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1. Introduction. After C. Goldbach and L. Euler presented their famous con-
jecture [1, 2 p421] by a letter in 1742, which states that is every number > 2 the
sum of two distinct primes?1, A. de Polignac presented yet his famous conjecture
in 1849 [1, 2 p424, 4 p11], One named it the twin primes conjecture, which states

Conjecture 1: Even number 2 is the difference of two consecutive primes in an

infinitude of ways.

Then he advanced extendedly another famous conjecture also in that paper, it
states

Conjecture 2: Every even number is the difference of two consecutive primes in

an infinitude of ways.

One named it Polignac’s conjecture. Conjecture 2 is a very stronger conjecture,
one couldn’t now not only show it but decide whether it is true as well. And one
have advanced a slightly weaker conjecture which is analogous as that one, we
name it a weaker Polignac’s conjecture, it states

Conjecture 3: Every even number is the difference of two primes in an infinitude

of ways.

Owing to Conjecture 3 doesn’t need that two primes are in order, that is, it is
allowed that there are some other primes between these two primes, its condition
is weaker than Conjecture 2 and it is possible to show it. Although Conjecture 3
is weaker, yet it still includes Conjecture 1 as a special one.

In this paper we will advance a method of appointedly covering prime circles
with the levels of mathematical screen, and show Conjectures 3 and 1 to be true
with the proof by contradiction. Some symbols using in the paper is analogous as
those in ref.[5, 6, 7, 8].

2. Preparative works. Prior to showing this important problem in number
theory or in mathematics, we should do some things.

1Note: The author consider that owing to that the number 1 was judged as a prime number
in early years, so Goldbach wrote 4 = 1 + 3 and 6 = 1 + 5 [3, p7]; after that time, one wrong
consider that he wrote 4 = 2 + 2 and 6 = 3 + 3 [2 p421].
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(1) A sequence of odd numbers. Firstly, we should write a sequence of odd
numbers except 1, and denote ordinal number of odd numbers by i and its incre-
ment by i′. According to Euclid’s prime theorem, there are infinitely many odd
prime numbers in that sequence, we denote the ordinal number of an odd prime
number in the sequence of odd prime numbers by s and its increment by σ and
σ′. That is

odd number : 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, · · · ,

ordinal number i : 1 2 3 4 5 6 7 8 9 10 · · · ,

ordinal number s : 1 2 3 − 4 5 − 6 7 − · · · .

(2) An additive graph of the difference formulae of odd numbers. Sec-
ondly, we can draw a graph with two-color circles indicating odd numbers. This
graph is analogous as Fig.3 in ref.[6], n heading numbers was cut off from the se-
quence of odd numbers and rearranged vertically in the left line, then, an ordinal
sequence of odd numbers was arranged paralleling with the former in the right,
both lines construct a column for an even number, and there were imaginatively
a minus sign between correspondingly two odd numbers in the same row in this
column indicating this even number. we denote ordinal number of odd number
vertically laying in the left line of the first column by k which is starting at 2, and
its increment by k′. There are two kinds of backed circles colored with black and
snow, the black is to indicate a prime number, the snow to odd composite number.
For all n, here n = 1, 2, · · · , we can draw out some analogous columns consisted
of odd numbers and get an addition of these number circles (Fig.1).

In Fig.1 we draw a horizontal dotted line between the row k = n and the
row k = n + 1 for every column, which is parting all the difference formulae of
odd numbers into two parts: one part, laying up over the dotted line, contains n

difference formulae of odd numbers for the nth column, in which there include some
difference formulae consisted of two primes, its number is Polignac-Xu’s number
for that even number; another one, laying down under the dotted line, contains
infinitely many of rest difference formulae.
(3) An important conclusion. In order to serve T. M. Apostol’s problem: “Is
there an even number > 2 which is not the difference of two primes?” [4, p11], in
the ref.[5-8], we have calculated Goldbach-Xu’s numbers for some even numbers
with a generalized hierarchial recursion algorithm. There are some difference for-
mulae over the dotted line for every column, that is, Polignac-Xu’s number is ≥ 1,
i.e., #{D(n)}PX ≥ 1, where the subscript px is to distinguish it from Goldbach-
Xu’s number #{D(n)}GX , and by our calculation it is oscillatingly increased as
the even number increases. So we can conclude

Conclusion 4: For every even number its Polignac-Xu’s number is ≥ 1 and is

positively, oscillatingly increased as the even number increases.

(4) Some convention of using symbols. In order to conveniently indicate its
significant for some mathematical items, we use some symbols to denote them.
For an odd number laying at a sit in the nth column, we use a front superscript
n to denote it, a front subscript l to denote it is in the left line, a front subscript
r to denote it in the right, we use a letter o to denote an odd number, specially,
use a letter p to denote an odd prime, and the ordinal number i for indicating an
odd number which is in the ith row in right line in the nth column sits at a back
superscript, the ordinal number k for indicating an odd number which is in the
kth row in left line in the nth column sits at a back superscript also, the ordinal
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Figure 1. There will appear some “appointed” couples of two
primes after rearranged vertically the sequence of odd numbers.

number s for displaying an odd prime number sits at a back subscript, that is,
n

l
ok, n

l
pk

s , n
r oi, or n

r pi
s.

Furthermore, we use symbol “|−|” to indicate the prime meet prime in the same
row in the nth column, that is, there is n

l
pk

s+σ |−| n
r pi

s probably in the kth row of
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the nth column, and use symbol “⇀” to indicate a prime circle is being covered
by a level of mathematical screen, that is, n

l
pk

s+σ ⇀ n

l
p̃k

s+σ.

(5) About the levels of mathematical screen. And here the term “screen”
possesses mathematical significant. We define “snow” is zero level of the screen
and “black” is infinite level, there are integer levels between them, and we use
symbols to indicate them as follow

S(0) : snow,
S(1) : the first level of mathematical screen (note: with 30% of the screen

indicates it in fig.2),
S(2) : the second level (with 40% indicates it),
S(n) : the nth level (with (10n + 20)% indicates it).
Such that the potence of the set of the levels of screens #S is equal to that of

the set of nonnegative integers #N, i.e., #S = #N; therefore, owing to n ∈ N, the
number of the levels of mathematical screen (expect the zero level) is sufficiently
for monogamously covering prime circles in all n columns (including the case of
n → ∞).
(6) Three relationship formulae. From Fig.1 we can see that there are some
important relationship formulae between n, i and k. There are

(1) k = i + n.

(2) n

l pk+k
′

s+σ = 2n + n

r pk+k
′
−n

s .

(3) n

l pk

s+σ = n

r pk

s+σ.

3. The proof of conjecture 3.

Proof. We use the proof by contradiction. Assume that Conjecture 3 is not true,
thus, it could be deduced that there are four possible cases.

(a) The first cases may be assumed that every even number is the difference of
two primes but not in an infinitude of ways. It is directly in contradiction with
Conclusion 4. The first case indicates that for all even number its Polignac-Xu’s
number is finitely, but Conclusion 4 indicates that when an even number tens
infinitely its Polignac-Xu’s number also tens infinitely. Both are in contradiction
each other, and the assumption is wrong.

(b) The second cases may be assumed that all sufficiently larger even numbers
are the difference of two primes in an infinitude of ways but not sufficiently larger
even numbers aren’t in an infinitude of ways.

For this possible case, all even number < D, here D is a sufficiently larger
number, only is finite many of the difference formulae of two primes not in an
infinitude of ways. That is, we may assume that when k ≥ K, every even number
< D doesn’t be expressed as the difference of two primes (Note: When an even
number approaches to D, n is to approach to N , here N also is a sufficiently larger
number). This will introduce some error conclusion.

Let us return to Fig.1, for n = 1, suppose that there is a last pair of twin primes
in the (K − 1)th row in the 1st column, according to the assumption of the proof
by contradiction, there weren’t any “appointed” pair, the prime meet prime in
same row, of two primes in all rows while k ≥ K. Furthermore, we would extend
the extent of columns as larger as all ones for n ≤ N and suppose that there isn’t
any “appointed” pair when k ≥ K there.
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Now let us consider a sufficiently larger number K, and draw a horizontal real
line between the (K − 1)th row and the k = Kth row. And there must not be the
prime meet prime in Kth row of the 1st column because there isn’t any three odd
numbers are consecutive primes except 3, 5, 7. And if there, then, appears the
prime meet prime in consequence rows under the horizontal line, that is, there is
1
l
pK+k

′

s+σ+1 |−| 1
rp

K−1+k
′

s+σ in the (K + k′)th row, we cover 1
rp

K−1+k
′

s+σ and 1
l
pK−1+k

′

s+σ for

all pairs of k′ and σ with S(1), at this time, there are 1
rp

K−1+k
′

s+σ ⇀ 1
rp̃

K−1+k
′

s+σ and
1
l
pK−1+k

′

s+σ ⇀ 1
l
p̃K−1+k

′

s+σ .

Meanwhile, we continuously cover n
r pK−1+k

′

s+σ and n

l
pK−1+k

′

s+σ for all n > 1. And

there are n
r pK−1+k

′

s+σ ⇀ n
r p̃K−1+k

′

s+σ and n

l
pK−1+k

′

s+σ ⇀ n

l
p̃K−1+k

′

s+σ .
Next, for n = 2 and k ≥ K + 1, if there appears the prime meet prime in the

(K +1)th row of the 2nd column, that is, there is 2
l
pK+1

s+1 |−| 2
rp

K−1
s , because 2

rp
K−1
s

must be a prime, we would only cover 2
l
pK+1

s+1 and 2
rp

K+1
s+1 with S(2). And there

are 2
l
pK+1

s+1 ⇀ 2
l
p̃K+1

s+1 and 2
rp

K+1
s+1 ⇀ 2

rp̃
K+1
s+1 (Fig.2).

Then we continuously cover n

l
pK+1

s+1 and n
r pK+1

s+1 for all n > 2. And there are
n

l
pK+1

s+1 ⇀ n

l
p̃K+1

s+1 and n
r pK+1

s+1 ⇀ n
r p̃K+1

s+1

And if there is 2
l
pK+1+k

′

s+1+σ′ |−| 2
rp

K−1+k
′

s+σ′ , we cover 2
rp

K−1+k
′

s+σ′ and 2
l
pK−1+k

′

s+σ′ for all

pairs of k′ and σ′, and there are 2
rp

K−1+k
′

s+σ′ ⇀ 2
rp̃

K−1+k
′

s+σ′ and 2
l
pK−1+k

′

s+σ′ ⇀ 2
l
p̃K−1+k

′

s+σ′ .

And we consecutively cover n
r pK−1+k

′

s+σ′ and n

l
pK−1+k

′

s+σ′ for all n > 2 with that level

of the screen, and there are n
r pK−1+k

′

s+σ′ ⇀ n
r p̃K−1+k

′

s+σ′ and n

l
pK−1+k

′

s+σ′ ⇀ n

l
p̃K−1+k

′

s+σ′ .
Following, for n = 3 and k ≥ K + 2, if there appears the prime meet prime in

the (K + 2)th row of the 3nd column, that is, there is 3
l
pK+2

s+σ |−| 3
rp

K−1
s , because

3
rp

K−1
s must be a prime, we would only cover 3

l
pK+2

s+σ and 3
rp

K+2
s+σ with S(3). And

there are 3
l
pK+2

s+σ ⇀ 3
l
p̃K+2

s+σ and 3
rp

K+2
s+σ ⇀ 3

rp̃
K+2
s+σ . Then we continually cover n

l
pK+2

s+σ

and n
r pK+2

s+σ for all n > 3 with that level. And there are n

l
pK+2

s+σ ⇀ n

l
p̃K+2

s+σ and
n
r pK+2

s+σ ⇀ n
r p̃K+2

s+σ .
And if there appear the prime meet prime in the (K + 2 + k′)th row of that

column, that is, there are 3
l
pK+2+k

′

s+σ+σ′ |−| 3
rp

K−1+k
′

s+σ , we will cover 3
rp

K−1+k
′

s+σ and
3
l
pK−1+k

′

s+σ , and cover n
r pK−1+k

′

s+σ and n
r pK−1+k

′

s+σ for all n > 3 and all pairs of k′

and σ with with S(3). Such that there are 3
rp

K−1+k
′

s+σ ⇀ 3
rp̃

K−1+k
′

s+σ , 3
l
pK−1+k

′

s+σ ⇀
3
l
p̃K−1+k

′

s+σ , n
r pK−1+k

′

s+σ ⇀ n
r p̃K−1+k

′

s+σ and n
r pK−1+k

′

s+σ ⇀ n
r p̃K−1+k

′

s+σ .
Then, we do this for ever and ever for all n, here n = 4, 5, · · · , n.
For example, let us see in Fig.2, There are some clearly examples. There is

1
l
4321

13 |−| 1
r4120

12 in the row k = 21 of the 1st column, then, we cover 1
r4120

12 and 1
l
4120

12

with S(1), and cover n

l
4120

12 and n
r 4120

12 for all n > 1; and there is 1
l
6130

17 |−| 1
r5929

16

in the row k = 30 of that column, and we cover 1
r5929

16 and 1
l
5929

16 with that level

of screen, and cover n

l
5929

16 and n
r 5929

16 for all n > 1. And there are n
r 4̃1

20

12,
n

l
4̃1

20

12,
n
r 5̃9

29

16, and n

l
5̃9

29

16 for all n = 1, 2, · · · .
Next, there is 2

l
4723

14 |−| 2
r4321

13 in the row k = 23 of the 2nd column, then, we

cover 2
r4321

13 and 2
l
4321

13 with S(2), such that there are 2
r 4̃3

21

13 and 2
l
4̃3

21

13. And we

consequently cover n
r 4321

13 and n

l
4321

13 for all n > 2, thus, there are n
r 4̃3

21

13 and n

l
4̃3

21

13

for all n = 2, 3, · · · .
And there is 3

l
3718

11 |−| 3
r3115

10 in the row k = 18 of the 3rd column, owing to the
odd number 3

ro
15 = 3

r3115
10 must be a prime, we cover 3

l
3718

11 and 3
r3718

11 and n

l
3718

11

and n
r 3718

11 with S(3). Continually, there are 3
l
5326

15 |−| 3
r4723

14 in the row k = 26 and
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Figure 2. There were no Polignac-Xu’s number over the dotted
line and were not any uncovered prime circle in the interval (32,
64) under this line while n = 15.

3
l
6733

18 |−| 3
r6130

17 in the row k = 33, we should also cover 3
r4723

14 and 3
l
4723

14, and 3
r6130

17

and 3
l
6130

17, such that there are 3
l
3̃7

18

11 and 3
r3̃7

18

11,
3
r4̃7

23

14 and 3
l
4̃7

23

14, and 3
r6̃1

30

17 and
3
l
6̃1

30

17.
6
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And we would lastly cover n

l
3718

11 and n
r 3718

11,
n
r 4723

14 and n

l
4723

14, and n
r 6130

17 and
n

l
6130

17 for all n > 3, thus, there are n

l
3̃7

18

11 and n
r 3̃7

18

11,
n
r 4̃7

23

14 and n

l
4̃7

23

14, and n
r 6̃1

30

17

and n

l
6̃1

30

17 for all n=3, 4, · · · .
At best latter, when n turns from 1 to K − 1, the black prime circles laying at

the (K −1)th sit in the right line will be through all rest black circles between the
Kth odd number and the 2(K − 1)th in the left, and all these prime circles in the
interval [2K+1, 4K+1], no matter whether in the right line or in the left, will be

covered with K − 1 levels of screen. And there are K−1
r pK+k

′

s+σ ⇀ K−1
r p̃K+k

′

s+σ and
K−1
l

pi+i
′

s+σ ⇀ K−1
l

p̃i+i
′

s+σ for all pairs of k′ and σ in two lines in the (K−1)th column.

And we consider that there isn’t the primes meet primes for K−1
r p̃K+k

′+k
′′

s+σ+σ′ |−|
K−1
l

pi+i
′

s+σ in the (K − 1)th column, and its number does not be counted among
Polignac-Xu’s number for that even number, although there were probably infin-
itely many “appointed” prime pairs in infinitely far away under the dotted line.

So we can conclude three error conclusions: (i) There were not any appointed
couple between two primes in all rows, i.e., when an even number D = 2n ≥
2(K − 1), there is #{D(n)}PX = 0, and there were no Polignac-Xu’s number,
among there, in the interval of under the horizontal real line and over the dotted
line, while n ≥ K−1. This is contradiction with Conclusion 4; (ii) There were not
any prime in interval (2K, 4K), for instance, if K = 16, there were not any prime
in (32, 64) under the horizontal dotted line in fig.2 also while n ≥ K − 1. This
is contradiction with a famous prime theorem, the Chebyshev-Bertrand Theorem,
that there must exist at least one prime between x and 2x, and (iii) There would
be not any prime in interval (2K, ∞) also under dotted line while n → ∞,, this
is contradiction with the Euclid Prime Theorem, that there are infinitely many
primes in natural numbers. And the assumption is wrong.

(c) The third cases assumes that all of sufficiently larger even numbers and
some of not sufficiently larger even numbers are the difference of two primes in an
infinitude of ways but some others aren’t in an infinitude of ways.

In this status, we divide all even number in to two sets, A and B, the set A
contains the former, and the set B contains the latter. For all even number in B,
we take analogous method as covering sufficiently larger odd primes in the columns
indicating those even numbers in above subsection (b). After processed all those
columns we may find that all prime number ≥ K in B have been covered. Of
course, these, which lay in all columns indicating all even numbers in A, should

also be covered. And there is n

l
p̃K+k

′

s+σ+σ′ |−| n
r pi+i

′

s+σ for all pairs of K + k′ and s + σ

for all columns in A, such that there is no n

l
pK+k

′

s+σ+σ′ |−| n
r pi+i

′

s+σ in that set, and the
assumption is contradiction in itself in this case and it is wrong.

(d) In the last case one assumes that every even number except 2 is the difference
of two primes in an infinitude of ways. There, indeed, is no good method to show
this assumption to be wrong. But if it were true, yet one can symmetrically assume
that every even number except 4 is the difference of two primes in an infinitude of
ways; every even number except 6 is the difference of two primes in an infinitude of
ways; and go on. That will introduce a new antinomy. The assumption is wrong.

Where we should note that if there is no Fig.2, i.e., if there isn’t a relationship
indicated as Fig.2 between relative numbers, which indicates the central point at
issue, then one couldn’t set his mind to a “symmetrically assume”. For instance, it
is impossible to set a “symmetrically assume” for Conjecture 2, and this conjecture
couldn’t be shown with the method used in this paper.
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Up to now, we have furnished showing Conjecture 3 to be true and also Con-
jecture 1. �
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