |T ′2|, . . . , |T ′i |, . . . ;∞,

Obviously, for every open set (|c|, |d|), (|c|,∞] in Y, its preimage (c, d), (c, T ] is an
open set also in X, thus the cardinal function f : X → Y is sequentially continuous,
it preserves limits by the topological theorem. We obtain

(4.8) |{a : R(2, a)}| = | lim T ′i | = lim |T ′i | = ∞.

We had computed out some patterns of the first few natural number a such that
a2 + 1 is a prime,

a = 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40.

Hance there is a set {a : R(2, a)} and it is nonempty, the predicate R(2, a) has
a model, its theory is consistent by Gödel completeness theorem—A theory has a
model if and only if it is consistent [11]. It is impossible to prove that the number
of primes of the form a2 + 1 is finite. Otherwise, if there is no patter of primes for
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polynomials of some forms, our reasoning will invoke a Ross-Littwood paradox, in
last section we consider this paradox in the detail.

We have proved validly that the number of primes of the form a2 + 1 is infinite
or this set is an infinite set.

�

5. A extension of the main theorem

Let f(a) be a polynomial, let Bi mod pi be the solution of the congruence

f(a) ≡ 0 mod pi.

Repeat above reasoning, we extend the main theorem to any quadratic polyno-
mial an2 + bn + c or general polynomials f(a), then determine whether there are
infinitely many primes of the form f(a) or not.

We can extend the main theorem to attack Diksin’s prime k-tuple conjecture
and its generalization—Schinzel’s hypothesis. Here consider Schinzel’s hypothesis.

In 1958 Schinzel and Sierpinski proposed a hypothesis[12]:
Let k be a positive integer and let

f1(x), f2(x), . . . , fk(x)

be irreducible polynomials with integral coefficients and positive leading coefficients.
Assume also that there is not a prime p which divides the product f1(m)f2(m) . . . fk(m)
for every integer m. Then there exists a positive integer n making

f1(n), f2(n), . . . , fk(n)

all primes.
If there one positive integer n making these polynomials simultaneously primes,

then there are infinitely many such n.
I can not extend above result to prove original Schinzel’s hypothesis, however

we can sharpen this hypothesis to a special form like the primes of form a2 +1 and
prove it.

Given any positive integer n and let f1(a), f2(a), . . . , fn(a) be polynomials with
integral coefficients and positive leading coefficients.

Let k be the degree of the polynomial

f1(a)f2(a) . . . fn(a).

If the solutions of the congruence

f1(a)f2(a) . . . fn(a) ≡ 0 mod p

do not run through the complete system of residues mod p for every prime p ≤ k.
we say the polynomials are admissible.

If there one natural number a making these polynomials simultaneously primes,
we say the polynomials have prime patterns.

We use the predicate R(k, a) denote the number a such that f1(a), f2(a), . . . , fn(a)
are primes simultaneously.

Extend above main theorem, we obtain a theorem.

Theorem 5.1. If the polynomials

f1(a), f2(a), . . . , fk(a)

are admissible and have prime pattern, then there are infinitely many number a
making they simultaneously primes.
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Proof. Let X ≡ Bi mod pi be the solutions of the congruence

f1(x)f2(x) . . . fk(x) ≡ 0 mod pi.

Let wi be the number of this solutions. If this congruence has no solution for
mod pi, we overlook the prime pi.

If the solutions of the congruence run through the complete system of residues
mod pi, then the set Ti+1 is empty, obviously, the number of a making these poly-
nomials simultaneously primes is finite. So that we Assume that the solutions of the
congruence do not run through the complete system of residues mod p, namely,
the polynomials are admissible.

Delete the residue class X ≡ Bj mod pj we obtain the recursive formula Ti, the
number of elements of the set Ti is

(5.1) |Ti| =
i−1∏
1

(pj − wj).

Where wj is the number of the solutions Bi mod pj of the congruence, k is the
degree of above polynomial, it is easy to prove wi < k. Thus if i > k the cardinal
|Ti| is strictly increasing. We obtain

(5.2) lim |Ti| = ∞.

Delete the residue class Bj mod pj but save the number a making these poly-
nomials simultaneously primes. Like above proof, we obtain

(5.3) lim |T ′i | = ∞.

By the set theoretic limit we obtain:

(5.4) lim T ′n = lim Aa = {a : R(k, a)}.
Since the set T ′i approximates the set of all a making these polynomials simul-

taneously primes as i tends infinity, list a well ordered set with the order type
ω + 1

(5.5) T ′1, T
′
2, . . . , T

′
i , . . . ;T.

Take the order topology for this well ordered set, we prove that the cardinal
function |T ′i | is continuous with respect to this order topology, thus

(5.6) |{a : R(k, a)}| = | limT ′i | = lim |T ′i | = ∞.

Similarly the primes of the form a2 + 1 we have assume that there is a prime
pattern of the form f1(a), f2(a), . . . , fn(a), thus there is a set {a : R(k, a)} and it
is nonempty, the predicate R(k, a) has a model, its theory is consistent by Gödel
completeness theorem.

Under above conditions we proved validly that there are infinitely many natural
numbers a such that f1(a), f2(a), . . . , fn(a) are simultaneously primes. �

Next section we discuss that the prime pattern is necessary condition.
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6. The Ross-Littwood paradox

In above reasoning a restrictive condition— have prime patterns —is necessary.
If we have not found any prime pattern of admissible polynomials

f1(a), f2(a), . . . , fn(a)

or can not prove that there exist some patterns, we do not know whether there
exists a set {a : R(k, a)} as the model of the predicate R(k, a) in the formal system
P (N). We do not know whether the theory about the predicate R(k, a) is consistent
or not.

Example, let k ≥ 41, until now we do not know whether there exists a number
a such that

x2 − x + a

represents primes for x = 0, 1, 2, . . . , k.
For an admissible polynomials f1(a), f2(a), . . . , fn(a) which have not any prime

pattern, suppose that there exist no set of numbers a making they primes in the
formal system P (N), we prove nothing.

For an admissible polynomials f1(a), f2(a), . . . , fn(a) which have not any prime
pattern, suppose that there exists a set of numbers a making they primes in the
formal system P (N), we would prove that the set is empty by the set theoretic
limit and would prove that the set is infinite by the order topological limit, this is
a contradiction. One call this contradiction be a Ross-Littwood paradox[13, 14].
This paradox is not an error of reasoning.

Example to consider the primes of form a2−1 by above algorithm or to consider
the limit of set sequence Ti = 〈i, i + 1, i + 2, . . . , 2i〉, we obtain the Ross-Littwood
paradox.

In informal argument, Ross-Littwood paradox opened out the contradiction
between numerical limit formula (5.3) (not equal 0) and set theoretic limit for-
mula(5.4)(empty). It seems, one adds an extra premise — a physical law that the
balls or the natural numbers as the objects have continuous space-time paths. To
take either the numerical limit or set theoretic limit all leave one in the embarrassing
situation.

Now we have formalzed Ross-Littwood paradox. It is easy to resolve this paradox
in the formal system P (N). By the reduction to absurdity, from above contradiction
we obtain that there exists not any set of numbers a making the admissible poly-
nomials f1(a), f2(a), . . . , fn(a) simultaneously primes in the formal system P (N)
as a model of the predicate R(k, a). Namely, the Ross-Littwood paradox is an
Impossible Super-Task by J.P.Van Bendegem [15].

This phenomenon is like that in rational number formal system 〈Q,+,×, 0, 1〉
there is no irrational number

√
2. Suppose that there is the irrational number

√
2

in the rational number system Q, we obtain a contradiction.
Only one sieve method which have no survivor or pattern may lead to the Ross-

Littwood paradox, thus the usual solution of the Ross-Littwood paradox is an
empty, Of course this is an argument from different logical level.

Thus for the admissible polynomials f1(a), f2(a), . . . , fn(a), if we have not found
a prime pattern or can not prove that there is a prime pattern, we can not prove
there are infinite many numbers a making those polynomials primes simultaneously,
our proof itself needs a restrictive condition.
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